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Multi-state Life Tables, Equilibrium Prevalence, and Baseline Selection Bias 

 

 

 

Abstract 

 

Consider a 3-state system with one absorbing state, such as Healthy, Sick, and Dead.  If the 

system satisifies the 1-step Markov conditions, the prevalence of the Healthy state will converge 

to a value that is independent of the initial distribution.  This equilibrium prevalence and its 

variance are known under the assumption of time homogeneity, and provided reasonable 

estimates in the time non-homogeneous systems studied.  Here, we derived the equilibrium 

prevalence for a system with more than three states.  Under time homogeneity, the equilibrium 

prevalence distribution was shown to be an eigenvector of a partition of the matrix of transition 

probabilities. The eigenvector worked well for time non-homogeneous examples as well. We 

developed a test for whether the available sample was at equilibrium, and used it to explore 

whether there was selection bias in the baseline distribution of a large longitudinal cohort 

sample.  

 

Key words.  Multi-state life table, self-rated health, eigenvalue, eigenvector, equilibrium 

prevalence, selection bias, cohort sample 

Abstract 142 words, text 3977 words, 3 tables, 4 figures, 1 appendix, 1 appendix figure 
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Multi-state Life Tables, Equilibrium Prevalence, and Baseline Selection Bias 

1  Introduction 

Longitudinal data enable us to study change over time.  If the population can be 

conceptualized as being Healthy, Sick, or (over time) Dead, the data may be used to estimate the 

time-specific prevalence of the Healthy state directly from the observed data (Prev:Obs).  

Another approach is to estimate the probabilities of transition among the states.  These 

probabilities are of interest in themselves, and may also be used with multi-state life table 

(MSLT) methods to project the number of persons in each state at future times, for different 

hypothetical populations.  If the system is a Markov process, the MSLT prevalence of the 

Healthy state (Prev:MSLT) converges to an equililbrium value (Prev:Equil), no matter where 

the system starts out.  Prev:Equil can be calculated directly from the pairwise transition 

probabilities, and its standard error can be calculated in closed form.
 1

    

In the following we derive Prev:Equil for a system with any number of  states, and 

compare Prev:Equil,  Prev:MSLT, and Prev:Obs.  We develop a test for whether Prev:Obs is 

different from Prev:Equil, and argue that this test may be used to explore whether there is 

selection bias in baseline data from a longitudinal sample.  To avoid unnecessary notation, we 

ground this work in an example using data from the Cardiovascular Health Study (CHS).   The 

analytic results and examples are in the main text, but we present some of “data-specific” 

arguments in an appendix, in an attempt to improve the flow of the manuscript. 

The CHS is a population-based longitudinal study of 5,888 adults aged 65 and older at 

baseline, designed to identify factors related to the occurrence of coronary heart disease and 

stroke. 
2
  Subjects were recruited from a random sample of the Medicare eligibility lists in four 
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U.S. counties.   Persons who did not expect to remain in the area for the next three years, or who 

were institutionalized, using a wheelchair at home, or receiving treatment  for cancer at baseline 

were ineligible.  Extensive baseline data were collected for all subjects, including a home 

interview and clinic examination. After baseline, subjects had an annual clinic visit, and provided 

additional information by mail and telephone.   Two cohorts were followed, one with 10 annual 

waves of data (n=5201) and the second (all African American, n=687) with 7 waves.  Followup 

is ongoing for events and a few self-reported measures. 
3
   Data collection began in about 1990, 

and follow-up is virtually complete for all surviving subjects in the year 2005.  At baseline the 

mean age was 73 (range 65 to 105), 58% were women, and 84% were white.   

2  MSLT and equilibrium prevalence  

2.1 Transition probabilities and MSLT calculations 

Consider a 6-state system with 5 health states, such as Excellent, Very Good, Good, Fair, 

or Poor (EVGGFP) and one absorbing state, Death.  These states will sometimes be referred to as 

E, VG, G, F, P, D.  Table 1 shows the estimated probabilities of one-year transition among these 

states, calculated from all waves of the CHS data.  For example, the probability that a person 

whose health state is Excellent at time t is also in Excellent health at time t+1, (P(E|E)), is .396, 

while the probability of dying, P(D|E), is  0.013.   

[Table 1 about here]  

For convenience, we assume a first-order Markov process, although this assumption is 

relaxed later on.  Let A
6x6

 be the matrix of transition probabilities, and define a 6x1 vector xt 

whose entries are the number of persons in each state at time t.  Then the number in each state at 

t+1 is xt+1  = A*xt, and the number at t+5 is A
5
*xt.  The transition probabilities are likely to 

change over time, because of aging.
4
  Let At be the time- or age-specific transition probabilities 
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estimated from a crosstabulation of the health data at ages t and t+1. Then, the distribution at age 

71, x71  = A70 * x70, and  x75  = A74 *A73 * A72 * A71 * A70 * x70.  These multi-state lifetable 

(MSLT) results may be used to describe trends over time for a hypothetical initial population.   

To simplify the results somewhat, we define being “Healthy” as E+VG+G and being 

“Sick” as F+P, and summarize the trends by describing the prevalence of the Healthy state (the 

proportion of living persons who are Healthy).   The observed prevalences were similar for men 

and women (not shown), and all examples here combine men and women.  The MSLT 

prevalence (Prev:MSLT) of the Healthy state for different hypothetical populations is shown in 

Figure 1.  The topmost line shows Prev:MSLT if all were in Excellent health at age 65, and the 

lowest line if all started in Poor health.  At about age 71, a type of equilibrium is reached, in 

which the prevalence is independent of the initial distribution.  This is referred to here as the 

prevalence at equilibrium, or Prev:Equil.  The middle, dotted, line is explained in section 2.4. 

[Figure 1 about here]   

2.2 Prevalence at equilibrium (Prev:Equil) for a system with 3 states 

Diehr and Yanez 
[1]

  derived the equilibrium prevalence for a time-homogeneous system  

with 3 states including one absorbing state.   The equilibrium prevalence of the Healthy state is 

K/(1+K), where  
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In the overall CHS data, P(H|H)= .822 , P(S|H)= .156, P(H|S)=.238, and P(S|S)= .648.  Then K= 

1.91, and Prev:Equil is .66.  That is, assuming the probabilities are time-homogeneous, after a 

few years to overcome any initial imbalance, 66% of the living will be Healthy and 34% will be 

Sick, until eventually all are dead. Once equilibrium is reached, the one-year survival rate is .946 
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per year (see Appendix).  The variance of Prev:Equil for a 3-state system can be calculated in 

closed form.
[1]

    

The time-homogeneous assumptions were not appropriate for the example data, because 

of effects of aging, but trajectories of the prevalence from age-specific MSLT calculations were 

found to agree with the equilibrium prevalence that was calculated from the age-specific 

transition probabilities. 
[1]

  To explore the performance of Prev:Equil further, we calculated 

Prev:Equil and Prev:MSLT from probabilities estimated in a different dataset, for ages 0-64. 
5
  

As shown in Appendix Figure A, Prev:Equil was close to Prev:MSLT throughout this age range. 

(Note the larger scale on the Y axis).   Thus, Prev:Equil from equation {1} seems to approximate 

Prev:MSLT even when the probabilities change with age.   We next extend the derivation to a 

system with more states, illustrated using the 6-state system described above.   

2.3  Prev:Equil for a system with any number of  states 

   We first assume that the 6-state system for EVGGFP is time-homogeneous.  The 

observed prevalences of the states are shown in column 1 of Table 2.  A, the matrix of transition 

probabilities in Table 1, is stochastic because each column adds to 1, and is singular for the same 

reason.  Now, let B
5x5

 = A11, the shaded area in Table 1, which includes only the probabilities of 

transition among the 5 living states. If  z is a 5x1 vector of the number of people in each of the 

living states Excellent to Poor, then  zt+1 = B*zt .  (Although the number of deaths is not 

calculated specifically, the number who died between t and t+1 can be calculated from zt  and 

zt+1). 

[Table 2 about here] 
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Once equilibrium is reached, Prev:MSLT does not change from year to year, by 

definition.  That is,  

zt+1 = B*zt = λ zt  {2},  

which is the familiar eigenvalue/eigenvector equation.  Thus, the equilibrium distribution of the 

system is an eigenvector of B.  The eigenvalue is a number less than 1 that represents the 

proportion of the original population that survived to the following year (the 1-year survival 

rate).  Mathematica 
6
  was used to calculate the eigenvectors of B. Because every element of a 

prevalence vector must be non-negative, the elements of eligible eigenvectors must all have the 

same sign.  We standardized the eigenvector to sum to one. 

2.4  Examples 

The 3-state model, Healthy, Sick, Dead, was discussed in section 2.2.  The results there 

suggest that the eigenvector is [K/(K+1), 1/(K+1)] = [.657, .343], and that the eigenvalue 

(survival rate at equilibrium) is .946.  This was verified by matrix multiplication.  Thus, equation 

{1} provides the solution for an eigenvector of a 2x2 asymmetric matrix.  (For the second 

eigenvector, the sign of the square root term is negative, resulting in K < 0). 

For the 6-state example, we first assumed time homogeneity.  Only one eigenvector of 

matrix B was a potential equilibrium distribution.  The eigenvector, in column 2 of Table 2, 

suggests that once the population reaches equilibrium, there will be about the same proportion in 

Excellent as in Poor health, and in Very Good as in Fair health. The eigenvalue associated with 

the vector is .945, which means that once equilibrium is reached, about 95% of the population 

survives to the following year.  
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The transition probabilities change with age, requiring the calculation of a large number 

of age-specific transition matrices and equilibrium prevalences.  Because it was more convenient 

here to be able to calculate the eigenvectors in closed form, we used an approximate eigenvector, 

calculated by repeatedly re-defining the “Healthy” state and calculating the equilibrium 

prevalence from equation {1}.  (For example, defining “Healthy” as Excellent, and “Sick” as 

Very Good to Poor, equation {1} yields the equilibrium prevalence of the Excellent state.  Then 

redefining “Healthy” as E or VG yields the equilibrium prevalence of E+VG, and the 

equilibrium prevalence of Very Good is obtained by subtracting the prevalence of Excellent).  

The approximate eigenvector for matrix B is in column 3 of Table 2, and is reasonably close to 

the exact eigenvector in column 2.  (The 3-state probabilities are weighted means of the 6-state 

probabilities.  For the eigenvector, the weights are proportional to the equilibrium distribution, 

while for the approximate eigenvector the weights are proportional to the observed distribution).   

This approximation was used to estimate the equilibrium prevalence at each age, from age-

specific estimates of B (e.g., from B70).  The estimated age-specific equilibrium prevalence of the 

“Healthy” state for each age is shown as the dotted line in Figure 1.  Clearly, the Prev:MSLT 

lines converge to Prev:Equil, although the effect of the sparseness of data at the oldest ages is 

evident in the variability of Prev:Equil.  Prev-equil decreased about .014 per year of age 

(calculations not shown).   

2.5  Interpretation of Prev:Equil when the system is not time-homogeneous 

 Prev:Equil was derived as the value of Prev:MSLT that does not change from year to 

year, once it is reached.  This is well-defined for the time-homogeneous system, but the 

interpretation is less clear when the probabilities, and thus Prev:Equil, change over time.  For 
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example, matrix B70 refers to transitions from age 70 to 71.  Is Prev:Equil70 (the eigenvector of 

B70) an estimate of Prev:MSLT70 or Prev:MSLT71 or something else?  This cannot be answered 

in general, but in our case Prev:Equilt was always closer to Prev:MSLTt+1 than to Prev:MSLT t.  

Prev:MSLT changed slowly with age (see Figure 1 and Appendix Figure A), and so the practical 

distinction for this example is small.    

3   Observed, MSLT, and equilibrium prevalences 

 At equilibrium, Prev:Equil approximates Prev:MSLT.  Ideally, both would approximate 

the prevalence in the observed data.  Figure 2 compares Prev:Equil, Prev:MSLT, and Prev:Obs 

over time, shown in a larger scale to make small differences easier to observe.  Prev:Obs is the 

observed prevalence, calculated from all persons of a given age, from any survey wave.  

Prev:MSLT was calculated from a MSLT with initial prevalence .837 (the observed prevalence 

at age 65).  Prev:Equil was calculated from the age-specific transition probabilities.  The 

agreement of the 3 curves is remarkable,  given that Prev:Obst+1 is calculated from the raw data 

at age t+1, while Prev:Equil t uses the data from both t and t+1, and Prev:MSLTt+1 uses all the 

data from age 65 to t+1.  (We plotted Prev:Equilt rather than Prev:Equilt+1 to account for the lag 

identified in section 2.5). 

[Figure 2 about here] 

 The three lines may not agree if the MSLT calculations start out of equilibrium. 

In Figure 1, the Prev:MSLT lines had converged by age 71.  The observed prevalences that 

correspond approximately to the MSLT prevalences are shown in Figure 3.  Prev:Obs for the 5 

initial distributions still had not converged by age 81.  The MSLT calculations used the 

(unconditional) age-specific transition probabilities calculated from all the data, but strictly 

speaking, the (conditional) probability calculations for the top line of Figure 1 should have used 
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only the data from the top line of Figure 3 (those Excellent at age 65).   If the first-order Markov 

conditions for the system are met, then the conditional and unconditional probabilities are the 

same, and Prev:MSLT should equal Prev:Obs.  Unfortunately, the Markov conditions do not 

hold in this dataset.
[1]

  When the lifetable is calculated from the equilibrium probabilities, 

Prev:MSLT is likely to be too pessimistic (with respect to the observed data) for the top three 

lines, and too optimistic for the bottom two lines.  Some methods developed for semi-Markov 

processes have performed well on these data,
7
 but they are not considered here. 

We conclude that Prev:MSLT and Prev:Equil agree with Prev:Obs if the system starts out 

at equilibrium, but that they may not agree if the initial conditions are far from equilibrium, 

unless the first-order Markov conditions hold.  When unconditional probabilities are used to 

estimate the conditional trajectories, the MSLT trajectories starting “healthier than equilibrium” 

will be pessimistic, and those starting “sicker than equilibrium” will be optimistic. 

4.0 Testing whether a sample is in equilibrium  

 In Table 2, the observed and the equilibrium prevalences do not agree very well.  We 

next develop a test for whether a sample is “at equilibrium”, defined here as the situation where 

Prev:Obs = Prev:Equil.   The test requires reducing the 6-state system to a 3-state system, for 

which the variance of Prev:Equil can be calculated in closed form. 
[1] 

 We assume that the 

transition probabilities for a system at equilibrium are available (see Appendix), and use them to 

calculate Prev:Equil t, which is compared to Prev:Obs t.  The two sample statistics are 

statistically independent because Prev:Equilt is calculated from the t to t+1 transition 

probabilities, which are statistically independent of Prev:Obs t  (see Appendix). The variance of 

Prev:Obs t is the variance of a proportion, and the variance of Prev:Equil t can be calculated in 

closed form.
[1]

  Therefore, an approximate z-test can be performed:    
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: :

var( : ) var( : )

Prev Obs Prev Equil
z

Prev Obs Prev Equil

−
=

+

        {3} 

 

5.0  Example:  Test for Selection Bias in CHS Baseline Data 

Many longitudinal samples are believed to be biased, in the sense of not being a simple 

random sample of  the population of interest.  Eligibility criteria and the sampling design create 

explicit biases that may be accounted for.  Self-selection biases such as healthy volunteer bias are 

also common, and their effect is usually unknown.  Results from samples that are not population-

based, such as the American Cancer Society database,
8
   may not generalize to the population as 

a whole.  A test for bias in such longitudinal samples would be useful.  We will consider bias in 

the Cardiovascular Health Study, which had the exclusions mentioned above, and which was 

able to enroll only about 70% of the targeted eligibles, suggesting self-selection bias.   

In the following discussion we assume that the original population (Medicare enrollees in 

4 counties in 1990) was at equilibrium with respect to the variable of interest (e.g., EVGGFP in 

the primary example).  If the available sample is unbiased, it will also be at equilibrium.  If loss 

to follow-up is low, then the sample transition probabilities will estimate the equilibrium 

transition probabilities and Prev:Obs will agree with Prev:Equil.   

5.1  Apparent baseline bias in 6-state data, in two CHS cohorts 

Above, we examined self-rated health  (E, VG, G, F, P) using the CHS data.  Table 3 

shows the observed prevalences in 1990 (baseline) and 1991 as well as Prev:Equil calculated 

only from the 1990-1991 data.  Similar results are given for the second cohort, all African 

American.  Cohort 2 had worse self-rated health that cohort 1.  Compared to Prev:Equil, 

Prev:Obs for Cohort 1 appears to have “too many” Excellent and not enough Very Good or Good 
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at baseline.  In Cohort 2, at baseline there were apparently not enough in Good health, but too 

many in Fair and Poor.  For both cohorts, the second year of data is closer to the equilibrium 

distribution than the first year of data, suggesting that the bias may have abated over time. 

Sampling variability is expected, especially for the smaller cohort, and a formal test for bias is 

needed.   

 [Table 3 about here] 

5.2 Formal test for bias  in CHS data 

We chose nine health-related variables that were measured every year in CHS and have 

been described elsewhere. 
9
    These included self-rating of health as Excellent, Very Good, 

Good, Fair, or Poor (EVGGFP)
 10

 ;  the Modified Mini Mental State Examination score (MMSE) 

11
;   activities and instrumental activities of daily living (ADL and IADL);  the Center for 

Epidemiologic Studies Depression score (CESD) 
12

; whether the person was hospitalized in the 

prior six months; the time it took to walk 15 feet; whether the person had a flu shot in the 

previous year;  and the number of days spent in bed in the previous 2 weeks. All variables were 

dichotomized into “Healthy”, “Sick”, and (over time) Dead, where “healthy” represented a 

favorable value of the variable under consideration (for example, for ADL, “Healthy” is defined 

as “no ADL difficulties”).   The thresholds defining “healthy” are available elsewhere.
13

 Based 

on the eligibility criteria, and likelihood of volunteer bias, we hypothesized that the CHS sample 

would be “too healthy” at baseline on all of the variables.   

The test for baseline bias compared Prev:Obs1990 to Prev:Equil1990.   For example, for 

EVGGFP, Prev:Obs1990  = .77, with standard error = .0058.  Prev:Equil1990 = .82 with standard 

error .0092.  Their difference is .77-.82 = - .05, and z = -.05/.0109 = -4.59, indicating a 

statistically significant negative bias.    
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 Results are summarized in Figure 4, where the dark bars represent the z-statistic for each 

variable, with horizontal lines indicating thresholds of +2 and -2.  Most of the variables showed 

some positive bias (Prev:Obs > Prev:Equil).  MMSE, ADL, and CESD had significant positive 

bias (z > 2), and IADL, hospitalizations, bed days, and timed walk had no apparent bias.  

Unexpectedly, EVGGFP and flu shot had significant negative biases.  Comparisons for other 

years, not shown, suggested that any observed bias disappeared in 2 to 3 years.  (However, a new 

analysis found that mortality in CHS from 1993 to 1994 was lower than mortality in Medicare 

for that period, suggesting that longer-term bias existed).
14

 

[Figure 4 about here] 

 Because CHS had many waves of data, we were able to test for bias in a different way, 

for comparison.  We calculated the age-sex-specific prevalence of the Healthy state for each 

variable, using all 10 waves of data.  Then, we calculated the expected prevalence in 1990 

(Prev:Expected1990) if the prevalence at baseline was at its age-sex-expected value.  If the 

observed prevalence equals the expected prevalence, this is evidence against baseline bias. The 

resulting z-statistics are the clear bars in Figure 4.  The test based on Prev:Expected identified 

the same significant differences as the test based on Prev:Equil.   

6  Summary and discussion 

The prevalence at equilibrium, Prev:Equil, is defined as the prevalence that is eventually 

reached in a MSLT calculation, independent of the initial conditions.  In a time-homogeneous 

system, this prevalence is an eigenvector of the partition of the transition probability matrix that 

involves only the transitions among the living.  Even in the more realistic non-homogeneous 

situation, Prev:Equil was also a good approximation of Prev:MSLT, as seen in Figures 1 and 2 
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and for a different dataset in Appendix Figure A.  It would interesting to test the generalizability 

of this observation to more datasets. 

Prev:Equil and Prev:MSLT agreed with Prev:Obs when the hypothetical population for 

the MSLT was initially at equilibrium, but Prev:Obs  was different if the system started out-of 

equilibrium, in a perhaps non-intuitive direction (Prev:MSLT is pessimistic for an initial 

population that is healthier than equilibrium, and optimistic if it starts sicker than equilibrium).   

Having evidence about selection bias in a sample could improve the interpretation of 

results from datasets that are not population based or where selection bias is expected for some 

other reason.  We proposed a test for baseline selection bias by comparing Prev:Obs and 

Prev:Equil at baseline. In the CHS example, 3 of 9 variables showed significant positive bias, 

and 2 showed significant negative bias. The test can be performed on large datasets with as few 

as 2 waves of data.  The power of the test needs to be explored in the future. 

We were surprised to find negative bias for flu shot and EVGGFP.  During the study 

period, the proportion who received a flu shot increased every year, perhaps due to intensified 

public health campaigns for older adults to be vaccinated.  That is, the underlying population was 

not at equilibrium with respect to flu shots, violating our assumption.  For EVGGFP, there may 

have been different reasons for this apparent bias. In 1990, EVGGFP was measured as part of a 

day-long clinical examination, while in 1991 a questionnaire was sent by mail to be filled out at 

home prior to the clinic visit.  This difference in settings suggests that an “instrumentation” 

effect might have caused the discrepancies.
15

  EVGGFP was also elicited at a phone call half 

way between the two clinic visits, suggesting the potential for learning or “testing” effects that 

changed the way in which persons evaluated their health over time.  These may have contributed 
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to the observed negative bias. It is important to consider plausible alternative explanations for 

significant test results, which could be due to something other than baseline selection bias.   

The prevalence at equilibrium is easy to calculate, for a system with any number of 

states, and can be used to approximate the life expectancies from a MSLT.  There is an 

associated standard error if the system has (or can be reduced to) 3 states.
[1]

 The new test for 

whether a sample is at equilibrium may be useful for evaluating longitudinal data where selection 

bias at baseline is a possibility.  Evaluation of these methods in different settings is needed. 
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Table 1 

6x6 Transition Matrix for all years, ages and both sexes combined 

The “A” Matrix.  The shaded area is the “B” matrix. (N = 136,816 transition pairs) 

 

 Health Status at time t 

Number of Transition Pairs 8443 31750 54621 33143 8859  

Health at time t+1 Excellent Very  

Good 

Good Fair Poor Dead 

E .396 .072 .020 .005 .003 0.000 

VG .359 .495 .163 .042 .019 0.000 

G .187 .337 .573 .229 .076 0.000 

F .037 .067 .190 .551 .225 0.000 

P .009 .014 .027 .105 .393 0.000 

D .013 .016 .027 .068 .284 1.000 

 

Entry is the probability of moving from the column health state to the row health state in 1 

year.  Columns sum to 1.0.   The equilibrium eigenvector is in Table 2.   The corresponding 

eigenvalue of = 0.945.   
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Table 2  

 Observed, equilibrium, and approximate equilibrium prevalence values 

 

 1 Observed 

prevalence—all 

years combined  

N=136816 

 

2 Equilibrium 

Prevalence – all 

data 

(eigenvector of 

B matrix) 

N=136816 

 

3 Approximate 

Equilibrium 

Prevalence 

(repeated use of 

equation {1}) 

N=136816 

Excellent .062 .045 .048 

Very Good .232 .208 .214 

Good .399 .396 .394 

Fair .242 .275 .272 

Poor .065 .078 .071 

  

Eigenvalue = .94498 
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Table 3 

 Observed and Equilibrium Baseline Prevalence 

By cohort. 

Cohort Cohort 1 (n=5201) Cohort 2 (n=687) 

Type of 

prevalence 

Equil 

from 

1990-1991 

data 

Observed  

1990 

Observed 

1991 

Equil from 

1993-1994 

data 

Observed  

1993 

Observed  

1994 

Excellent .04 .143 .069 .043 .073 .051 

Very Good .30 .250 .298 .207 .173 .198 

Good .47 .374 .425 .437 .341 .394 

Fair .16 .199 .184 .259 .323 .293 

Poor .02 .034 .024 .054 .090 .064 
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Figure 1   

MSLT calculation of prevalence demonstrating equilibrium 
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Figure 2  

Comparison of Prev:Equil, Prev:Obs, and Prev:MSLT 

 

 

For a hypothetical population at approximate equilibrium at age 65.  The MSLT calculations 

were started at the observed prevalence. 
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Figure 3 
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Figure 4 

Two “z-tests” for baseline selection bias 

(9 different variables) 
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Appendix 

 Several assertions made in the main text are discussed in more detail here. 

Equation {1} yields an estimate of the eigenvector in the 3-state model. 

At equilibrium, by equation {1}, the prevalence vector is π
2x1

 = [K/(1+K), 1/(1+K)]
T
.  At 

that point, the survival fraction is constant, σ = (P(H|H)+P(S|H))* π1+  (P(H|S)+P(S|S))*π2.   If 

Nt is the number of persons alive at time t, then Nt+1
 
 =  Nt B π = Nt σ π,  because the system has 

the same (equilibrium) prevalence at both t and t+1, by definition.  Therefore B π = σ π , and π is 

an eigenvector of B, while σ is the corresponding eigenvalue. 

Independence of Prev:Equilt and Prev:Obst 

Transition probabilities are calculated conditional on the current state.  For example, 

P(H|S)70 is estimated as the number who are Healthy at age 71 and Sick at 70 divided by the total 

number Sick at 70.  If the sample is biased in some way, such as “too many” Sick persons at age 

70, relative to the number who are Healthy, this does not affect the probability calculation 

because only those Sick at 70 are involved.  If the sample had twice as many Healthy persons at 

age 70, the transition probability estimates would not change.  The estimated probabilities of 

transition from time t to t+1 are thus independent of (Prev:Obs t).  Since Prev:Equil t is calculated 

from those transition probabilities, it follows that Prev:Equil t is statistically independent of 

Prev:Obst. 

 

When does Prev:Equil = Prev:Obs? 

We argue that the original population is likely to be at equilibrium, barring a recent insult 

that made important changes in the health distribution or the transition probabilities.  We will 
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assume that this is the case.  It then follows that a large simple random sample with low loss to 

follow-up is at equilibrium each year, meaning that the sample prevalence is the same as the 

population prevalence, and that the sample transition probabilities are estimates of the 

equilibrium transition probabilities.   In this case, observed and equilibrium prevalences will be 

the same.   

If instead the sample is biased among states, such as having too many Healthy persons at 

baseline, the equilibrium transition probabilities can still be estimated, because the calculation is 

conditional on the prevalence, and so not affected by the bias.  However, we would not expect 

the observed and equilibrium prevalences to be the same.  Finally, if the sample is biased within 

states, such as having the right number Healthy but too many Excellent within the Healthy group 

relative to the population, the transition probabilities themselves will be biased estimates of the 

equilibrium transition probabilities.  The expected relationship of Prev:Obs and Prev:Equil 

would be unclear.  The transition probabilities estimated from the wave 1 to wave 2 transitions 

(1990 and 1991 data in this case) are appropriate for the 1990 sample, whether or not the sample 

is at equilibrium. 
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Appendix Figure A 

Prev:MSLT and Prev:Equil for ages 0-65, from another dataset * 

 

Hosted by The Berkeley Electronic Press



26 

 

• References 

                                                 

1      Diehr P, Yanez D, Derleth A, Newman Anne B.  Age-specific prevalence and years of 

Healthy life in a system with 3 health states.  Statistics in Medicine 2008; 27:1371-1386.  

2. Fried LP, Borhani NO, Enright PL, et al.  The Cardiovascular Health Study:  design and 

rationale.  Annals of Epidemiology  1991. 1:263-276.   

3. Ives G, Fitzpatrick A, Bild D, et al.  Surveillance and ascertainment of cardiovascular 

events:  the cardiovascular health study.  Annals of Epidemiology  1995.   5:278-285.   

4  Diehr P, Patrick DL.  Probabilities of Transition among Health States for Older Adults.  

Quality of Life Research 10:431-422, 2001. 

 

5 Diehr P, Derleth A, Newman AB, Cai L.  The number of sick persons in a cohort.     

Research on aging 2007; 29:555-575. 
 

6   Wolfram Mathematica 7.  Wolfram research. 2008. Champaign, IL.   
 

7  Cai L, Schenker N, Lubitz J, Diehr P, Arnold A, Fried LP.   Evaluation of a method for 

fitting a semi-Markov process model in the presence of left-censored spells using the 

Cardiovascular Health Study.  Statistics in Medicine 2008; 27:5509-5524. 
 

8   Calle EE, Thun MJ, Petrelli JM et al.  Body-mass index and mortality in a prospective 

cohort of U.S. adults.  N Engl J Med 1999; 341:1097-105. 

9.  Diehr P, Williamson J, Burke G, Psaty B.  The aging and dying processes and the health 

of older adults.  Journal of Clinical Epidemiology.  2002.  55:269-278. 

10. Idler EL, Benyamini Y.  Self-rated health and mortality:  a review of twenty-seven 

community studies.  J Health Soc Behav 1997; 38:21-37.   

11. Teng EL, Shui HC. The Modified Mini-Mental State (3MS) examination. J Clin 

Psychiatry 1987;48:314-8.  

12. Radoff LL. The CESD Scale: a self-report depression scale for research in the general 

population. Applied Psychological Measurement 1977. 1:385-401.  

13  Diehr P, Johnson LL, Patrick DL, Psaty B.  Methods for incorporating death into health-

related variables in longitudinal studies.  Journal of Clinical Epidemiology 2005;58:1115-

1124. 
 

14  DiMartino LD, Hammill BG, Curtis LH, Gottdiener JS, Manolio TA, Powe NR, 

Schulman KA.  External validity of the Cardiovascular Health Study:  a comparison with 

the Medicare population.  Medical Care 2009; 47:916-923. 
 

http://biostats.bepress.com/uwbiostat/paper365



27 

 

                                                                                                                                                             

15  Campbell D, Stanley J.  Experimental and Quasi-experimental designs for research.  

Rand McNally and Company, Chicago.  1963. 
 

Hosted by The Berkeley Electronic Press


	6-15-2010
	Multi-state Life Tables, Equilibrium Prevalence, and Baseline Selection Bias
	Paula Diehr
	David Yanez
	Suggested Citation


	Microsoft Word - 207574-text.native.1276632845.doc

