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Super Learning: An Application to Prediction
of HIV-1 Drug Susceptibility

Sandra E. Sinisi, Maya L. Petersen, and Mark J. van der Laan

Abstract

Many statistical methods exist that can be used to learn a predictor based on ob-
served data. Examples include decision trees, neural networks, support vector re-
gression, least angle regression, Logic Regression, and the Deletion/Substitution/Addition
algorithm. The optimal algorithm for prediction will vary depending on the under-
lying data-generating distribution. In this article, we introduce a “super learner,”
a prediction algorithm that applies any set of candidate learners and uses cross-
validation to select among them. Theory shows that asymptotically the super
learner performs essentially as well or better than any of the candidate learners.
We briefly present the theory behind the super learner, before providing an exam-
ple based on research aimed at predicting the in vitro phenotypic susceptibility of
the HIV virus to antiretroviral drugs based on viral mutations. We apply the super
learner to predict susceptibility to one protease inhibitor, nelfinavir, using a set of
database-derived nonpolymorphic treatment-selected protease mutations.



1 Introduction

Numerous methods exist to learn from data the best predictor of a given
outcome. A few examples include decision trees, neural networks, sup-
port vector regression, least angle regression, Logic Regression, and the
Deletion/Substitution/Addition (D/S/A) algorithm. Such algorithms, or
learners, may be characterized by the mechanism used to search the pa-
rameter space. For example, the D/S/A algorithm (Sinisi and van der Laan,
2004) uses polynomial basis functions, while Logic Regression (Ruczinski
et al., 2003) constructs Boolean expressions of binary covariates. The relative
performance of a given learner depends on how extensive each learner must
search over subspaces (reflected in the variance) in order for the employed
mechanism to achieve a comparable approximation of the truth (reflected in
the bias). Thus, the relative performance of various learners will depend on
the true data-generating distribution. In practice, it is generally impossi-
ble to know a priori which learner will perform best for a given prediction
problem and data set.

The framework for unified loss-based estimation (van der Laan and Du-
doit, 2003) suggests a solution to this problem in the form of a new estimator,
which we call the “super learner.” This estimator is itself a prediction algo-
rithm, which applies a set of candidate learners to the observed data, and
chooses the optimal learner for a given prediction problem based on cross-
validated risk. Theoretical results show that such a super learner will perform
asymptotically as well or better than any of the candidate learners (van der
Laan and Dudoit, 2003; van der Laan et al., 2004). We present the super
learner in the context of unified loss-based estimation in Section 2, and illus-
trate its performance in the context of a known data-generating distribution
using a simulated example in Section 3.

In Section 4, we apply the super learner to research drawn from the treat-
ment of Human Immunodeficiency Virus Type 1 (HIV-1). HIV frequently
develops resistance to the antiretroviral drugs being used to treat it, re-
sulting in loss of viral suppression and therapeutic failure. While over 15
licensed antiretroviral drugs exist, the majority fall into three classes: pro-
tease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs),
and non-nucleoside reverse transcriptase inhibitors (NNRTIs). There is a
high-level of cross-resistance within drug classes; a virus that has developed
resistance to one drug in a class may also be resistant to other drugs in the
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same class. Thus, selecting a new “salvage” drug regimen for an individual
who has developed resistance to his or her current regimen is not straightfor-
ward. Improved understanding of the genetic basis of resistance to specific
antiretroviral drugs has the potential to guide selection of an effective salvage
regimen.

In the data example presented in this paper, the goal is to relate mu-
tations in HIV-1 protease and reverse transcriptase to changes in in vitro
susceptibility to antiretroviral drugs. The outcome of interest is phenotypic
drug susceptibility, and the predictors consist of mutations in the protease
and reverse transcriptase enzymes. Rhee et al. (2006) applied five different
learning methods to predict phenotypic drug susceptibility based on viral
genotype (the presence or absence of mutations): (1) decision trees, (2) neu-
ral networks, (3) support vector regression, (4) least squares regression, and
(5) least angle regression. We applied the super learner to the dataset used
by Rhee et al. (2006), where we used Least Angle Regression, Least Squares
Regression, the D/S/A algorithm, and Logic Regression as candidate learn-
ers.

2 Methods

2.1 Loss-Based Estimation

The motivating methodology behind the concept of super learning comes
from the loss-based estimation theory introduced in van der Laan and Dudoit
(2003). We provide a brief description of this estimation road map before
introducing the super learner.

van der Laan and Dudoit (2003) provide a general framework for parame-
ter estimation problems. The data consist of realizations of random variables,
X1, . . . , Xn, from an unknown data generating distribution, FX,0. The goal is
to use the data to estimate a parameter ψ0 of the distribution FX,0, where ψ0

is defined as some function of FX,0. That is, we wish to obtain an estimator,

or function of the data, ψ̂, that is close (in risk distance) to the parameter
ψ0. For example, in our HIV-1 data example, Y denotes a continuous mea-
surement of drug susceptibility, and W is a d-dimensional vector of binary
variables indicating the presence or absence of a mutation. Xi consists of the
pair Xi = (Wi, Yi), measured on a sequence i. The parameter of interest ψ0
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corresponds to the conditional expected value of drug susceptibility Y given
the mutation profile W .

The general strategy for loss-based estimation is driven by the choice
of a loss function and relies on cross-validation for estimator selection and
performance assessment. The proposed estimation road map can be stated
in terms of the following three main steps (van der Laan and Dudoit, 2003).

1. Definition of the parameter of interest in terms of a loss function. For
the full data structure, define the parameter of interest as the minimizer
of the expected loss, or risk, for a loss function chosen to represent the
desired measure of performance (e.g., mean squared error in regression).

2. Construction of candidate estimators based on a loss function. Define
a finite collection of candidate estimators for the parameter of interest.

3. Cross-validation for estimator selection and performance assessment.
Use cross-validation to estimate risk based on the observed data loss
function and to select an optimal estimator among the candidates in
Step 2.

In the regression setting, our parameter of interest is E(Y |W ), which we
denote ψ(W ). The loss function for our parameter of interest is the squared
error loss function, (Y − ψ(W ))2. We will use various learning methods
to construct candidate estimators needed for Step 2, and then use cross-
validation as described in Step 3 to choose the optimal estimator among the
candidates. We propose a super learner to perform Steps 2 and 3.

2.2 Candidate Learning Algorithms

Least Angle Regression (LARS) (Efron et al., 2004) is a model selection
algorithm available in the lars() package of R (http://www.r-project.org).
Logic Regression (Ruczinski et al., 2003) is an adaptive regression methodol-
ogy that attempts to construct predictors as Boolean combinations of binary
covariates available in the LogicReg() package of R. The Deletion/Substi-
tution/Addition (D/S/A) algorithm (DSA) (Sinisi and van der Laan, 2004)
for polynomial regression data-adaptively generates candidate predictors as
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polynomial combinations of continuous and/or binary covariates. It is avail-
able as an R package at http://www.stat.berkeley.edu/users/laan/Software/.
All of these methods have the option to carry out selection using v-fold
cross-validation. The selected fine-tuning parameter(s) can include the ratio
of the L1 norm of the coefficient vector in LARS; the number of logic trees
and leaves in Logic Regression; and the number of terms and a complexity
measure on each of the terms in DSA.

2.3 The Cross-Validation Selector

Cross-validation divides the available learning set into a training set and
a validation set. Observations in the training set are used to construct (or
train) the estimators, and observations in the validation set are used to as-
sess the performance of (or validate) these estimators. The cross-validation
selector selects the learner with the best performance on the validation sets.
In v-fold cross-validation, the learning set is divided into v mutually exclu-
sive and exhaustive sets of as nearly equal size as possible. Each set and
its complement play the role of the validation and training sample, respec-
tively, giving v splits of the learning sample into a training and corresponding
validation sample. For each of the v splits, the estimator is applied to the
training set, and its risk is estimated with the corresponding validation set.
For each estimator/learner the v risks over the v validation sets are aver-
aged resulting in the so-called cross-validated risk. The estimator with the
minimal cross-validated risk is selected.

2.4 Super Learner

It is helpful to consider each learner as an algorithm applied to empirical
distributions. Thus, if we index a particular learner with an index k, then
this learner can be represented as a function Pn → Ψ̂k(Pn) from empirical
probability distributions Pn to functions of the covariates. Consider a col-
lection of K(n) learners Ψ̂k, k = 1, . . . , K(n). The super learner is a new
estimator defined as

Ψ̂(Pn) ≡ Ψ̂K̂(Pn)(Pn),

where K̂(Pn) denotes the cross-validation selector described above which
simply selects the learner which performed best in terms of cross-validated
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risk. Specifically,

K̂(Pn) ≡ arg min
k
EBn

∑
i,Bn(i)=1

(Yi − Ψ̂k(P
0
n,Bn

))2,

where Bn ∈ {0, 1}n denotes a random binary vector whose realizations define
a split of the learning sample into a training sample {i : Bn(i) = 0} and
validation sample {i : Bn(i) = 1}. Here P 1

n,Bn
and P 0

n,Bn
are the empirical

probability distributions of the validation and training sample, respectively.

By a general finite sample oracle inequality presented in (van der Laan and
Dudoit, 2003; van der Laan et al., 2004), it follows that if K(n) is polynomial
in sample size, then either this estimator asymptotically outperforms any of
the candidate learners, or, in the case one or more of the candidate learners
converge at a parametric rate, then this super learner achieves the almost
parametric rate of convergence log n/n.

In our application of the super learner, we have a collection of four candi-
date learners: the LARS learner, DSA learner, Logic Regression learner, and
a least squares fit. We are using the super learner to select the optimal can-
didate learner which performs best in terms of cross-validated risk. Figure 1
shows a depiction of the super learner estimation process.

3 Simulation

In this section, we apply the super learner to a simulated data set with
a known data generating distribution. The following model was used to
generate 500 observations (i = 1, . . . , 500):

yi = 2w1w10 + 4w2w7 + 3w4w5 − 5w6w10 + 3w8w9 +N(0, 1), (1)

where wj ∼ Bin(0.4), j = 1, . . . , 10. The data for a given observation thus
consists of a 10-dimensional vector of covariatesW , and an outcome Y . These
500 observations constitute the learning set.

We applied the super learner with 10-fold cross-validation to the learning
set to estimate E(Y |W ). This involved partitioning the learning set into
10 parts. Each part in turn served as the validation set, while the other
9/10ths of the data served as the training set. The super learner applied the
following set of candidate learners to each of the 10 training sets: LARS,
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Figure 1: Schematic Diagram of the Super Learner
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least squares, DSA, and Logic Regression. For least squares and LARS, two
sets of input variables were used. One consisted of all main terms, and the
other consisted of all main terms w1, . . . , w10 and all two-way interactions
w1, . . . , w10, w1w2, . . . , w9w10. Internal (10-fold) cross-validation was used to
select the optimal fraction in LARS. Internal 10-fold cross-validation was also
used to select the fine-tuning parameters for each candidate Logic Regression
and DSA learner:

• Logic Regression

– trees ∈ {1, . . . , 5}
– leaves ∈ {1, . . . , 20}

• DSA

– terms ∈ {1, . . . , 10}
– order-of-interactions ∈ {1, 2}

Application of each candidate learner to the 10 training sets yielded a set
of 10 estimators for each candidate learner; in the case of Logic Regression,
LARS, and DSA these optimal estimators were indexed by fine-tuning pa-
rameters selected using internal cross-validation. The cross-validated risk for
each of these candidate estimators was estimated by evaluating each estima-
tor to the corresponding validation set. The resulting cross-validated risks
for each estimator averaged across validation sets are displayed in Table 1.

Based on the table of cross-validated risks, DSA and Logic Regression
were identified as the top learners. Table 2 shows a more detailed comparison
of these two learners, illustrating variation in the selection of fine-tuning
parameters within distinct partitions of the learning set and the associated
cross-validated risks. 10-fold cross-validation within each of the 10 training
sets consistently selected 5 trees for Logic Regression, and 2-way interactions
for DSA. However, the number of leaves selected for Logic Regression and
the number of terms selected by DSA varied across the 10 training sets.
The winning learner between these two competitors varied across partitions
of the learning set, with the lowest-cross validated risk achieved sometimes
by DSA and sometimes by Logic Regression. On average, however, Logic
Regression outperformed DSA (average cross-validated risk of 0.958 versus
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Table 1: Simulated Example. Super Learner: Cross-Validated Risks
of Candidate Learners. “Least Squares/LARS (1)” refers to a least
squares/LARS fit with main terms only, “Least Squares/LARS (2)” refers to
a least squares/LARS fit with main terms and all 2-way interactions.

Method Median Mean Std Error
Least Squares (1) 4.986 4.700 1.17
Least Squares (2) 0.960 1.056 0.22

LARS (1) 5.213 4.985 1.31
LARS (2) 0.952 1.062 0.23

Logic Regression 0.934 0.958 0.17
DSA 0.930 0.966 0.18

Table 2: Simulated Example. Super Learner: Comparing Logic Re-
gression and the D/S/A Algorithm. Shows the fine-tuning parameters
selected (number of leaves for Logic Regression, number of terms for DSA) and
the associated cross-validated risks across the 10 partitions of the learning set into
training and validation sets. Note: The additional fine-tuning parameters were
selected consistently across the 10 training sets (cross-validation always selected 5
trees for Logic Regression and 2-way interactions for DSA).

Logic Regression D/S/A Algorithm
Sample Leaves CV Risk Terms CV Risk

1 10 0.981 8 1.002
2 20 0.805 5 0.805
3 18 0.916 9 0.877
4 17 1.247 7 1.274
5 17 0.838 6 0.908
6 18 0.775 5 0.775
7 10 0.952 5 0.952
8 20 0.763 6 0.739
9 18 1.123 5 1.123
10 10 1.181 6 1.203

ave 15.8 0.958 6.2 0.966
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0.966, respectively). Thus, the super learner selected Logic Regression as the
optimal learner.

As the winning learner, Logic Regression was then applied to the entire
learning sample. The final logic tree is displayed in Figure 2 and can be
written as:

-3.09 * ((not X9) or (not X8)) +4.58 * ((not X10) or (not X6)) +4.17

* (((not X6) and X6) or (X7 and X2)) -3.09 * ((not X5) or (not X4))

+0.839 * X1

This fit has an R2 of 0.874.

Parameter = −3.0907

9 8

or

tree 1 out of 5 total size is 11

Parameter = 4.5809

10 6

or

tree 2 out of 5 total size is 11

Parameter = 4.1707

6 6 7 2

and and

or

tree 3 out of 5 total size is 11

Parameter = −3.0921

5 4

or

tree 4 out of 5 total size is 11

Parameter = 0.8392

1

tree 5 out of 5 total size is 11

Figure 2: Simulated Example. Logic Regression Fit

Even though the super learner did not select DSA as the optimal learner,
given the close competition between Logic Regression and DSA, we also
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applied DSA to the learning sample. The final DSA fit had nine terms with
eight two-way interactions, and an R2 of 0.913:

ŷ = 0.087− 4.906w6w10 + 4.211w2w7 + 3.205w8w9 + 3.107w4w5 (2)

+1.984w1w10 − 0.406w7w8 − 0.359w6 + 0.406w3w6 − 0.325w9w10

This can be compared to the true model which had 5 two-way interaction
terms. All 5 of these interaction terms were included in the final 9 term DSA
fit, with coefficients extremely comparable to those of the true model.

To assess the performance of the two estimators, we simulated 5000 ob-
servations from the true model to generate an independent test set. We
evaluated the performance of the candidate estimators (see Figure 2 for the
final Logic Regression fit and Equation 2 for the final DSA fit) on this set
of 5000 observations. The Logic Regression fit yielded a mean squared pre-
diction error (MSPE) of 1.37 with an R2 of 0.84 while the DSA fit yielded a
MSPE of 1.05 with an R2 of 0.88.

4 Data Analysis

A description of the data used in our analysis is available in Rhee et al.
(2006). The HIV-1 sequences were obtained from publicly available isolates
in the Stanford HIV Reverse Transcriptase and Protease Sequence Database.
We focus on predicting viral susceptibility to protease inhibitors (PIs) based
on mutations in the protease region of the viral strand.

Mutations were defined as amino acid differences from the subtype B con-
sensus wild type sequence at positions 1-99 in protease. We used a subset of
these mutations, the non-polymorphic treatment-selected mutations (TSMs),
as predictors. The TSMs were previously identified by (Rhee et al., 2005,
2006) as those significantly associated with antiretroviral therapy in persons
infected with subtype B viruses. The association of these mutations with pre-
vious treatment is thought to result from selection due to their contributions
to resistance, suggesting this is a promising set of candidate predictors. The
58 TSMs used, occurring at 34 positions in protease, are listed in Table 3.
Mutations are referred to by position followed by amino acid substitution;
for example, 90M refers to the occurrence of methionine at position 90.
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The outcome of interest was standardized log fold change in drug sus-
ceptibility, defined as the ratio of IC50 of an isolate to a standard wildtype
control isolate. IC50 is the concentration of a drug needed to inhibit viral
replication by 50% where IC stands for inhibitory concentration. We applied
our super learner to predicting susceptibility to a single PI, nelfinavir (NFV).
A mutation profile and corresponding NFV susceptibility was available for
740 viral isolates; this constituted the learning sample.

4.1 Super Learner Results

We applied the super learner with 10-fold cross-validation to select the
optimal learner given the following set of candidates: LARS, Logic Regres-
sion, DSA, and a least squares fit including all 58 mutations as main terms.
We found no difference in risk when using DSA to search over 1-way or 2-way
interactions. Similarly, Rhee et al. (2006) found that including all two-way
interactions among the mutations as input variables did not improve the
prediction accuracy. Therefore, DSA did not consider interactions and used
10-fold cross-validation to select between 1 and 50 main terms.

Table 4 shows the cross-validated risks of the candidate learners. The
least squares fit yielded estimators with the lowest average risk, 0.187, al-
though the average cross-validated risk for DSA was comparable at 0.188.
The super learner thus selected the least squares fit as the optimal learner.
Therefore, we fit a least squares model on all 740 observations. Tables 5 and
6 display the super learner estimator, in this case the least squares model of
all main terms, fit on the entire learning sample.

Due to the similarity in cross-validated risk of least squares and DSA, we
also applied DSA to the learning sample. Cross-validation selected a final
DSA estimator with 40 main terms. This can be contrasted to the super
learner estimator, corresponding to the least squares estimator with 58 main
terms. The similarity in cross-validated risk between these two estimators
suggests that prediction is only marginally improved by including the other
18 mutations in the prediction model.

We investigated the size of the mutation set needed to achieve a predictor
with comparable cross-validated risk by examining the cross-validated risks
for the best main term model of each size (as fit by DSA). The resulting plot,
shown in Figure 3, illustrates that the decline in cross-validated risk flattens
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Table 3: Nonpolymorphic treatment-selected protease mutations
W pr Mutation W pr Mutation
1 10F 30 55R
2 10R 31 58E
3 11I 32 66F
4 20I 33 67F
5 20T 34 71I
6 20V 35 73A
7 23I 36 73C
8 24I 37 73S
9 30N 38 73T
10 32I 39 74A
11 33F 40 74P
12 34Q 41 74S
13 35G 42 76V
14 43T 43 79A
15 46I 44 82A
16 46L 45 82F
17 46V 46 82S
18 47V 47 82T
19 48M 48 84A
20 48V 49 84C
21 50L 50 84V
22 50V 51 85V
23 53L 52 88D
24 54A 53 88S
25 54L 54 88T
26 54M 55 89V
27 54S 56 90M
28 54T 57 92R
29 54V 58 95F
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Table 4: Super Learner: Cross-Validated Risks
Method Median Mean Std Error

Least Squares 0.175 0.187 0.039
LARS 0.192 0.205 0.052

Logic Regr 0.219 0.256 0.115
DSA 0.174 0.188 0.041

sharply as the regression models reach approximately 20 main terms. This
suggests that while the truly optimal predictor may use all 58 treatment-
selected mutations as main terms, the majority of the predictive information
can be captured by much smaller models of around 20 main terms.

We examined the best model of each size selected by DSA in order to in-
vestigate which mutations provide the most predictive information. The best
models of each size selected by DSA happened to be nested. For example,
the best model of size 1 contained the mutation 90M, the best model of size
2 contained the mutations 90M and 30N, the best model of size 3 contained
the mutations 90M, 30N, and 54V, etc. The best models of size 1-20 are
summarized in Table 7.

The p-values for the coefficients from the least squares fit (Tables 5,6)
and the list of the best DSA models of each size (Table 7) provide alterna-
tive rankings of the importance of each candidate mutation for resistance to
NFV. The two approaches produce quite comparable insight into the set of
mutations key to predicting susceptibility to NFV; 18 of the 20 mutations
selected in the DSA models of size 1-20 were among the top 20 mutations
as ranked by p-value in the least squares model. Both rankings successfully
identified the majority of mutations known to contribute significantly to NFV
resistance, including 90M, 30N, 88S, and 84A.

5 Discussion

We have presented a super learner that uses cross-validation to select
an optimal learner among a set of candidate learners. Theoretical results
show that the super learner asymptotically will outperform any of the can-
didate estimators it employs as long as the number of candidate learners is

13
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Table 5: Least Squares Model (Significance codes: 0 = ***, 0.001 = **, 0.01
= *, 0.05 = .)

Term β̂ SE t-stat p-value
(Intercept) -1.00710 0.02264 -44.488 < 2e-16 ***

10F 0.17563 0.05588 3.143 0.001743 **
10R 0.04947 0.20014 0.247 0.804860
11I -0.13140 0.14178 -0.927 0.354371
20I 0.48555 0.06452 7.525 1.67e-13 ***
20T 0.18773 0.09784 1.919 0.055438 .
20V 0.06381 0.22119 0.288 0.773056
23I 0.11457 0.11941 0.959 0.337687
24I 0.41711 0.08131 5.130 3.78e-07 ***
30N 1.25778 0.08336 15.088 < 2e-16 ***
32I 0.26527 0.10747 2.468 0.013818 *
33F -0.14549 0.07144 -2.036 0.042099 *
34Q 0.10543 0.26001 0.405 0.685243
35G -0.27326 0.27505 -0.993 0.320820
43T 0.23510 0.09581 2.454 0.014384 *
46I 0.29382 0.04603 6.383 3.21e-10 ***
46L 0.10619 0.06182 1.718 0.086304 .
46V -0.01298 0.23730 -0.055 0.956410
47V -0.08614 0.13087 -0.658 0.510622
48M 0.53284 0.26823 1.986 0.047379 *
48V 0.22471 0.09295 2.418 0.015886 *
50L -0.84575 0.11336 -7.461 2.63e-13 ***
50V 0.13139 0.11513 1.141 0.254199
53L 0.04208 0.08835 0.476 0.633978
54A 1.64700 0.39027 4.220 2.77e-05 ***
54L 0.21353 0.10413 2.051 0.040689 *
54M 0.44536 0.13024 3.419 0.000665 ***
54S 1.46285 0.32910 4.445 1.03e-05 ***
54T 1.75388 0.22332 7.854 1.57e-14 ***
54V 0.56756 0.05273 10.764 < 2e-16 ***
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Table 6: Least Squares Model (cont’d)

Term β̂ SE t-stat p-value
55R 0.21188 0.10159 2.086 0.037384 *
58E 0.21815 0.08184 2.665 0.007870 **
66F 0.24775 0.17450 1.420 0.156138
67F 0.66268 0.24346 2.722 0.006656 **
71I 0.07484 0.11650 0.642 0.520804
73A 0.03265 0.21218 0.154 0.877737
73C 0.14335 0.15814 0.906 0.365016
73S 0.44710 0.06210 7.199 1.60e-12 ***
73T 0.46391 0.10172 4.560 6.05e-06 ***
74A 0.05345 0.39476 0.135 0.892345
74P 0.53279 0.15491 3.439 0.000618 ***
74S 0.45321 0.09666 4.689 3.32e-06 ***
76V -0.09230 0.08718 -1.059 0.290075
79A 0.73175 0.41289 1.772 0.076799 .
82A 0.30910 0.05866 5.269 1.84e-07 ***
82F 0.61187 0.11130 5.497 5.45e-08 ***
82S 0.42036 0.29461 1.427 0.154085
82T 0.25881 0.07793 3.321 0.000945 ***
84A 2.17172 0.15347 14.151 < 2e-16 ***
84C 1.76901 0.14486 12.212 < 2e-16 ***
84V 0.31758 0.04599 6.906 1.15e-11 ***
85V -0.21926 0.09819 -2.233 0.025868 *
88D 0.42180 0.08864 4.758 2.38e-06 ***
88S 1.09265 0.07317 14.933 < 2e-16 ***
88T 0.55475 0.40114 1.383 0.167139
89V 0.05987 0.15417 0.388 0.697893
90M 0.64667 0.04185 15.453 < 2e-16 ***
92R 0.04901 0.43799 0.112 0.910932
95F 0.31722 0.20472 1.550 0.121722
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Figure 3: DSA Estimator applied to learning sample, sizes ∈ {1, . . . , 50}.
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Table 7: DSA Estimator: Best Model of Sizes 1 to 20. (i.e., Best model of size
1: L90M, Best Model of Size 2: L90M and 30N, etc.)

Mutation Order Mutation Order
90M 1 20I 11
30N 2 50L 12
54V 3 73S 13
46I 4 24I 14
84C 5 54S 15
84A 6 74S 16
88S 7 82F 17
54T 8 10F 18
84V 9 54M 19
82A 10 88D 20

polynomial in sample size (or, if one of the candidate estimators it employs
achieves a parametric rate of convergence, the super learner will converge at
an almost parametric rate). These results suggest that the investigator pays
a very small price for considering multiple alternative learners. Currently,
most researchers employ one, or at most a handful, of learning algorithms to
answer prediction questions. A better approach would be to apply as many
candidate learners as are feasible given time and computing limitations, and
choose among them using the super learner.

Of course, in practical applications using finite samples, there is no guar-
antee that the super learner will always select the optimal learner for a given
data application. Our simulation results illustrate this point well. Logic Re-
gression was selected by the super learner as optimal, with a slightly lower
average cross-validated risk than the D/S/A algorithm. However, when the
performance of the two estimators was evaluated on an independent test set,
DSA slightly outperformed the Logic Regression estimator. These results
suggest that when employing the super learner, it is worthwhile to evaluate
not only the final estimator provided by the winning learner but also com-
petetive estimators. The results of the data example reinforce the utility of
considering alternative learners with risks comparable to that of the optimal
learner to provide additional insight into the data.

In our data example, both the super learner estimator, corresponding
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to the least squares fit of all main terms, and the best models selected by
the D/S/A algorithm provided a reasonable ranking of the importance of
specific mutations for susceptibility to NFV. Such use of estimators aimed at
prediction to provide a ranking of variable importance is common practice.
We would like to point out, however, that if a ranking of variable importance
is the goal of the analysis, then this implies a distinct parameter of interest
from the optimal predictors focused on in this paper. Ideally, efforts to learn
variable importance from the data will focus directly on the quantity of
interest; such an approach is introduced in van der Laan (2006) and applied
in Birkner and van der Laan (2005).
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