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Summary: We consider likelihood ratio tests (LRT) and their modifications for homogeneity in

admixture models. The admixture model is a special case of two component mixture model, where

one component is indexed by an unknown parameter while the parameter value for the other

component is known. It has been widely used in genetic linkage analysis under heterogeneity, in which

the kernel distribution is binomial. For such models, it is long recognized that testing for homogeneity

is nonstandard and the LRT statistic does not converge to a conventional χ2 distribution. In this

paper, we investigate the asymptotic behavior of the LRT for general admixture models and show

that its limiting distribution is equivalent to the supremum of a squared Gaussian process. We also

provide insights on the connection and comparison between LRT and alternative approaches in the

literature, mostly modifications of LRT and score tests, including the modified or penalized LRT (Fu

et al., 2006). The LRT is an omnibus test that is powerful against general alternative hypothesis. In

contrast, alternative approaches may be slightly more powerful against certain type of alternatives,

but much less powerful for other types. Our results are illustrated by simulation studies and an

application to a genetic linkage study of schizophrenia.
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1. Introduction

1.1 Admixture models

In this paper, we consider likelihood ratio testing for homogeneity in admixture models,

with the focus on genetic linkage analysis. With a kernel distribution p(y; γ) indexed by γ,

an admixture model has the probability density function of the form

f(y ; δ, γ) = (1− δ) p(y; γ0) + δ p(y; γ), (1)

where the population is composed of two components from the same parametric family

p(· ; γ), with proportions 1−δ and δ, respectively. The first component is indexed by a known

parameter value γ0, which often represents a particular model of interest, while the parameter

for the second component is unknown and to be estimated from the data. The kernel function

p(· ; γ) could be any parametric distribution, such as Gaussian, binomial, exponential or

Poisson distributions. We assume that the parameter space for (δ, γ) is Ω = [0, 1]×Γ, where

Γ ⊂ R is compact and γ0 ∈ Γ. The admixture model is different from a typical two component

mixture model, which assumes that parameters for both components are unknown.

In admixture models, the first component p(· ; γ0) is a particular submodel of the the second

component p(· ; γ), and usually has special scientific meanings. One might be interested in

testing a simple homogeneous model p(· ; γ0) versus admixture alternative. With (1), the null

hypothesis can be specified as either γ = γ0, or equivalently δ = 0. Under the specification

of γ = γ0, the parameter δ disappears and any value of δ gives the same null distribution.

Similarly, γ disappears under the specification of δ = 0. In other words, each value in the

set Ω0 := {(δ, γ) : δ = δ0 or γ = γ0} represent exactly the same distribution. Thus, testing

H0 : δ = 0 or γ = γ0 is a nonstandard problem that involves nonidentifiability under the

null.

Admixture models have been widely used in public health and biomedical studies to

account for possible heterogeneity in the population. For example, Davies (1977) considered

an admixture model with exponential kernels. Another application is in genetic linkage

analysis, where admixture models with binomial kernels have been used to account for

genetic heterogeneity (Smith, 1963). In the following, we will focus on the admixture model

for linkage analysis, but the arguments and results carry over to general kernels.

http://biostats.bepress.com/jhubiostat/paper207
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1.2 Genetic linkage analysis

We start with a brief introduction of the genetic linkage model, and refer to Ott (1999),

Thomas (2004) and Fu et al. (2006) for detailed descriptions. For simplicity, we focus

on two point linkage analysis, which studies the cosegregation of the disease gene and a

genetic marker. Basically, the closer two genes are on the same chromosome, the less likely

that they would be separated during meiosis. An offspring is called nonrecombinant if it

inherits both maternal (or paternal) alleles at these two loci, and recombinant otherwise. The

recombinational fraction (denoted as γ) is the percentage of offsprings that are recombinants,

and can take values from 0 to 0.5. The two loci are strongly linked if γ is close to 0, and

not linked if γ = 0.5. Offsprings from a family can be divided into two groups, recombinants

and nonrecombinants, and it is natural to use a binomial distribution to model such data.

However, in human pedigree studies, it is sometimes not possible to ascertain whether or

not a child is recombinant. Depending on the availability of such information, two different

cases occur, phase known (PK) and phase unknown (PU).

In the PK case, one could record the number of recombinants, Y , in a family with K

offsprings. If there is possible linkage among all families, Y has a simple binomial distribution,

p(y; γ) = Pr(Y = y) =

(
K

y

)
γy(1− γ)K−y, (2)

where γ ∈ [0, 0.5] describes the magnitude of linkage. In the PU case, one could only observe

that there are two groups of offsprings, Y and K−Y , but could not tell whether each group

is recombinant or not. Under this situation, it is commonly assumed that there is 50% chance

that the first group (with Y offsprings) is recombinant and 50% chance that it is not. Thus,

Y follows a mixture of two binomial distributions, i.e.,

p(y; γ) = Pr(Y = y) = 0.5

(
K

y

)
γy(1− γ)K−y + 0.5

(
K

y

)
γK−y(1− γ)y. (3)

In either PK or PU cases, we are interested in testing whether there is statistical evidence for

linkage. In Model (2) for the PK case and Model (3) for the PU case, the null hypothesis of

no linkage is specified as H0 : γ = 0.5, under which the probability density function reduces

to p(y; 0.5) =
(
K
y

)
0.5K . Hypothesis testing problems for these models are regular except that

the null value γ = 0.5 is on the boundary of the parameter space [0, 0.5]. Using the general
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theory developed by Self and Liang (1987), the LRT converges in distribution to a mixture

of χ2 distributions, 0.5χ2
0 + 0.5χ2

1 under H0, where χ2
0 is a point mass at 0.

For complex diseases, however, linkage may exist only in a proportion of families, but not

in the remaining families. This phenomenon is known as linkage heterogeneity. Smith (1963)

proposed to use an admixture model to account for such hetegeneity. More precisely, the

admixture model in the genetic linkage context has the form

f(y ; δ, γ) = (1− δ)
(
K

y

)
0.5K + δ

(
K

y

)
γy(1− γ)K−y (4)

for the PK case, and

f(y ; δ, γ) = (1− δ)
(
K

y

)
0.5K + δ

(
K

y

){
0.5γy(1− γ)K−y + 0.5γK−y(1− γ)y

}
(5)

for the PU case, where δ is the proportion of families with possible linkage. In these two

models, the null hypothesis of no linkage can be specified as H0 : δ = 0 or γ = 0.5, and the

alternative is H1 : 0 < δ 6 1, 0 6 γ < 0.5. As illustrated in Figure 1 (a), the parameter space

is the rectangle (δ, γ) ∈ [0, 1]× [0, 0.5] and under the null hypothesis of no linkage, the set of

true values include infinitely many values, on two thick solid lines δ = 0 and γ = 0.5. This

hypothesis testing problem is nonstandard due to nonidentifiability under the null, in the

sense that γ is not identifiable when δ = 0 and δ is not identifiable when γ = 0.5. In addition,

two types of nonstandard situations might occur. First, the null parameter values (δ = 0 and

γ = 0.5) are on the boundary of the parameter space. Second, the Fisher information for γ

evaluated at γ = 0.5 and any δ is always 0 in the PU case.

[Figure 1 about here.]

It has been recognized that standard asymptotic results for LRT and score tests do not hold

in such nonstandard situations. Various hypothesis testing procedures, including variations

of the likelihood ratio tests and score tests, have been studied over the last two decades, for

instance, Shoukri and Lathrop (1993), Faraway (1993), Chernoff and Lander (1995), Chiano

and Yates (1995), Lemdani and Pons (1995), Lemdani and Pons (1997), Liang and Rathouz

(1999), Abreu et al. (2002) and Fu et al. (2006). In this paper, we review existing methods,

develop asymptotics for the LRT in general admixture models, and compare the LRT to

alternative methods, especially the modified LRT proposed by Fu et al. (2006), in terms of

statistical power.

http://biostats.bepress.com/jhubiostat/paper207
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2. Likelihood ratio tests

In this section, we first illustrate challenges on statistical inference for admixture models,

and then present asymptotic results for the LRT.

2.1 Challenges on inference

The nonstandard properties of the admixture model under H0 brings challenges to statistical

inference, including both parameter estimation and hypothesis tests. To illustrate, we con-

sider the PK case of genetic linkage model (2) and explore its likelihood functions. Figure

1 displays the contour plots of the expected log-likelihood function under H0 as well as

observed log-likelihood functions for two datasets simulated under H0. Figure 1 (a) shows

the expected log-likelihood function, which is maximized at the set of true values, two solid

lines (δ = 0 and γ = 0.5). This gives us an idea of the average shape of log-likelihood functions

for observed data. The right panels (b) and (c) show observed log-likelihood functions for

two simulated datasets, where the black dots represent the maximum likelihood estimates

(MLE). One could see that the overall shape of an observed log-likelihood function is similar

to that of the expected log-likelihood function, subject to some random variation. In contrast

to the regular case where the likelihood takes large values in a small neighborhood of the

unique true value, the likelihood function under non-identifiability generally has large values

around the region of true values.

As established in Redner (1981), the MLE under non-identifiability is generally not con-

sistent in the strict sense, but is close to the set of true values in large samples. This can

be verified in Figure 1, where the MLEs for two simulated datasets are both close to the

region of true values but not close to each other. In the admixture model context, we state

the consistency result below.

Lemma 1 For the admixture model (1), under the homogeneity null, i.e., (δ, γ) ∈ Ω0 =

{(δ, γ) : δ = δ0 or γ = γ0} or equivalently Y ∼ p(· ; γ0), the MLEs δ̂ and γ̂ satisfy the

following.

(1) (δ̂, γ̂) does not converge in probability, and may not even be uniquely defined;

(2) dΩ0(δ̂, γ̂) := inf(δ′,γ′)∈Ω0 ‖(δ̂, γ̂)− (δ′, γ′)‖ converges in probability to 0 as n→∞;

(3) The estimated density f(· ; δ̂, γ̂) converges to p(· ; γ0) as n→∞.

Hosted by The Berkeley Electronic Press
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In addition, the asymptotic normality and χ2 approximation of the LRT statistic do not

hold for admixture models due to non-identifiability. The reason is that traditional asymp-

totics are based on Taylor expansions of the likelihood functions in a small neighborhood

of the unique true value. When the identifiability condition is violated, however, there are

many true values. Under such situation, it is not enough to expand the likelihood function

around any specific point. Rather, one needs to approximate the likelihood function in a

small neighborhood of the region of true values.

2.2 Two classes of non-identifiability

There has been much work in the literature on likelihood ratio testing under loss of identi-

fiability. In this paper, we distinguish two classes of non-identifiability problems when the

model under consideration involves parameters (γ, δ) ∈ Ω. In Class 1, all parameter values

in Ω01 = {(δ, γ) : δ = δ0} correspond to the same distribution that depends on a fixed

δ0, and one wish to test this distribution versus others. The null hypothesis is specified via

the parameter of interest (δ = δ0) while the nuisance parameter γ is not identifiable under

the null. Under the null hypothesis, the set of true values is a one-dimensional space Ω01.

This class of problems has been studied extensively (e.g., Davies 1977, 1987). In Class 2, all

parameter values in Ω0 = {(δ, γ) : δ = δ0 or γ = γ0} represent the same distribution, and one

is interested to distinguish it from other distributions. The null hypothesis can be specified

equivalently via each one of the two parameters (δ = δ0 or γ = γ0), and under either

specification, the other parameter (γ or δ) is not identifiable. Under the null hypothesis,

the set of true values Ω0 contains the union of two one-dimensional subspaces. These non-

identifiability problems are to be contrasted with identifiable regular class where the true

value (δ0, γ0) is unique.

According to our definition, testing homogeneity for admixture models naturally belongs

to Class 2, because the null hypothesis can be specified via either δ or γ and under either

specification the other parameter becomes nonidentifiable. In the genetic linkage context,

the parameter space is [0, 1] × [0, 0.5], and the set of null values is the union of δ = 0 and

γ = 0.5 as shown by the thick solid lines in Figure 1 (a). However, if one is willing to restrict

the parameter space to a subspace of [0, 1] × [0, 0.5], the problem could reduce to Class 1

or regular class. For example, if one restricts the parameter space of (δ, γ) to [ε1, 1]× [0, 0.5]

http://biostats.bepress.com/jhubiostat/paper207
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(Regions I and IV in Figure 1) for some 0 < ε1 < 1, H0 can only be specified as γ = 0.5 and

thus the problem reduces to Class 1. The consequence is similar if one restricts the parameter

space to [0, 1] × [0, 0.5 − ε2] (Regions II and IV in Figure 1) for some 0 < ε2 < 0.5. Such

restrictions were considered in Lemdani and Pons (1995) and will be discussed in details in

Section 3.

The asymptotic properties of LRT for Class 1 problems were well studied in the literature,

while those for Class 2 received less attention. To investigate the latter, we will divide the

parameter spaces into a few regions so that the LRT in each region becomes Class 1, and

then combine all regions. A primary reason for such division is that known results from Class

1 could be utilized conveniently.

2.3 Asymptotic distribution

The asymptotic behavior of likelihood ratio tests for some special admixture models have

been investigated in the literature. For example, Lemdani and Pons (1997) derived the

asymptotic distribution of the LRT statistic for the genetic linkage model using reparameter-

izations. However, their results are not generalizable to admixture models with other kernel

distributions. In this section, we investigate the limiting distribution of the LRT statistic for

the general admixture model (1), which is applicable to the genetic linkage example (4) and

(5) as special cases. In contrast, Lemdani and Pons (1997) is limited to the genetic linkage

example with binomial kernels.

Based on Lemma 1, one needs to approximate the log-likelihood function around the region

of true values Ω0 in large samples. To achieve this, we first choose two small positive numbers

ε1 and ε2 and divide the parameter space into four regions: I − [ε1, 1] × [γ0 − ε2, γ0 + ε2],

II − [0, ε1)× Γ/[γ0− ε2, γ0 + ε2], III − [0, ε1)× [γ0− ε2, γ0 + ε2] and IV − [ε1, 1]× Γ/[γ0−

ε2, γ0 + ε2]. Figure 1 illustrates such division for the genetic linkage example. The asymptotic

expansions are easier to obtain in each region, and we can then combine all regions. The

asymptotic result is summarized in the following theorem.

Theorem 1 For the admixture model (1), under the null H0 : δ = 0 or γ = γ0, the LRT

Hosted by The Berkeley Electronic Press
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statistic converges in distribution to

supγ∈Γ{Z+(γ)}2 , if γ0 is a boundary point of Γ, and to

max
[

supγ∈Γ{Z+(γ)}2, Z2(γ0)
]
, if γ0 is an interior point of Γ,

where Z(γ) = limn→∞ Zn(γ), Zn(γ) =
∑

i{ p(yi; γ)/p(yi; γ0)−1 }·[
∑

i{ p(yi; γ)/p(yi; γ0)− 1 }2 ]
−1/2

for γ 6= γ0 and Zn(γ0) = limγ→γ0 Zn(γ). The process Z(γ) is a Gaussian process with mean

0, variance 1, and certain autocorrelation function ρ(γ1, γ2) = cor{Z(γ1), Z(γ2) }. Further,

if p′(· ; γ0) 6= 0 with positive probability, Zn(γ0) has the functional form

∑
i

p′(yi; γ0)

p(yi; γ0)
·

[∑
i

{
p′(yi; γ0)

p(yi; γ0)

}2
]−1/2

, (6)

where p′(· ; γ0) = ∂p(· ; γ0)/∂γ. If p′(· ; γ0) = 0 almost surely and p′′(· ; γ0) 6= 0 with positive

probability,

Zn(γ0) =
∑
i

p′′(yi; γ0)

p(yi; γ0)
·

[∑
i

{
p′′(yi; γ0)

p(yi; γ0)

}2
]−1/2

, (7)

where p′′(· ; γ0) = ∂2p(· ; γ0)/∂γ2.

The proof of Theorem 1 is provided in the Appendix. In the asymptotic argument, besides

non-identifiability, one has to deal with two other possible violations of typical regularity

conditions: parameter value on the boundary of the parameter space and singularity of

Fisher information matrix. The former case happens because δ = 0 is on the boundary of

its parameter space [0, 1], and we apply the general statistical theory proposed in Self and

Liang (1987). The latter case happens when p′(· ; γ0) = 0 almost surely. Rotnitzky et al.

(2000) developed asymptotics with singular Fisher information based on higher order Taylor

expansions, and we apply their results under such situations.

Applying this result to the genetic linkage example where the kernel distribution is bino-

mial, one can obtain the following result.

Corollary 1 Suppose that one observe i.i.d. samples {(yi, Ki) : i = 1, · · · , n} from

admixture models for genetic linkage analysis, (4) for the PK case and (5) for the PU case.

Under H0 : δ = 0 or γ = 0.5, the LRT statistic converges to the following ,

LRT
D−−→ sup

γ∈[0,0.5]

{Z+(γ)}2,

http://biostats.bepress.com/jhubiostat/paper207
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where Z(γ) = limn→∞ Zn(γ), Zn(γ) =
∑

i g(γ; yi, Ki) · {
∑

i g
2(γ; yi, Ki) }−1/2

for γ 6=

0.5, Zn(0.5) = limγ→0.5− Z(γ), g(γ; yi, Ki) = 2Kiγyi(1 − γ)Ki−yi − 1 for the PK case and

g(γ; yi, Ki) = 2Ki−1γyi(1− γ)Ki−yi + 2Ki−1γKi−yi(1− γ)yi − 1 for the PU case. One also has

the formula

Zn(0.5) =
∑
i

h(yi, Ki) ·

{∑
i

h2(yi, Ki)

}−1/2

, (8)

where h(yi, Ki) = Ki− 2yi in the PK case and h(yi, Ki) = K2
i − 2yiKi + 4y2

i −Ki in the PU

case. The process Z(γ) is a Gaussian process with mean 0, variance 1, and autocorrelation

function ρ(γ1, γ2) = cor{Z(γ1), Z(γ2) } = limn→∞ cor{Zn(γ1), Zn(γ2) }.

The proof of Corollary 1 is straightforward application of Theorem 1 and thus is omitted.

This result is consistent with Lemdani and Pons (1997). We included analytic formulas for

the autocorrelation function ρ(γ1, γ2) in Appendix.

2.4 Calculating p values

Theorem 1 states that the limiting distribution of the LRT for admixture models is equivalent

to that of the supremum of a squared Gaussian process. However, such limiting distribution is

often complicated and does not have an analytic form. In practice, one would need simulation

or resampling based methods to calculate p values. For the simulation method, one may

calculate the autocorrelation ρ(γ1, γ2) of the Gaussian process Z(γ), simulate the process

Z(γ), numerically find the maximum with respect to γ and obtain an empirical distribution

of the LRT statistic. The p value can be calculated accordingly.

An alternative method to obtain p values is a parametric bootstrap procedure. This

procedure is similar in spirit to Beran (1988) and Chen and Chen (2001). The first step

is to bootstrap N samples of size n from the null model p(· ; γ0). Next, one calculate the LRT

statistic Ri from the ith bootstrap sample for i = 1, · · · , N . The p values can be obtained

using the empirical distribution of {Ri : i = 1, · · · , N}. This procedure is more computational

intensive than Gaussian process based simulations, but might performs better especially in

small samples.
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3. Connection and comparison with alternative approaches

A few alternative approaches have been proposed and studied in the literature for admixture

models in genetic linkage studies. These are mostly based on modifications of standard LRT

or score tests. We now briefly review these methods. Note that l0n := ln(δ, 0.5) = ln(0, γ) =∑
i log p(yi; 0.5) for any δ and γ under H0 : δ = 0 or γ = 0.5, thus we used these notations

exchangeably in the following. For convenience of comparison, we restrict our attentions to

the genetic linkage admixture models throughout this section.

3.1 Alternative approaches

The first approach is to restrict the parameter space so that the hypothesis testing problem

becomes identifiable in the restricted subspace. For example, one could simply fix δ = δ1 6= 0

(corresponding to the horizonal dashed lines in Figure 1), so that there is only one true

null value (δ1, 0.5) in the restricted subspace δ1 × [0, 0.5]. The problem becomes testing

H0 : γ = 0.5 versus Ha : 0 6 γ < 0.5, and one could use the test statistic

LRT S,δ(δ1) = LRT (δ = δ1) = 2 sup
γ∈[0,0.5]

{ ln(δ1, γ)− ln(δ1, 0.5) } ,

which converges to 0.5χ2
0 + 0.5χ2

1 under H0. We call this test statistic a “simple LRT” in

that LRT has been simplified computationally without having to deal with nonstandard

situations. Shoukri and Lathrop (1993) considered a score test while fixing δ, which is

equivalent to the simple LRT above to the first order. The simple LRT has a χ2 type limiting

distribution and is convenient to use. However, it requires an arbitrary pre-specification of

δ1, and the power of this test depends on the choice of δ1. If δ1 is far from the truth, the

simple LRT is likely to have very low power to detect the alternative. Similarly, one could

also fix γ = γ1 6= 0.5 (corresponding to the vertical dashed lines in Figure 1), and use test

statistic

LRT S,γ(γ1) = LRT (γ = γ1) = 2 sup
δ∈[0,1]

{ ln(δ, γ1)− ln(0, γ1) } ,

which also converges to 0.5χ2
0 + 0.5χ2

1 under the H0.

The second approach is to restrict the parameter space so that the hypothesis testing

problem reduces to Class 1 in the restricted subspace. As suggested by Lemdani and Pons

(1995), one could restrict the parameter space of (δ, γ) to [ε1, 1] × [0, 0.5] (Regions I and

http://biostats.bepress.com/jhubiostat/paper207
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IV in Figure 1) for some 0 < ε1 < 1. As a consequence, testing linkage can be specified as

H0 : γ = 0.5 versus Ha : 0 6 γ < 0.5, which has now become a Class 1 problem. Using

results in Lemdani and Pons (1995), the restricted LRT statistic satisfies

LRTR,δ(ε1) = sup
ε16δ61,γ∈[0,0.5]

2 { ln(δ, γ)− ln(δ, 0.5) }

= sup
ε16δ61

{W+
1 (δ) }2 + op(1),

where W1(δ) is a centered Gaussian process with unit variance. In addition, one can show that

W1(δ) does not depend on δ, and the process W1(δ) reduces to a standard Gaussian random

variable. Thus, the test statistic LRTR,δ(ε1) converges in distribution to 0.5χ2
0 + 0.5χ2

1 for

any 0 < ε1 < 1, making it convenient to obtain p values. This restricted LRT is designed to

detect departures from the null in specific regions, making it more attractive than the simple

LRT. On the other hand, it requires an arbitrary choice of ε1. The power of the restricted

LRT generally depends on ε1 and the empirical type I error rate also depends on ε1 in finite

samples. Further, this test statistic has a peculiar feature that LRTR,δ(ε1) is a decreasing

function of ε1, yet has the same asymptotic distribution under H0.

Similarly, one could also restrict the parameter space of (δ, γ) to [0, 1]×[0, 0.5−ε2] (Regions

II and IV in Figure 1) for some 0 < ε2 < 0.5. The restricted LRT statistic in this case satisfies

LRTR,γ(ε2) = sup
06δ61,γ∈[0,0.5−ε2]

2 { ln(δ, γ)− ln(δ, 0.5) }

= sup
06γ60.5−ε2

{W+
2 (γ) }2 + op(1),

where W2(γ) is a centered Gaussian process with unit variance and some autocorrelation

function. The limiting distribution of LRTR,γ(ε2) can not be simplified generally. This is

also considered by Lemdani and Pons (1995).

[Figure 2 about here.]

The third approach is the penalized or modified likelihood ratio test considered by Fu et al.

(2006). We use the term “penalized LRT” (PLRT) instead of “modified LRT” in this paper.

The PLRT is defined as

PLRT (C) = sup
δ∈[0,1],γ∈[0,0.5]

2 { ln(δ, γ) + C log δ } − 2 { ln(1, 0.5) + C log 1 }

= sup
δ∈[0,1],γ∈[0,0.5]

2 { ln(δ, γ) + C log δ − ln(1, 0.5) }

Hosted by The Berkeley Electronic Press
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where a penalty function C log δ (where C > 0) was added to the ordinary likelihood

function. The penalty is heavy when δ is close to 0 and less so when δ approaches 1.

Intuitively, as demonstrated by Figure 2 the PLRT is close to the ordinary LRT in region

I and IV , but imposes heavy penalty around region II and III. One could think of the

restricted LRT, LRTR,δ(ε1), as a special case of PLRT, in which the penalty is 0 in region

I and IV and −∞ in region II and III. Thus, it is not surprising that the PLRT has the

limiting distribution 0.5χ2
0 + 0.5χ2

1 for any choice of C, which controls the magnitude of the

penalty. Actually, the PLRT and restricted LRT are asymptotically equivalent. However, Fu

et al. (2006) reported that the PLRT typically performed better in finite samples. As to the

choice of C, Fu et al. (2006) suggested to take C = 1, but did not investigate the effect

of C on type I error and power. Furthermore, Fu et al. (2006) compared it with the other

two alternative approaches, and concluded that the PLRT generally performed as well as, if

not better, than the simple LRT and restricted LRT. Thus, in the following, we focused on

comparing the PLRT with the LRT.

Liang and Rathouz (1999) developed a score test procedure which initially fixes the

parameter value of δ. Fu et al. (2006) showed that this procedure is asymptotically equivalent

to the PLRT. Thus we will not discuss the approach of Liang and Rathouz (1999) in detail.

To briefly summarize, modifications of the LRT generally restrict the total parameter space

[0, 1]×[0, 0.5] to a subspace, and the resulting LRT type test statistic in the subspace generally

has simpler forms. Actually, the asymptotic distributions of each test can be represented using

the Gaussian process Z(γ) defined in Theorem 1 and Corollary 1. Table 1 listed each test

procedure with its specified parameter space and asymptotic null distribution. Modifications

of the LRT are generally designed to test against alternatives in certain subspaces, but may

lose substantial power against other alternatives that are outside of the specified subspace.

They also require specification of a tuning parameter. In contrast, the LRT does not need

any tuning parameter and is powerful against general alternatives.

[Table 1 about here.]

3.2 LRT vs. PLRT

We now briefly compare the PLRT with the LRT for admixture models from several per-

spectives. In terms of simplicity, the PLRT has an advantage since it has a convenient χ2

http://biostats.bepress.com/jhubiostat/paper207
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type limiting distribution, while the LRT has a complicated limiting distribution. Actually

the proof of Theorem 1 in Appendix sheds lights on how PLRT works for admixture models.

More specifically, the LRT over Region I&IV and II&IV converges to {W+
1 }2 D−−→ 0.5χ2

0 +

0.5χ2
1 and supγ∈Γ\(γ0−ε2,γ0−ε2){W+

2 (γ) }2, respectively. The PLRT penalizes heavily on Region

II&III by adding penalty C log δ on δ, and asymptotically focuses on Region I&IV. As a

result, unsurprisingly the PLRT statistic converges to 0.5χ2
0 +0.5χ2

1. This is one main reason

why PLRT penalized on δ instead of γ.

Next, we compare the LRT and PLRT in statistical power to detect alternative hypothesis.

In the PK case, as shown in Appendix (Proof of Lemma 4), one has δ̂(γ̂ − γ0) = Op(n
−1/2).

There are three types of local alternatives under such situation, namely,

Type I – Hn
a,1 : δ = δa ∈ (0, 1], γ = γ0 − τ/

√
n,

Type II – Hn
a,2 : δ = τ/

√
n, γ = γa ∈ [0, 0.5),

Type III – Hn
a,3 : δ = τ n−α1 , γ = γ0 − τ n−α2 , where 0 < α1, α2 < 0.5, α1 + α2 = 0.5.

These correspond to alternatives that approach the null in Regions I, II, and III, respectively.

The LRT is capable of picking up evidence in all regions, and thus is powerful to detect all

possible directions of departure from the null. The PLRT, by design, is powerful to detect

the type of alternatives in Region I, but penalize heavily and thus is not as powerful against

Type II and III alternatives. Thus, the PLRT may not be desirable when the proportion

of linked families is small, while the LRT is generally powerful. These will be verified in

simulation studies (Section 4).

In addition, the PLRT requires specification of the penalty function, which is somewhat

arbitrary. Although the asymptotic arguments does not depend on the specific functional

form of the penalty function and tuning parameter C, the finite sample performance does.

More specifically, the PLRT is monotonically decreasing with C, which means C affects its

type I error rate and power in finite samples. If C is too small, the PLRT often has incorrect

type I error rates. Under an extreme situation with C → 0, PLRT (C) is approximately the

same as LRT, and using 0.5χ2
0 + 0.5χ2

1 as a reference distribution would yield incorrect p

values. On the other hand, if C is too big, the PLRT is not powerful. When C → ∞, one

can show that PLRT (C) is close to the simple LRT, LRT S,δ(δ = 1), which is less powerful

against alternatives with δ 6= 1. Thus, in contrary to Fu et al. (2006)’s arguments that
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PLRT (C) is not sensitive to C, simulation studies suggest that C controls the balance of

type I error and power in finite samples and should be carefully chosen. An optimal choice

of C will maximize statistical power under alternatives while maintaining its nominal values

under the null.

4. Simulation Studies

In this section, we evaluate the finite sample performance of LRT and PLRT through

simulation studies. We focused on the admixture model for genetic linkage analysis. We

conducted simulations under both PK and PU cases, with sample size n = 50, 100, 200 and

family size K = 2, 4, 8. In each setting, 1000 simulations were used to evaluate type I error

or power. The results are reported as follows.

First, we considered two methods to calculate p values in Section 2.4, namely simulating

Gaussian process and bootstrap procedures. The former use limiting distribution in Theorem

1 directly, and simulates its empirical distribution. We found that this approach usually works

well in large samples, or with small family sizes. However, when the sample size is small and

the family size is large, the Gaussian approximation may not perform as well. The reason

is that the process Zn(γ) is often skewed in small samples for a certain range of γ even

though it converges to a Gaussian process asymptotically. In particular, through simulation

studies, we find that the process Zn(γ) is very skewed when γ is close to 0 and the Gaussian

approximation is poor as a result. Figure 3 displays Zn(γ) in finite samples. But one can

see that its empirical distribution could be quite skewed in small samples with medium to

large family size (n = 50, K = 4, or n = 50, K = 8 or n = 200, K = 8), especially when γ

is around 0. The performance of the Gaussian process depends on both the sample size n

and the family size K. On the other hand, the bootstrap procedure is less sensitive to the

family size, and is confirmed to perform well even in small to medium samples. Thus, we

recommend the use of bootstrap, especially with small sample size and large family size.

[Figure 3 about here.]

[Figure 4 about here.]

Next, we conduct simulation studies to compare the power of the LRT and PLRT against

local alternative hypothesis. Two different types of local alternatives were considered. Type
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I local alternatives H1a : δ = δ1, γ = 0.5 − n−1/2 τ , approach the null from Region I, in

the manner that γ approaches to 0.5 while δ is fixed. Type II local alternatives H1a : δ =

n−1/2 τ, γ = γ1, approach the null from Region II, in the sense that δ approaches to 0 while

γ is fixed. Figure 4 displays the power curves of the LRT and PLRT for two types of local

alternatives. Both have high power to detect Type I alternatives, while the power of PLRT

is slightly higher. For Type II alternatives, the LRT has substantially higher power than

the PLRT. The reason is that the PLRT imposes very heavy penalty in region II and thus

loses capacity to detect departure from the null in this region.

Table 2 shows the Type I error rates and power against a variety of alternatives for the

LRT and PLRT in finite samples. In the simulations, we choose the sample size n = 50,

family size K = 2, significance level α = 0.05 and a wide range of C from 0.011 to 148. The

first row of the table gives Type I error rates for the LRT and PLRT. Under the null, the

LRT has rejection rate 0.042, close to the 0.05 nominal level, while the rejection rates of the

PLRT vary with different value of C. The rejection rates seems to be too high for C = 0.011,

but reasonable close to 0.05 for other choices of C. Thus, for analysis of power, we will drop

the column corresponding to C = 0.011.

We first compare the LRT to PLRT(C=1), which was suggested by Fu et al. (2006). When

δ is small, say δ = 0.15, γ = 0, the power is 0.483 for the LRT, higher than that of the

PLRT, 0.438. When δ is large or γ is close to 0.5, the PLRT generally has higher power.

These results agree with the previous analysis on statistical power against local alternatives.

However, the power differences between the LRT and PLRT are generally less than 5− 10%

in this setting. The differences become more noticeable in larger samples. Next, we look at

the effect of C on statistical power. If we focus on each row of Table 2, the power of the PLRT

decreases with C for certain alternative hypothesis. Thus, the optimal choice of C would be

the smallest C that still provides the correct Type I error rate. From this perspective, the

optimal choice of C among those in Table 2 is 0.135, which has type I error 0.053 under the

null and highest statistical power under the alternatives. From this simulation study, one can

see that the optimal choice of C depends on the balance between Type I error and power.

If C is too small, the PLRT might have incorrect Type I error. If C is too large, the PLRT
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might not be powerful to detect alternatives. Thus, we suggest that C should be chosen with

caution, perhaps via a small simulation study.

[Table 2 about here.]

5. Application to a schizophrenia study

In this section, we applied the LRT to a genetic linkage study for schizophrenia conducted

at the Johns Hopkins School of Medicine. The details of the study design and data collection

can be found in Pulver et al. (1994) and Liang and Rathouz (1999). This study included

486 individuals from 54 families with at least two affected relatives. Here “affected” refers to

someone who was diagnosed with either schizophrenia or schizoaffective disorder based on

the DSM-III-R criteria.

Based on previous studies, one is particularly interested in Marker D22S941 on Chromo-

some 22. However, it is well known that schizophrenia is prone for heterogeneity. Thus, we use

the admixture models to account for the possibility of genetic heterogeneity. We calculated

the likelihood ratio test statistic and the p values by simulation methods. The LRT statistic

gives rise to 6.86 and the corresponding p value is 0.007. The MLEs for δ and γ are 0.4 and

0.06, respectively. Thus, it suggests that approximately 40% of the families are linked to the

marker at Chromosome 22 and that the recombinational fraction is estimated to be 0.06,

suggesting a modest evidence of linkage. We also conducted the PLRT, for different choice

of C. For C = 3, 0.5 and 0.01, the PLRT statistics were 5.36, 5.49, 6.84 and the p values

were 0.010, 0.009, 0.004, respectively. Obviously, different choice of C gave rise to different

p values, and it is not immediately clear which p value one should use for inference.

To assess whether the asymptotic distribution approximates the empirical distribution

of the LRT statistic in such small samples, we conducted simulation studies to mimic the

data structure of this shizophrenia study. Figure 5 compared the asymptotic distribution

of the LRT (left panel) and the PLRT (right panel) versus their empirical distribution in

1, 000 simulations. First of all, it suggested that the asymptotic approximation of the LRT

performed reasonably well for such sample sizes. For the PLRT, the asymptotic distribution

agreed well with empirical distribution for C = 3, slightly worse for C = 0.5, and not so well
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for C = 0.01. This suggested that in our application, C = 0.01 should not be used at all

while C = 3 and C = 0.5 provide approximately correct p values.

[Figure 5 about here.]

6. Discussion

Admixture models are special cases of Class 2 problems that exhibit non-identifiability

features under the null hypothesis. Testing for homogeneity in admixture models have

received much attention in the literature. In this paper, we consider statistical issues of the

LRT, including both asymptotic properties and practical concerns, and compare the LRT to

alternative methods, such as the PLRT. We also illustrate these methods in a genetic linkage

study of schizophrenia.

We have considered comparison of the LRT vs alternative choices, especially the PLRT,

in the literature In terms of the choice between the LRT and PLRT, both have their own

advantages and drawbacks. The PLRT has a convenient χ2 type limiting distribution, but

requires specification of a somewhat arbitrary penalty function. The choice of penalty affects

the Type I error rates and power of the PLRT in finite samples. The LRT does not depend on

any tuning parameter, but has a relatively complex limiting distribution. As for statistical

power, the LRT is powerful to detect all possible directions of departure from the null.

The PLRT, by design, is powerful to detect the type of alternatives in region I, but not so

powerful against other types of alternatives in region II and III. Thus, the PLRT may not be

desirable when the proportion of linked families is small, while the LRT is generally powerful.

In practice, one could consider these issues and decide which method is more appropriate

for a particular application.

In this paper, we consider admixture models (1) whose first component is totally known.

In some applications, there may be additional parameter β that is unknown for both com-

ponents. The probability density function for such models has the form

f(y ; δ, γ, β) = (1− δ) p(y; γ0, β) + δ p(y; γ, β), (9)

or even more generally,

f(y ; δ, γ, β1, β2) = (1− δ) p(y; γ0, β1) + δ p(y; γ, β2), (10)
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where β or β1, β2 are additional structural parameters. For example, p(· ; γ, β) represents a

normal distribution with mean γ and variance β and the two components might have equal

or unequal variances. It will be interesting to study LRT and PLRT to such more complex

admixture settings.
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Appendix Sketch of Proofs

Proof of Lemma 1

This is a special case of Redner (1981), thus the proof is omitted.

Proof of Theorem 1

We first choose fixed ε1 > 0 and ε2 > 0, and investigate the behavior of the LRT on the

different regions. To prove Theorem 1, we first introduce Lemma 2-5.

Lemma 2 For the general admixture model (1), assume that typical regularity conditions

hold for every fixed δ ∈ [ε1, 1]. The LRT statistic over Region I & IV satisfies

T1(ε1) = sup
(δ,γ)∈[ε1,1]×Γ

2
{
ln(δ, γ)− l0n

}
= W 2

1n + op(1)
D−−→ χ2

1 (A.1)

if γ0 is an interior point of Γ, and

T1(ε1) = {W+
1n }2 + op(1)

D−−→ 0.5χ2
0 + 0.5χ2

1 (A.2)

if γ0 is a boundary point of Γ, where ln(δ, γ) =
∑

i log f(yi; δ, γ), l0n =
∑

i log p(yi; γ0) and

W1n is a random variable with W1n
D−−→ N(0, 1). If p′(· , γ0) = ∂p(· ; γ0)/∂γ 6= 0 with positive

probability,

W1n =
∑
i

p′(yi; γ0)

p(yi; γ0)
·

[∑
i

{
p′(yi; γ0)

p(yi; γ0)

}2
]−1/2

.

If p′(· ; γ0) = 0 almost surely and p′′(· ; γ0) = ∂2p(· ; γ0)/∂γ2 6= 0 with positive probability,

then

W1n =
∑
i

p′′(yi; γ0)

p(yi; γ0)
·

[∑
i

{
p′′(yi; γ0)

p(yi; γ0)

}2
]−1/2

.

Proof. In the following, we write pi(γ) := p(yi; γ), p′i(γ) := p′(yi; γ) and p′′i (γ) := p′′(yi; γ)

for notational convenience. We first assume that γ0 is an interior point of Γ.

http://biostats.bepress.com/jhubiostat/paper207



20 Biometrics, 000 0000

For fixed δ ∈ [ε1, 1], the Taylor expansion around γ0 gives

2{ logn(δ, γ̂)− l0n } = 2{ logn(δ, γ̂)− ln(δ, γ0) }

= 2δ(γ̂ − γ0)
∑
i

p′i(γ0)

pi(γ0)
− δ2(γ̂ − γ0)2

∑
i

{
p′i(γ0)

pi(γ0)

}2

+ op{nδ2(γ̂ − γ0)2 }

=

{∑
i
p′(yi;γ0)
p(yi;γ0)

}2

∑
i

{
p′(yi;γ0)
p(yi;γ0)

}2 + op{n(γ̂ − γ0)2 }

where γ̂ is the MLE for γ with fixed δ.

Case 1. If p′(· , γ0) 6= 0 with positive probability, then standard asymptotic properties for

MLE imply that γ̂ = γ0 +Op(n
−1/2). Thus, the reminder term in the equation above is op(1);

indeed it is op(1) uniformly with respect to δ ∈ [ε, 1]. Thus, taking the supremum over δ in

the eqation above, one obtain the expansion in (A.1).

Case 2. If p′(· ; γ0) = 0 almost surely and p′′(· ; γ0) 6= 0 with positive probability, the Fisher

information for γ evaluated at γ0 is 0. Thus, standard first order results for the MLE do not

hold, and one needs to further expand the likelihood ratio into the fourth order, which gives

2{ logn(δ, γ̂)− l0n } = 2{ logn(δ, γ̂)− ln(δ, γ0) }

= δ(γ̂ − γ0)2
∑
i

p′′i (γ0)

pi(γ0)
− 1

4
δ2(γ̂ − γ0)4

∑
i

{
p′′i (γ0)

pi(γ0)

}2

+ op{nδ2(γ̂ − γ0)4 }

=

{∑
i
p′′(yi;γ0)
p(yi;γ0)

}2

∑
i

{
p′′(yi;γ0)
p(yi;γ0)

}2 + op{n(γ̂ − γ0)4 }.

Using results from Rotnitzky et al. (2000), γ̂ = γ0 +Op(n
−1/4) under this situation. Similar

to the argument in Case 1, one can obtain the expansion in (A.1), except that W1n involves

p′′(·; γ0) instead of p′(·; γ0).

Under both cases, the numerator of W1n has mean zero. One can obtain W1n
D−−→ N(0, 1)

by the central limit theorem and thus T1(ε1)
D−−→ χ2

1 for any 0 < ε1 6 1.

Finally, when γ0 is a boundary point, we use results of Self and Liang (1987) and replace

W1n by W+
1n in the arguments above.

Lemma 3 For the general admixture model (1), assume that typical regularity conditions

hold for every fixed γ ∈ Γ\(γ0−ε2, γ0−ε2). We further assume the following three conditions,
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(i) p(·; γ) 6= p(·; γ0) with positive probability for all γ 6= γ0;

(ii) there exists η > 0 with Eγ0{ p(·; γ)/p(·; γ0)− 1 }2 > η for all γ ∈ Γ\(γ0 − ε2, γ0 − ε2);

(iii) the process W2n(γ) is tight, where

W2n(γ) =
n∑
i=1

{
p(yi; γ)

p(yi; γ0)
− 1

}
·

[∑
i

{
p(yi; γ)

p(yi; γ0)
− 1

}2
]−1/2

.

Then, the LRT statistic over Region II & IV satisfies

T2(ε2) = sup
(δ,γ)∈[0,1]×Γ\(γ0−ε2,γ0−ε2)

2
{
ln(δ, γ)− l0n

}
D−−→ sup

γ∈Γ\(γ0−ε2,γ0+ε2)

{W+
2 (γ) }2, (A.3)

where W2(γ) = limn→∞W2n(γ) is a Gaussian process with mean 0, variance 1 and certain

autocorrelation function ρ(γ1, γ2).

Proof. For fixed γ ∈ Γ\(γ0 − ε2, γ0 − ε2), the Taylor expansion around δ = 0 gives

2{ logn(δ̂, γ)− l0n } = 2{ logn(δ̂, γ)− ln(0, γ) }

= 2δ̂
∑
i

{
p(yi; γ)

p(yi; γ0)
− 1

}
− δ̂2

∑
i

{
p(yi; γ)

p(yi; γ0)
− 1

}2

+ op(nδ̂
2)

=

[∑
i

{
p(yi;γ)
p(yi;γ0)

− 1
}]2

∑
i

{
p(yi;γ)
p(yi;γ0)

− 1
}2 + op(nδ̂

2)

= {W+
2n(γ) }2 + op(nδ̂

2),

where δ̂ is the MLE for δ for fixed γ. Under conditions specified in Lemma 3, one has

δ̂ = Op(n
−1/2) and that the remainder term above converges to op(1) uniformly for γ ∈

Γ\(γ0 − ε2, γ0 − ε2). Taking supremum over γ, one can obtain (A.3). Note that equation

(A.3) involves W+
2 (γ) instead of W2(γ) because δ = 0 is on the boundary of its parameter

space [0,1], see arguments in Self and Liang (1987).

Lemma 4 For the general admixture model (1), the LRT statistic over Region III is

defined as

T3(ε1, ε2) = sup
(δ,γ)∈[0,ε1]×[γ0−ε2,γ0−ε2]

2
{
ln(δ, γ)− l0n

}
.
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If γ0 is an interior point of Γ,

W 2
1n + op(1) 6 T3(ε1, ε2) 6 W 2

1n + (ε2 + ε22)Op(1), (A.4)

and if γ0 is a boundary point,

{W+
1n }2 + op(1) 6 T3(ε1, ε2) 6 {W+

1n }2 + (ε2 + ε22)Op(1), (A.5)

where W1n is defined as in Lemma 2.

Proof. We provide the proof when γ0 is an interior point and when p′(·; γ0) 6= 0 with positive

probabilities. Extensions to other cases involve either Self and Liang (1987) or higher order

Taylor expansions as in Rotnitzky et al. (2000). These extensions are similar in spirit to

those in proofs of Lemma 2 and 3, and thus are omitted.

First,

T3(ε1, ε2) = sup
(δ,γ)∈[0,ε1]×[γ0−ε2,γ0−ε2]

2
{
ln(δ, γ)− l0n

}
> sup

(δ,γ)∈{ε1}×[γ0−ε2,γ0−ε2]

2
{
ln(δ, γ)− l0n

}
= W 2

1n + op(1),

where the last equation is obtained from Lemma 2. Next, we expand T3(ε1, ε2) around (0, γ0),

T3(ε1, ε2) = 2{ logn(δ̂, γ̂)− ln(0, γ0) }

= 2δ̂(γ̂ − γ0)
∑
i

p′i(γ0)

pi(γ0)
+ δ̂(γ̂ − γ0)2

∑
i

p′′i (γ0)

pi(γ0)

+
1

3
δ̂(γ̂ − γ0)3

∑
i

p′′′i (γ0)

pi(γ0)
− δ̂2(γ̂ − γ0)2

∑
i

{
p′i(γ0)

pi(γ0)

}2

+ op{nδ̂2(γ̂ − γ0)2 }.

Based on this fourth order approximation, one can show that δ̂(γ̂ − γ0) = Op(n
−1/2) and
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γ̂ − γ0 = Op(1). Thus,

T3(ε1, ε2) = 2{ logn(δ̂, γ̂)− ln(0, γ0) }

= 2 δ̂(γ̂ − γ0)
∑
i

p′i(γ0)

pi(γ0)
− δ̂2(γ̂ − γ0)2

∑
i

{
p′i(γ0)

pi(γ0)

}2

(A.6)

+ δ̂(γ̂ − γ0)2
∑
i

p′′i (γ0)

pi(γ0)
+

1

3
δ̂(γ̂ − γ0)3

∑
i

p′′′i (γ0)

pi(γ0)
(A.7)

+ op{nδ̂2(γ̂ − γ0)2 }

6 W 2
1n + (ε2 + ε22)Op(1),

where (A.6) is equivalent to W 2
1n according to Lemma 2 and (A.7) is bounded because

|γ − γ0| 6 ε2 always hold in Region III. Thus, (A.4) follows.

Lemma 5 The processes W1n, W2n(γ), W1 and W2(γ) satisfy W1n = limγ→γ0 W2n(γ) and

W1 = limγ→γ0 W2(γ).

Proof. Based on definitions of these processes, Lemma 5 can be obtained by straightforward

limit calculations.

Proof of Theorem 1. For any fixed ε1 > 0 and ε2 > 0, the LRT statistic can be obtained

by combining Regions I, II, III and IV , i.e.,

LRT = max{T1(ε1), T2(ε2), T3(ε1, ε2) }. (A.8)

Define Zn(γ) = W2n(γ), Zn(γ0) = W1n and Z(γ) = limn→∞ Zn(γ), then Zn(γ) and Z(γ) are

continuous time processes based on Lemma 5. Based on Lemma 2-5, first let n → ∞ and

then let ε2 → 0, one can obtain Theorem 1.

Remark 1. The asymptotic properties of several modifications of the LRT, e.g., restricted

LRT and penalized LRT mentioned in Section 3, can be obtained directly from Lemma 2

and Lemma 3.

Remark 2. The results and proof for Theorem 1 hold for general admixture model. In

the genetic linkage context, some results analogous to Lemma 1-5 and Theorem 1 have been

obtained before. For example, Lemdani and Pons (1995) considered the restricted LRT and

obtained results that are special cases of Lemma 2 and Lemma 3. Lemdani and Pons (1997)

considered the LRT and obtained results that are special cases of Theorem 1. We would like

http://biostats.bepress.com/jhubiostat/paper207
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to point out that Lemdani and Pons (1997)’s proof utilized re-parameterization specific to

binomial kernels and is not easy to generalize. On the other hand, our proof is more general

and can potentially generalize beyond admixture models.

Formulas for ρ(γ1, γ2) in genetic linkage admixture models

PK case.

ρ(γ1, γ2) =



∑
i

φ(γ1, γ2;Ki)√∑
i

φ(γ1, γ1;Ki) ·
√∑

i

φ(γ2, γ2;Ki)

, if γ1 ∈ [0, 0.5), γ2 ∈ [0, 0.5),

(1− 2γ2) ·
√∑

i

Ki√∑
i

φ(γ2, γ2;Ki)

, if γ1 = 0.5, γ2 ∈ [0, 0.5),

where φ(γ1, γ2;K) = {1 + (1 − 2γ1)(1 − 2γ2)}K − 1 and Ki is the size for family i, for

i = 1, 2, · · · , n.

PU case.

ρ(γ1, γ2) =



∑
i

φ(γ1, γ2;Ki)√∑
i

φ(γ1, γ1;Ki) ·
√∑

i

φ(γ2, γ2;Ki)

, if γ1 ∈ [0, 0.5), γ2 ∈ [0, 0.5),

(1− 2γ2)2 ·
√∑

i

Ki(Ki − 1)/2√∑
i

φ(γ2, γ2;Ki)

, if γ1 = 0.5, γ2 ∈ [0, 0.5),

where φ(γ1, γ2;K) =
[
{1 + (1− 2γ1)(1− 2γ2)}K + {1− (1− 2γ1)(1− 2γ2)}K − 2

]
/2 and

Ki is the size of family i, for i = 1, 2, · · · , n.
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Figure 1. Expected and observed log-likelihood functions for admixture model in genetic
linkage analysis. Pink corresponds to large log-likelihood values, and light blue corresponds
to small values. Panel (a) displays the expected log-likelihood function, where solid lines
represent the set of true values under H0. Panels (b) and (c) show observed log-likelihood
functions for two datasets simulated under H0.
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Figure 2. Expected log-likelihood and expected penalized log-likelihood functions for
admixture model in genetic linkage analysis.
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Figure 3. Boxplots of the process Z(γ) for different sample size n and family size K. The
process Z(γ) converges to a Gaussian process in large samples. But in finite samples, it could
be quite skewed.
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Figure 4. Power curves versus Type I and II local alternatives for the LRT and PLRT.
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Figure 5. Asymptotic versus empirical distribution of the LRT statistic and the PLRT
statistic. The horizonal axis is the empirical distribution from 1,000 simulations. The vertical
axis is the asymptotic distribution simulated from Gaussian processes.
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Table 1
Comparison of LRT vs alternative methods. The process Z(γ) is defined in Theorem 1 in general admixture models,

and in Corollary 1 for genetic linkage model. “Turning par.” means dependence on specification of a tuning
parameter. χ2 means a 50 : 50 mixture of χ2

0 and χ2
1.

Test Tuning Combined Asymptotic
Method statistic parameter parameter space null distribution

LRT LRT No [0, 1]× [0, 0.5] supγ∈[0,0.5]{Z+(γ)}2

Simple LRT LRT S,δ(δ1) Yes, δ1 δ1 × [0, 0.5] {Z+(0.5)}2 → χ2

LRT S,γ(γ1) Yes, γ1 [0, 1]× γ1 {Z+(γ1)}2 → χ2

Restricted LRT LRTR,δ(ε1) Yes, ε1 [ε1, 1]× [0, 0.5] {Z+(0.5)}2 → χ2

LRTR,γ(ε2) Yes, ε2 (0, 1]× [0, 0.5− ε2] supγ∈[0,0.5−ε2]{Z+(γ)}2

PLRT PLRT(C) Yes, C [ ε1(C), 1]× [0, 0.5] {Z+(0.5)}2 → χ2
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Table 2
Simulated Type I error rates and power for admixture models for genetic linkage studies, with sample size n = 50,

family size K = 2 and significance level α = 0.05. The first row of the table shows Type I error rates, and the
remaining give statistical power against different alternatives.

δ γ LRT PLRT(C)
0.011 0.135 0.368 0.607 1.000 1.649 4.481 148

0 0.5 0.042 0.070 0.053 0.053 0.046 0.044 0.043 0.043 0.043
0.05 0.3 0.063 0.098 0.078 0.078 0.070 0.069 0.068 0.068 0.068
0.05 0.0 0.129 0.189 0.148 0.148 0.129 0.122 0.121 0.120 0.120
0.10 0.3 0.089 0.137 0.112 0.112 0.099 0.097 0.096 0.096 0.096
0.10 0.0 0.288 0.380 0.317 0.317 0.272 0.256 0.251 0.249 0.249
0.15 0.3 0.121 0.193 0.155 0.155 0.142 0.138 0.137 0.137 0.137
0.15 0.0 0.483 0.591 0.515 0.515 0.470 0.438 0.428 0.425 0.425
0.20 0.3 0.174 0.254 0.209 0.209 0.192 0.186 0.184 0.184 0.184
0.20 0.0 0.695 0.781 0.717 0.717 0.668 0.637 0.622 0.616 0.616
0.25 0.3 0.231 0.317 0.269 0.269 0.247 0.241 0.240 0.240 0.240
0.25 0.0 0.842 0.901 0.855 0.855 0.822 0.797 0.784 0.776 0.776
0.30 0.3 0.295 0.391 0.343 0.343 0.320 0.313 0.311 0.311 0.311
0.30 0.0 0.943 0.967 0.947 0.947 0.926 0.908 0.897 0.892 0.892
0.40 0.3 0.447 0.547 0.501 0.501 0.476 0.468 0.465 0.464 0.464
0.40 0.0 0.995 0.997 0.995 0.995 0.991 0.988 0.986 0.984 0.983
0.50 0.3 0.595 0.692 0.651 0.651 0.629 0.621 0.619 0.618 0.618
0.50 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999
0.70 0.3 0.853 0.900 0.884 0.884 0.872 0.867 0.866 0.866 0.866
0.70 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 0.3 0.968 0.981 0.978 0.978 0.977 0.976 0.976 0.976 0.976
0.90 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.00 0.3 0.987 0.995 0.993 0.993 0.993 0.993 0.993 0.993 0.993
1.00 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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