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SUMMARY

DNA methylation is a key regulator of gene function in a multitude of both normal and abnormal biologi-

cal processes, but tools to elucidate its roles on a genome-wide scale are still in their infancy. Methylation
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2 M.J. ARYEE AND OTHERS

sensitive restriction enzymes and microarrays provide a potential high-throughput, low-cost platform to

allow methylation profiling. However, accurate absolute methylation estimates have been elusive due to

systematic errors and unwanted variability. Previous microarray pre-processing procedures, mostly de-

veloped for expression arrays, fail to adequately normalize methylation-related data since they rely on

key assumptions that are violated in the case of DNA methylation. We develop a normalization strategy

tailored to DNA methylation data and an empirical Bayes percentage methylation estimator, that together

yield accurate and precise absolute methylation estimates that can be compared across samples. We illus-

trate the method on data generated to detect methylation difference between tissues, and between normal

and tumor colon samples.

Keywords: Epigenetics, DNA methylation; Microarray.

1. INTRODUCTION

DNA methylation is a chemical modification of DNA that plays a key role in regulation of gene expression.

As an epigenetic mark, it encodes an additional layer of heritable information on top of DNA without

changing the underlying genetic sequence. While all cell types in an organism share nearly the same

genome sequence, their DNA methylation patterns can be markedly different (Song et al. , 2005; Meissner

et al. , 2008). DNA methylation marks help encode tissue-specific transcriptional programs in diverse cell

types and allows these gene expression patterns to be passed down to daughter cells. Chemically, DNA

methylation involves the modification of a cytosine (C) base to form methyl-cytosine. These methylation

marks are recognized by specialized proteins that bind the methylated DNA and inhibit the expression of

neighboring genes (Bird, 2002). In adult cells of mammals, this modification occurs almost exclusively at

cytosines that are immediately followed by a guanine (G) in the 5’ to 3’ direction, denoted CpG.
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Percentage DNA methylation estimates from microarray data 3

[FIGURE 1 ABOUT HERE]

The health implications of deciphering the DNA methylation code have recently received much atten-

tion both in the scientific literature and in the media (PBS, 2007; Cloud, 2010; SchüBeler, 2009). Smoking

in young boys, for example, has been found to cause epigenetic changes that predispose their future off-

spring to obesity (Pembrey et al. , 2006). Similarly, a related study has shown that memory improvements

in mice can be passed from one generation to the next via epigenetics (Arai et al. , 2009). Work in the

rapidly evolving field of stem cell biology has shown that DNA methylation can contribute to the cellular

memory mechanism used by stem cells to retain their pluripotent state during repeated cell divisions (Sen

et al. , 2010). In cancer biology, it is clear that aberrations in DNA methylation almost universally accom-

pany the initiation and progression of cancers (Jones & Baylin, 2002; Feinberg et al. , 2006). Much of

the excitement surrounding epigenetics relates to the promise of therapies that alter the epigenetic code,

activating or silencing disease-related genes. While the majority of such treatments are still hypothetical

or experimental, two epigenetic drugs that reactivate tumor suppressor genes by removing methylation

marks have recently received FDA approval (Sharma et al. , 2010; Kaminskas et al. , 2005). These studies

and therapies highlight the medical promise of mapping and understanding the role of DNA methylation.

Fully describing the methylation profile of a given cell requires measuring the methylation state of ev-

ery CpG. However, current practical laboratory protocols do not permit single cell methylation measure-

ments and, because studied cell populations are known to be heterogeneous, methylation measurements

are expected to be quantitative. Therefore, for any given cell type we aim to measure the percentage of

methylated cells at each CpG site. These measurements can be made by treating DNA with sodium bisul-

fite, which selectively converts unmethylated cytosine (C) to uracil (U) while leaving methylated C as is,

followed by DNA amplification and sequencing (Clark et al. , 2006; Frommer et al. , 1992). However,
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4 M.J. ARYEE AND OTHERS

this procedure, although considered a gold standard, comes at significant cost when applied genome-wide

due to the amount of sequencing coverage required. Therefore, this technology is not yet suitable for af-

fordable genome-wide measurements. The methods presented in this paper are motivated by the demand

for high-throughput measurements necessary to construct genome-wide methylation profiles.

Recent advances in microarray technology and laboratory protocols provide an alternate high-throughput

platform for assessing DNA methylation. Since methylation of adjacent cytosines in small regions of a

few hundred base pairs is known to be highly correlated (Eckhardt et al. , 2006), lower resolution strate-

gies based on methylated DNA enrichment provide a cost-effective alternative to bisulfite sequencing.

A common approach involves the use of methylation-sensitive restriction enzymes, proteins that selec-

tively cut strands of DNA at either methylated or unmethylated CpG sites (Khulan et al. , 2006; Ordway

et al. , 2006). Following restriction-enzyme treatment methylated and unmethylated DNA fractions are

separated based on fragment size. Coupled with DNA-detection microarrays, this strategy can provide

accurate genome-wide methylation profiles. In this paper we focus on a protocol using the restriction

enzyme McrBC which selectively cuts methylated DNA (Sutherland et al. , 1992; Ordway et al. , 2006).

The microarray measurements produced by the procedures described above present new statistical

challenges. We have developed an empirical Bayes estimation strategy that, when combined with appro-

priately normalized McrBC-enriched DNA microarray data, produces accurate percentage methylation

estimates with a mean error of 10% compared to bisulfite sequencing estimates. Since accurate methy-

lation estimates are highly dependent on suitable pre-processing to remove systematic biases we also

present a novel normalization strategy. In so doing, we demonstrate that well-established methods, devel-

oped largely in the context of gene expression analysis, are often inappropriate for DNA methylation data.

While these methods have been widely and successfully used in a variety of other microarray applications,
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Percentage DNA methylation estimates from microarray data 5

certain key assumptions underlying the strategies are violated in the DNA methylation setting leading to

inaccurate estimates.

This article is organized as follows. We begin with a description of our example datasets in Section 2.

Section 3 lays out limitations of existing methods for pre-processing DNA methylation data. In Section 4

we describe our normalization strategy and the empirical Bayesian estimator of percentage methylation.

Results demonstrating the utility of our methods are presented in Section 5. We conclude with a discussion

in Section 6. Derivations and practical issues including microarray data quality control are included in the

appendix.

2. DATA DESCRIPTION

2.1 Microarray data

DNA methylation assays typically involve random fragmentation of a DNA sample, followed by an en-

richment step that selects for either methylated or unmethylated DNA. Prior to enrichment the DNA is

split into two fractions one of which is left untreated. Methylation estimates are based on the relative

quantities of DNA in the enriched fraction compared to the untreated (total input) fraction. In this paper

we use two data sets generated using the restriction-enzyme McrBC. The first is derived from human liver,

brain and spleen, with five samples from each tissue. The second consists of five normal colon and five

colon cancer samples. The samples are described in Irizarry et al. (2009). Each sample was processed and

hybridized to microarrays as detailed in Ordway et al. (2006) and Irizarry et al. (2008). Briefly, the assay

involves enrichment of unmethylated DNA using the McrBC enzyme and the CHARM DNA methylation

microarray (Irizarry et al. , 2008) available from Nimblegen. The CHARM microarray is a 2.1 million

probe two-color array designed for maximal CpG coverage.
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6 M.J. ARYEE AND OTHERS

2.2 Bisulfite-sequencing validation data

We generated an independent verification data set using the same samples analyzed on the McrBC/CHARM

microarrays. Ten regions containing an average of twelve CpGs and spanning an average of 220 base pairs

were selected for methylation analysis by bisulfite treatment followed by sequencing. A total of 110 se-

quencing runs were performed with a subset of samples chosen for each region, generating percentage

methylation estimates for each CpG.

3. MOTIVATION

A key prerequisite for estimation of absolute methylation levels from microarray data is pre-processing

to accurately establish the baseline signal level associated with unmethylated regions. The basic measure-

ment used to quantify methylation is the log-ratio (M) of intensities observed in the treated and control

(total input) channels. Within-sample normalization aims to transform the log-ratios such that zero rep-

resents unmethylated regions and higher M-values represent more methylation. A plot of the microarray

methylation log-ratio for probes from unmethylated regions reveals several problems with the raw signal

(Figure 3a). First, the M-values are not centered on zero as is desirable for regions without methylation.

Second, there is a strong sequence-dependent bias in the signal manifested as a “wave” in a plot of signal

by genomic location. This wave is similar to that observed in array-CGH data (Marioni et al. , 2007), and

can lead to both false negatives and false positives, particularly in calls of absolute methylation levels. The

effect represents a sequence-specific bias as evidenced by its strong conservation across samples. Accurate

assessment of absolute methylation levels is highly dependent on an analysis approach that adequately cor-

rects for these biases. The Loess normalization strategy which has been widely and successfully used for

other two-color microarray applications (Yang et al. , 2002) fails to adequately normalize the methylation

http://biostats.bepress.com/jhubiostat/paper208



Percentage DNA methylation estimates from microarray data 7

log-ratio (Figure 3b).

As with other microarray applications, the strong non-linear dependence of M on signal intensity is a

significant source of bias. This effect is evident in a plot of M versus A , where A is the average of the

two channel’s log signals. The key Loess assumptions are that the majority of probes represent regions

without signal (M=0), and that signal intensity-dependent deviations are an artifact. In applications such as

differential gene expression analysis or transcription factor binding profiling these assumptions typically

hold and Loess regression can effectively be used to estimate and remove signal intensity-dependent bias.

In methylation experiments, however, both of these assumptions are violated. Since we expect many sites

to be methylated, the average probe behavior no longer represents regions without signal. The baseline

signal level estimated through Loess represents the mean methylation level rather than no methylation. If

Loess normalization were used here, and we define M = 0 as the average value of unmethlyated sites, then

one would incorrectly force M = 0 for many of the probes associated with methylation. This effect is clear

from Figure 3b where virtually all unmethylated probes have M ¡ 0.

The second Loess assumption that the methylation log-ratio (M) should be independent of the average

individual channel signal intensity (A) is also invalid in the methylation data setting. DNA methylation

levels are related to CpG (and hence GC) density; CpG dense regions, referred to as CpG islands tend

to be unmethylated, while lone CpGs are usually methylated. Since signal intensity is also known to be

influenced by GC content the true M is related to A. Forcing the methylation level to be independent of A

through Loess normalization thus actually introduces bias.

A further problem that remains unresolved after Loess normalization is the considerable variability

between biological replicates. While established between-sample microarray normalization techniques

such as quantile normalization (Bolstad et al. , 2003) are in many cases suitable for addressing this prob-

Hosted by The Berkeley Electronic Press



8 M.J. ARYEE AND OTHERS

lem in DNA methylation data, we have identified important situations in which alternatives are necessary.

Most methods were developed in the context of gene expression data and typically make the assump-

tion that the overall amount of gene expression, and hence signal, should be the same across samples.

While not strictly true, this assumption has proved reasonable for most gene expression data. In studies

of DNA methylation, similarly, we have found this assumption reasonable for comparisons between nor-

mal tissues. In many situations of particular interest, however, such as comparisons between cancer and

normal tissues, there may be significant global differences in methylation levels. Total methylation levels

are known to vary significantly between, for example, cancer versus normal cells or stem cells versus dif-

ferentiated cells (Jones & Baylin, 2007; Laurent et al. , 2010). As a result, normalizing such samples in a

way that equalizes their total signal level may introduce bias. This is illustrated by a hierarchical clustering

dendrogram of the colon tissue data set following quantile normalization (Figure 4b). One would expect

the biological replicates within the cancer and normal tissue groups to cluster together, but the biological

differences are obscured by technical artifacts.

Developments in laboratory tools have provided researchers with a promising platform for accurately

and rapidly assaying DNA methylation. As described above, however, signal biases and limitations in

current analytical methods present a barrier to making the most effective use of this promising technology.

4. METHODS

We present a two-component strategy for estimating absolute methylation levels. We first normalize the

methylation log-ratios to remove systematic bias (Sections 4.1 and 4.2), and then transform the normalized

log-ratios into percentage methylation estimates (Section 4.3). All normalization techniques depend on

identifying individual features or overall array characteristics that can be assumed to be constant across
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samples. Normalization transforms the data to equalize these features between samples. With this in mind

we aim to select control probes to serve dual purposes during the normalization process: to set the zero-

level for the methylation signal within each sample, and to reduce between sample technical variation.

4.1 Within sample normalization

To address the limitations of Loess normalization we employ a method that uses knowledge of genome

sequence, assay properties and DNA methylation patterns to select a subset of probes for which its as-

sumptions do hold. By fitting a Loess regression to these control probes we obtain a valid correction

curve that can be applied to the remaining probes. The key step in selecting control probes is to identify

unmethylated regions of the genome. Since mammalian DNA is almost exclusively methylated at CpG

sites, we can typically achieve this by selecting probes from CpG-free regions, guaranteeing a signal that

represents unmethylated DNA. For these probes we expect both that M equal zero and that M be indepen-

dent of A. Ideally, such control probes are included on the array by design. The CHARM microarray, for

example, contains 4,500 probes located in CpG-free regions to be used for this purpose. Alternatively, a

suitable subset of probes can be identified for many standard array designs, allowing the use of our method

with a broad set of platforms.

In addition to setting the zero-level using the control probe Loess procedure, a simple scale normal-

ization with minimal assumptions is useful to establish the signal level associated with fully methylated

regions. We typically scale the methylation log-ratios such that the 99th percentile has an M-value corre-

sponding to 99% percent methylation (see Section 4.3). This is roughly equivalent to the assumption that

the top 1% of probes represent almost completely methylated regions.

Since methylation estimates are derived from the log-ratio of signal intensity in the two channels, the
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10 M.J. ARYEE AND OTHERS

presence of background signal biases these estimates towards zero. To address this, we implement back-

ground removal prior to the log-ratio calculation using the Robust Multichip Average (RMA) convolution

model (Irizarry et al. , 2003). The RMA model assumes that the observed intensity is the sum of nor-

mally distributed background noise and the true signal, modeled as an exponential. The parameters of the

normal and exponential components are empirically estimated using all probes jointly. While removing

background signal levels has the benefit of reducing bias this comes at the expense of increased variance

(Scharpf et al. , 2007). The increase in variance can lead to an inflated false positive rate when identifying

methylated or differentially methylated regions in downstream analysis, but this is largely mitigated by

taking variance estimates into account.

4.2 Between sample normalization

In many situations of particular interest in DNA methylation studies, such as comparisons between cancer

and normal tissues, samples might be expected to exhibit significant global differences in methylation

levels. In these cases we propose the use of subset quantile normalization (Wu, 2009), a modified version

of quantile normalization that avoids assumptions about total signal level. It takes advantage of control

probes representing regions known to exhibit the same behaviour across samples. While spike-in controls

can serve this purpose it has recently been shown that negative control probes can also be used (Wu,

2009). Since negative controls by design measure non-biological signals they provide a good basis for

assessing technical variation between arrays. We find that probes from non-CpG regions (Section 4.1)

serve this purpose well. Such probes measure quantities that are not dependent on the methylation status

of individual samples and technical variation due to probe effects can be expected to be constant across

samples. Since the control probes will be used as reference points during between-sample normalization,

http://biostats.bepress.com/jhubiostat/paper208



Percentage DNA methylation estimates from microarray data 11

a further consideration is that their sequence characteristics should represent those of the array as a whole,

particularly in terms of GC-content.

Due to significant probe effects (Wu, 2009), the negative control features from unmethylated regions

span almost the entire dynamic range of signal within the enriched channel (Figure 2b). This is explained

by the observation that differences in individual probe hybridization efficiencies and the effects of varying

amounts of cross-hybridization are frequently of similar magnitude or greater than the biological differ-

ences of interest (Irizarry et al. , 2003; Johnson et al. , 2006; Li & Wong, 2001; Wu et al. , 2004).

The use of subset quantile normalization (Wu, 2009) allows us to take advantage of the facts that the

individual negative control features should show the same behaviour across all samples, and that they also

cover the dynamic range of the signal probes. In this approach, the control probes are used as “anchors”

when normalizing the data. First an empirical reference distribution is created by quantile normalizing

the control features. A target distribution is created from a weighted average of this empirical distribution

and normal-mixture distribution to allow extrapolation beyond the range of control probe signals. We then

map probes that fall in the qth quantile of control probes on their array to the qth quantile of the target

distribution.

[FIGURE 2 ABOUT HERE]

We have adapted subset quantile normalization, originally proposed in the context of single-color

microarray data, to the two color setting. Figure 2 motivates the use of subset quantile normalization on

the enriched channel data rather than directly on the methylation log-ratios (M). On the M scale, where

probe effects have mostly been cancelled out, the control probes span a smaller fraction of the signal

probe dynamic range and are therefore less useful as normalization anchors. Prior to normalizing the

enriched channel we establish a common baseline by first normalizing the total input channel, leaving
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12 M.J. ARYEE AND OTHERS

M-values unchanged. As the total input channel represents genomic DNA which can be assumed to be

essentially identical in all samples, it is reasonable to make an even stronger assumption than that of

quantile normalization, and instead set each total input probe to its median value across all samples.

4.3 Percentage methylation estimates

The final pre-processing step involves estimation of percentage methylation from the normalized data.

The use of a Bayesian estimator ensures that the values are constrained to the appropriate range. The

procedures described in Sections 4.1 and 4.2 serve to remove the major within- and between-sample

biases. The total input and enriched channels for probe i can be then be represented as IT∗
i = φiε

T
i

and IE∗
i = (1 − pi)φiε

E
i respectively. pi represents our primary quantity of interest, the percentage

of methylated CpGs at a given locus i. φi captures the probe effect. Taking log-ratios of the observed

intensities gives mi = qi + ei, where qi = − log(1 − pi) and ei = log εT
i − log εE

i . Larger values of qi

represent more methylation with zero representing no methylation. Pre-processing ensures that the error

term is centered at 0. Examination of empirical distributions suggests it is reasonable to use a log-normal

model for the error terms εi and an exponential model for qi. To allow for the non-zero probability of no

methylation (qi = 0) we model qi as a mixture of a point mass at 0 and exp(α) . Under these conditions

we are able to derive a closed form estimator of qi. This model is similar to the Robust Multichip Average

convolution model with the differences that the normal component, ei, is centered at 0 and not truncated,

and that the signal component, qi, is modelled as a mixture of a point mass and an exponential distribution.

We calculate the expected value of qi given the observed log-ratio, mi, and then solve for pi.

E(qi | mi) =

[

a + σ
φ(a/σ)

Φ(a/σ)

]

· P (qi > 0) (4.1)
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Percentage DNA methylation estimates from microarray data 13

where a = m− ασ2. The derivation of equation 4.1 is given in the appendix.

5. RESULTS

5.1 Within-sample normalization

Figure 3c shows the methylation signal in unmethylated regions following our control probe Loess pro-

cedure. Data from the 25 individual samples is shown in grey with the median across samples in black.

Unlike Loess normalization (Figure 3b), our procedure effectively establishes the baseline zero-level nec-

essary to make accurate estimates of absolute methylation levels. In addition we find that over 80% of the

variation due to the wave effect in McrBC/CHARM DNA methylation data is explained by a non-linear

function of the individual channel intensities and can therefore be mitigated by our control probe Loess

procedure.

[FIGURE 3 ABOUT HERE]

5.2 Between-sample normalization

As might be expected, when comparing samples with significantly different overall levels of DNA methy-

lation we find that quantile normalization introduces biases that can obscure true biological differences.

This is evident in a hierarchical clustering dendrogram of the colon tissue data set (Figure 4). Panel (a)

shows samples clustered following subset quantile normalization. The biological differences between can-

cer and normal tissue clearly divides the samples into two groups. On the other hand, the sample clustering

breaks down following quantile normalization (panel b), suggesting that artifacts have been introduced,

obscuring the biological differences.

[FIGURE 4 ABOUT HERE]
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14 M.J. ARYEE AND OTHERS

As a second metric of ability to retain biological variation while suppressing technical variation we

also examined the behaviour of the top 10,000 most variable probes by calculating F-statistics for group

differences. Given that we expect true differences between tumor and non-tumor tissue, larger F-statistics

are desirable and indicative of better ability to detect between-group differences. The mean F-statistics

following quantile and subset quantile normalization are 5.2 and 7.6 respectively, suggesting that subset

quantile normalization retains considerably more real biological signal while reducing technical variabil-

ity. On the other hand, when comparing F-statistics for the normal tissue data set where the samples have

similar global methylation levels, full quantile normalization achieves greater between-group separability.

5.3 Validating microarray percentage methylation estimates

We compared array-derived estimates of percentage methylation with an independent bisulfite sequenc-

ing data set targeting 10 regions. We summarized the sequencing reactions by the median percentage

methylation across the CpGs in the region for a total of 110 methylation estimates across the 25 samples.

Corresponding microarray estimates are derived from the median of the 2-8 probes in the region.

[FIGURE 5 ABOUT HERE]

Figure 5 plots array-derived percentage methylation estimates against the bisulfite sequencing data.

The correlation between the microarray estimates and bisulfite sequencing data is high at 93% with an

average discrepancy of 10%. These results suggest that the microarray-derived estimates are a good proxy

for bisulfite sequencing data.

[FIGURE 6 ABOUT HERE]

Our results also highlight the importance of background subtraction when estimating methylation

levels. Figure 6 shows the error in microarray estimates of percentage methylation made with and without
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background removal, as compared to the bisulfite sequencing verification data. Only when background

removal is used as part of the pre-processing procedure are the microarray-derived estimates centered on

the gold-standard methylation values.

6. DISCUSSION & CONCLUSION

The strategy presented here involves a computationally efficient closed-form Bayesian estimator of per-

centage methylation coupled with normalization methods tailored to DNA methylation microarray data.

We demonstrate that the technique, together with data generated using the McrBC methylation-sensitive

restriction enzyme and the CHARM DNA methylation microarray, achieves a high-degree of correlation

with bisulfite sequencing data with an average discrepancy of 10%.

Both the within-sample (between-channel) and between-sample normalization methods hinge on iden-

tifying suitable control probes from unmethylated regions. Since mammalian cells are almost exclusively

methylated at CpG sites, this can typically be achieved by identifying stretches of CpG-free DNA. De-

pending on the properties of the methylation assay it may be possible to relax this CpG-free require-

ment. Since most methylation-sensitive restriction enzymes only recognize CpGs when flanked by specific

bases, other CpGs are essentially invisible to the enzyme and need not be excluded when selecting control

regions. Choosing suitable control probes is slightly more complicated in systems where cells may have

significant levels of non-CpG methylation, as has been demonstrated in human stem cells (Lister et al.

, 2009; Ramsahoye et al. , 2000). One solution is to choose to study only CpG sites through the use of

a CpG-specific enrichment strategy. In this case, non-CpG methylation is undetectable and the standard

control probe selection procedure can be applied.

Between-sample normalization is complicated by the possibility of significantly different levels of
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16 M.J. ARYEE AND OTHERS

total DNA methylation between samples. Such comparisons, such as between cancer and normal cells,

are often of particular interest from a DNA methylation perspective. Our results suggest that in situations

where we have strong a priori reason to believe that global methylation differences exist, subset quantile

normalization is superior to quantile normalization since it avoids the assumption of equality in global

methylation levels. When this assumption is significantly violated, quantile normalization introduces sig-

nificant bias that may mask the underlying biological signal. In situations where overall methylation levels

are not drastically different, on the other hand, the stronger assumptions of quantile normalization are to

be preferred. Since subset quantile normalization makes weaker assumptions about the data, it therefore

has less ability to correct large between-sample biases. In effect, successful use of subset quantile normal-

ization is dependent on high quality data to a greater extent than quantile normalization.

As genomics seeks to unravel the diverse methylomes represented across cell types, it will be essential

to have accurate and affordable high-throughput methods to query methylation. The analytical methods

presented here will help provide a cost-effective means to globally profile DNA methylation by leveraging

what we already know about genome structure and methylation patterns. Efforts to map out developmental

and disease pathways will be fortified by a better understanding of genomic methylation patterns.
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8. APPENDIX

8.1 Derivation of equation 4.1

We derive the posterior expectation of qi given the observed log-ratio mi. qi is modelled as exp(α) and

ei as N(0, σ2) where α and σ2 are estimated empirically from the data. We drop the i subscript for

convenience.

E(q | m) = 0 · P (q = 0) +E(q | q > 0,m) · P (q > 0)

The joint distribution of q and e is given by

fq,e|q>0(q, e) = α exp(−αq)
1

σ
φ(

e

σ
)

Since the Jacobian of the transformation is 1 the joint distribution of q and m is simply

fq,m|q>0(q, m) = α exp(−αq)
1

σ
φ(

q −m

σ
)

The marginal distribution of m is given by

fm|q>0(m) =

∫ ∞

0

fq,m|q>0(q, m)dq

Substituting w = (q −m)/σ we have
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fm|q>0(m) =
∫∞
−m/σ

α exp(−α(σw + m))Φ (w) dw

= α exp(−αm)

∫ ∞

−m/σ

exp(−ασw)
1√
2π

exp(−w2

2
)dw

= α exp(−αm) exp(
α2σ2

2
)

∫ ∞

−m/σ

1√
2π

exp(− (w + σα)2

2
dw

By substituting z = w + σα we obtain the right hand side:

α exp(−αm) exp(
α2σ2

2
)

∫ ∞

−m/σ+σα

1√
2π

exp(−z2

2
)dz

= α exp

(

α2σ2

2
− αm

)

Φ

(

m− ασ2

σ

)

We can then write the posterior distribution of q given the data m,

fq|q>0,m(q | m) =
fq,m|q>0(q, m)

fm|q>0(m)

=
α exp(−αq) 1

σ φ( q−m
σ )

α exp
(

α2σ2

2
− αm

)

Φ
(

m−ασ2

σ

)

=

1√
2π

exp(− 1

2σ2 (q − (m− ασ2)2)

Φ(m−ασ2

σ )

=
1

σ φ( q−a
σ )

Φ( a
σ )

where a = m− ασ2. By substituting z = (q − a)/σ we obtain the posterior expectation, conditional

on q > 0:
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E(q | q > 0,m) =
1

Φ( a
σ )

∫ ∞

0

q

σ
φ

(

q − a

σ

)

dq

=
1

Φ( a
σ )

∫ ∞

−a/σ

(σz + a)φ(z)dz

=
1

Φ( a
σ )

a

∫ ∞

−a/σ

φ(z)dz +
1

Φ( a
σ )

σ

∫ ∞

−a/σ

zφ(z)dz

=
1

Φ( a
σ )

[

aΦ
( a

σ

)

+ σφ
( a

σ

)]

= a + σ
φ( a

σ )

Φ( a
σ )

Thus

E(q | m) =

[

a + σ
φ( a

σ )

Φ( a
σ )

]

· P (q > 0)

P (qi = 0) is estimated by the fraction of mi < 0. The parameters α and σ2 are estimated as in the

RMA convolution model, but with GC-stratification and with the restriction that the normal component

be centered at 0.

8.2 Microarray data quality assessment

Data quality metrics provide a useful tool for identifying outlier probes or entire arrays that should be

considered for exclusion from the analysis. Methylation levels are estimated by comparing the treated

(enriched) channel to the untreated (total input) channel. In the case of the McrBC approach for instance,

methylation levels can be estimated from the amount of depletion in the treated channel compared to the

untreated channel. As a result, the range of measurable methylation (the dynamic range) is determined

in large part by the quality of the untreated channel signal. Since the untreated channel measures total

Hosted by The Berkeley Electronic Press



24 M.J. ARYEE AND OTHERS

DNA, all probes are expected to record a high signal. Similar to the approach of Thompson et al. (2008)

we assess the quality of the untreated channel signal by comparing these probes to the signal from the

background probes that measure cross-hybridization and scanner optical noise. We define a probe’s qual-

ity score as its percentile rank among those background probes with the same GC-content. Probes with

consistently low scores can be flagged for exclusion from the analysis. Similarly, the array quality score,

defined as the mean probe score, is a useful metric for identifying outlier arrays to be removed.

A heatmap plot of probe intensity by physical location is a second useful tool for identifying hy-

bridization problems. Since probes are typically located randomly across an array, we do not expect any

spatial bias in signal strength. Both channels should show uniform signal intensity over the physical array.

This is particularly useful for the enriched channel where we cannot compare probes to the background

level since low intensity is indicative of methylation.

8.3 CpG density / Fragment length bias

Enrichment of methylated DNA by restriction enzyme based approaches has been reported to be depen-

dent on the digested fragment length (Thompson et al. , 2008). This bias is largely believed to be the result

of PCR amplification whose efficiency is size-dependent. Thompson et al. (2008) present a normalization

scheme to adjust for this bias. A second contributing factor to the dependence may be a true relationship

between methylation levels and fragment length. This is reasonable given that restriction fragment length

is dependent on CpG density which is known to be a determinant of methylation levels. To isolate the

effect of these factors we generated a fully methylated sample by in-vitro treatment with Sss1 methylase.

We examined the effect of fragment length in the context of the CHARM assay by plotting the median

enrichment log-ratio by fragment length, as estimated using McrBC recognition sites. While the relation-
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ship is similar to that described previously for the samples with normal methylation levels (Figure 7a), it

does not hold for a fully methylated sample (Figure 7b). This suggests that, in the context of this assay, the

methylation log-ratio need not be corrected for fragment length biases. Further evidence for lack of bias

is provided by comparing the methylation log-ratios to independent sequencing verification data, where

we observe no relationship between error and fragment length (Figure 8).

[FIGURE 7 ABOUT HERE]

[FIGURE 8 ABOUT HERE]
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Fig. 1. DNA (black strand) is wrapped around histone proteins (grey spheres). Unmethylated DNA (left) tends to be

loosely packed. Genes in such regions are accessible to the cell’s transcriptional machinery and can be expressed.

DNA methylation involves the addition of methyl group molecules (red circles) to cytosine bases. Highly methylated

DNA (right) is tightly packed resulting in silenced gene expression.

Fig. 2. While negative control features representing unmethylated regions have lower signals than the signal probes

on the M (log-ratio) scale (a), they span almost the entire dynamic range of signal in the enriched channel (b) as a

result of probe effects.
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Fig. 3. Methylation log ratio across 30 unmethylated control regions in a CHARM microarray. The light grey lines

show individual sample profiles while the dark lines represent the median signal across samples, clearly showing

strong conservation of the ’wave’ artifact between samples. Neither the raw data (a) nor the standard Loess normalized

(b) signals are zero-centered as is desirable for unmethylated regions. Control-probe Loess normalization (c) achieves

both a mean-zero signal for unmethylated regions and an 80% reduction in variation compared to the raw signal.
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Fig. 4. Hierarchical clustering dendrogram of 5 normal colon and 5 colon tumor samples following (a) subset quantile

normalization, and (b) quantile normalization. Subset quantile normalization results in perfect group separation. The

top 10,000 most variable probes are used in each case.
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Fig. 5. Percentage methylation estimates. The y-axis shows microarray DNA methylation estimates derived from the

median of the probes in each validation region. The x-axis shows methylation from an independent gold-standard

validation data set obtained by bisulfite treatment and sequencing. The mean difference between microarray and

gold-standard estimates is 10%.

Fig. 6. Error in microarray estimates of percentage methylation with and without background removal. Bisulfite

sequencing was used as the gold standard measurement.
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Fig. 7. The x-axis shows restriction fragment length and the y-axis shows the median enrichment log-ratio for (a) the

tissue samples with normal methylation levels, and b) a fully methylated sample.

Fig. 8. DNA fragment length and CpG density do not bias the methylation estimate. The data represents the discrep-

ancy between microarray percentage methylation estimates and an independent bisulfite sequencing verification data

set.
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