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Abstract

In the presence of missing response, reweighting the complete case subsample by the

inverse of nonmissing probability is both intuitive and easy to implement. However, inverse

probability weighting is not efficient in general and is not robust against misspecification of

the missing probability model. Calibration was developed by survey statisticians for improv-

ing efficiency of inverse probability weighting estimators when population totals of auxiliary

variables are known and when inclusion probability is known by design. In missing data

problem we can calibrate auxiliary variables in the complete case subsample to the full sam-

ple. However, the inclusion probability is unknown in general and need to be estimated

in missing data problems and it is unclear whether calibration is robust against misspeci-

fication of the missing probability model. It is also unclear how efficient calibration is for

general missing data problem. This paper answers these two questions and presents two

rather unexpected results. First, when the missing data probability is correctly specified

and multiple working outcome regression models are posited, calibration enjoys an oracle

property where the same semiparametric efficiency bound is attained as if the true outcome

model is known in advance. Second, when the missing mechanism is misspecified, calibration

can still be a consistent estimator when any one of the outcome regression model is correctly

specified. This is a multiple robustness property more general than double robustness con-

sidered the missing data literature. We provide connections of a wide class of calibration

estimator constructed based on generalized empirical likelihood to many existing estimators

in biostatistics, econometrics and survey sampling and perform simulation studies to study

the finite sample properties of calibration estimators.

Keywords: Generalized empirical likelihood, Model misspecification, Missing data, Ro-

bustness
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1. INTRODUCTION

Inverse probability weighting (IPW) was originally proposed by Horvitz and Thompson

(1952) for reweighting a probability sample obtained from a complex survey design in order

to represent an underlying study population. The estimator has also been widely used for

missing data problems, where complete-case data is reweighted by the inverse of nonmissing

probability. While IPW estimation is intuitive and easy to implement, the estimator is not

efficient in general and is not robust against misspecification of missing probability.

Survey statisticians and biostatisticians have each developed methods to improve the

IPW estimator. Calibration was proposed by Deville and Särndal (1992) in survey sampling

literature to utilize information from auxiliary data. In missing data literature, Robins,

Rotnitzky and Zhao (1994) considered a class of augmented inverse probability weighted

(AIPW) estimating equation, which adds a mean zero augmentation term to the IPW esti-

mating equation. The augmentation term utilizes information from fully observed variables

in the full sample. While both AIPW and calibration estimators were proposed to improve

efficiency of IPW estimator, little connection has been established in the literature until

recently, see Qin and Zhang (2007) and Breslow et al. (2009).

While calibration estimators are well studied in the survey sampling literature, theoret-

ical questions remain to be answered for its usage in missing data problem. Calibration is

proposed when inclusion probability is known by design, but for missing data applications

the nonmissing probability is usually not known but is being modeled. It is unclear whether

calibration is robust against misspecification of the missing probability model. Also, it is

unclear whether calibration can attain the semiparametric efficiency bound as for the AIPW

estimators. This paper answers these two questions and presents two rather unexpected

results. In section 2, we consider a missing response model and define calibration estimat-

ing equations to match moment conditions between complete-case subsample and the full

sample. Calibration weighted is implemented using generalized empirical likelihood (Newey

and Smith, 2004). Section 3 contains the main theoretical results of this paper. First, we
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will show that when the missing data probability is correctly specified and multiple work-

ing outcome regression models are posited, calibration enjoys an oracle property where the

same semiparametric efficiency bound is attained as if the true outcome model is known in

advance. Second, when the missing mechanism is misspecified, calibration can still be a con-

sistent estimator when any one of the outcome regression model is correctly specified. Three

important special cases of the generalized empirical likelihood calibration will be discussed in

section 4 and is shown to be related to many existing estimators in the biostatistics, econo-

metrics and survey sampling literature. Numerical examples, including simulation studies

and an analysis of medical cost data from the Washington basic health plan will be presented

in section 5. Discussions and several related extensions will be presented in section 6.

2. CALIBRATION ESTIMATORS

In this section we will consider a general framework for modifying inverse probability weights

by calibration to include information from all observations using moment conditions. We

consider the following missing response problem. Let Y be a random variable and X be

a random vector. Suppose we observe (y1, x1), . . . , (yn, xn), xn+1, . . . , xN , and the full data

(y1, x1), . . . , (yN , xN) are i.i.d. from an unspecified distribution F0(y, x). Let R be a random

variable correspond to the nonmissing indicator. The observed data can be represented as

(ri, riyi, xi), where ri = 1 for i = 1, . . . , n and ri = 0 for i = n+ 1, . . . , N . We are interested

in estimating µ = E(Y ), where Y is subject to missingness and auxiliary variables X are

completely observed.

We consider the case under missing at random, i.e. P (R = 1|Y,X) = P (R = 1|X) =

π0(X). Suppose P (R = 1|X) = π(X; β0), where β0 is a finite dimensional parameter. A

conventional choice of missing data model is a logistic regression model with linear predictors

in X, though this is not necessary. Based on (r1, x1), . . . , (rN , xN), parameter β0 can be

estimated by solving a likelihood score equation N−1
∑N

i=1 s(xi; β) = 0 where s(x; β) =

[1 − π(x; β)]−1[ri − π(x; β)]∂π
∂β

(x; β) and we denote β̂ be the solution. When missing data
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mechanism is correctly modeled, the IPW estimator

µ̂IPW =
1

N

N∑
i=1

ri

π(xi; β̂)
yi (1)

is a consistent estimator of µ. However, (1) is generally not fully efficient because informa-

tion from x̃ = (xn+1, . . . , xN) is not utilised except in the estimation of β0 and such infor-

mation may not be relevant to the estimation of µ. To improve efficiencies, we note that

for u(x) = (u1(x), . . . , uq(x)) such that u1,. . . ,uq are linearly independent and EF0(u
2(X))

is finite, the two estimators ũ = N−1
∑N

i=1 riπ
−1(xi; β̂)u(xi) and ū = N−1

∑N
i=1 u(xi) are

both consistently estimating the same quantity, EF0(u(X)), while the latter is more efficient

because information from all observations are utilized. Instead of using inverse probability

weights in computing ũ and in (1), we wish to find calibration weights (p1, . . . , pn) such that

the following moment conditions are satisfied

ū =
n∑
i=1

piu(xi) (2)

The dimension of u(·) is assumed fixed and is much less than n. For (p1, . . . , pn) satisfying

(2), the calibration weighted complete case estimate for EF0(u(X)) is more efficient than the

IPW estimate ũ because information from all observations is included. When Y and u(X)

are reasonably correlated, it is intuitive to expect that the calibration estimator µ̂CAL =∑n
i=1 piyi is possibly more efficient than the IPW estimator (1). The implied weights from

moment restrictions (2) can be explicitly defined using generalized empirical likelihood (GEL)

proposed by Newey and Smith (2004), a method originally proposed for efficient estimation

of overidentified systems of estimating equations commonly encountered in econometrics

applications. Calibration weights proposed by Deville and Särndal (1992) also satisfies (2)

but the method to obtain the weights are different.

The construction of GEL calibration weights is as follows. Let ρ(v) be a concave and twice

differentiable function on R such that ρ(1) 6= 0, where ρ(j)(v) = ∂jρ(v)/∂vj and ρ(j) = ρ(j)(0).

As suggested by Newey and Smith (2004), we can replace an arbitrary ρ(v) by a normalised

version −ρ(2)/(ρ(1))2ρ([ρ(1)/ρ(2)]v) such that ρ(1) = ρ(2) = −1. This normalization will not
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affect the results. The calibration weights are defined as

pi =
π−1(xi; β̂)ρ(1)(λ̂T (u(xi)− ū))∑n
j=1 π

−1(xj; β̂)ρ(1)(λ̂T (u(xj)− ū))
(3)

where

λ̂ = arg max
λ

n∑
i=1

π−1(xi; β̂)ρ(λT (u(xi)− ū)) (4)

We define a calibration (CAL) estimator to be µ̂CAL =
∑n

i=1 piyi. Moment restrictions (2)

is satisfied as seen from the first order condition of (4).

In general, the calibration weights pi are not guaranteed to be non-negative if λ is max-

imised globally in (4), except in the cases where ρ(1)(v) < 0 ∀v ∈ R, such as ρ(v) = − exp(v).

A way to produce non-negative weights for the whole GEL family, as suggested by Newey

and Smith (2004), is to define λ̂ to maximize the objective function in a restricted set

Λ = {λ ∈ Rq : λT (ui(xi)− ū) ∈ V , i = 1, . . . , n} where V ⊂ R is an open interval containing

zero. When we choose V to be a sufficiently small neighborhood around zero, pi will be

non-negative for all i = 1, . . . , n. When the missing data model is correctly specified, it

follows from Newey and Smith (2004) that the restricted maximum exists with probability

approaching 1 when n is large and is asymptotically equivalent to the unrestricted maxi-

mizer. The restricted maximization is implemented in the gmm package in R (Chaussé 2010).

In econometrics, GEL estimators are usually solutions to saddlepoint problems and can be

difficult to compute. However, the GEL calibration estimator is essentially a degenerate case

of GEL with only auxiliary parameters λ appearing in (4) but not target parameters. In this

case, λ̂ is a solution to a convex maximization problem instead of a saddlepoint problem and

can be computed easily.

3. ORACLE AND MULTIPLE ROBUST PROPERTIES

In this section we will examine statistical properties of calibration estimators in the context

of missing data analysis, and show that the class of estimators enjoy an oracle property

and a multiple robustness property. We consider model based calibration where the func-

tions u(x) in the moment condition (2) may depend on a finite dimensional parameter γ0
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estimated by γ̂. For instance, u1(X; γ1), . . . , uq(X; γq) can be q non-nested working out-

come regression models for E(Y |X), and γ0 = (γT1 , . . . , γ
T
q )T . We denote the sample mean

ū(γ̂) = N−1
∑N

i=1 u(xi; γ̂) and the calibration weights (p1, . . . , pn) satisfy ū(γ̂) =
∑
piu(xi; γ̂),

which are found by (3) and (4) with u(x) and ū replaced by u(x; γ̂) and ū(γ̂) respectively.

Let m(X) = c0 +
∑q

j=1 cjuj(X; γ0) where c0, . . . , cq minimizes

E((Y − c0 −
q∑
j=1

cjuj(X; γ0))
2). (5)

That is, m(X) is the best linear predictor of Y by u(X). Suppose γ̂ is a
√
N consistent

estimate of γ0 and assume that the missing data model is correctly specified: π0(X) =

π(X; β0). We have the following lemma.

Lemma 1. Under regularity conditions stated in the appendix,

µ̂CAL − µ =
1

N

N∑
i=1

[
ri

π0(xi)
(yi − m̃(xi)) + (m̃(xi)− µ)

]
+ op(N

−1/2) (6)

where m̃(X) = m(X)+AT2 S
−1(1−π0(X))−1 ∂π

∂β
(X; β0), A2 = −E

(
∂π
∂β

(X; β0)
1

π(X;β0)
(Y −m(X))

)
and S = E

(
π−1
0 (X)(1− π0(X))−1 ∂π

∂β
(X; β0)

∂π
∂β

T
(X; β0)

)
The above lemma holds for arbitrary sets of functions u(·) satisfying mild regularity

conditions. The asymptotic expansion (6) depends on the choice of u(X) implicitly through

m(X) and we may chose a particular u(X) to minimize the asymptotic variance. Denote

m0(X) be the true conditional expectation E(Y |X). The optimality properties are stated

in the following theorem.

Theorem 2. (Semiparametric efficiency) Suppose regularity conditions in lemma 1 holds.

In addition, if there exist a0, . . . , aq such that

m0(X) = a0 +

q∑
i=1

ajuj(X; γ0) (7)

then the estimator µ̂CAL achieves the semiparametric efficiency bound as in Robins, Rotnitzky

and Zhao (1994) and Hahn (1998).
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In Theorem 2, the constants a0, . . . , aq are arbitrary and do not need to be estimated.

Theorem 2 states that semiparametric efficiency is attained under a condition weaker than

requiring the calibration function u(X) to be identical to the true conditional expectation

m0(X). An important implication of the theorem, an oracle property, is given as follows.

Suppose u1(X; γ1), . . . , uq(X; γq) are q working models for E(Y |X) and that one of them,

without lot of generality say u1(X; γ1), is the true conditional expectation. We have the

following oracle property.

Corollary 3. (Oracle Property) Under conditions in lemma 1 and suppose E(Y |X) =

u1(X; γ1). The estimator µ̂CAL,1 where u = u1 achieves the same semiparametric efficiency

bound as the estimator µ̂CAL,2 where u = (u1, . . . , uq).

While assuming multiple working regression models are similar to overfitting which should

be avoided in usual statistical practice, we see following the oracle properties that the asymp-

totic efficiency of calibration estimators are not affected by multiple working models and

attains the same semiparametric efficiency bound as if the true model is known in advance.

In section 5, we show in simulation studies that multiple modeling lose a negligible amount

of efficiency even in a practical sample size.

Next, we consider the validity of calibration estimators under misspecified missing data

models. In this case, the estimator β̂ will converge in probability to some constant vector β∗,

but π(X; β∗) 6= π0(X). We denote Fs(y, x) = P (Y ≤ y,X ≤ x|R = 1) be the biased sampling

distribution of complete-case subsample. It follows from missing at random assumption that

dFs(y, x) ∝ π0(x)dF0(y, x).

The estimate λ̂ will not converge in probability to 0, as in the case when missing data model

is correctly specified, but will instead converge in probability to λ∗ where

λ∗ = arg max
λ

Es(π
−1(X; β∗)ρ(λ(u(X)− µu)))

where µu = E(u(X)), Es denotes an expectation taken with respect to the distribution Fs.
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We define a tilted distribution Ft(y, x) such that

dFt(y, x) ∝ 1

π(x; β∗)
ρ(1)(λ∗(u(x)− µu))dFs(y, x)

∝ w̃(x)dF0(y, x)

where w̃(x) = kπ0(x)π−1(x; β∗)ρ(λ∗(u(x) − µu)) for some constant k, and we denote Et an

expectation taken with respect to Ft. We have the following theorem.

Theorem 4. (Robustness) When the missing data model is misspecified but condition (7)

holds for the calibration function u(X), calibration estimator µ̂CAL is still a consistent esti-

mator for µ.

The proof is as follows.

µ̂CAL =
n∑
i=1

pi(yi −m0(xi)) +
n∑
i=1

pim0(xi)

=
n∑
i=1

pi(yi −m0(xi)) +
1

N

N∑
i=1

m0(xi)

=
n∑
i=1

π−1(xi; β̂)ρ(λ̂(u(xi)− ū))∑n
j=1 π

−1(xj; β̂)ρ(λ̂(u(xj)− ū))
(yi −m0(xi)) +

1

N

N∑
i=1

m0(xi)

p→ Et((Y −m0(X))) + E(m0(X))

= E(w̃(X)(E(Y |X)−m0(X))) + E(E(Y |X)) = 0 + µ = µ

An immediate corollary is that when one of the q working models for E(Y |X) is cor-

rectly specified, the calibration estimator is consistent even when the missing data model is

misspecified. Therefore, calibration estimators enjoy the following multiple robust property:

consistency holds when either the missing data model or any one of the working outcome re-

gression models is correctly specified. Doubly robustness estimators (e.g. AIPW estimators)

have been popular in missing data analysis because of its extra protection against misspec-

ification of the missing data model. However, a working outcome regression model may be

misspecified as well. Modified probability weighted estimators allow multiple non-nested

working models to be assumed and is consistent when any one of the working models are

9

Hosted by The Berkeley Electronic Press



correctly specified. This provides an even better protection against model misspecification

than the existing doubly robust estimators.

4. SPECIAL CASES AND RELATIONSHIP TO EXISTING ESTIMATORS

In this section, we consider several special cases of the GEL calibration estimator, and discuss

their connections to existing estimators proposed in biostatistics, econometrics and survey

sampling literature.

When ρ is a quadratic function, after normalization we have ρ(1)(v) = −v− 1. From (4),

λ̂ has an explicit solution

λ̂ = −

[
n∑
i=1

π−1(xi, β̂)(u(xi)− ū)⊗2

]−1 [ n∑
i=1

π−1(xi, β̂)(u(xi)− ū)

]
where for a row vector a, a⊗2 = aaT . The calibration weighted estimator is equivalent to

µ̂CAL,Q =

∑N
i=1 riπ

−1(xi; β̂)[yi − cT1 u(xi)]∑N
i=1 riπ

−1(xi; β̂)
+ cT1

1

N

N∑
i=1

u(xi) (8)

where

c1 =
n∑
i=1

π−1(xi, β̂)

[
n∑
i=1

π−1(xi, β̂)(u(xi)− ū)⊗2

]−1

[(u(xi)− ū)yi]

This special case of GEL calibration estimator corresponds to the generalised regression

estimator (Cassel, Särndal and Wretman 1976). Note that when the missingness model is

correctly specified, the denominator
∑N

i=1 riπ
−1(xi; β̂) on the left hand size of (8) is approxi-

mately N , so the estimator (8) is also similar to the augmented inverse probability weighted

estimating equation proposed by Robins, Rotnitzky and Zhao (1994).

Empirical likelihood (EL) is another special case of GEL which is frequently studied in

the literature (Owen 1988, Qin and Lawless 1994), which corresponds to ρ(v) = log(1− v).

In this case, λ̂ is a solution of the system of equations

n∑
i=1

π−1(xi; β̂)(u(xi)− ū)

1− λT (u(xi)− ū)
= 0

and

pi =
[π(xi; β̂)(1− λ̂T (u(xi)− ū))]−1∑n
j=1[π(xj; β̂)(1− λ̂T (u(xj)− ū))]−1
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In this case, empirical likelihood has a pseudo nonparametric maximum likelihood inter-

pretation, where pi maximizes a weighted loglikelihood
∑n

i=1 π
−1(xi; β̂) log pi subject to the

moment condition (2). Moment matching using empirical likelihood for missing data have

been discussed in the econometrics literature by Hellerstein and Imben (1999), and dis-

cussed recently in Qin and Zhang (2007) with an emphasis on causal inference applications.

In survey sampling, the empirical likelihood based method has been proposed to calibrate

design-based weights to auxiliary data by Chen and Sitter (1999), Wu and Sitter (2001),

Chen, Sitter and Wu (2002), Kim (2009) among others.

Exponential tilting (ET) is also a special case of GEL where ρ(v) = − exp(v) (Kitamura

and Stutzer 1997; Imbens, Spady and Johnson 1998). In this case, λ̂ is a solution of the

system of equations

n∑
i=1

π−1(xi; β̂)(u(xi)− ū) exp(λT (u(xi)− ū)) = 0

and

pi =
π−1(xi; β̂) exp(λ̂T (u(xi)− ū))∑n
j=1 π

−1(xj; β̂) exp(λ̂T (u(xj)− ū))

The estimator can also be formulated by maximizing a weighted entropy
∑n

i=1 π
−1(xi; β̂)pi log pi

subject to the moment condition (2). This corresponds to raking estimators (Deming and

Stephan 1940, Deville, Särndal and Sautory 1993) in the survey sampling literature, and

An advantage of using the exponential tilting estimator is that the resulting weights pi are

always non-negative.

The class of GEL calibration estimators contain many more estimators than the three

special cases mentioned above. For example, the family of power divergence statistics of

Cressie and Read (1984) is a proper subclass of GEL, where for some scalar θ,

ρ(v) = −(1 + θv)(θ+1)/θ/(θ + 1)

The EL and ET estimators correspond to the limit as θ → −1 and θ → 0 respectively, and

the quadratic estimator corresponds to θ = 1. Several other cases have also been considered
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in the literature, for example, θ = −1
2

(Freeman-Tukey), θ = −2 (calibration Neyman) and

θ = 2
3

(Cressie-Read).

5. NUMERICAL STUDIES

5.1 Simulated data

In this section we present simulation studies and an analysis of Washington basic health

plan data to study the finite sample performance of calibration estimators. The simulation

studies followed a scenario in Kang and Schafer (2007) for estimation of a population mean.

The scenario was designed so that the assumed outcome regression and missing data models

are nearly correct under misspecification, but the AIPW estimator can be severely biased.

Sample sizes for each simulated data set was 200 or 1000, and 1000 Monte Carlo datasets were

generated. For each observation, a random vector Z = (Z1, Z2, Z3, Z4) was generated from

a standard multivariate normal distribution, and transformations X1 = exp(Z1/2), X2 =

Z2/(1+exp(Z1)), X3 = (Z1Z3/25+0.6)3 and X4 = (Z2+Z4+20)2 were defined. The outcome

of interest Y was generated from a normal distribution with mean 210 + 27.4Z1 + 13.7Z2 +

13.7Z3 + 13.7Z4 and unit variance, and Y was observed with probability exp(η0(Z))/(1 +

exp(η0(Z))) where η0(Z) = −Z1 + 0.5Z2 − 0.25Z3 − 0.1Z4. The correctly specified outcome

and missing data models were regression models with Z as covariates, whereas we treated X

to be the covariates instead of Z in misspecified models. Kang and Schafer (2007) showed

that the missspecified models are nearly correctly specified. In each case we considered

four possible combinations of correct and misspecified missing data and outcome regression

models: (a) both correct; (b) correct missing data model and incorrect outcome regression;

(c) incorrect missing data model but correct outcome regression and (d) both incorrect. For

calibration estimators, we construct moment restrictions based on u(Z) = (Z1, Z2, Z3, Z4) for

correctly specified outcome model and to u(X) = (X1, X2, X3, X4) for misspecified outcome

model. We compared the performances of the inverse probability weighted estimator µ̂IPW ,

the augmented inverse probability weighted estimator µ̂AIPW , the calibration estimators

µ̂CAL,Q, µ̂CAL,EL, µ̂CAL,ET corresponding to three special cases in the generalised empirical
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likelihood family: Quadratic (Q: ρ(v) = −(v + 1)2/2), empirical likelihood (EL: ρ(v) =

ln(1− v)) and exponential tilting (ET: ρ(v) = − exp(v)). The results are shown in Table 1.

[Table 1 about here.]

Simulation results showed that both the AIPW estimator and the calibration estimators

were more efficient than the IPW estimator. Both AIPW and calibration estimators had

negligible bias when either the missing data model or the outcome regression model was

correctly specified. When both models were correctly specified, AIPW and calibration es-

timators had very similar performances. When only one of the two models were correctly

specified, the calibration estimators were more efficient than the AIPW estimator. When

both models were misspecified, the AIPW estimator had a considerable bias and variabil-

ity but the calibration estimators showed much better performance. Particular choices of

calibration estimators within the GEL family did not affect their performance in general.

We next consider a case where the missing data mechanism was possibly misspeci-

fied and multiple working outcome regression models were assumed which contained the

correctly specified model. Let u1 = (1, Z1, Z2, Z3, Z4)
T γ̂1, u2 = (1, X1, X2, X3, X4)

T γ̂2,

u3 = (1, X1, X2, Z3, Z4)
T γ̂3 and u4 = (1, Z1, Z2, X3, X4)

T γ̂4, where γ̂1, γ̂2, γ̂3 and γ̂4 were

least square estimates obtained from complete case data. We considered moment condi-

tions from one to four working models: (a) one working model u = u1, (b) two working

models u = (u1, u2), (c) three working models u = (u1, u2, u3) and (d) four working models

u = (u1, u2, u3, u4). Each of the four cases contained the correctly specified outcome re-

gression model u1. The simulation results are shown in Table 2. When multiple working

outcome regression models were assumed that contained the correct model, calibration esti-

mators were robust against misspecification of the missing data model, had negligible bias

and negligible loss of efficiency compare to the estimator that calibrate only to the correct

model known in advance.

[Table 2 about here.]
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5.2 Washington basic health plan data

We performed an analysis using the Washington basic health plan data. The dataset con-

tained observations from 2687 households and collected a variety of health services variables.

For the purpose of illustration, we chose outcome Y to be total household expenditure on

outpatient visits, X1 be the family size and X2 be the total number of outpatient visits. The

distribution of medical expenditure was highly skewed to the right with a lot of zeroes, and

the mean household expenditure for outpatient visits was µy = 1948. We drew a subsample

following a model logitP (R = 1|X1, X2) = β0 +β1X1 +β2X1I(X1 ≥ 3)+β3X2 and compared

the performance of IPW and GEL calibration estimators as if Y were only observed in the

subsamples. The resampling process was repeated B = 1000 times.

We evaluated the estimators by comparing two performance measures, relative bias (RB)

and relative efficiency (RE), defined by

RB =
1

B

B∑
b=1

µ̂y − µy
µy

and

RE =
MSEIPW
MSE

where µ̂b is an estimator computed from the bth sample, MSE = B−1
∑B

i=1(µ̂b − µy)2 and

MSEIPW is the MSE of µ̂IPW . The performance of estimators were evaluated under both

a correctly specified missing data model and a misspecified working model logitP (R =

1|X1, X2) = δ0 + δ1X1 + δ2X1I(X1 ≥ 3). The misspecified model ignored the dependence

between the missing mechanism and X2. Under each scenario, we considered generalised

empirical likelihood calibration estimators µ̂CAL,Q,k, µ̂CAL,EL,k and µ̂CAL,ET,k where i = 1, 2

indicating two sets of working projection models. Under working assumption 1 (k = 1),

we assumed a working linear model between Y and X1 and calibrated to the corresponding

linear projection. Under working assumption 2 (k = 2), we assumed two separate working

linear models, one between Y and X1 and the other between Y and X2. Scatterplots showed

that a working linear model between Y and X1 may not be appropriate but a linear model
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between Y and X2 was reasonable. Given this fact we expect calibration estimators under

working assumption 2 shall perform better than the corresponding estimators for working

assumption 1 both in terms of efficiency and bias reduction.

The results of the analyses are shown in table 3. In terms of bias, IPW estimators and

calibration estimators showed considerable bias under working assumption 1 when the miss-

ing data mechanism is misspecified. However, the bias for calibration estimators was almost

completely eliminated under working assumption 2 even when the missing data mechanism

is misspecified. In terms of efficiency, calibration estimators under working model 2 demon-

strated superior efficiency relative to the IPW estimator, both under correct and incorrect

specification of missing data model. The results also suggested that particular choices of

calibration estimators within the GEL family did not affect their performance in general.

[Table 3 about here.]

6. RELATED EXTENSIONS

In this article we study the statistical properties of GEL calibration calibration estimators in

the context of missing data analysis. Calibration estimators allow multiple working outcome

regression models to be assumed and enjoy an oracle property where the same semiparametric

efficiency bound is attained as if the true outcome regression model is known in advance,

when the missing data mechanism is correctly specified. The estimators also enjoy a multiple

robustness property, where consistency holds when either the missing mechanism or any one

of the working outcome regression models is correctly specified. Calibration estimators

provide an even better protection against model misspecification than the existing doubly

robust estimators. In this section we discuss several related extensions, including a different

but related way to construct calibration estimators, calibration estimation of distribution

functions and calibration estimating equations.

In previous sections, we focus on a class of calibration estimators satisfying moment

conditions (2). There are many other calibration estimators that satisfy (2) and enjoy similar
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statistical properties as the proposed class. A different but related calibration estimator can

be constructed by noting that when the missingness model is correctly specified we have

E

(
R− π(X; β0)

π(X; β0)
u(X)

)
= 0

That is, E(Rπ−1(X; β0)u(X)− µu) = 0. We can define calibration weights as

p∗i =
1

π(xi; β̂)
ρ(1)

(
λ̂T2

(
π−1(xi; β̂)u(xi)− ū

))
(9)

where

λ̂2 = arg max
λ

n∑
i=1

ρ
(
λT
(
π−1(xi; β̂)u(xi)− ū

))
(10)

In this case, we assume that u contains a constant function. The moment condition ū =∑
p∗iu(xi) is satisfied from the first order condition of (10). We can define a calibration

estimator to be µ̂CAL2 =
∑n

i=1 p
∗
i yi. Suppose condition (7) holds,

µ̂3CAL2 =
n∑
i=1

p∗i yi

=
n∑
i=1

p∗i (yi −m0(xi)) +
n∑
i=1

p∗im0(xi)

=
n∑
i=1

p∗i (yi −m0(xi)) +
1

N

N∑
i=1

m0(xi)

which converges in probability to µ by similar arguments as above. Therefore, the calibration

estimator µ̂CAL2 enjoys similar multiple robustness properties to those of the calibration

estimator µ̂CAL.

Although we focused on estimation of population mean, calibration is a general scheme

that can be used in other estimation problems. For instance, if we are interested in estimating

F (y) = P (Y ≤ y), we can define a calibration estimator to be F̂CAL(y) =
∑n

i=1 piI(yi ≤ y),

where pi is found in (3) and (4). When u1, . . . uq are q working models for P (Y ≤ y|X) and

contain the true model, by similar arguments as above we can show that F̂CAL(y) converges

in probability to F (y) even when the missing data model is misspecified.

When we are interested in estimating a parameter θ0 defined by an unbiased estimating

function g(y, x; θ) such that E(g(Y,X; θ0)) = 0, we can define θ̂CAL to be the solution of
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a calibration estimating equation gCAL(θ) = 0 where gCAL(θ) =
∑n

i=1 pig(yi, xi; θ). Let

h0(X) = E(g(Y,X; θ0)|X) and suppose there exist constants a0, . . . , aq such that h0(X) =

a0 +
∑q

j=1 ajuj(X), then

gCAL(θ) =
n∑
i=1

pi(g(yi, xi; θ)− h0(xi)) +
n∑
i=1

pih0(xi)

=
n∑
i=1

p∗i (g(yi, xi; θ)− h0(xi)) +
1

N

N∑
i=1

h0(xi)

p→ Et(g(Y,X; θ)− h0(X))

and gCAL(θ0)
p→ 0. Let Q(θ) = Et(g(Y,X; θ)− h0(X))TEt(g(Y,X; θ)− h0(X)). Suppose the

parameter space Θ is compact, −Q(θ) is uniquely maximised at θ0, Q(θ) is continuous and

gCAL(θ)TgCAL(θ) → Q(θ) uniformly in probability in a neighborhood of θ0, then it follows

from Newey and MacFadden (1994) that θ̂CAL is a consistent estimate of θ0 even when the

missing data model is misspecified.
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APPENDIX.

A.1 Proof of lemma 1

Suppose E(Y 2) <∞, u1, . . . , uq are linearly independent, γ̂ is a
√
N -consistent estimate of γ0,

π0 is strictly between 0 and 1, ρ(v) is twice continuously differentiable and uniformly bounded

in a neighborhood of zero and, u(·; γ), u2(·; γ), ∂u(·; γ)/∂γ, ∂π(·; β)/∂β and ∂π2(·; β)/∂β∂βT

are uniformly bounded by certain integrable functions in a neighborhood of (βT0 , γ
T
0 )T . By

standard asymptotic analysis it can be shown that λ̂
p→ 0, β̂

p→ β0 and that λ̂ and β̂ are
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√
N -consistent. Moreover,

µ̂CAL − µ =
n∑
i=1

pi(yi −m(xi)) +
n∑
i=1

pim(xi)− µ

=
n∑
i=1

pi(yi −m(xi)) +
1

N

N∑
i=1

(m(xi)− µ)

=
1

N

N∑
i=1

ri

(
π−1(xi; β̂)ρ(1)(λ̂(u(xi; γ̂)− ū(γ̂)))

N−1
∑N

i=1 rjπ
−1(xj; β̂)ρ(1)(λ̂(u(xj; γ̂)− ū(γ̂)))

− π−1(xi; β0)

)
(yi −m(xi))

+
1

N

N∑
i=1

[
ri

π(xi; β0)
(yi −m(xi)) + (m(xi)− µ)

]
= AT1 (λ̂− 0) + AT2 (β̂ − β0) + AT3 (γ̂ − γ0)

+
1

N

N∑
i=1

[
ri

π0(xi)
(yi −m(xi)) + (m(xi)− µ)

]
+ op(N

−1/2)

where

A1 = E[(u(X)− µu)(Y −m(X))]

From the first order condition of (5), we have E(Y −m(X)) = 0 and E(u(X)(Y −m(X))) = 0,

therefore A1 = 0. Also,

A2 = −E
(
∂π

∂β
(X; β0)

1

π(X; β0)
(Y −m(X))

)
and

A3 = −E

(
∂

∂γ
[ρ(1)(λTu(X; γ))(Y −m(X))]

∣∣∣∣
λ=0,γ=γ0

)
= 0

Therefore,

µ̂CAL − µ =
1

N

N∑
i=1

[
ri

π0(xi)
(yi −m(xi)) + (m(xi)− µ)

]
+ AT2 (β̂ − β0) + op(N

−1/2)

=
1

N

N∑
i=1

[
ri

π0(xi)
(yi −m(xi)) + (m(xi)− µ)

]

+AT2 S
−1 1

N

N∑
i=1

ri − π0(xi)
π0(xi)(1− π0(xi))

∂π

∂β
(xi; β0) + op(N

−1/2)

=
1

N

N∑
i=1

[
ri

π0(xi)
(yi − m̃(xi)) + (m̃(xi)− µ)

]
+ op(N

−1/2)
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A.2 Proof of theorem 2

We start from the expression (6) in lemma 1. When (7) holds, then we have m(X) = m0(X)

since E(Y |X) minimizes (5). Furthermore, when condition (7) holds,

A2 = −E
(
∂π

∂β
(X; β0)

1

π(X; β0)
(E(Y |X)−m(X))

)
= 0

Under this special case, we have

µ̂CAL − µ =
1

N

N∑
i=1

[
ri

π0(xi)
(yi −m0(xi)) + (m0(xi)− µ)

]
+ op(N

−1/2)

The influence function corresponds to the semiparametric efficiency bound.

A.3 Proof of corollary 3

Condition (7) is satisfied with a1 = 1 and a0 = a2 = . . . = aq = 0. Applying theorem 2 it

is straighforward to see that the two estimators attains the same semiparametric efficiency

bound.
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Table 1: Comparisons among the calibration estimators and IPW estimators under the Kang
and Schafer scenario with four possible combinations of correct and misspecified missing
data and outcome regression models, (a) both correct, (b) correct missing data model and
incorrect outcome regression, (c) incorrect missing data model but correct outcome regression
and (d) both incorrect. SSE represents the sampling standard deviation.

n=200
(a) (b) (c) (d)

Bias SSE Bias SSE Bias SSE Bias SSE
µ̂IPW -0.74 12.62 -0.74 12.62 28.65 179.02 28.65 179.02
µ̂AIPW 0.02 2.50 0.28 3.76 0.01 2.55 -8.01 40.30
µ̂CAL,Q 0.02 2.50 0.50 3.11 0.02 2.50 -2.13 3.26
µ̂CAL,EL 0.02 2.50 0.28 3.13 0.02 2.49 -2.73 3.98
µ̂CAL,ET 0.02 2.50 0.38 3.09 0.02 2.50 -2.40 3.48

n=1000
(a) (b) (c) (d)

Bias SSE Bias SSE Bias SSE Bias SSE
µ̂IPW 0.27 5.07 0.27 5.07 36.99 157.31 36.99 157.31
µ̂AIPW 0.01 1.13 0.06 1.65 -0.01 1.25 -13.38 72.19
µ̂CAL,Q 0.01 1.13 0.17 1.33 0.01 1.13 -2.94 1.45
µ̂CAL,EL 0.01 1.13 0.10 1.35 0.01 1.13 -4.16 1.86
µ̂CAL,ET 0.01 1.13 0.13 1.34 0.01 1.13 -3.45 1.86
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Table 2: Performance of calibration estimators under correctly specified or misspecified miss-
ing data models and multiple working outcome regression models, (a) one working model, (b)
two working models, (c) three working models and (d) four working models. SSE represents
the sampling standard deviation.

n=200 n=1000
Correct Misspecified Correct Misspecified

Bias SSE Bias SSE Bias SSE Bias SSE
µ̂CAL,Q (a) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13

(b) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
(c) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
(d) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13

µ̂CAL,EL (a) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
(b) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
(c) 0.02 2.50 0.03 2.49 0.01 1.13 0.02 1.13
(d) 0.02 2.50 0.01 2.49 0.01 1.13 0.01 1.13

µ̂CAL,ET (a) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
(b) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
(c) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
(d) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
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Table 3: Washington basic health plan data. Relative bias (RB) and relative efficiency (RE)
of estimators under (a) correct specification of missing mechanism and (b) misspecification
of missing mechanism.

(β1, β2, β3, β4) Measures µ̂IPW µ̂CAL,Q,1 µ̂CAL,EL,1 µ̂CAL,ET,1 µ̂CAL,Q,2 µ̂CAL,EL,2 µ̂CAL,ET,2
(a)

(-0.2,0.1,-0.05,-0.01) RB -0.003 -0.003 -0.003 -0.003 <0.001 -0.002 -0.001
RE 1.00 1.02 1.02 1.02 1.41 1.29 1.38

(-0.2,0.1,-0.05,0.05) RB -0.001 -0.001 -0.001 -0.001 <0.001 <0.001 <0.001
RE 1.00 1.00 1.00 1.00 1.01 1.01 1.01

(b)
(-0.2,0.1,-0.05,-0.01) RB -0.091 -0.091 -0.091 -0.091 <0.001 -0.015 -0.009

RE 1.00 1.00 1.00 1.00 11.83 8.09 10.61
(-0.2,0.1,-0.05,0.05) RB 0.191 0.191 0.191 0.191 0.005 -0.093 -0.056

RE 1.00 1.00 1.00 1.00 209.09 4.07 11.11
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