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1 Single Time Point Treatment

We present a brief example, in the context of an observational study of HIV positive individuals on

antiretroviral therapy. Assume we have a binary exposure A0, such as medication adherence being

above 90% or not, and a binary outcome Y , such as virologic failure. Assume we have baseline

variables L0 that should include all important confounders of the effect of A0 on Y .

Say we want to estimate the causal effect of A0 on the mean of Y , as a risk difference; that

is, we’d like to estimate the difference between the population mean of Y were everyone to have

had exposure set as A0 = 0, and the population mean were everyone to have had exposure set

as A0 = 1. (Below, we use both the terms “exposure” and “treatment” to refer to A0.) Below,

for simplicity, we just show how to estimate the treatment specific (counterfactual) mean setting

A0 = 1.

Let p denote a joint probability density on the variables (L0, A0, Y ). (Throughout, we use the

term “density” in the general sense; that is, it refers to a frequency function for discrete valued

variables and refers to a density for continuous valued variables.) Here we will put no restrictions

on p, except that we only consider p for which all the conditional distributions we give below are

well-defined. Assume that for each subject i we get a vector of data (L
(i)
0 , A

(i)
0 , Y

(i)), where each

such vector is an independent draw from the true (unknown) data generating distribution p∗ on

(L0, A0, Y ). Assume we have n subjects.

Under certain assumptions, the treatment specific mean of Y setting A0 = 1 equals the mean

over the baseline variables L0 of p∗(Y = 1|A0 = 1, L0), which we denote by

ψ1(p
∗) =

∑

l0

p∗(Y = 1|A0 = 1, L0 = l0)p
∗(L0 = l0). (1)

If the distribution of L0 is continuous, the above sum would be replaced by an integral. The one-

dimensional parameter we will estimate in this section is (1), in the nonparametric model. By

“one-dimensional parameter in the nonparametric model” we mean a function from the space of

all distributions p on the variables (L0, A0, Y ) to the real line.1 As described in (van der Laan,

2006), the parameter (1) may be of interest even when the assumptions that allow interpretation of

it as a treatment specific mean do not hold.

We will estimate (1) by first getting a suitable estimate for p∗(Y = 1|A0 = 1, L0), and then

averaging it over the marginal distribution of L0 that we have in the data (that is, averaging over the

empirical distribution of L0). This is a substitution estimator for the parameter (1), and therefore

has the desirable property that the estimated parameter value is in the range of possible parameter

values; here that means our estimate of (1) will always be in the interval [0, 1]. Targeted maximum

likelihood gives a way to estimate p∗(Y = 1|A0 = 1, L0) that is, roughly speaking, targeted at

minimizing the mean squared error of the parameter (1) we’re interested in.

In our case, targeted maximum likelihood estimation involves the following steps:

a. obtaining an initial estimate p̂ for the joint density of (L0, A0, Y );

1More precisely, we consider all distributions p on the variables (L0, A0, Y ) that have a density with respect to a

dominating measure µ.
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b. constructing a “least-favorable” parametric model {pε} for the parameter (1) at the density

p̂;

c. fitting this parametric model with maximum likelihood estimation to obtain an updated den-

sity p′;

d. estimating the parameter (1) using the substitution estimator ψ1(p
′) (that is, evaluating the

expression (1) using the estimated density p′ in place of the true (unknown) density p∗).

The general targeted maximum likelihood algorithm involves iterating steps (b) and (c) above until

convergence; however, in the cases we consider in this paper, a single iteration suffices.

An important step in targeted maximum likelihood estimation is the construction of a “least

favorable” parametric model for the parameter of interest. Formally, such a parametric model {pε}
needs to satisfy two conditions: (i) it must equal the current density estimate p̂ at ε = 0, and (ii) the

linear span of its score at ε = 0 must contain the efficient influence function at the current density

estimate. The efficient influence function for the parameter (1) in the nonparametric model, at

density p, as given for example in (Scharfstein et al., 1999; Rosenblum and van der Laan, 2010a,b),

is

{

A0

p(A0 = 1 | L0)
[Y − p(Y = 1 | A0 = 1, L0)]

}

+ {p(Y = 1 | A0 = 1, L0)− ψ1(p)} . (2)

Intuitively, the efficient influence function gives the direction in which the parameter we are esti-

mating is most sensitive, to first order (when p equals the true data generating distribution). Below,

we show how to use logistic regression models to construct such least favorable models satisfying

conditions (i) and (ii).

We now present one possible targeted maximum likelihood estimator for the parameter (1).

Step (a) is to specify initial estimators for the true (unknown) data generating distribution p∗. In

general, nonparametric methods such as kernel smoothing or machine learning algorithms that use

cross-validation, can be used to construct such estimators. For clarity of exposition, here we use

parametric model fits as our initial estimators. We fit an initial logistic regression of Y on A0 and

L0, such as

pα(Y = 1|A0, L0) = expit(α0 + α1A0 + α2L0). (3)

Any terms that are functions of A0 and/or L0 can be included in the model. Next, we fit an initial

logistic regression of A0 on L0, such as

pβ(A0 = 1|L0) = expit(β0 + β1L0 + β1L
2
0). (4)

Any terms that are functions L0 can be included in the model.

Denote the estimated coefficients from fitting the above logistic regression models by α̂ and β̂.

We denote the model fit for p(A0 = 1|L0) by

p̂(A0 = 1|L0) := expit(β̂0 + β̂1L0 + β̂1L
2
0),
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and analogously define p̂(Y = 1|A0, L0). Let p̂(L0) denote the empirical distribution of L0, which

gives mass 1/n to each observation L
(i)
0 . Our initial estimator of the joint density of (L0, A0, Y ) is

p̂ := p̂(Y |A0, L0)p̂(A0|L0)p̂(L0).
For the above choice of initial estimators, the targeted maximum likelihood estimator we

present below is identical to the estimator given in the Rejoinder to Comments in Scharfstein

et al. (1999) on page 1141. For more information on the relationship between estimators here and

prior work, we refer the reader to Appendix 2 of (Rosenblum and van der Laan, 2010b).

We now turn to step (b) of the targeted maximum likelihood algorithm. This involves construct-

ing a least favorable parametric model {pε} satisfying criteria (i) and (ii) above. Our parametric

model keeps the components p̂(A0|L0) and p̂(L0) of the initial density estimate fixed; we only

perturb the component p̂(Y |A0, L0) using the logistic regression model

pε(Y = 1|A0, L0) = expit(εC(A0, L0) + α̂0 + α̂1A0 + α̂2L0), (5)

where the α̂i are considered fixed and C(A0, L0) is a “clever covariate” that we define next.

The clever covariate C(A0, L0) is chosen so that condition (ii) given above is satisfied for

the above logistic regression model. (Condition (i) is automatically satisfied, since at ε = 0, we

have (5) equals p̂(Y = 1|A0, L0).) Condition (ii) states that the linear span of the score of the

logistic regression model at ε = 0 must contain the efficient influence function (2). As argued2 in

(Moore and van der Laan, 2007; Rosenblum and van der Laan, 2010b), since we chose the initial

distribution p̂(L0) to be the empirical distribution of L0, it suffices that we define C(A0, L0) so that

the score of the above logistic regression model at ε = 0 equals the term in braces on the left in (2)

evaluated at p = p̂, which we reproduce below:

A0

p̂(A0 = 1 | L0)
[Y − p̂(Y = 1 | A0 = 1, L0)] . (7)

The score of the logistic regression model (5) at ε = 0 (as derived in the Appendix) is

C(A0, L0) [Y − p̂(Y = 1|A0, L0)] . (8)

This motives defining the clever covariate to be

C(A0, L0) := A0/p̂(A0 = 1|L0),

2To be more formal, we would construct a least favorable parametric model satisfying (i) and (ii) that has two

parameters ε and τ , and that fluctuates p̂(Y |A0, L0) as in the logistic regression model (5), and fluctuates the marginal

density p̂(L0) using the following one dimensional model:

pτ (L0) := sτ exp(τ [p̂(Y = 1 | A0 = 1, L0)− ψ1(p̂)])p̂(L0), (6)

where the constant sτ := 1/[ 1
n

∑

n

i=1 exp
(

τ
[

p̂(Y = 1 | A0 = 1, L
(i)
0 )− ψ1(p̂)

])

is chosen so that pτ (l0) sums to 1

for each τ . The score of the above model at τ = 0 equals the term in braces on the right in (2) at p = p̂. Thus the

linear span of this score and the score of (5) at ε = 0 (given in (7) below), contains the efficient influence function

(2) at p̂, as required in condition (ii) above. We show in Section 3 of (Rosenblum and van der Laan, 2010b) that the

maximum likelihood estimator τ̂ of τ is always 0 (which can be deduced from p̂(L0) being the empirical distribution

of L0). Thus, there is no update to the density p̂(L0), and the the resulting targeted maximum likelihood estimator is

the same as given in the text where the component (6) of the parametric model is ignored. We emphasize this relied

on choosing p̂(L0) to be the empirical distribution of L0.
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which ensures that the score (8) equals (7), thereby satisfying condition (ii) above.

Methods for obtaining clever covariates for a variety of parameters and models are given in

(van der Laan and Rubin, 2006; Moore and van der Laan, 2007; Polley and van der Laan, 2009;

van der Laan et al., 2009; Rosenblum and van der Laan, 2010a,b).

We now update our estimate of p∗(Y = 1|A0, L0), by fitting the logistic regression model (5)

where the α̂i are considered fixed (they were computed above in (3)) and the only variable is ε.
This can be done by entering α̂0 + α̂1A0 + α̂2L0 as an offset in the logistic regression. Fitting this

logistic regression model gives an estimate ε̂ for ε. Our final estimate for p∗(Y = 1|A0, L0) is then

expit(ε̂C(A0, L0) + α̂0 + α̂1A0 + α̂2L0),

and from this we get that our final estimate for p∗(Y = 1|A0 = 1, L0) is

expit(ε̂C(1, L0) + α̂0 + α̂1 + α̂2L0). (9)

Our estimate for the parameter (1) is the substitution estimator using (9), that is, the average

over the empirical distribution of L0 of (9), which is

1

n

n
∑

i=1

expit(ε̂C(1, L
(i)
0 ) + α̂0 + α̂1 + α̂2L

(i)
0 ).

where L
(i)
0 is the value of L0 from the ith subject. Under regularity conditions, this estimator is a

doubly robust, locally efficient estimator of ψ1, which means that if at least one of the models (3) or

(4) is correctly specified, then the above estimator is consistent and asymptotically normal; if both

models are correctly specified it is also efficient. For this particular choice of initial estimators,

this was shown in the Rejoinder to Comments in Scharfstein et al. (1999) on page 1141.

For an extension of the above construction to outcomes that are not binary, e.g. for Y continu-

ous or a nonnegative integer, see examples in e.g. (Rosenblum and van der Laan, 2010a). There,

the same methods as above are given, but replacing logistic regression by e.g. Poisson regression

for count data.

Here is R code to compute the above estimator:

# Given outcomes Y, treatment A, baseline variables L,

# all of length n:

# 1. Fit initial models (2) and (3) from text:

initial_model_for_Y <- glm(Y ˜ 1 + A + L, family=binomial)

initial_model_for_A <- glm(A ˜ 1 +L + Lˆ2, family=binomial)

# 2. Compute clever covariate:

clever_covariate <-

A/predict.glm(initial_model_for_A,type="response")

# Create offset:

offset_vals <- predict.glm(initial_model_for_Y)
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# 3. Refit model for Y given A, L, with clever cov. and offset:

updated_model_for_Y <-

glm(Y ˜ clever_covariate-1, family=binomial,offset=offset_vals)

# 4. Compute final estimate (6) from text:

# First compute clever covariate setting A to 1:

expit <- function(x){return(exp(x)/(1+exp(x)))}

clever_covariate_setting_A_to_1 <-

1/predict.glm(initial_model_for_A,type="response")

final_estimate<- mean(expit(

updated_model_for_Y$coefficients*clever_covariate_setting_A_to_1

+ initial_model_for_Y$coefficients %*% rbind(1,rep(1,n),L)))

2 Time Dependent Treatments

We now consider a case where we have two time points of treatment, and we want to estimate the

mean outcome that would result from setting the treatment at both time points. It is straightforward

to generalize these methods to dynamic treatments (that is, where treatment is a function of prior

measurements and/or treatments). It is also straightforward to extend this to deal with missing

data.

A0, A1 are the treatments, e.g. type of antiretroviral regimen at times 0 and 1. L0, L1 are

measurements such as CD4 count, viral load, etc. that occur before each treatment. We let Y
be the final outcome (death or not). The list of variables, in the order they are measured on each

subject, are: L0, A0, L1, A1, Y , where L0 are baseline variables; A0 is type of first antiretroviral

regimen; L1 is a set of measurements made after A0, such as viral load, death or not, CD4, etc.; A1

is regimen at next time point; Y is death or not at the following time point.

Consider estimating the mean outcome Y under the treatment strategy of setting everyone to

have A0 = a0 and A1 = a1. That is, we want to know what the probability of death would be, had

everyone been assigned to antiretroviral therapy a0 at time 0 and antiretroviral therapy a1 at time

1. We could then compare, say, the effect of setting a0 = a1 = PI therapy vs. a0 = a1 = NNRTI

therapy. (The same methods can be generalized to estimate the effect of dynamic treatments, of

the form: if L0 is larger than some threshold c, then assign treatment a0, else assign a different

treatment.)

We assume here that all variables except L0 are binary, for simplicity. Extensions to the more

useful case of L1 being e.g. multivariate containing continuous and/or categorical variables are

given in (van der Laan, 2010a,b).

Under certain assumptions, the counterfactual mean of Y setting A0 = a0 and A1 = a1 is equal

to the g-computation formula of Robins:

5
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ψ∗2 :=
∑

l0

∑

l1

p∗(Y = 1 | A1 = a1, L1 = l1, A0 = a0, L0 = l0)×

p∗(L1 = l1 | A0 = a0, L0 = l0)p
∗(L0 = l0), (10)

where p∗ is the true (unknown) density of the variables. This is the two time point analog to the

formula (1) above for a single time point treatment. We give the efficient influence function for the

above parameter, in the nonparametric model, in the Appendix.

In what follows, we estimate the value of the above display at a0 = a1 = 1, that is, the

counterfactual mean of Y setting treatments A0, A1 to 1. Estimating this at other values of

a0, a1 is similar. Roughly speaking, targeted maximum likelihood estimation finds estimates for

each of the conditional probabilities in the above formula, in a way targeted at estimating the

overall parameter (10).

For each subject i, assume we have a vector of data (L
(i)
0 , A

(i)
0 , L

(i)
1 , A

(i)
1 , Y

(i)). Assume each

such vector is an independent draw from an unknown density (or frequency function)

p∗ on (L0, A0, L1, A1, Y ). We put no constraints on p∗ except that the conditional distributions we

give below are well-defined.

Here is one example of a targeted maximum likelihood estimator for our problem. As in the

single time point case, the first step is to specify initial estimators for the true data generating

distribution p∗. We emphasize that in general, nonparametric methods can be used to construct such

estimators. For clarity of exposition, here we use parametric model fits as our initial estimators.

We fit the following logistic regression models:

pβ(Y = 1 | A1, L1, A0, L0) = logit−1(β0 + β1L0 + β2A0 + β3L1 + β4A1), (11)

pα(A1 = 1|L1, A0, L0) = logit−1(α0 + α1L0 + α2A0 + α3L1), (12)

pγ(L1 = 1 | A0, L0) = logit−1(γ0 + γ1L0 + γ2A0 + γ3L0A0), (13)

pτ (A0 = 1 | L0) = logit−1(τ0 + τ1L0), (14)

We denote the model fits, which we refer to as “initial fits” by p̂, e.g. p̂(A0 = 1 | L0 = l0) =
logit−1(τ̂0 + τ̂1l0). We let the initial fit p̂(L0) be the empirical distribution of L0.

We next define logistic regression models that use “clever covariates,” in a manner analogous

to the previous section. These clever covariates are chosen to ensure condition (ii) given above

holds, for the efficient influence function given in the Appendix. We explain in the appendix how

these clever covariates were selected.

Define the following “clever covariate”:

C1(l
′
0, a

′
0, l

′
1, a

′
1) :=

1[a′1 = 1]1[a′0 = 1]

p̂(A1 = 1|L1 = l′1, A0 = 1, L0 = l′0)p̂(A0 = 1 | L0 = l′0)
, (15)

where 1[S] is the indicator variable that S is true (so is equal to 1 when S is true, and 0 when

it is false). For each subject i, (with data (L
(i)
0 , A

(i)
0 , L

(i)
1 , A

(i)
1 , Y

(i))), compute the value of the

clever covariate C
(i)
1 := C1(L

(i)
0 , A

(i)
0 , L

(i)
1 , A

(i)
1 ). Now do a logistic regression of Y on the clever

6
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covariate C1, using the initial fit β̂0+ β̂1L0+ β̂2A0+ β̂3L1+ β̂4A1 as offset. That is, fit the logistic

regression model

pε1(Y = 1 | A1, L1, A0, L0) =

logit−1(ε1C1(L0, A0, L1, A1) + β̂0 + β̂1L0 + β̂2A0 + β̂3L1 + β̂4A1), (16)

where the β̂ are considered fixed numbers, and the only variable is ε1. Let ε̂1 denote the maximum

likelihood estimate of ε1. We now define

p̂ε̂1(Y = 1 | A1, L1, A0, L0) :=

logit−1(ε̂1C1(L0, A0, L1, A1) + β̂0 + β̂1L0 + β̂2A0 + β̂3L1 + β̂4A1). (17)

Next, define another clever covariate,

C2(l
′
0, a

′
0) :=

1[a′0 = 1]

p̂(A0 = 1 | L0 = l′0)
×

{p̂ε̂1(Y = 1 | A1 = 1, L1 = 1, A0 = 1, L0 = l′0)

−p̂ε̂1(Y = 1 | A1 = 1, L1 = 0, A0 = 1, L0 = l′0)}. (18)

For each subject i, compute the value of the clever covariate C
(i)
2 := C2(L

(i)
0 , A

(i)
0 ). Now do a

logistic regression of L1 on the clever covariate C2, using the initial fit γ̂0+ γ̂1L0+ γ̂2A0+ γ̂3L0A0

as offset. That is, fit the logistic regression model

pε2(L1 = 1 | A0, L0) = logit−1(ε2C2(L0, A0) + γ̂0 + γ̂1L0 + γ̂2A0 + γ̂3L0A0), (19)

where the γ̂ are considered fixed numbers, and the only variable is ε2. Let ε̂2 denote the maximum

likelihood estimate of ε2. We now define

p̂ε̂2(L1 = 1 | A0, L0) := logit−1(ε̂2C2(L0, A0) + γ̂0 + γ̂1L0 + γ̂2A0 + γ̂3L0A0). (20)

Lastly, we compute the substitution estimator for (10) at the above model fits. That is, we

evaluate (10) at a0 = a1 = 1 by substituting estimated densities (17) and (20) for the corresponding

true densities, and using the empirical distribution for L0 (which we denote by p̂(L0 = l0). That

is, our final estimate of the mean of Y setting A0, A1 both equal to 1, is
∑

l0∈L0

∑

l1∈{0,1}

p̂ε̂1(Y = 1 | A1 = 1, L1 = l1, A0 = 1, L0 = l0)×

p̂ε̂2(L1 = l1 | A0 = 1, L0 = l0)p̂(L0 = l0).

=
1

n

n
∑

i=1

∑

l1∈{0,1}

p̂ε̂1(Y = 1 | A1 = 1, L1 = l1, A0 = 1, L0 = L
(i)
0 )×

p̂ε̂2(L1 = l1 | A0 = 1, L0 = L
(i)
0 ),

where L0 denotes the set of possible values L0 can take.

Under regularity conditions, this estimator is doubly robust, locally efficient; this means that

if the models (11) and (13) are correctly specified, or if the models (12) and (14) are correctly

specified, then the above estimator is consistent and asymptotically normal; if all four models are

correctly specified it is also efficient.

7
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3 Appendix

In the first part of the Appendix, we derive the score of the logistic regression models used above.

In the second part of the Appendix, we present the efficient influence function for the parameter

(10) in the nonparametric model from Section 2.

3.1 Score of Logistic Regression Models

Consider the logistic regression model (5) from Section 1. We derive its score. The score of

a parametric model, by definition, is the derivative of the log-likelihood. We only consider the

component of the likelihood that depends on the parameter ε, since the components that do not

change with ε have derivative 0 and make no contribution to the score. In Section 1, for a single

observation (L0, A0, Y ), the likelihood of outcome Y given L0, A0 under the logistic regression

model (5) is pε(Y = 1|A0, L0) when Y = 1 and is 1 − pε(Y = 1|A0, L0) when Y = 0. This

conditional likelihood can be expressed, equivalently, as

L(ε;L0, A0, Y ) = pε(Y = 1|A0, L0)
Y (1− pε(Y = 1|A0, L0))

1−Y .

The derivative of the log of this likelihood is

d

dε
[logL(ε;L0, A0, Y )] = Y

d
dε
pε(Y = 1|A0, L0)

pε(Y = 1|A0, L0)
+ (1− Y )

− d
dε
pε(Y = 1|A0, L0)

1− pε(Y = 1|A0, L0)

=

[

Y

pε(Y = 1|A0, L0)
−

1− Y

1− pε(Y = 1|A0, L0)

]

d

dε
pε(Y = 1|A0, L0)

= [Y (1− pε(Y = 1|A0, L0))− (1− Y )(pε(Y = 1|A0, L0))]C(A0, L0)

= [Y − pε(Y = 1|A0, L0)]C(A0, L0), (21)

where the third equality follows from the following property of our logistic regression model:

d

dε
pε(Y = 1|A0, L0) = pε(Y = 1|A0, L0)(1− pε(Y = 1|A0, L0))C(A0, L0).

The score at ε = 0 is (21) setting ε = 0, which (because at ε = 0 we have pε(Y = 1|A0, L0) =
p̂(Y = 1|A0, L0) from Section 1 by construction) is identical to (8), as desired.

The scores of the logistic regression models (16) and (19) in Section 2 are obtained similarly.

3.2 Efficient Influence Function for the Parameter (10) in the Nonparamet-

ric Model

Consider the parameter defined in (10), which we reproduce here:

ψ(p∗) :=
∑

l0

∑

l1

p∗(Y = 1 | A1 = a1, L1 = l1, A0 = a0, L0 = l0)×

p∗(L1 = l1 | A0 = a0, L0 = l0)p
∗(L0 = l0), (22)

8
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where p∗ is the true (unknown) density of the variables. This is the two time point analog to the

formula (1) above for a single time point treatment. Below we give the efficient influence function

for this parameter. In Theorem 1 of (van der Laan, 2010a), the efficient influence function for

this parameter, and for a more general set of parameters (including parameters defined by dynamic

regimes), is provided.

Recall we made the simplifying assumption that L1 is binary valued. Denote the inner summa-

tion in (22) (and leaving out the term p(L0 = l0)) by

f(p, a1, a0, l0)

=
∑

l1

p(Y = 1 | A1 = a1, L1 = l1, A0 = a0, L0 = l0)× p(L1 = l1 | A0 = a0, L0 = l0)

= p(Y = 1 | A1 = a1, L1 = 1, A0 = a0, L0 = l0)× p(L1 = 1 | A0 = a0, L0 = l0)

+p(Y = 1 | A1 = a1, L1 = 0, A0 = a0, L0 = l0)× p(L1 = 0 | A0 = a0, L0 = l0).(23)

The efficient influence function for the above parameter (22) for any treatments a0, a1, in the

nonparametric model at density p is:

D(p, L0, A0, L1, A1, Y ) = D0(p, L0) +D1(p, L0, A0, L1) +D2(p, L0, A0, L1, A1, Y ) (24)

where

D0(p, L0) = f(p, a1, a0, L0)− ψ(p), AAAAAAAAAAAAAAAAAAAAAAAAAAAAA (25)

and

D1(p, L0, A0, L1) =
1[A0 = a0]

p(A0 = a0 | L0)
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

× [p(Y = 1|A1 = a1, L1 = 1, A0 = a0, L0)− p(Y = 1|A1 = a1, L1 = 0, A0 = a0, L0)]

× [L1 − p(L1 = 1 | A0 = a0, L0)] , AAAAAAAAAAAAAAAAAAAAAAAAAA (26)

and

D2(p, L0, A0, L1, A1, Y )AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

=
1[A1 = a1]1[A0 = a0]

p(A1 = a1|L1, A0 = a0, L0)p(A0 = a0 | L0)
{Y − p(Y = 1|A1 = a1, L1, A0 = a0, L0)} .(27)

We suppress the dependence of the above functions D,D0, D1, and D2 on a0, a1 for clarity. We

show at the end of this section that the component D1 of the efficient influence function can be

equivalently expressed in another form, which may be more familiar to the reader.

We now consider how the clever covariatesC1 andC2 from Section 2 were chosen, based on the

above representation of the efficient influence function (24). Recall that our goal in constructing

clever covariates is to ensure the linear span of the scores of the logistic regression models (16)

and (19) at ε = (ε1, ε2) = 0 contains the efficient influence function (24) at the initial fit p = p̂.

Also, recall that we set a1 = a0 = 1, for simplicity, in Section 2; we consider these values of a0,
a1 in what follows.
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The score of logistic regression model (16) at ε = 0 is

C1(L0, A0, L1, A1)
{

Y − logit−1(β̂0 + β̂1L0 + β̂2A0 + β̂3L1 + β̂4A1)
}

.

Notice the similarity in form to the component (27) of the efficient influence function (24). We

chose C1(L0, A0, L1, A1) in (15) above so that this score equals the component (27) of the efficient

influence function at the initial fit p = p̂.

The score of logistic regression model (19) at ε = 0 is

C2(L0, A0)
{

L1 − logit−1(γ0 + γ1L0 + γ2A0 + γ3L0A0)
}

.

Notice the similarity in form to the component (26) of the efficient influence function. We chose

C2(L0, A0) in (18) above so that this score equals the component (26) of the efficient influence

function at the initial fit p = p̂.

As argued in (Moore and van der Laan, 2007) (and in footnote 2 in Section 1 of this paper for

the single time point case) as long as our initial estimator for the marginal distribution of L0 is

the corresponding empirical distribution, it is not necessary to fit an additional model whose score

equals (25).

Using the clever covariates defined in (15) and (18), we then have (with the caveat in the

previous paragraph which allows us to exclude the component (25)) that the efficient influence

function given above is in the linear span of the scores of the models (16) and (19) at ε = 0, so that

condition (ii) is satisfied.

We point out that the component D1(p, L0, A0, L1), defined in (26), of the efficient influence

function (24) can be equivalently written in the more familiar form:

1[A0 = a0]

p(A0 = 1 | L0)
{p(Y = 1|A1 = a1, L1, A0 = a0, L0)− f(p, a1, a0, L0)} , (28)

To show this, first note that because L1 is binary-valued, we have

p(Y = 1|A1 = a1, L1, A0 = a0, L0) = L1p(Y = 1|A1 = a1, L1 = 1, A0 = a0, L0)

+(1− L1)p(Y = 1|A1 = a1, L1 = 0, A0 = a0, L0).

Then by (23), we have that the expression in braces in (28) equals

p(Y = 1|A1 = a1, L1, A0 = a0, L0)− f(p, a1, a0, L0)

= p(Y = 1|A1 = a1, L1 = 1, A0 = a0, L0) [L1 − p(L1 = 1 | A0 = a0, L0 = l0)]

+p(Y = 1|A1 = a1, L1 = 0, A0 = a0, L0) [(1− L1)− p(L1 = 0 | A0 = a0, L0 = l0)]

= [p(Y = 1|A1 = a1, L1 = 1, A0 = a0, L0)− p(Y = 1|A1 = a1, L1 = 0, A0 = a0, L0)]

× [L1 − p(L1 = 1 | A0 = a0, L0 = l0)] .

This implies (28) equals (26), as desired.
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