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Summary

An empirical likelihood (EL) estimator was proposed by Qin and Zhang (2007) for a missing

response problem under a missing at random assumption. They showed by simulation studies

that the finite sample performance of EL estimator is better than some existing estimators.

However, the empirical likelihood estimator does not have a uniformly smaller asymptotic

variance than other estimators in general. We consider several modifications to the empirical

likelihood estimator and show that the proposed estimator dominates the empirical likelihood

estimator and several other existing estimators in terms of asymptotic efficiencies. The

proposed estimator also attains the minimum asymptotic variance among estimators having

influence functions in a certain class.
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1 Introduction and existing estimators

Suppose we are interested in estimating the mean µ of a random variable Y but Y is partially

observed subject to missingness. Let X be a vector of covariates that are fully observable

and R be an indicator that Y is observed. The observed data are (ri, riyi, xi) for i = 1, . . . , n

and are i.i.d. realizations from (R,RY,X). Under a missing at random assumption that

P (R = 1|Y,X) = P (R = 1|X) = π0(X), µ can be consistently estimated by the inverse

probability weighting (IPW) estimator

µ̂IPW =
1

n

n∑
i=1

ri
π0(xi)

yi

For missing data applications the nonmissing probability is usually not known but is being

modelled. Suppose P (R = 1|X) = π(X; β0), where β0 is a finite dimensional parameter.

Based on (r1, x1), . . . , (rn, xn), the parameter β0 can be estimated by solving a likelihood

score equation n−1
∑n

i=1 s(xi; β) = 0 where s(x; β) = [1 − π(x; β)]−1[ri − π(x; β)]∂π
∂β

(x; β),

and we denote β̂ to be the solution. We usually replace π0(xi) by the estimated probability

π(xi; β̂) in IPW estimation.

The IPW estimator is intuitive and easy to implement but is inefficient in general, because

information from X is not fully utilized when Y is not observed. To improve efficiency, an

empirical likelihood estimator is proposed by Qin and Zhang (2007) where weights pi are

defined for complete case observations (i.e. when ri = 1) and the following empirical log-

likelihood function

l =
n∑
i=1

ri log pi

is maximised subject to constraints

pi ≥ 0

n∑
i=1

ripi = 1
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n∑
i=1

ripiπ(xi; β̂) = θ̂

n∑
i=1

ripia(xi; β̂) = â

where a = (a1, . . . , ap) is a vector function of p<n dimensions, θ̂ = n−1 ×
∑n

i=1 π(xi; β̂) and

â = n−1 ×
∑n

i=1 a(xi). Let s(x; β, θ, a) = {1 − θπ−1(x; β), π−1(x; β)[a(x) − a]T}T and n1 =∑n
i=1 ri. Solving the constrained maximization problem, the empirical likelihood weights

pELi are expressed in terms of a vector of Lagrange multipliers λ̂EL

pELi =
1

n1

θ̂π−1(xi; β)

1 + λ̂TELs(xi; β̂, θ̂, â)
(1)

and the Lagrange multipliers satisfies a system of estimating equations

n∑
i=1

ris(xi; β̂, θ̂, â)

1 + λ̂TELs(xi; β̂, θ̂, â)
= 0. (2)

The empirical likelihood estimator for µ is defined as

µ̂EL =
n∑
i=1

rip
EL
i yi.

Information from incomplete observations are utilized implicitly in the construction of weights

pELi from the constraints. When Y and a(X) are correlated, the empirical likelihood estima-

tor usually improves upon the IPW estimator in terms of estimation efficiency.

Although the empirical likelihood estimator has nice small sample properties shown in

simulations, it does not uniformly dominate other existing estimators in terms of asymptotic

efficiency. We consider two alternative estimators and compare them to the empirical like-

lihood estimator. A related survey calibration (CAL) estimator is defined by maximizing a

pseudo empirical log-likelihood function (Chen, Sitter and Wu, 2002)

lp =
n∑
i=1

ri

π(xi; β̂)
log pi

subject to constraints

pi ≥ 0
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n∑
i=1

ripi = 1

n∑
i=1

ripia(xi; β̂) = â

Solving the constrained maximization problem, the calibration weights pCALi are expressed

in terms of a vector of Lagrange multipliers λ̂CAL

pCALi =
π−1(xi; β̂)[

∑n
i=1 riπ

−1(xi; β̂)]−1

1 + λ̂TCAL[a(xi)− â]

and the Lagrange multipliers satisfies

n∑
i=1

riπ
−1(xi; β̂)[a(xi)− â]

1 + λ̂TCAL[a(xi)− a]
= 0.

The calibration estimator is defined as

µ̂CAL =
n∑
i=1

rip
CAL
i yi

The calibration estimator and the empirical likelihood estimator is very similar but not

identical.

The augmented inverse probability weighting (AIPW) estimator is another estimator

proposed in the literature to improve efficiency of IPW estimation (Robins, Rotnitzky and

Zhao 1994). A regression model is fitted using the complete case subsample, treating Y as

outcome and a(X) as covariates. Let m̂(X) be the prediction from the fitted model. An

AIPW estimator is defined as

µ̂AIPW =
1

n

n∑
i=1

{
ri

π(xi; β̂)
yi +

[
1− π(xi; β̂)

π(xi; β̂)

]
m̂(xi)

}
Empirical likelihood, survey calibration and augmented inverse probability weighting do

not dominate one another in general in terms of asymptotic efficiencies. It has been shown

that the influence function of µ̂EL, µ̂CAL and µ̂AIPW belongs to the following class

L =

{
R

π0(X)
[Y −m(X)] + [m(X)− µ] : m(X) is linear in ã(X)

}
.
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where ã = (1, a1, . . . , ap, (1 − π0)
−1∂πT/∂β)T . Our main results in section 2 are to show

that certain modifications of the empirical likelihood estimator has an influence function

corresponding to the minimal asymptotic variance among the class L. That is, the modified

empirical likelihood estimator is at least as efficient as the EL, CAL and AIPW estimators

when the same amount of covariate information is used. Section 3 will present simulation

studies comparing the finite performance of estimators.

2 Modified empirical likelihood

In this section we propose several modifications to the empirical likelihood estimator and

show that it attains the minimum asymptotic variance among estimators having influence

functions in the class L.

Since θ̂ is a consistent estimator for P (R = 1), in the modification we replace θ̂/n1 in (1)

by 1/n. Also, we replace s(xi; β̂, θ̂, â) by s∗(xi; β̂, â, b̂), where

s∗(x; β, a, b) =
1− π(x; β)

π(x; β)
×

(
1, [a(x)− a]T ,

[
1

1− π(x; β)

∂π

∂β
(x; β)− b

]T)T

and b̂ =
∑n

i=1(1−π(xi); β̂)−1∂π(xi; β̂)/∂β. The modified empirical likelihood (MEL) weights

are defined as

pMEL
i =

1

n

π−1(xi; β̂)

1 + λ̂TMELs
∗(xi; β̂, â, b̂)

(3)

where the pseudo Lagrange multiplier λ̂MEL are obtained by solving

n∑
i=1

ri(1− π(xi; β̂))−1s∗(x; β̂, â, b̂)

1 + λ̂TMELs
∗(xi; β̂, â, b̂)

= e (4)

where e = (1, 0, . . . , 0)T . Plugging (3) into (4) gives
∑n

i=1 rip
MEL
i = 1 and

∑n
i=1 rip

MEL
i a(xi) =

â, which corresponds to the constraints in empirical likelihood estimation. In addition, we

have
∑n

i=1 rip
MEL
i (1 − π(xi); β̂)−1∂π(xi; β̂)/∂β = b̂. Unlike (1) and (2), (3) and (4) are not

implied by constrained maximization problems. The reason is similar to the fact that not

every estimating functions are derivative of log-likelihood functions. The modified empirical
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likelihood estimator is defined as

µ̂MEL =
n∑
i=1

rip
MEL
i yi.

The modified empirical likelihood estimator can be shown to achieve the minimum asymp-

totic variance among class L. For m(X) being any linear functions of ã(X), the variance of

R
π0(X)

[Y −m(X)] + [m(X)− µ] is V ar(Y ) + E(1−π0(X)
π0(X)

(Y −m(X))2). Let m0(X) = cT0 ã(X)

where

c0 = arg min
c∈Rq

E

(
1− π0(X)

π0(X)
(Y − cT ã(X))2

)
where q is the dimension of ã. By the definition of c0, the following set of normal equations

are satisfied.

E

(
1− π0(X)

π0(X)
ãT (X)(Y − cT0 ã(X))

)
= 0 (5)

Also, the variance of R
π0(X)

[Y −m0(X)] + [m0(X) − µ] is the minimum among the class L.

We note that

µ̂MEL − µ =
n∑
i=1

rip
MEL
i yi − µ

=
n∑
i=1

rip
MEL
i (yi −m0(xi)) +

n∑
i=1

rip
MEL
i m0(xi)− µ

=
n∑
i=1

rip
MEL
i (yi −m0(xi)) +

1

n

n∑
i=1

(m0(xi)− µ)

=
1

n

n∑
i=1

ri

[
1

π(xi; β̂)(1 + λ̂TMELs
∗(xi; β̂, â, b̂))

− 1

π0(xi)

]
(yi −m0(xi))

+
1

n

n∑
i=1

{
ri

π0(xi)
[yi −m0(xi)] + [m0(xi)− µ]

}
(6)

where the second last equality follows from (3), (4) and the definition of s∗. By asymptotic

properties for estimating equations (Newey and McFadden, 1994),
√
n(λ̂MEL−0) and

√
n(β̂−
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β) converges weakly to Gaussian distributions. By Taylor Series expansions,

1

n

n∑
i=1

ri

[
1

π(xi; β̂)(1 + λ̂TMELs
∗(xi; β̂, â, b̂))

− 1

π0(xi)

]
(yi −m0(xi))

=A(λ̂MEL − 0) +B(β̂ − β) + cλT |λ=0(â
T − µTa , b̂T − µTb )T + op(n

−1/2) (7)

where µa = E(a(X)), µb = E((1 − π0(X))−1 ∂π(X;β)
∂β

), A = E(1−π0(X)
π0(X)

(ã(X) − µa)
T (Y −

m0(X))), B = E( 1
π0(X)

∂πT

∂β
(Y −m0(X))) and c = E(1−π0(X)

π0(X)
). Matrices A and B are both

0 following the normal equations (5). Note that the form of A is dependent on the method

of estimating the Lagrange multipliers. For empirical likelihood and calibration, A will be

different matrices and is generally non-zero. For modified empirical likelihood estimator, it

follows from (6) and (7) that the influence function of µ̂MEL is R
π0(X)

[Y −m0(X)]+[m0(X)−µ]

which attains the minimum variance among the class L.

In the special case where E(Y |X) = b0+bT1 a(X) for some b0 and b1, E[(Y −E(Y |X))2|X]

is minimized at each X and therefore m0(X) = E(Y |X). In this case, the modified empirical

likelihood estimator attains the semiparametric efficiency bound. Also, empirical likelihood,

calibration and AIPW estimators attain the same asymptotic variance as the modified empir-

ical likelihood estimator under correct specification of the outcome regression model. How-

ever, when the outcome regression regression model is misspecified, the modified empirical

likelihood has a smaller asymptotic variance than other estimators in general.

The modified empirical likelihood estimator also possesses a double robustness property

as for the empirical likelihood estimator. Suppose E(Y |X) = b0 + bT1 a(X) = m0(X) but

the missing data model π(x; β) is misspecified. The estimates β̂, λ̂MEL and b̂ converges in

probability to some constants β∗, λ∗ and µ∗b and λ∗ is usually non-zero. From (6) we note

that

µ̂MEL =
1

n

n∑
i=1

ri

π(xi; β̂)(1 + λ̂TMELs
∗(xi; β̂, â, β̂))

(yi −m0(xi)) +
1

N

N∑
i=1

m0(xi)

p→ E

(
π0(X)

π(X; β∗)(1 + λ∗T s∗(X; β∗, µa, µ∗b))
(E(Y |X)−m0(X))

)
+ E(E(Y |X))
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= 0 + µ = µ

That is, the modified empirical likelihood estimator is consistent when the outcome regression

model is correctly specified even when the missing data model is misspecified.

3 Simulations

In this section we present simulation studies to evaluate the finite sample performance of the

modified empirical likelihood estimator. The simulation studies followed the scenario in Kang

and Schafer (2007) for estimating a population mean. The scenario was carefully designed

so that the assumed outcome regression and missing data models are nearly correct under

misspecification, but the AIPW estimator can be severely biased. Sample sizes for each simu-

lated data set was 200, 500 or 1000, and 1000 Monte Carlo datasets were generated. For each

observation, a random vector Z = (Z1, Z2, Z3, Z4) was generated from a standard multivari-

ate normal distribution, and transformations X1 = exp(Z1/2), X2 = Z2/(1 + exp(Z1)), X3 =

(Z1Z3/25 + 0.6)3 and X4 = (Z2 + Z4 + 20)2 were defined. The outcome of interest Y was

generated from a normal distribution with mean 210 + 27.4Z1 + 13.7Z2 + 13.7Z3 + 13.7Z4

and unit variance, and Y was observed with probability exp(η0(Z))/(1 + exp(η0(Z))) where

η0(Z) = −Z1+0.5Z2−0.25Z3−0.1Z4. The correctly specified outcome and missing data mod-

els were regression models with Z as covariates, whereas we treated X to be the covariates

in misspecified models instead of Z. Kang and Schafer (2007) showed that the missspecified

models are nearly correctly specified. In each case we considered four possible combina-

tions of correct and misspecified missing data and outcome regression models: (a) both

correct; (b) correct missing data model and incorrect outcome regression; (c) incorrect miss-

ing data model but correct outcome regression and (d) both incorrect. For correctly specified

outcome model, a(Z) = (Z1, Z2, Z3, Z4) and to a(X) = (X1, X2, X3, X4) for misspecified out-

come model. We compared the performances of the augmented inverse probability weighted

estimator µ̂AIPW , the empirical likelihood estimator µ̂EL, the survey calibration estimator
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µ̂CAL and the modified empirical likelihood estimator µ̂MEL. The results are shown in Table

1.

Simulation results showed that EL, CAL, AIPW and MEL estimators all had relatively

small bias when either the missing data model or the outcome regression model was cor-

rectly specified. When both models were correctly specified, all estimators had very similar

performances because all of them were semiparametric locally efficient. When only one of

the two models were correctly specified, the empirical likelihood, calibration and modified

empirical likelihood estimators were more efficient than the AIPW estimator. When both

models were misspecified, the AIPW estimator had a considerable bias and variability but

the other empirical likelihood based estimators showed much better performance. When

the outcome regression model was misspecified, the modified empirical likelihood estimators

had smaller bias and variability compared to the empirical likelihood and calibration estima-

tors, consistent with the theoretical results. In this simulation study, the modified empirical

likelihood estimator performs consistently better than other estimators.
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Table 1: Comparisons among estimators under the Kang and Schafer scenario with four

possible combinations of correct and misspecified missing data and outcome regression mod-

els, (a) both correct, (b) correct missing data model and incorrect outcome regression, (c)

incorrect missing data model but correct outcome regression and (d) both incorrect. RMSE

represents the square root of sampling mean squared error.

(a) (b) (c) (d)

n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

200 µ̂AIPW 0.02 2.50 0.28 3.77 0.01 2.55 -8.00 41.07

µ̂EL 0.02 2.50 0.49 2.90 0.02 2.50 -1.71 3.52

µ̂CAL 0.02 2.50 0.28 3.14 0.01 2.49 -2.73 4.83

µ̂MEL 0.02 2.50 0.21 2.62 0.03 2.50 -1.07 3.51

500 µ̂AIPW 0.03 1.62 0.12 2.74 0.11 2.36 -39.66 898.58

µ̂EL 0.03 1.62 0.30 1.78 0.03 1.62 -2.06 2.81

µ̂CAL 0.03 1.62 0.16 1.94 0.03 2.61 -3.53 4.62

µ̂MEL 0.03 1.61 0.16 1.65 0.03 1.62 -1.06 2.14

1000 µ̂AIPW 0.01 1.13 0.06 1.65 -0.01 1.25 -13.38 73.39

µ̂EL 0.01 1.13 0.19 1.22 0.01 1.13 -2.15 2.52

µ̂CAL 0.01 1.13 0.10 1.35 0.01 1.13 -4.16 5.05

µ̂MEL 0.01 1.13 0.11 1.16 0.01 1.13 -1.18 1.72
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