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A FLEXIBLE SPATIO-TEMPORAL MODEL FOR AIR

POLLUTION: ALLOWING FOR SPATIO-TEMPORAL

COVARIATES

By Johan Lindström∗,†, Adam A Szpiro∗, Paul D Sampson∗,

Lianne Sheppard∗, Assaf Oron∗, Mark Richards∗, and Tim

Larson∗

University of Washington∗ and Lund University†

Abstract Given the increasing interest in the association between
exposure to air pollution and adverse health outcomes, the develop-
ment of models that provide accurate spatio-temporal predictions of
air pollution concentrations at small spatial scales is of great impor-
tance when assessing potential health effects of air pollution. The
methodology presented here has been developed as part of the Multi-
Ethnic Study of Atherosclerosis and Air Pollution (MESA Air), a
prospective cohort study funded by the US EPA to investigate the
relationship between chronic exposure to air pollution and cardiovas-
cular disease. We present a spatio-temporal framework that models
and predicts ambient air pollution by combining data from several
different monitoring networks with the output from deterministic air
pollution model(s). The model can accommodate arbitrarily missing
observations and allows for a complex spatio-temporal correlation
structure.

We apply the model to predict long-term average concentrations of
gaseous oxides of nitrogen (NOx) — one of the primary pollutants of
interest in the MESA Air study — during a ten year period in the Los
Angeles area, based on measurements from the EPA Air Quality Sys-
tem and MESA Air monitoring. The measurements are augmented
by a spatio-temporal covariate based on the output from a source
dispersion model for traffic related air pollution (Caline3QHC) and
the model is evaluated using cross-validation. The predictive ability
of the model is good with cross-validated R2 of approximately 0.7 at
subject sites.

The incorporation of a dispersion model output into the overall
prediction model was feasible, but the particular implementation of
Caline3QHC used here did not improve predictions in a model that
also includes road information. However, excluding the road infor-
mation the inclusion of model output improves predictions and we
find some evidence that the source dispersion model can replace road
covariates.

The model presented in this paper has been implemented in an R
package, SpatioTemporal, which will be available on CRAN shortly.
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2 J. LINDSTRÖM, ET.AL

1. Introduction. There is growing epidemiological evidence of an asso-
ciation between exposure to air pollution and adverse health outcomes. The
seminal cohort studies were based on assigning exposures using area-wide
monitored concentrations in different geographic regions (Dockery et al.,
1993; Pope et al., 2002). While straightforward to implement based on reg-
ulatory monitoring data, this approach fails to take advantage of variation
between individuals living in the same geographic region and may be subject
to unmeasured confounding by region.

More recent cohort studies have assigned individual concentrations based
on estimates of intra-urban variations in ambient concentrations using nearest-
monitor interpolation (Miller et al., 2007; Basu et al., 2000; Ritz et al., 2006;
Goss et al., 2004), “land use” regression estimates based on Geographic In-
formation System (GIS) covariates (Hoek et al., 2008; Brauer et al., 2003;
Jerrett et al., 2005a), geostatistical methods such as kriging (Jerrett et al.,
2005b; Kunzli et al., 2005), and semi-parametric smoothing in space and/or
time (Kunzli et al., 2005; Puett et al., 2009).

The primary objective of the work described in this paper is develop
methods that can be used to produce accurate spatio-temporal predictions of
ambient air pollution concentrations for subjects in the Multi-Ethnic Study
of Atherosclerosis and Air Pollution (MESA Air). The primary pollutants
of interest for MESA Air are particulate matter with aerodynamic diameter
less than 2.5 µm (PM2.5) and gaseous oxides of nitrogen (NOx).

MESA Air is a cohort study funded by the Environmental Protection
Agency (EPA) with the aim of assessing the relationship between chronic
exposure to air pollution and the progression of sub-clinical cardiovascular
disease. The MESA Air cohort is comprised of more than 6000 male and
female subjects, from six major US metropolitan areas (Los Angeles, CA;
New York, NY; Chicago, IL; Minneapolis-St. Paul, MN; Winston-Salem, NC;
and Baltimore, MD). The subjects cover four racial/ethnic groups (White,
African-American, Hispanic, and Asian, predominantly of Chinese descent)
and were aged 45-84 years and free of cardiovascular disease at baseline (see
Bild et al., 2002, for details).

A primary focus of the MESA Air study is the development of accurate
predictions of ambient air pollution at the home locations of study partici-
pants. Combining these predictions with subject-level data — e.g. building
infiltration factors, time-activity patterns, and address history — will al-
low for subject-specific estimates of chronic ambient source exposure. Using
subject-specific exposures, instead of simpler exposure estimates such as
the regional average or nearest monitor, provides greater heterogeneity in
the exposure estimates. The greater heterogeneity will improve health effect
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A FLEXIBLE SPATIO-TEMPORAL MODEL FOR AIR POLLUTION 3

studies by 1) allowing us to control for confounding between region where
appropriate; 2) reducing measurement error from using predicted exposures
(Szpiro et al., 2010b; Gryparis et al., 2009; Carroll et al., 2006); and 3)
increasing study power.

The primary interest for MESA Air is predicting the chronic exposure of
our subjects, but due to several considerations our statistical model needs
to account for complex spatio-temporal variability in the data (see Section 3
for details). Overviews of statistical modeling approaches for spatially and
spatio-temporally correlated data can be found in Cressie (1993) and Baner-
jee et al. (2004). For modeling of spatio-temporally correlated air pollution
data, Fanshawe et al. (2008) used carefully selected covariates to eliminate
the need for correlated residuals. Several different techniques that allow for
complex spatio-temporal dependence structures have been proposed. Two
examples are Sahu et al. (2006) and Paciorek et al. (2009), both modeling
PM; however these approaches require relatively complete observation ma-
trices. Their methods are also developed for much larger geographic regions
than those of interest for MESA Air. Smith et al. (2003) handles arbitrary
missing observations through an expectation-maximization (EM) algorithm,
but their model does not allow for complex spatio-temporal dependencies.

An alternative to statistical modeling is to use numerical models to pro-
vide deterministic spatio-temporal predictions of air pollution (Irwin, 2002;
Appel et al., 2008). However, when compared to measurements, air quality
model output often shows varied prediction performance (Lindström et al.,
2010; Appel et al., 2008; Hogrefe et al., 2006; Mathur et al., 2008). Integrat-
ing model output with observations in an attempt to obtain better predic-
tions is an active field of research. Most existing studies use output from
grid-based models over large geographic areas (e.g., Fuentes and Raftery,
2005; Berrocal et al., 2010; McMillan et al., 2010). Since the MESA Air mod-
eling domains are geographically compact we have opted here to combine our
observations with the output from a point prediction model (Caline3QHC,
described in EPA, 1992b).

Our goal is to construct a general statistical framework that allows us to
combine the EPA regulatory and MESA Air supplemental monitoring data
(Cohen et al., 2009) with the output of deterministic air pollution mod-
els (EPA, 1992b). A spatio-temporal modeling framework for MESA Air
has been introduced previously in Sampson et al. (2009) and Szpiro et al.
(2010a). Sampson et al. (2009) predicts PM2.5 at subject homes, using a
pragmatic approach that estimates different components of the model sepa-
rately and then combines these components to produce predictions. Szpiro
et al. (2010a) presents a unified maximum-likelihood estimation method and
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4 J. LINDSTRÖM, ET.AL

studies the statistical properties of the model as well as the added value of
MESA Air supplemental monitoring using a simulation study based on a
limited set of NOx observations in Los Angeles.

This paper expands on the work of Szpiro et al. (2010a) by: 1) extend-
ing the model to include spatio-temporal covariates in order to incorporate
output from the Caline3QHC deterministic prediction model; 2) applying
the model to the full MESA Air NOx dataset to generate predictions in
Los Angeles; 3) reducing the computational burden by implementing profile
likelihood (and restricted maximum likelihood) in order to decrease the di-
mension of the optimization problem and by introducing a simplification of
the profile likelihood function that decreases the time required for each it-
eration; and 4) implementing a novel cross-validation strategy for long-term
average predictions that accounts for the complex MESA Air monitoring
design. The model presented in this paper has been implemented in an R
package, SpatioTemporal, which will be available on the CRAN website
shortly.

The available data are described in Section 2. These include observations
from both the EPA Air Quality System (AQS) regulatory network and the
MESA Air supplemental monitoring, as well as geographic covariates and
output from our deterministic air pollution model. Section 3 describes the
spatio-temporal model, discusses techniques for efficient parameter estima-
tion, and describes our cross-validation approach. Different options for incor-
porating the output from our deterministic air pollution model are described
in Section 4. In Section 5 we apply the model to NOx data from Los Angeles
and use cross-validation to assess the model’s predictive ability. Section 6
discusses these results.

2. Description of Data.

2.1. Air Quality System (AQS). The national AQS network of regula-
tory monitors consists of a modest number of fixed sites that measure am-
bient concentrations of several different air pollutants including NOx and
PM2.5. Many AQS sites provide hourly averages for NOx, while monitoring
of PM2.5 is less frequent. For this study we include NOx data from 20 AQS
sites in and around Los Angeles.

Since the supplementary MESA Air monitoring is done at the 2-week
timescale, we aggregate the AQS data to 2-week averages. The distribution
of the resulting 2-week average NOx concentrations is skewed, so we log-
transform the 2-week averages. Examples of time series from three AQS sites
are shown in Figure 1; the three sites are located in Glendora, Lynwood, and
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A FLEXIBLE SPATIO-TEMPORAL MODEL FOR AIR POLLUTION 5

Costa Mesa, as indicated on the map in Figure 2. Note the different seasonal
patterns and mean levels in the three time series.

Due to maintenance and equipment failures there is some missing data in
the AQS monitoring, resulting in a small amount of variability in the number
of AQS measurements that contribute to each 2-week average. Periods with
less than nine valid measurements have been excluded. This variability can
result in different amounts of measurement error. For simplicity we assume
a common variance for the measurement error of all AQS and MESA Air
2-week average concentrations (as in Szpiro et al., 2010a).

2.2. MESA Air. The AQS monitors provide data with excellent tempo-
ral resolution, but only at relatively few locations in each of the six cities
in the MESA Air study. As pointed out in Szpiro et al. (2010a), potential
problems with basing exposure estimates entirely on data from the AQS
network are: 1) the number of locations sampled is limited; 2) the AQS
network is designed for regulatory rather than epidemiology purposes and
does not resolve small scale spatial variability; and 3) the network has sit-
ing restrictions that limit its ability to resolve near-road effects. To address
these restrictions the MESA Air supplementary monitoring campaign was
designed to provide increased diversity in geographic monitoring locations,
with specific importance placed on proximity to traffic. The sampling strat-
egy and measurement methodology is described in Cohen et al. (2009). We
present a brief overview.

The MESA Air supplementary monitoring of ambient outdoor concentra-
tions consists of three sub-campaigns: “fixed sites”, “home outdoor”, and
“community snapshot”. The campaigns collect 2-week average concentra-
tions in each of the six study areas. The fixed and home outdoor campaigns
measure PM2.5 and gaseous co-pollutants including NOx, while the snapshot
campaign only measures NOx and other gaseous co-pollutants. Details for
the three MESA Air sub-campaigns follow.

1) The MESA Air fixed sites consist of a few monitors that provided 2-
week averages during the entire MESA Air monitoring period. To allow for
comparison of different monitoring protocols, at least one MESA fixed site
per metropolitan area was colocated with an existing AQS monitor. 2) The
home outdoor campaign was designed to obtain information about the con-
centration of pollution at participant homes, and consisted of a rotating set
of four monitors that were placed at a subset (roughly 10%) of the partici-
pants home locations, collecting at least two 2-week averages at each site. 3)
The goal of the community snapshot campaign was to collect a spatially rich
dataset that could be used to model small scale spatial variability and road-
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6 J. LINDSTRÖM, ET.AL

way effects; and to provide a convenient dataset to guide spatial covariate
selection (Mercer et al., 2010). The community snapshot campaign provides
three sets of simultaneous measurements of 2-week average concentrations
at many locations, including roadway gradients, during three different sea-
sons. The roadway gradients consisted of six monitors placed perpendicular
to a major roadway (three on either side), at approximately 50, 100, and
150 meters (see Cohen et al., 2009, for details).

For this paper we restrict attention to sampling in central and costal
portion of the Los Angeles basin. A summary of available data, detailing
the number of monitor sites, total number of observations, the time periods
of the monitoring, and some summary statistics for the observations can be
found in Tables 1–2 and Figure 3. Note that one of the MESA fixed sites in
the area studied in this paper is colocated with an AQS monitor.

2.3. Geographic Information System (GIS). To predict ambient air pol-
lution at times and locations where we have no measurements we use a
complex spatio-temporal model that includes regression with geographic co-
variates. Since some of the geographical variables relate to local land uti-
lization this approach is often termed “land use” regression (LUR) (Jerrett
et al., 2005b). The MESA Air study has created a comprehensive geographic
database, and after a preliminary study of the data based on the snapshot
campaigns, a subset of the available covariates was selected for use in the
present analysis (The selection was based on a preliminary version of the re-
sults in Mercer et al., 2010). The covariates used in this paper are: 1) distance
to a major road, i.e., census feature class code A1–A3 (distances truncated
to be ≥ 10m and log-transformed), 2) distance to a A1 road (≥ 10m, log-
transformed), 3) total length of A1 and A2 roads in a circular buffer with
300 meter radius, 4) total length of A3 roads in a 50 meter buffer, 5) dis-
tance to coast (truncated to be ≤15km), and 6) average population density
in a 2 km buffer. These are all derived using the ArcGIS (ESRI, Redlands,
CA) software package. The distance to coast and roadway variables were ob-
tained from Tele Atlas Dynamap 2000 (Lebanon, NH), and the population
density was calculated from publicly available Census Bureau data.

2.4. Caline Dispersion Model for Air Pollution. The geographic covari-
ates described above are fixed in time and provide only spatial information.
To aid in the spatio-temporal modeling, covariates that vary in both space
and time would be valuable. One option is to integrate output from deter-
ministic air pollution models into our spatio-temporal model. Several differ-
ent air pollution models exist, and in this paper we use a slightly modified
version of Caline3QHC (EPA, 1992b; Wilton et al., 2010; MESA Air Data
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A FLEXIBLE SPATIO-TEMPORAL MODEL FOR AIR POLLUTION 7

Team, 2010).
Caline is a line dispersion model for air pollution. Given locations of major

sources and local meteorology Caline uses Gaussian dispersion model to pre-
dict how nonreactive pollutants travel with the wind away from sources. In
contrast to grid-based air pollution models, Caline provides hourly estimates
of air pollution at distinct points, called receptors, avoiding the change of
support problem inherent in the use of grid based models (e.g. Gotway and
Young, 2002; Fuentes and Raftery, 2005).

The Caline predictions we use are based on estimates of traffic density
on major roads (A1, A2, and large A3) in the Los Angeles area, obtained
from the Southern California Association of Governments. To account for
diurnal and weekly variations in traffic patterns, a one week pattern of hourly
variations was computed from data provided by the California Department
of Transportation. The weekly pattern was repeated for the entire ten-year
period and used to modulate the traffic density. The dispersion in Caline is
driven by meteorology obtained from the LAX airport meteorology station,
and complemented by upper air data from the Radiosonde Database, Earth
System Research laboratory, NOAA. We used a unit emissions factor in our
Caline implementation.

A final consideration for the Caline computations is the area, or buffer,
around each receptor from which pollution is allowed to affect predictions
at that receptor. A simplistic interpretation is that the size of the buffer
determines how far we believe traffic pollution diffuses during one hour. In
preliminary data analysis we studied the effects of several different buffer
sizes, ranging from 500 meters to 9 km (the maximum distance recommended
by EPA, 1992b). We determined that relatively short buffers are most ap-
propriate because the Caline model is most reliable close to nearby sources.
In this paper, we use Caline in 500 meter and 3 km buffers. It should be
noted that our Caline predictions only include air pollution due to road traf-
fic and do not include contributions from point sources. Examples of Caline
predictions at three AQS sites are provided in Figure 1.

3. Model and Estimation. The primary interest of the MESA Air
study is prediction of long-term averages at subject homes, however several
factors necessitate explicit modeling of the 2-week average spatio-temporal
field.

First, due to the sampling scheme we only have long-term time series of
measurements at a few locations; our other measurements are irregularly
distributed in space and time. Since the data exhibit temporal structure
that varies with location (see Figure 1), we need to take the full spatio-
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8 J. LINDSTRÖM, ET.AL

temporal structure of the data into account when combining measurements
from different locations and times.

Second, modeling 2-week averages allows us to construct long-term av-
erages over arbitrary time periods at each location. This makes it possible
to calculate exposure based on any hypothesized timescale and to calculate
total exposure over the entire study period for participants who have moved
within our study area.

We let C(s, t) denote the observed 2-week average concentration of NOx

at location s and time t, where s is a location index taking values in the
set {1, . . . , n} and t is in {1, . . . , T}. We let N denote the total number of
observations and note that, due to our unbalanced sampling, N ≪ nT . Our
goal is to predict concentrations at locations and/or times that were not
monitored. We denote these unknown values by C∗(s, t). For convenience
important notation is summarized in Table 3.

3.1. Hierarchical model. Denoting the logarithm of each two week aver-
age by y(s, t), we decompose the field into

(1) y(s, t) = µ(s, t) + ν(s, t).

Here µ(s, t) is the predictable mean field and ν(s, t) is the essentially random
space-time residual field.

We model the mean field as

(2) µ(s, t) =
L∑

l=1

γlMl(s, t) +
m∑

i=1

βi(s)fi(t),

where the Ml(s, t) are spatio-temporal covariates with coefficients γl; {fi(t)}
m
i=1

is a set of smooth basis functions, with f1(t) ≡ 1 and f2(t), . . . , fm(t) having
mean zero; and the βi(s) are spatially varying coefficients for the temporal
trends. See Fuentes et al. (2006) and Szpiro et al. (2010a) for a similar mean
field model without spatio-temporal covariates.

In this work we consider a single spatio-temporal covariate, the output
from our Caline dispersion model. A possible interpretation of (2) is that
we model the mean field as a simple scaling of the contribution from Caline,
with a complex additive term that attempts to account for the spatial and
temporal variations in air pollution that are not captured by Caline.

The complex additive term,
∑m

i=1 βi(s)fi(t), is a linear combination of
temporal basis functions weighted by coefficients that vary between loca-
tions. Typically the number of basis functions will be small. The basis func-
tions are derived as smoothed singular vectors using observations from the
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A FLEXIBLE SPATIO-TEMPORAL MODEL FOR AIR POLLUTION 9

locations where we have nearly complete time series, i.e. most of the AQS
sites; they will be treated as fixed and known for the modeling. Details
can be found in Fuentes et al. (2006); Szpiro et al. (2010a); Sampson et al.
(2009).

We model the spatial fields of βi-coefficients using universal kriging (Cressie,
1993). The trend in the kriging is constructed as a linear regression on geo-
graphical covariates. The spatial dependence structure is provided by a set
of covariance matrices Σβi

(θi), which are constructed from a known class of
covariance functions and parameterized by unknown parameter vectors, θi.
The resulting models for the β-fields are

(3) βi(s) ∈ N (Xiαi,Σβi
(θi)) for i = 1, . . . ,m,

where Xi are n × pi design matrices, αi are pi × 1 matrices of regression
coefficients, and Σβi

(θi) are n × n covariance matrices. Note that the de-
sign matrices, Xi, can incorporate different geographical covariates for the
different spatial fields. We assume the βi(s) fields are independent of each
other.

Finally, we must specify the model for the residual space-time field, ν(s, t).
Following Sampson et al. (2009) and Szpiro et al. (2010a) we assume that
the mean model, µ(s, t), accounts for the mean structure and most of the
temporal correlation (see Figure 4). We model the residuals as a mean zero
Gaussian field that is independent in time and has spatial dependence given
by

ν(s, t) ∈ N

(
0,Σt

ν(θν)
)

for t = 1, . . . , T,

where the sizes of the covariance matrices, Σt
ν(θν), are the numbers of ob-

servations, nt, at each time-point. It should be noted that Σt
ν(θν) does not

imply a time varying covariance matrix; only the number of elements in
Σt

ν(θν) vary for different t. Elements in the covariance matrices are defined
by assuming a known class of covariance functions that is parameterized by
a set of unknown parameters, θν .

We have assumed that the covariance matrices are constructed by plug-
ging unknown parameters (which will have to be estimated) into a known
class of covariance functions (e.g., one of those described in Cressie, 1993).
It should be noted that there is nothing in the model that requires the dif-
ferent spatial fields to share a common covariance structure. This allows any
non-stationarity in the space-time residuals to be accommodated using, e.g.,
deformation methods (Sampson, 2002; Damian et al., 2003), while retaining
a stationary covariance structure for the βi-fields.
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10 J. LINDSTRÖM, ET.AL

Here we use exponential covariance functions, characterized by range φ,
partial sill σ2, and nugget τ2. To obtain a smooth mean field in (2) we
assume that the nuggets of the βi-fields are zero. Thus, the parameters of
the model consist of: the regression parameters for the geographical, and
spatio-temporal covariates, respectively

α = (α⊤
1 , . . . , α⊤

m)⊤; γ = (γ1, . . . , γL)⊤,

spatial covariance parameters for the βi-fields,

θB = (θ1, . . . , θm) where θi = (φi, σ
2
i ),

and covariance parameters of the spatio-temporal residuals,

θν = (φν , σ2
ν , τ

2
ν ).

To simplify notation we collect the covariance parameters into Ψ,

Ψ = (θ1, . . . , θm, θν).

Combining (1) and (2) our model becomes

(4) y(s, t) =
L∑

l=1

γlMl(s, t) +
m∑

i=1

βi(s)fi(t) + ν(s, t).

Following Szpiro et al. (2010a), we introduce the N × 1-vectors Y = y(s, t)
and V = ν(s, t) by stacking the elements into single vectors varying first
s and then t; a mn × 1-vector B = (β1(s)

⊤, . . . , βm(s)⊤)⊤; and a sparse
N × mn-matrix F = (fst,is′) with elements

fst,is′ =

{
fi(t) s = s′

0 otherwise.

To accommodate the spatio-temporal covariates we also introduce a N × L-
matrix M, with each row containing covariates for the space-time location
of the corresponding row in Y .

Using these matrices we rewrite (4) as

(5) Y = Mγ + FB + V,

where

B ∈ N (Xα,ΣB(θB)) and V ∈ N (0,Σν(θν)) .
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A FLEXIBLE SPATIO-TEMPORAL MODEL FOR AIR POLLUTION 11

Here X, ΣB(θB), and Σν(θν) are block diagonal matrices with diagonal

blocks {Xi}
m
i=1, {Σβi

(θi)}
m
i=1, and

{
Σt

ν(θν)
}T

t=1 respectively. Noting that (5)
is a linear combinations of Gaussians we introduce the matrices

X̃ =
[
M FX

]
and Σ̃(Ψ) = Σν(θν) + FΣB(θB)F⊤,

and write the distribution of Y as

(6) [Y |Ψ,γ,α] ∈ N

(
X̃

[
γ

α

]
, Σ̃(Ψ)

)
.

Estimating the unknown parameters, (Ψ,γ,α), can now be accomplished
by maximizing the log-likelihood

2l(Ψ,γ,α|Y ) = − N log(2π) − log
∣∣∣Σ̃(Ψ)

∣∣∣

−

(
Y − X̃

[
γ

α

])⊤

Σ̃−1(Ψ)

(
Y − X̃

[
γ

α

])
.

(7)

3.2. Parameter estimation. Given the large monitoring database, esti-
mating parameters by näıve maximum likelihood (ML) takes considerable
computer time. There are two considerations of importance for minimizing
the required computer time: 1) reducing the number of parameters should
speed up the estimation, and 2) the block structure of Σν(θν) and ΣB(θB)
can be exploited to reduce the computational burden of evaluating the log-
likelihood.

It is trivial to show that the generalized least-squares fit

[
γ(Ψ)
α(Ψ)

]
=
(
X̃⊤Σ̃−1(Ψ)X̃

)−1
X̃⊤Σ̃−1(Ψ)Y(8)

maximizes the log-likelihood with respect to γ and α, for any values of Ψ.
Replacing γ and α with the functions of Ψ obtained in (8) reduces the
unknown parameters in the log-likelihood to only Ψ. This corresponds to
the profile log-likelihood which, after some algebra, is

2lprof(Ψ|Y ) = − N log(2π) − log
∣∣∣Σ̃(Ψ)

∣∣∣− Y ⊤Σ̃−1(Ψ)Y

+ Y ⊤Σ̃−1(Ψ)X̃
(
X̃⊤Σ̃−1(Ψ)X̃

)−1
X̃⊤Σ̃−1(Ψ)Y.

(9)

Note that the value Ψ that maximizes the profile likelihood also maximizes
the original likelihood (7).
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12 J. LINDSTRÖM, ET.AL

The profile likelihood reduces the number of unknown parameters but it
does not utilize the block structure of Σν(θν) and ΣB(θB). A way of rewrit-
ing (9) that utilizes the structure to significantly reduce the computational
burden is provided in Appendix A. As an example, evaluating the likeli-
hood once for our 5181 measurements in Los Angeles takes 92 seconds using
the original profile likelihood formulation (9), compared to 2.5 seconds af-
ter simplifications (on an Intel Xeon E5410 processor). Figure 5 provides
comparisons of evaluation times for different size datasets. Both the faster
evaluation time for the optimized likelihood, as well as the much slower
increase in computation time as a function of dataset size, both in terms
of number of observations and number of spatial locations, are illustrated.
Additional theoretical details regarding the computational burden can be
found in Appendix A.2.

We use the constrained L-BFGS-B algorithm implemented in the optim()
function in R (Byrd et al., 1995; R Development Core Team, 2008) to op-
timize the profile likelihood, first log-transforming the covariance parame-
ters to make the optimization easier. We denote the estimated parameters
by Ψ̂prof, γ̂prof, and α̂prof. To obtain approximate uncertainties for the
estimated parameters we compute the finite difference Hessian of the full
log-likelihood and take the negative diagonal elements of its inverse (i.e., we
use the observed information matrix).

3.2.1. Restricted Maximum Likelihood. An alternative option for reduc-
ing the number of parameters is restricted maximum likelihood (REML)
(Patterson and Thompson, 1971; Harville, 1974). In classical statistical terms,
the principal difference between profile likelihood (equivalently ML) and
REML is that REML accounts for the loss in the degrees of freedom associ-
ated with estimation of the regression parameters, γ and α, when estimating
the covariance. A Bayesian interpretation is that REML assumes flat priors
and marginalizes the full likelihood with respect to γ and α (see Harville,
1974, for details).

Simulation studies indicate that REML estimates of variance parameters
are less biased than ML estimates (Swallow and Monahan, 1984; Cressie and
Lahiri, 1993). However, due to the bias-variance trade-off, ML estimates can
exhibit smaller mean squared errors than REML estimates for some models
(Swallow and Monahan, 1984). Further, the magnitude of the bias in ML
depends on the number of regression parameters compared to the number
of observations and decreases with increasing sample size. In this study we
use the profile likelihood, but for completeness parallel results for REML
are given in Appendix B.
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The primary reason we prefer profile likelihood is that it is equivalent to
ML, and our predictions will be used as exposures in a health effects model
where it is natural to account for the joint variability of all the estimated
exposure model parameters using the full likelihood (Szpiro et al., 2010b).
Also, in a simple simulation study based on parts of our data we found
a small bias reduction from using REML, but the numerical estimation for
REML was significantly more time consuming and prone to non-convergence.

3.3. Prediction. Having obtained values for the parameters the next step
is to predict concentrations at unobserved locations and times. As previously
noted we let C∗(s, t) denote these unobserved values. By adding the unob-
served times and locations to our model we expand the distribution in (6)
to include y∗(s, t) = log C∗(s, t), or

(10)

[
Y

Y ∗

∣∣∣∣Ψ,γ,α

]
∈ N

([
X̃

X̃∗

] [
γ

α

]
,

[
Σ̃··(Ψ) Σ̃·∗(Ψ)

Σ̃⊤
·∗(Ψ) Σ̃∗∗(Ψ)

])
,

where Σ̃·· is the covariance matrix for the observed data, Σ̃∗∗ is the covariance
for the unobserved data, and Σ̃·∗ is the cross-covariance between observed
and unobserved data. Finally X̃∗ is constructed using the spatio temporal
covariates, temporal trends, and geographical covariates for the unobserved
data.

Predictions and prediction uncertainties are obtained as the conditional
expectation and conditional variance of (10). The prediction variance is

(11) V
(
Y ∗
∣∣Y, Ψ̂prof, γ̂prof, α̂prof,

)
= Σ̃∗∗ − Σ̃⊤

·∗Σ̃
−1
·· Σ̃·∗

where all the covariance matrices are evaluated at Ψ̂prof.
The approximate parameter uncertainties are computed using the ob-

served information matrix and are based on asymptotic maximum likelihood
theory (see, e.g. Casella and Berger, 2002); the prediction uncertainties (11)
do not account for uncertainties in the estimated parameters. One option
for obtaining full prediction uncertainties is to use Markov Chain Monte
Carlo (MCMC) (Metropolis et al., 1953; Hastings, 1970) or some other nu-
merical integration scheme (Rue et al., 2009). An appealing option when us-
ing MCMC is to first maximize the likelihood using numerical optimization
and then use the observed information matrix to construct a Metropolis-
random-walk-algorithm with optimal proposal distribution (Gelman et al.,
1996). This approach is implemented in our R package, SpatioTemporal.
Using MCMC, however, adds considerable computer time and is not feasible
for our cross-validation study.
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3.4. Validation. We use cross-validation to assess the predictive accuracy
of our model. Our primary interest is the prediction of long-term averages,
but we have only 25 monitors (AQS and MESA fixed sites) that provide
time series against which we can validate predictions of long-term averages.
Due to AQS siting, these 25 monitors have less heterogeneity in their geo-
graphic covariates but larger spatial spread when compared to participant
home locations, potentially limiting our ability to correctly assess model
performance.

To make the fullest use of available data we employ three different cross-
validation strategies: 1) leave-one-out cross-validation for the AQS and MESA
fixed sites (the two colocated sites are kept together, resulting in 24 groups),
2) 10-fold cross-validation for the sites in the snapshot campaign (ensuring
not to split road gradients between groups); and 3) 10-fold cross-validation
of the home outdoor sites. For each of the scenarios above, all remaining
data are used to estimate parameters and to predict at the left out loca-
tions. Given the predictions and prediction variances (11) we compute the
coverage for 95% prediction intervals, the root mean squared error (RMSE)
and the corresponding cross-validated R2.

For the first cross-validation approach we validate the model by compar-
ing predicted and observed 2-week averages, as well as the predicted and
observed long-term average concentration at each location. To compute the
true long-term averages we use time points for which we have observations
at that location, and we compute predicted long-term averages using the
predicted 2-week average concentrations at the corresponding times,

C∗(s) =
∑

t∈{τ :∃y(s,τ)}

exp(y∗(s, t))

‖{τ : ∃y(s, τ)}‖
.

The cross-validated R2 are computed as

R2 = max

(
0, 1 −

RMSE2

Var(C(s))

)
.

For the MESA Air snapshot campaign, we calculate cross-validated pre-
dictions by simultaneously leaving out measurements in the validation set
for all three seasons. However, when assessing the spatial predictive ability
of our model, we compute separate RMSE and R2 values for each season.
This has the added benefit of providing information regarding the model’s
differential spatial predictive ability in each season.

For the MESA Air home campaign the situation is slightly more compli-
cated since our measurements are spread out in time and space. We compute
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the RMSE value as usual, but for R2 we compare our predictions to a sim-
ple reference model that accounts for the temporal variability. We use the
formula

R2 = max

(
0, 1 −

RMSE2

RMSE2
ref

)
,

where RMSE2
ref denotes the RMSE of a reference model to which we compare

our predictions. Reference models used are: 1) the spatial average at each
time point based on observations at AQS and MESA fixed sites; 2) the
closest available observation from the AQS and MESA fixed sites; 3) smooth
temporal trends fitted to the data at the closest AQS or MESA fixed sites.
These three reference models will be denoted as average, closest, and smooth
in the rest of this document. This R2 can also be seen as the improvement in
prediction provided by our model when compared to the use of the central
site or nearest neighbor schemes common in published epidemiology studies
(Pope et al., 1995; Goss et al., 2004; Miller et al., 2007).

4. Different ways of including Caline. We have considered several
different options for including the Caline predictions in the spatio-temporal
model. Because our observations are log-transformed, a similar transfor-
mation of Caline seems reasonable. However, since the Caline predictions
include contribution from major roads within the 500m or 3km buffers, we
use a log(x + 1) transformation to accommodate zeros. Preliminary studies
with no transformation, or including first, second, and third order terms to
account for potential non-linearities indicated results similar to, or worse
than, the log(x + 1) transformation.

A second issue is that the unbalanced monitoring scheme, with long-time
series at a few sites, may cause the model fit to emphasize Caline’s temporal
predictive ability over its spatial features. Therefore, we also consider the
performance of a mean separated Caline variable. For the mean separated
Caline, we take M(s, t) = log(Caline+1), compute the temporal average at
each location

M(s) =
1

T

∑

t

M(s, t),

and calculate a new spatio-temporal covariate that is mean-zero at each site

M̃(s, t) = M(s, t) −M(s).

The average, M(s), is added to the list of geographic covariates and M̃(s, t)
is used as a spatio-temporal covariate, allowing us to separate Caline’s spa-
tial and temporal contributions to the predictions.
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5. Results.

5.1. Geographic covariate predictors only (no Caline). Cross-validation
results for the model with only geographic covariates (no Caline) are pre-
sented in Table 4. Figure 6 shows the cross-validated predictions, along with
observed data and prediction intervals at three AQS sites, and Figure 7
shows predictions of long-term averages at the AQS and MESA fixed sites.
The estimated parameters for the model fit to all the data are given in
Table 7.

The predictive ability at MESA home sites is very good, with R2 ≈ 0.9.
Even after the use of a simple reference model to account for the temporal
variability, the spatial predictive ability remains high, with R2 ≈ 0.67−0.74
depending on the reference model used. The R2 values are slightly lower for
the summer snapshot (R2 ≈ 0.52) and long-term averages (R2 ≈ 0.58). The
lowest RMSE values are also found during the summer snapshot, indicating
that there is little variability to explain in this dataset. The lower R2 values
for the long-term averages are also expected because many AQS sites are
either far from other sites or at the edge of our area of interest (see the
map in Figure 2). Due to the spatial dependence in our model, we expect
cross-validation at these sites to exhibit larger prediction errors than at
subject home locations. Our uncertainty estimates are also reasonable, with
the coverage for 95% prediction intervals varying from 91% to 99% for all
three cross-validation approaches.

5.2. Geographic covariates and Caline predictors. Our primary imple-
mentation of Caline is mean separated with a 3 km buffer. Results for the
version that is not mean separated and for a 500 meter buffer are similar
or slightly worse (see Table 5). The estimated parameters for the model
with and without Caline are compared in Table 7. It is worth noting that
the estimated coefficient for the contribution from the time averaged Caline
to the spatial intercept (the Caline coefficient in β1) is statistically signifi-
cant as is the contribution from the spatio temporally varying Caline (the
γ-coefficient). Several of the regression coefficients for the temporal trends
(β2 and β3) are not significant, however attempts to reduce the number of
covariates for the β2 and β3 fields decreased the cross-validated performance.
Coefficients for the other geographic covariates are very similar in the model
with and without Caline. Cross-validation results for the model with Caline
are given in Table 4. For this implementation there is no evidence of im-
proved performance compared to the model without Caline.

One possible explanation for the lack of improvement from Caline is that
the model already contains road covariates that are good predictors of traffic
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related NOx. In an attempt to compare the predictive ability of road covari-
ates with that of Caline, we fit the model again without any of the GIS road
covariates, with and without Caline. Estimated parameters for both models
are presented in Table 8. The estimated parameters for the two β-fields that
affect the temporal trends are very similar, indicating that the variation in
temporal trends over the region is not primarily driven by local road/traffic
effects. For the long-term average β1-field there are differences in estimated
parameters. The effect of population density is almost halved when Caline
is included, and the estimated range parameter for β1 is only 530 m with-
out Caline, compared to 3.7 km when including Caline. The coefficient for
Caline in the β1-field is much larger than in the model with road covariates
(0.145 compared to 0.0789), indicating that without the road covariates the
contribution from Caline is more important.

Cross-validation results are presented in Table 6 and Figure 7. With-
out the road covariates in the model, including Caline results in uniformly
better cross-validation results than for the model without Caline. In fact,
predictions with this model are nearly comparable to those obtained from
the model that includes road covariates but not Caline. This suggests that
our implementation of Caline may be able to provide interpretable replace-
ment for GIS road covariates, even though it does not provide additional
predictive power in a model that already includes roadway information.

6. Discussion. In this paper we have expanded the spatio-temporal
framework introduced by (Sampson et al., 2009; Szpiro et al., 2010b) to
allow for spatio-temporally varying covariates. The resulting model provides
a flexible way of combining observations with the output from deterministic
air quality models. The model presented in this paper has been implemented
in an R-package, SpatioTemporal that will be available on CRAN shortly.

To make the model computationally feasible, we used profile likelihood
(and REML) to reduce the number of parameters that have to be estimated.
Further, the structure in the model, with spatially correlated but temporally
independent residuals, allowed us to rewrite the likelihood into a computa-
tionally efficient form. The importance of these simplifications cannot be
stressed enough, as they reduce the computational burden by more than an
order of magnitude.

The model was applied to the full MESA Air dataset in Los Angeles,
and a thorough cross-validation study was done to evaluate prediction per-
formance. In order for us to make the fullest use of the unbalanced moni-
toring in the MESA Air study, special care was taken when designing the
cross-validation study in order to focus on predicting long-term averages,
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even though much of our validation data are collected over short time pe-
riods. The cross-validation study shows good predictive power, especially
at subject home locations. This indicates that our spatio-temporal model
will be able to provide the basis for high quality predicted exposures in our
health analysis. Furthermore, our profile likelihood estimation methodology
provides uncertainty estimates suitable for use in our recently developed
methods to adjust for measurement error that results from using predicted
exposures in place of the true values (Szpiro et al., 2010b).

Including Caline as an additional predictor variable provided essentially
no overall improvement in prediction accuracy. This came as somewhat of a
surprise to the authors, especially since a previous pilot study (Wilton et al.,
2010) indicated improved prediction performance for the summer snapshot.
However, consistent with the pilot study, we find some improvement for the
summer snapshot when including Caline (see Table 4). One reason for this
lack of improvement may be that we used a constant unit emissions fatcor
that does not account for changes to the fleet over time. As future research we
will weight our Caline predictions by including trends in fleet emissions (by
e.g. using the EPA’s MOVES model; EPA, 1992a). Our results do, however,
suggest that Caline may provide a more directly interpretable replacement
for GIS road covariates, potentially limiting the need for model selection
from multiple road covariates corresponding to different road classes and
buffer sizes.

Our results contrast with other studies that have shown improvement
in air quality predictions by combining observations with output from de-
terministic models (e.g. Fuentes and Raftery, 2005; Berrocal et al., 2010;
McMillan et al., 2010). These studies do not use any GIS covariates, but
do use output from grid based models over large geographic areas, often
several states. These differences make it difficult to translate their results to
our limited geographic areas and study design. Given the relatively compact
geographical areas in the MESA Air study and our need to resolve small-
scale spatial variability, the potential gain from grid based models is limited.
The most commonly used model, EPA’s Community Multiscale Air Qual-
ity (CMAQ), produces predictions on 4, 12, or 36 km grids (most typically
12 km). With a 12 km grid our Los Angeles study area can be covered using
only 30 grid cells, so a grid-based model of this resolution would provide
limited spatial information over our study area.
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Table 1

Summary of observations used for modeling

Type of site Nbr. of sites Start date End date Nbr. of measurement

AQS 20 1999–01–13 2009–09–23 4178
MESA fixed 5 2005–12–07 2009-07-01 399
MESA home 84 2006–05–24 2008–02–13 155

MESA snapshot1 177 2006–07–05 2007–01–31 449
1Snapshot measurements where carried out during three 2-week periods centered on the

Wednesdays of 2006–07–05, 2006–10–25, and 2007–01–31
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Table 2

Summary statistics for the data, both on the original ppb scale and on the log-scale.

ppb NOx log(ppb NOx)
Mean Std. Mean Std.

AQS and MESA fixed
2-week 55.5 39.9 3.77 0.724
long-term avg. 56.0 18.4 3.77 0.394

Snapshot
2006–07–05 34.2 11.5 3.47 0.387
2006–10–25 75.1 23.5 4.27 0.317
2007–01–31 95.3 27.0 4.51 0.299

Home sites 45.6 28.3 3.63 0.642

Table 3

Important notation and symbols

Symbol Meaning

C(s, t) Observed 2-week average concentration.
C∗(s, t) Unobserved 2-week average concentration.
y(s, t) The logarithm of C(s, t).
y∗(s, t) The logarithm of C∗(s, t).
µ(s, t) Predictable mean field part of y(s, t).
ν(s, t) Space-time residual part of y(s, t).
fi(t) Smooth temporal basis functions.
βi(s) Spatially varying regression coefficients, weighing the i:th tem-

poral trends differently at each site.
Xi Land use regression (LUR) basis functions for the spatially vary-

ing regression coefficients in βi(s).
αi Regression coefficients for the i:th LUR-basis.

Ml(s, t) Spatio-temporally varying covariates.
γl Regression coefficient for the spatio-temporally varying covari-

ates.
N Total number of observations.
T Total number of observed time-points.
n Total number of observed sites.

nt Number of observations at time t. Note that N =
∑

T

t=1
nt and

nt ≤ n ∀t.
m Number of temporal basis functions (including the intercept).
L Number of spatio-temporal model outputs.
pi Number of LUR-basis functions for the i:th temporal-basis func-

tion (including the intercept).
l(Ψ, γ, α|Y ) Log-likelihood for the model (7).
lPROF(Ψ|Y ) Logarithm of the profile likelihood of l(Ψ, γ, α|Y ), (9).
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Table 4

Cross validation results for the model without and with mean separated, 3km buffer
Caline. The table gives RMSE, R2, and coverage for 95% predictions interval-ls for the

cross-validated predictions. For the Home sites the three adjusted R2:s, showing
improvement over simple temporal models, are also provided. All values are computed on

the back transformed scale (ppb NOx).

No Caline 3km buffer Caline
mean separated

RMSE R2 cov. RMSE R2 cov.

AQS and MESA fixed
2-week 17.90 0.80 0.91 18.12 0.79 0.90
long-term avg. 11.97 0.58 12.26 0.56

Snapshot
2006–07–05 7.94 0.52 0.93 7.62 0.56 0.95
2006–10–25 13.32 0.68 0.97 13.32 0.68 0.95
2007–01–31 15.69 0.66 0.99 15.77 0.66 0.98

Home sites 9.34 0.89 0.97 9.06 0.90 0.95
average 0.67 0.69
closest 0.74 0.76
smooth 0.74 0.76

Table 5

Cross validation results, comparing the 3km and 500m buffer Caline. Results are given
for original and mean separated Caline. The table gives RMSE and R2 for the

cross-validated predictions. Coverage of the prediction intervals were very similar for both
buffer sizes and have been excluded (see Table 4 for coverage using the 3km buffer). All

values are computed on the back transformed scale (ppb NOx).

3km buffer Caline 500m buffer Caline
mean separated mean separated

RMSE R2 RMSE R2 RMSE R2 RMSE R2

AQS and MESA fixed
2-week 18.15 0.79 18.12 0.79 18.34 0.79 17.77 0.80
long-term avg. 12.34 0.55 12.26 0.56 12.26 0.56 12.20 0.56

Snapshot
2006–07–05 7.57 0.57 7.62 0.56 7.61 0.56 7.43 0.58
2006–10–25 13.51 0.67 13.32 0.68 13.89 0.65 13.47 0.67
2007–01–31 15.99 0.65 15.77 0.66 16.47 0.63 15.84 0.66

Home sites 9.13 0.90 9.06 0.90 9.57 0.89 9.35 0.89
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Table 6

Cross validation results for the model without and with mean separated, 3km buffer
Caline, but excluding all road covariates. The table gives RMSE, R2, and coverage for

95% predictions intervals for the cross-validated predictions. For the Home sites the three
adjusted R2:s, showing improvement over simple temporal models, are also provided. All

values are computed on the back transformed scale (ppb NOx).

Without road covariates
No Caline 3km buffer Caline

mean separated
RMSE R2 cov. RMSE R2 cov.

AQS and MESA fixed
2-week 20.42 0.74 0.91 18.40 0.79 0.92
long-term avg. 15.77 0.27 12.74 0.52

Snapshot
2006–07–05 9.68 0.29 0.93 8.26 0.48 0.95
2006–10–25 16.51 0.51 0.98 14.90 0.60 0.95
2007–01–31 20.45 0.43 0.98 18.19 0.55 0.96

Home sites 11.00 0.85 0.97 9.31 0.89 0.95
average 0.54 0.67
closest 0.65 0.75
smooth 0.64 0.75
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Table 7

Estimated parameters, for the models with no Caline compared to mean separated 3km
buffer Caline. Both parameter values and standard errors based on the information

matrix are given.

No Caline 3km Caline
Est. Std. err. Est. Std. err.

β1 — Average level
Intercept 3.78 0.174 3.42 0.207
Distance to road (log

10
m) −0.0801 0.0236 −0.0665 0.0237

Distance to A1 roads (log
10

m) −0.152 0.0323 −0.0630 0.0431
A1 & A2 in 300m buffers (km) 0.0501 0.0253 0.0315 0.0256
A3 in 50m buffers (km) 0.689 0.215 0.781 0.214
Distance to coast (km) 0.0330 0.0102 0.0318 0.00990
Population (1000/2km buffer) 0.00324 0.00117 0.00335 0.00113
Average log(Caline + 1) 0.0789 0.0259
Log Range (log km) 1.86 0.388 1.84 0.384
Log Sill −2.86 0.287 −2.92 0.283

β2 — 1st temporal trend
Intercept −0.793 0.139 −1.00 0.187
Distance to road (log

10
m) 0.00244 0.0259 0.0137 0.0254

Distance to A1 roads (log
10

m) 0.0120 0.0274 0.0715 0.0379
A1 & A2 in 300m buffers (km) 0.0437 0.0227 0.0345 0.0214
A3 in 50m buffers (km) 0.136 0.255 0.178 0.245
Distance to coast (km) 0.0221 0.00720 0.0188 0.00753
Population (1000/2km buffer) −0.00127 0.000782 −0.000949 0.000735
Average log(Caline + 1) 0.0533 0.0227
Log Range (log km) 2.77 0.621 3.34 0.831
Log Sill −3.82 0.512 −3.55 0.740

β3 — 2nd temporal trend
Intercept −0.142 0.132 −0.204 0.189
Distance to road (log

10
m) 0.0503 0.0333 0.0532 0.0329

Distance to A1 roads (log10 m) −0.0430 0.0326 −0.0263 0.0479
A1 & A2 in 300m buffers (km) −0.0310 0.0281 −0.0412 0.0264
A3 in 50m buffers (km) 0.338 0.322 0.412 0.309
Distance to coast (km) 0.0130 0.00548 0.0121 0.00581
Population (1000/2km buffer) −0.0000833 0.000924 0.0000423 0.000896
Average log(Caline + 1) 0.0185 0.0290
Log Range (log km) 2.40 0.646 2.68 0.724
Log Sill −4.78 0.436 −4.70 0.515

γ

Mean centered log(Caline + 1) 0.0677 0.0151

νst

Log Range (log km) 4.39 0.0938 4.38 0.0935
Log Sill −3.25 0.0617 −3.25 0.0614
Log Nugget −4.29 0.0415 −4.30 0.0418
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Table 8

Estimated parameters, for the models without road covariates but with either no Caline
or with the mean separated 3km buffer Caline. Both parameter values and standard

errors based on the information matrix are given.

No Caline 3km Caline
Est. Std. err. Est. Std. err.

β1 — Average level
Intercept 3.09 0.0826 3.03 0.118
Distance to coast (km) 0.0342 0.00543 0.0304 0.00849
Population (1000/2km buffer) 0.00570 0.000972 0.00394 0.00120
Average log(Caline + 1) 0.145 0.0157
Log Range (log km) −0.0643 0.528 1.30 0.355
Log Sill −2.95 0.165 −2.94 0.213

β2 — 1st temporal trend
Intercept −0.755 0.0968 −0.725 0.118
Distance to coast (km) 0.0223 0.00702 0.0188 0.00749
Population (1000/2km buffer) −0.00121 0.000785 −0.00115 0.000737
Average log(Caline + 1) 0.0256 0.0112
Log Range (log km) 2.70 0.579 3.26 0.805
Log Sill −3.85 0.472 −3.62 0.708

β3 — 2nd temporal trend
Intercept −0.173 0.0637 −0.172 0.0673
Distance to coast (km) 0.0145 0.00495 0.0134 0.00534
Population (1000/2km buffer) −0.000275 0.000971 0.0000487 0.000945
Average log(Caline + 1) 0.00350 0.0137
Log Range (log km) 2.04 0.672 2.28 0.655
Log Sill −4.82 0.367 −4.78 0.413

γ

Mean centered log(Caline + 1) 0.0738 0.0149

νst

Log Range (log km) 4.36 0.0970 4.41 0.0948
Log Sill −3.24 0.0612 −3.25 0.0611
Log Nugget −4.32 0.0485 −4.28 0.0420
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Figure 1. Example time series of log-transformed 2-week average NOx concentrations at
three AQS monitors and one home site in the Los Angeles area. The fit of our smooth
temporal basis functions to the data, and the transformed 3km buffer Caline predictions
are also shown. For the home site we have used the smooth temporal fit at the closest AQS
monitor.
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Figure 2. Map illustrating the location of our measurements. The collocated AQS and
MESA fixed site are north of the Lynwood AQS site; the MESA fixed site is partially
obscured by the AQS sites.
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Figure 3. Schematic image of the data available for analysis. Each measurement is rep-
resented by a point in space and time. AQS provides temporally rich observations at 20
locations. During the second half of our modeling period, additional temporally rich data
are provided by 5 MESA fixed sites. Spatial data are provided by the three MESA snapshot
campaigns, which monitored a total of 177 locations at three time points, and by MESA
home sites that consists of four monitors alternating among 84 locations.
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Figure 4. Empirical auto-correlation functions for 2-week average residuals after fitting
to the empirical orthogonal basis functions. Results for 20 AQS monitors and 5 MESA
fixed sites in Los Angeles area.
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Figure 5. Comparison of the time needed for one evaluation of the näıve profile likelihood
(9) and simplified version (12). The full dataset, 5182 observations from 286 locations
and 280 time points, was divided into smaller pieces by dropping either locations and/or
time-points to examine how fast the evaluation time would grow as the dataset was ex-
panded. Evaluation time for the full likelihood grows as N2.8 (the fitted line) close to the
expected theoretical value of O

(
N3
)
. For a fixed number of locations evaluation time for

the simplified version grows considerably slower than N3.
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Figure 6. Example of cross-validated predictions of the log-transformed 2-week average
NOx concentrations at three AQS monitors and one home site in the Los Angeles area.
Observations, predictions, and 95% prediction intervals are shown.
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Figure 7. Cross validated predictions for the long-term averages at the AQS and MESA
fixed sites. Results for the model both including the road covariates (left) and without the
road covariates (right) are given; for both cases predictions without and with the mean
separated 3km buffer Caline are shown.
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APPENDIX A: SIMPLIFICATION OF THE LIKELIHOOD

To utilize the block diagonal structure of Σν(θν) and ΣB(θB) we rewrite
(9) as

2lprof(Ψ|Y ) = − log |Σν(θν)| − log |ΣB(θB)| − log
∣∣∣Σ−1

B|Y (Ψ)
∣∣∣

+ Y ⊤Σ̂(Ψ)M
(
M⊤Σ̂(Ψ)M

)−1
M⊤Σ̂(Ψ)Y

− Y ⊤Σ̂(Ψ)Y + const.

(12)

where const. contains all terms not depending on Ψ, and

Σ−1
B|Y (Ψ) = Σ−1

B (θB) + F⊤Σ−1
ν (θν)F,(13a)

Σ−1
α|Y (Ψ) = X⊤Σ−1

B (θB)X − X⊤Σ−1
B (θB)ΣB|Y (Ψ)Σ−1

B (θB)X,(13b)

Σ̂(Ψ) = Σ−1
ν (θν) − Σ−1

ν (θν)FΣB|Y (Ψ)F⊤Σ−1
ν (θν)

−

[
Σ−1

ν (θν)FΣB|Y (Ψ)Σ−1
B (θB)XΣα|Y (Ψ)(13c)

X⊤Σ−1
B (θB)ΣB|Y (Ψ)F⊤Σ−1

ν (θν)

]
.

A.1. Proof of equivalence. To prove the equivalence of the two like-
lihood forms (9) and (12) we will need the following Lemmas:

Lemma 1. Blockwise inversion (Thm. 8.5.11 Harville, 1997):
Let A, B, C, and D be block matrices, with A and (D − CA−1B) being
nonsingular, then
[
A B

C D

]−1

=

[
A−1 + A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

]
.

Lemma 2. Blockwise determinant (Thm. 13.3.8 Harville, 1997):
Let A, B, C, and D be block matrices, with A and (D − CA−1B) being
nonsingular, then

∣∣∣∣∣
A B

C D

∣∣∣∣∣ = |A|
∣∣∣D − CA−1B

∣∣∣ .

Lemma 3. The Woodbury identity (Thm. 18.2.8 Harville, 1997):
If A and B are two invertable matrices of size n-by-n and p-by-p respectively,
and C is an arbitrary n-by-p matrix, then

(
A + CBC⊤

)−1
= A−1 − A−1C

(
B−1 + C⊤A−1C

)−1
C⊤A−1.
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Lemma 4. The Searle identity (Thm. 18.2.3 Harville, 1997):
If A, B are matrices of size p-by-n and n-by-p respectively, I denotes identity
matrices of appropriate size, and (I + AB) is nonsingular, then

(I + AB)−1 A = A (I + BA)−1 .

Lemma 5. If Σ1 and Σ2 are two nonsingular matrices of size n1-by-n1

and n2-by-n2 respectively, and A is a n2-by-n1 matrix, then:

∣∣∣AΣ1A
⊤ + Σ2

∣∣∣ = |Σ1| |Σ2|
∣∣∣Σ−1

1 + A⊤Σ−1
2 A

∣∣∣ .

(Thm. 18.1.1 Harville, 1997)

To make the notation clearer we have suppressed the matrices dependence
on Ψ in the following. Superscripts above equality signs are used to denote
the identities used in each step.

First we note that

Σ̃−1 =
(
Σν + FΣBF⊤

)−1 Lem. 3
= Σ−1

ν − Σ−1
ν FΣB|Y F⊤Σ−1

ν ,(14a)

F⊤Σ̃−1F
Lem. 3

= Σ−1
B − Σ−1

B ΣB|Y Σ−1
B ,(14b)

Σ̃−1F
Lem. 4

= Σ−1
ν FΣB|Y Σ−1

B .(14c)

Using (14) we have that

Σ−1
α|Y

(14b)
= X⊤F⊤Σ̃−1

ν FX(15a)

Σ̂
(14a) & (14b)

= −Σ̃−1FXΣα|Y X⊤F⊤Σ̃−1 + Σ̃−1,(15b)

For the determinant in (9) we now have that

∣∣∣Σ̃
∣∣∣ Lem. 5

= |Σν | |ΣB|
∣∣∣Σ−1

B|Y

∣∣∣ ,
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proving equality of the determinants. For the quadratic form in (9) we have

Y ⊤Σ̃−1X̃
(
X̃⊤Σ̃−1X̃

)−1
X̃⊤Σ̃−1Y − Y ⊤Σ̃−1Y

(15a)
= Y ⊤Σ̃−1X̃

[
Σ−1

α|Y M⊤Σ̃−1
ν FX

X⊤F⊤Σ̃−1
ν M M⊤Σ̃−1

ν M

]−1

X̃⊤Σ̃−1Y − Y ⊤Σ̃−1Y

Lem. 1 & (15b)
= Y ⊤Σ̃−1

[
FXΣα|Y X⊤F⊤ +

(
I− FXΣα|Y X⊤F⊤Σ̃−1

)

M
(
M⊤Σ̂M

)−1
M⊤

(
I − Σ̃−1FXΣα|Y X⊤F⊤

)]
Σ̃−1Y

−Y ⊤Σ̃−1Y

= Y ⊤
[(

Σ̃−1 − Σ̃−1FXΣα|Y X⊤F⊤Σ̃−1
)
M
(
M⊤Σ̂M

)−1
M⊤

(
Σ̃−1 − Σ̃−1FXΣα|Y X⊤F⊤Σ̃−1

)

−
(
Σ̃−1 − Σ̃−1FXΣα|Y X⊤F⊤Σ̃−1

)]
Y

(15b)
= Y ⊤Σ̂M

(
M⊤Σ̂M

)−1
M⊤Σ̂Y − Y ⊤Σ̂Y,

showing that quadratic forms in (9) and (12) are equal. Given the equality
of both determinants and quadratic forms we have now shown that all terms
in (9) and (12) that depend on Ψ are equal.

A.2. Computational advantage. At a first glance it is not obvious
that (12) is an improvement on (9), but it allows a much more efficient use of
the block structure in ΣB(θB) and Σν(θν). As an example the matrix Σ̃(Ψ)
in (9) is a dense N × N -matrix, implying that the computational effort of
calculating

− log
∣∣∣Σ̃(Ψ)

∣∣∣

grows at a rate of O
(
N3
)
. The corresponding term in (12),

− log |Σν(θν)| − log |ΣB(θB)| − log
∣∣∣Σ−1

B|Y (Ψ)
∣∣∣ ,

consists of the determinant of two block diagonal matrices and the determi-
nant of a dense mn × nm-matrix. The computational effort scales as

O

(
T∑

t=1

n3
t

)
, O

(
mn3

)
, and O

(
m3n3

)
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for the three components respectively. For our data the term requiring
O
(
m3n3

)
computer time will be the most time consuming. Due to the long

time period covered and the few temporal basis functions needed we have
mn ≪ N , implying that (12) should be considerably faster to evaluate than
(9). It should be noted that with a more balanced sampling design the term
requiring O

(∑
t n3

t

)
is likely to dominate over O

(
m3n3

)
. However, we note

that
∑

t n3
t ≤ N3, and (12) should still be faster to evaluate than (9). Sim-

ilair arguments can be made for the rest of the terms in the log-likelihood,
and it can be shown that the overall computational cost of (9) will grow
as O

(
N3
)
, compared to O

(
m3n3

)
(or O

(∑
t n3

t

)
) for (12). A comparison of

evaluation times is presented in Figure 5.

APPENDIX B: RESTRICTED MAXIMUM LIKELIHOOD

The REML of (6) can be found in Harville (1974) and taking logarithms
we have

2lreml(Ψ|Y ) = − (N −
m∑

i=1

pi − L) log(2π) − log
∣∣∣Σ̃(Ψ)

∣∣∣ + log
∣∣∣X̃⊤X̃

∣∣∣

− log
∣∣∣X̃⊤Σ̃−1(Ψ)X̃

∣∣∣− Y ⊤Σ̃−1(Ψ)Y

+ Y ⊤Σ̃−1(Ψ)X̃
(
X̃⊤Σ̃−1(Ψ)X̃

)−1
X̃⊤Σ̃−1(Ψ)Y.

(16)

The likelihood simplifications outlined in Appendix A can of course also
be applied to the REML in (16). First we note that, apart from constants not

depending on the Ψ, (9) and (16) only differ by the determinant
∣∣∣X̃⊤Σ̃−1X̃

∣∣∣.
Further X̃⊤Σ̃−1X̃ is a block matrix and we have that

∣∣∣X̃⊤Σ̃−1X̃
∣∣∣ Lem. 2 & (15)

=
∣∣∣Σ−1

α|Y

∣∣∣
∣∣∣M⊤Σ̂M

∣∣∣ ,

showing that the simplification of (16) is given by adding

− log
∣∣∣M⊤Σ̂(Ψ)M

∣∣∣− log
∣∣∣Σ−1

α|Y (Ψ)
∣∣∣

to (12).
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