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Abstract

A ubiquitous problem in high-dimensional analysis is the identification

of pre-defined sets that are enriched for features showing an association of

interest. In this situation, inference is performed on sets, not individual fea-

tures. We propose an approach which focuses on estimating the fraction of

non-null features in a set. We search for unions of disjoint sets (atoms), using

as the loss function a weighted average of the number of false and missed dis-

coveries. We prove that the solution is equivalent to thresholding the atomic

false discovery rate and that our approach results in a more interpretable set

analysis.

1 Introduction

Many scientific studies measure a large number of variables on each sample. These

variables are usually measurements of certain physical properties, or “features.”

In genomics, the features may be genes and the actual variables gene expression

measurements; tens or hundreds of thousands of gene expression measurements are

taken on only a few subjects. Similarly, in brain imaging studies, tens of thou-

sands of voxel intensities are measured on a small number of study participants.

In spatial epidemiology, estimates of disease prevalence are sometimes calculated

for a large number of locations, with a small number of individuals in each loca-

tion. Often, in these cases, it is the sets of variables that are of interest. Gene-set

analysis, i.e. the analysis of genomic data using set annotations related to biolog-

ical processes or pathways, is a particularly important example. Early examples

of gene-set analysis include Tavazoie et al. (1999), Mirnics et al. (2000), and Bou-

ton and Pevsner (2002). Set analyses of high-dimensional data have been devel-

oped to combine information across features, to infer associations between sets and

outcomes or phenotypes. Sets are defined by previous experimentally verified or

postulated relationships between features. Usually, a fixed number of sets K is de-

fined in advance. Each of the sets S = {S1,S2, . . . ,SK} is a subset of the collection

of features M = {1,2, . . . ,M}. Some sets are based on the spatial or geographic

arrangement of features and are naturally disjoint: For instance, a voxel may get

mapped to exactly one brain region, and a geographical location will get mapped

to exactly one county, but in general features may belong to more than one set. For

example, one gene may participate in more than one metabolic pathway.

Set-level inference can be useful in a number of ways. It can increase sta-

tistical power, by helping detect correlated changes in features within the same set,

which are too subtle to be detected in a marginal analysis (Mootha et al., 2003).
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This can be due to coregulation of gene expression within pathways, voxel inten-

sities within brain regions, or disease prevalences in locations within broader ge-

ographic regions, such as counties. Another possibility is that the signal is at the

level of the sets rather than the features. For example, the same pathway may be

altered in different tumors, but the specific genes which are altered may differ be-

tween tumors (Parsons et al. (2008)). Inferences at the level of sets are also sought

to increase interpretability: For instance, hundreds of genes may be up-regulated

in a specific phase of cell division in bacteria, though most of those genes may be-

long to a small number of known pathways. Knowing that only a few pathways

are involved is much more informative than knowing that hundreds of genes show

varying levels of expression.

Here we propose a general decision-theoretic approach for set-level anal-

ysis which focuses on estimating the fraction of non-null features in a set, rather

than using p-values. We focus on the expected number of false and missed discov-

eries (EFD and EMD), as described in Section 3. Our units of inference are non-

overlapping sets, which we call atoms. The EFD and EMD are directly interpretable

as measures of enrichment, our approach generally being equivalent to considering

the fraction of features within a set that are from the alternative distribution. Our ap-

proach combines these key ideas into a decision theory framework where we derive

estimators consisting of unions of atoms that minimize a weighted combination of

the EFD and EMD. These estimators are functions of the joint posterior distribution

of feature-specific parameters and do not require a separate statistical treatment of

feature-level and set-level analysis.

The results we present here can be summarized as follows.

1. Section 3 introduces the expected number of false discoveries and the ex-

pected number of missed discoveries in a decision-theory framework. In par-

ticular, in Theorem 1 we show that the two components of the main loss

function we consider, which represent the posterior expected number of false

discoveries and the posterior expected number of missed discoveries, may be

written in terms of only the marginal feature-level posterior probabilities.

2. Section 4 provides alternative loss functions which may be used, including

loss functions with regularization penalties and a loss function which uses

the ratio of false discoveries and missed discoveries.

3. Section 5 introduces the concept of atomic FDR and provides algorithms for

finding the Bayes estimators for the loss functions described above. For most

of the loss functions considered, an analytic closed form is provided. An

interpretation of the atomic FDR is also provided.

4. Section 6 outlines an empirical Bayes approach for estimating the feature-

level posterior probabilities and applies this approach to simulation and real
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gene expression analyses. It also discusses use of the bootstrap in obtaining

standard errors for the estimates.

2 Relationship to previous approaches

One common approach to high-dimensional data analysis is to perform inference

on a set of features indexed by M = {1,2, . . . ,M} marginally, one at a time. The

data for the mth feature is a N× 1 vector Xm, which is compared to a single N× 1

outcome vector Y . Feature level statistics are functions of the data Xm and the out-

come Y . The null hypothesis for a given feature is that it is not strongly associated

with the outcome of interest. Thus, each feature can be seen as coming either from

the null or an alternative distribution, leading to the commonly used mixture model

(Efron et al., 2001; Storey, 2002; Newton et al., 2004):

f (xm|y) = π0 f0(xm|y)+(1−π0) f1(xm|y), (1)

where f indicates the density for a feature, π0 indicates the prior probability that a

feature is from the null distribution, f0 indicates the density of the null distribution

and f1 indicates the density of the alternative distribution.

A standard approach for feature-level analysis is to then perform a statis-

tical test for each feature to assess the level of association with the outcome of

interest. For example, in genomics a test may be used to decide whether a gene is

differentially expressed between two conditions. This can be a t-test or a F-test, or

some variation on them (Storey and Tibshirani, 2003a; Baldi and Long, 2001; Cui

et al., 2005). Due to the large number of tests performed, a multiple comparison

adjustment is needed. The goal is often to control the false discovery rate (FDR)

(as in Benjamini and Hochberg (1995), Efron and Tibshirani (2002), Storey (2002),

Storey and Tibshirani (2003b), Storey (2003)). Alternatively, the posterior proba-

bilities that features are from the null or alternative distributions, or from mixture

components of interest, can be estimated using Bayes (Parmigiani et al., 2002; Do

et al., 2005) or Empirical Bayes methods (Efron et al., 2001; Newton et al., 2001;

Lönnstedt and Speed, 2002; Efron and Tibshirani, 2002; Newton and Kendziorski,

2003; Gottardo et al., 2003; Newton et al., 2004). These methods generally borrow

information across genes, but the inference is still performed one feature at a time

(marginally), and no information from outside the experiment is considered.

Most set-level inference methods combine the feature-level statistics into

set-level statistics, then perform some hypothesis test for each set. In genomics, one

approach is to individually score genes, then separate them into categories based

on these scores; the simplest scenario is to choose a single cutoff and declare the

genes above the cutoff “differentially expressed” and the genes below the cutoff
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“non-differentially expressed.” For each set a contingency table is then constructed,

which cross-classifies the genes by whether or not they are in the set and by their

category and a classical statistical test is performed, such as the hypergeometric

test (Tavazoie et al., 1999). Alternatively, a test can be performed to compare the

distributions of statistics of the genes within a set to those of all the genes (Mir-

nics et al., 2000). A method with a somewhat different flavor, gene-set enrichment

analysis (GSEA), is described in Subramanian et al. (2005) (a preliminary version

is employed in Mootha et al. (2003)). For each gene-set, it computes an enrich-

ment score by using a signed variation of the Kolmogorov-Smirnov statistic on a

list of ordered gene scores, then calculates a p-value by permuting the phenotype

labels. The Wilcoxon test can also be used for performing gene-set analysis, and

is one of the standard tools in the limma package in R, being accessed through the

geneSetTest function (Michaud et al., 2008)

Our approach focuses on estimating the fraction of features from the alter-

native distribution using the EFD and EMD (section 3), in contrast to the p-value-

based methods described above. Heller et al. (2009) propose estimating a lower

bound on the fraction of alternatives in a set by considering the ratio of the number

of rejected hypotheses in the set to the total number of hypotheses in the set, using

an adjusted p-value threshold which controls for multiple testing. We note that this

appears to be a very conservative estimate, as the features which are not rejected

do not contribute at all to the estimate, whereas our procedure uses empirical Bayes

estimates of the posterior probabilities of features being from the alternative distri-

bution (section 6). Research has also been conducted on using set-level information

to improve inference at the feature level, for example, by performing feature-level

hypothesis tests on grouped data, as in Cai and Sun (2009). The objective of such a

method is different from our present purpose, which is to perform inference at the

set level.

Despite the appeal of set level analyses, some difficulties with set analysis

and interpretation remain. (1) P-values are not interpretable on an enrichment scale,

since they are not estimates of the fractions of false and true discoveries. In particu-

lar, p-values have different interpretations for different sample sizes, and generally

set annotations cannot be expected to produce sets which all consists of the same

number of features. This can lead to sets with very different fractions of alterna-

tives having similar p-values. (2) Another problem results from the common use

of “competitive tests” (Goeman and Buhlmann (2007)) in many set-level inference

procedures, which pit a set against its complement. This results in the “zero sum

problem,” where more significant features in one set often lead to higher p-values

in other sets. (3) Lastly, most approaches perform separate analyses at the feature

and set level, so uncertainty remaining from the feature-level analysis is ignored at

the set level.
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To expand on the first point, the majority, of methods for set-level inference

rely on calculating a p-value for each set. However, p-values do not actually give

a direct indication of how much signal is present in a given set. Several common

methods for set-level inference in genomics which rely on calculating p-values are

reviewed and critiqued in the influential paper of Goeman and Buhlmann (2007).

We revisit some of their points here, namely the issues of gene sampling and com-

petitive tests, and show how our approach addresses these problems. Gene sampling

methods use permutations of the gene, as opposed to the sample, labels to obtain

a p-value. In particular, this means that the sample size is given by the number of

genes, as opposed to the number of subjects. One of the practical problems which

results from this approach is that p-values have different interpretations for differ-

ent sample sizes, with larger sample sizes often leading to smaller p-values, even

if there is less signal present. Thus, two sets of different sizes with different frac-

tions of alternatives may end up with very similar p-values. In contrast, our method

does not suffer from this problem, as the posterior probabilities that features are

from the alternative distribution are averaged within atoms (Theorem 4) after being

estimated using the data on all the subjects (section 6).

On the other hand, competitive tests consider the null hypothesis that fea-

tures in a given set are at most as often differentially expressed as features in the

complement of the set. This results in a “zero sum problem,” where a larger fraction

of alternatives in one set may lead to higher p-values in other sets. Methods based

on the Fisher exact test, the chi-squared test, the Wilcoxon rank test, and the z-test

fall into this class. Consider, for example, the case where the signal in a dataset

is represented by 10% of the features. Then take sets consisting of 10, 50, and

100 features, none of which have any signal. The larger sets will then have larger

p-values, because as the size of the set increases, the size of its complement will

decrease, and therefore the proportion of signal in the complement will increase.

Goeman and Buhlmann (2007) suggest a different null hypothesis, namely that no

genes in a gene-set represent true signal. However, this does not appear to be the

null hypothesis that most scientists would be interested in. We consider that it is

more informative, in the case of set-level inference, to move away from a hypoth-

esis framework to an estimation framework and directly estimate the quantity of

interest: the fraction of false discoveries or the enrichment of a set.
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3 Expected False Discoveries and Expected Missed

Discoveries

Let the set of features from the alternative distribution be denoted by τ ⊂M . For

example, in the case where the features are gene expression measurements, τ rep-

resents the genes which are differentially expressed between the two conditions.

If we wanted to estimate τ based on only the feature-level information, we would

simply take the estimate to be the set of all features whose statistics in X are within

certain limits. For instance, if we performed a two-sample t-test for a differential

gene expression problem, we could estimate τ by the set of all genes with p-values

below 0.05.

We focus on the case where sets are non-overlapping. For a small number of

sets, these can be obtained by breaking down sets into their largest non-overlapping

components, called atoms, as described in the Appendix. An alternative method,

which can be used for a large number of sets (for instance, when considering all the

sets in GO or KEGG), involves clustering the features using a dissimilarity mea-

sure which depends on the sets in S which are shared between features (Boca

et al., in preparation). We note that in many cases, set annotations are naturally

non-overlapping, for instance, when they represent areas of the brain in imagining

studies, individual counties in spatial epidemiology, or areas of protein localization

in proteomics. Each atom thus consists of a group of features, which may be either

from the null or alternative distributions, as seen from Equation (1). A hypothe-

sis testing approach, such as the one taken in Reiner-Benaim et al. (2007), would

perform hypothesis tests within each atom, thus considering the atoms to be dis-

joint families of related hypotheses. Benjamini and Heller (2008) inspect the case

where the same features are considered at different “map locations” and hypothesis

tests are performed to see whether the fraction of discoveries is above some fixed

threshold.

Estimating τ based on just the feature-level data would ignore the scientific

background which is represented by the atom-level information. Thus, we seek to

estimate τ using the unions of atoms in A . We denote by U the set of all possible

unions of atoms in A . We look for the set in U which maximizes the overlap with

τ by using a relevant loss function. Thus, we are in the situation of providing a

scientifically meaningful estimate of τ by solving a constrained estimation problem

where we only have elements in U as possible estimators.

Our method can be placed in the general class of decision-theoretic ap-

proaches described in the Appendix. In particular, we consider the scenario where

the discrepancy d between features does not take into account how far or close the

features are to each other. As shown in Lemma 2 in the Appendix, this is in fact
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the only discrepancy measure which allows for a tractable analysis. In this case, the

discrepancy is equivalent to the following 0−1 function which takes as inputs two

features m1 and m2:

d(m1,m2) = 1(m1 6= m2). (2)

We use the single-linkage (nearest neighbor) function to define the discrepancy

between a feature and a set: d(m,A) = min{d(m,m0) : m0 ∈ A}.
This is equivalent to saying that the discrepancy between two features is 0

if and only if the features are one and the same, otherwise it is 1. We note that in

this case the loss function is reduced to:

L(τ,U) = (1−w) ∑
m∈U\τ

d(m,τ)+w ∑
m∈τ\U

d(m,U)

= (1−w)∗ |U \ τ|+w∗ |τ \U |

= (1−w)∗Number of false discoveries +w∗ Number of missed discoveries,

where a false discovery is a feature which is not in τ but is in U and a missed dis-

covery is a feature which is in U but is not in τ . This loss function is similar to the

loss function of Cai and Sun (2009), but, while we are performing set-level infer-

ence, they are using information on sets of genes to improve gene-level inference.

When considering the posterior expected loss function, the two components be-

come the expected number of false discoveries and the expected number of missed

discoveries, which we will denote by EFD(U) and EMD(U):

L (U) = ∑
τ∈2M

L(τ,U)∗P(τ|X ,Y )

= (1−w)EFD(U)+wEMD(U).

where:

EFD(U) = Eτ|X ,Y{ ∑
m∈U\τ

d(m,τ)}=

= ∑
τ∈2M

∑
m∈U\τ

pτ

EMD(U) = Eτ|X ,Y{ ∑
m∈τ\U

d(m,U)}

= ∑
τ∈2M

∑
m∈τ\U

pτ

Similar loss functions have been used by Genovese and Wasserman (2002), Storey

(2003), and Müller et al. (2004), though not in set-level inference.
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We use the following notation for the posterior probabilities:

pτ = P(τ|X ,Y ).

We also introduce the concept of marginal feature-level posterior probabilities:

p∗U = ∑
τ∈2M ,U⊂τ

pτ ,

which represents the posterior probability that the set U is included in the set of

all features from the alternative distribution. For a specific feature m, the marginal

feature-level posterior probability is denoted:

p∗m = ∑
m∈τ

pτ ,

In Theorem 1, we simplify the form of both EFD(U) and EMD(U). In par-

ticular, both can be written as affine functions of the marginal feature-level posterior

probabilities. This yields major benefits in terms of both modelling and computa-

tion.

Theorem 1. Under the loss function described above and the single linkage prop-

erty, EFD(U) and EMD(U) can both be written as affine functions of the marginal

feature-level posterior probabilities. EFD(U) can be written as the sum of poste-

rior probabilities that the features in U are from the null distribution and EMD(U)
can be written as the sum of the posterior probabilities that the features which are

not in U are from the alternative distribution:

EFD(U) = ∑
m∈U

(1− p∗m) = |U |− ∑
m∈U

p∗m

EMD(U) = ∑
m/∈U

p∗m

In Corollary 2, we show that we can also write EFD(U) and EMD(U) in

terms of the local false discovery rate (fdr) defined in Efron and Tibshirani (2002).

Corollary 2. When considered as functions of the data, EFD(U) and EMD(U) can

be written in terms of local false discovery rates:

EFD(U) = ∑
m∈U

fdr(Xm,Ym)

EMD(U) = ∑
m/∈U

[1− fdr(Xm,Ym)]
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4 Alternative loss functions

We consider some variations on the loss function corresponding to the 0− 1 dis-

crepancy measure which was introduced earlier, by looking at what happens when

linear constraints are introduced. In order to penalize for a large number of fea-

tures in the Bayes estimator, we consider the following constrained optimization

problem:

Minimize L(τ,U) with the constraint that |U |< ρ , for some ρ > 0. This is equiva-

lent to minimizing the loss function:

Lλ
f (τ,U) = (1−w)∗ |U \ τ|+w∗ |τ \U |+λ |U | for some λ > 0

(see for instance Gill et al. (1981)).

Similarly, one may be interested in penalizing for a large number of atoms

in the Bayes estimator. For example, in a spatial epidemiology example, one may

desire to target an intervention to a fixed number of locations due to issues of cost

or work force. In such a case, we would consider the following constrained opti-

mization problem:

Minimize L(τ,U) with the constraint that |J| < η , for some η > 0, where J is the

number of atoms in U . This is equivalent to minimizing the loss function:

Lξ
a (τ,U) = (1−w)∗ |U \ τ|+w∗ |τ \U |+ξ |J| for some ξ > 0.

We remark that we could also penalize unions of atoms with a small num-

ber of genes, respectively atoms, by simply changing the signs of λ and ξ . We

could also have a loss function which incorporates penalties on both the number of

features and the number of atoms.

Alternatively, loss functions which employ the ratio of missed discoveries

and false discoveries, instead of the number of missed discoveries and false discov-

eries, may also be used. Thus, we can consider:

Lr(τ,U) = (1−w)∗
|U \ τ|

|U |
+w∗

|τ \U |

M−|U |

= (1−w)∗Ratio of false discoveries +w∗ Ratio of missed discoveries

5 Atomic FDR

5.1 Definition and results

In general, finding the Bayes estimator for the loss functions based on the 0− 1

discrepancy measure can be very computationally challenging, even after the sim-

Hosted by The Berkeley Electronic Press



plification in Theorem 1, since the number of sets in U which the posterior ex-

pected loss needs to be minimized over is 2L, where L is the total number of atoms.

We find an analytic solution for obtaining the Bayes estimator for the loss function

which weights the number of false discoveries and missed discoveries, as well as

the loss functions with regularization penalties, described in Section 4. This result,

established in Theorem 4, shows that the Bayes estimator for the loss L is found by

choosing those atoms Al ∈A with EFD less than or equal to w. This EFD can be

thought of as a (Müller et al. (2007)) or Bayesian (Sarkar and Zhou (2008)) false

discovery rate for atom Al , which we denote by Afdrl , and call the atomic false

discovery rate (atomic FDR):

Afdrl =
EFD(Al)

nl

, (3)

where EFD(Al) is the expected number of false discoveries in atom Al and nl = |Al|,
i.e. the number of features in atom l. By Corollary 2, the atomic false discovery rate

can be written as the average local false discovery rate of all the features in the atom.

Thus, the algorithm for finding the Bayes estimator corresponds to thresholding the

atomic FDR at a fixed level determined by the parameter w. For large values of w

the procedure allows more false positives, since the EFD is down-weighted in the

loss function, while small values of w more strongly weight the EFD and restrict

the resulting atomic false discovery rate. In the case where we penalize atoms with

many genes, considering Lλ
f , the Bayes estimator is equivalent to thresholding the

realized atomic FDR adjusted for a “background rate” of false discoveries λ .

We first prove a result which gives a convenient parametrization of the pos-

terior expected loss using the original loss function:

Lemma 3. The posterior expected loss L (U) which results from the 0−1 dissim-

ilarity measure may be rewritten as:

δ ′{EFDA−wn}+w1′(n−EFDA)

where δ , EFDA, n, and 1 are vectors of length L= |A |, with the elements of the first

three vectors denoting the indicators of atoms being in the estimator, the expected

number of false discoveries per atom, respectively the total number of features in

an atom:

δ = (δ1,δ2, . . . ,δL)
′

EFDA = (EFD(A1), . . . ,EFD(AL))
′

n = (n1,n2, . . . ,nL)
′

1 = (1,1, . . . ,1)′

where δl is the indicator of whether atom Al is part of U.
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The posterior expected loss functions L λ
f and L

ξ
a which correspond to the

loss functions Lλ
f (τ,U) and L

ξ
a (τ,U) (from Section 4) have similar parametriza-

tions, which are also linear in δ :

L
λ
f (t) = δ ′{EFDA−wn}+w1′(n−EFDA)+λδ ′n (4)

L
ξ

a (t) = δ ′{EFDA−wn}+w1′(n−EFDA)+ξ 1′n (5)

We provide a straightforward algorithm for obtaining the Bayes estimator for the

loss functions L, Lλ
f , and L

ξ
a , for a fixed w between 0 and 1 in Theorem 4.

Theorem 4. For a fixed value of w ∈ [0,1], analytic solutions are obtained for the

Bayes estimators for the losses L, Lλ
f , and L

ξ
a :

The indicator δl of whether atom Al is in the Bayes estimator for the loss L is:

δl = 1{Afdrl ≤ w}

The indicator δl of whether atom Al is in the Bayes estimator for the loss Lλ
f is:

δl = 1{Afdrl +λ ≤ w}

The indicator δl of whether atom Al is in the Bayes estimator for the loss L
ξ
a is:

δl = 1{Afdrl +
ξ

nl

≤ w}

We now prove a result concerning the loss function Lr from Section 4, which

considers the ratio of false discoveries and missed discoveries.

Theorem 5. The posterior expected loss Lr(U) which results from the loss function

Lr may be rewritten as:

δ ′
{
(1−w)

δ ′n
EFDA−

w

(M−δ ′n)
(n−EFDA)

}
+

w

M−δ ′n
(n−EFDA)

An analytic solution is not available in this case. However, an approximate

algorithmic solution is presented below in Algorithm 1, with further details avail-

able in the Appendix.
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5.2 Interpretation

The interpretation of the atomic FDR (Afdr) is the expected fraction of null features

in an atom. Theorem 4 helps us find the Bayes estimator associated with loss func-

tion L: it is sufficient to consider atoms which have Afdr below a threshold w. For

the loss functions Lλ
f and L

ξ
a , which penalize estimates for including large num-

bers of features, respectively atoms, the atoms included in the estimator are also

characterized solely by the fact that Afdr is below a certain threshold: respectively

w−λ and w− ξ
nl

for the two loss functions, where nl is the number of features in

the atom. The Afdr also has a direct interpretation in terms of enrichment when

it is compared to the average posterior probability that a feature is from the null

distribution. Depending on the specific application, not all features may be anno-

tated to a set. For example, not all genes participate in metabolic pathways. In this

case, a decision needs to be made whether the comparison should be to the aver-

age posterior probability over all features or just over the features annotated to sets.

When considering applied examples, it may be more intuitive to look at 1−Afdr,

which is the expected fraction of alternative features in an atom (or the expected

“true discovery rate”). Therefore an estimate Âfdr of Afdr is also an estimate of the

fraction of null features in an atom, while an estimate 1− Âfdr of 1−Afdr is also

an estimate of the fraction of alternative features in an atom.

6 Applications

6.1 Empirical Bayes estimates of posterior probabilities

We initially perform feature-level statistical inference, then translate it to the set

level. The feature level statistics represent information from the present study or

studies. We combine this information with prior knowledge, represented by anno-

tations placing the features into sets. We only consider non-overlapping sets for

set-level inference. If the sets we start out with are overlapping, we use the an-

notations to obtain non-overlapping sets, which we call atoms (see section 3 and

Appendix). We then calculate the expected missed discoveries and false discov-

eries for every atom, and use this to obtain a Bayes estimator corresponding to a

particular loss function. This workflow is summarized in Figure 1.

In our illustrations, we estimated the feature-level posterior probabilities us-

ing an Empirical Bayes approach, following the lead of Efron and Tibshirani (2002)
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and Newton and Kendziorski (2003) to estimate p∗m using the form in Remark 2:

p̂∗m = 1− ̂fdr(Xm|Y ) = 1− π̂0

̂f0(Xm|Y )

f (Xm|Y )
. (6)

In particular, we use the nonparametric approach detailed in Storey et al. (2005).

The steps are detailed in Algorithm 2. We consider 20 simulations under the null

to be sufficient and we take the number of equally spaced knots to be equal to the

total number of features.

6.2 Simulations

We carried out simulations which compared our method to a representative compet-

itive testing method which relies on the Wilcoxon rank test and is available in the

limma package in R (accessed through an interface developed for Schaeffer et al.

(2008)). We calculated p-values for the limma method, as well as q-values, which

are adjusted p-values to control the FDR for independent hypothesis tests (Ben-

jamini and Hochberg, 1995). In each simulation, the features which are from the al-

ternative distribution are draws from a normal distribution with mean 1 and variance

1/15, while remaining features are draws from a normal distribution with mean 0

and variance 1/15. For each atom l, we also provide the estimate of 1−Afdrl ,

1− Âfdrl , for our method, where Afdrl is the atomic FDR, as described in Equation

(3). 1−Afdrl can thus be interpreted as the expected“true discovery rate.” An atom

is included in the Bayes estimator if 1− Âfdrl ≥ 1−w, for a fixed weight w, as seen

from Theorem 4.

We first consider an example where two sets (1 and 2) having 50 and 100

genes have an overlap of 20 genes and 60%, respectively 40%, differentially ex-

pressed genes. In scenario (A), there are no differentially expressed genes common

to sets 1 and 2, whereas in scenario (B), all of the genes common to sets 1 and 2 are

differentially expressed. This example is shown in Figure 1 in the Appendix. We

performed 100 simulations with these four sets (1A, 1B, 2A, 2B). We give the re-

sults from the limma method in Table 1. We note that, since Set 1A and Set 2A and

Set 1B and Set 2B are overlapping, the results from this test are difficult to inter-

pret, since it is unclear where the difference in p-values comes from. In fact, Set 1A

and Set 2A have no features in common which are from the alternative distribution,

while Set 1B and Set 2B have 20 such features in common. In Table 2 we present

the results which use our method and are applied on the atoms we obtained from

simply taking the intersections and differences of the original sets. The p-values

for the individual atoms presented in Table 1 are much more interpretable, and the

estimates of 1−Afdr even more so.
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We performed another set of 100 simulations, with 2500 features, 5% of

which were from the alternative distribution. These 125 features were distributed

among 5 atoms of size 50, which had different fractions of alternatives, of 0.9, 0.7,

0.5, 0.3, and 0.1. We also considered an atom of size 50 with no features from the

alternative distribution, for comparison. The remaining features were not placed

in any atoms. The mean posterior probability over the 100 simulation runs was

estimated to be 0.068, with a standard deviation of 0.021, which is quite close to

the true value of 0.05. In Table 3 we present the results which compare our method

to the limma method. We note that our method provides much more interpretable

results. The limma method gives an average q-value of 0.011 for a fraction of

alternatives of 0.3, with a standard deviation of 0.03, which means that for many of

the simulation runs this set would not be considered significant. This is despite the

fact that a fraction of alternatives 0.3 is much higher than the background fraction

of 0.05. This effect is even more pronounced for a fraction of alternatives of 0.1,

where the mean q-value is 0.407.

Boxplots of 1− Âfdr and the q-values versus the true fractions of alterna-

tives for the simulations presented in Table 3 are shown in Figure 2. In the ideal

scenario, the mean value of 1− Âfdr would be close to the true fraction of alter-

natives. Given that the posterior probabilities are estimated to be between 0 and 1,

we expect a slight anti-conservative bias for the sets with low fractions of alterna-

tives and a conservative bias for the sets with high fractions of alternatives, which

is what we see in the plot in the left panel. The plot in the right panel shows that the

p-values have a very wide spread for the low fractions of alternatives, but there is

nearly no spread for the higher fractions of alternatives, highlighting the difference

in interpretation between estimated fraction of alternatives and significance tests.

We also explored the effect of the atom size on both our method and the

limma method. We considered 2500 features again, 5% of which are from the

alternative distribution. We took 3 atoms, each having a fraction of alternatives

of 0.5, but different sizes: 10, 50, and 100 features. The results are displayed in

Table 4. For our method, the mean estimate over the 100 runs is similar across

the different set sizes. As expected, for the limma method, the p-values and q-

values for the atom of size 10 is much higher than for the other two atoms. As

noted in Section 2 and confirmed in this simulation, the p-values in set inference

methods which employ feature sampling have different interpretations for different

set sizes. Thus, the results from the limma method are not particularly interpretable

in this case. Our decision theoretic, estimation-oriented framework provides a much

clearer interpretation.

We also considered the impact of the atom size for atoms which have only

null features. Once again, we used 2500 features total, 5% of which were from the
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alternative distribution. As in the previous example, we considered atoms of sizes

10, 50, and 100. Whereas our method gives an estimated mean Âfdr between 0.961

and 0.985 for each of the three atoms, with standard errors smaller than 0.04, the

limma metho results in p-values which are increasingly skewed towards 1 as the

atom size increases. This is due to its feature-sampling and competitive, as noted

in Section 2: for atoms with no features from the alternative, as the atom size in-

creases, the fraction of features from the alternative distribution in the complement

of the atom increases. In Figure 3, we show histograms exhibiting this behavior for

the different sets, over 100 runs.

We also compared the Bayes estimators resulting from the loss function

L which weights the number of false discoveries and missed discoveries to those

resulting from the other loss functions we introduced in Section 4 , namely Lλ
f , L

ξ
a ,

and Lr. We compared the results on 100 simulations with 2250 features, 10% of

which were from the alternative distribution. We considered 8 atoms, 4 of size 50

and 4 of size 100. For each of the two sizes considered, atoms had fractions of

alternatives of 0, 0.1, 0.5, or 0.9. The results are presented in Table 5. We used

λ = 0.20 and ξ = 5. The most frequently selected Bayes estimators from the 100

runs were compared to the ideal scenario, where the features from the alternative

and null distributions are given posterior probabilities of 1, respectively 0. We note

that the interpretation of w for the loss function Lr is different from that for the other

three loss functions. In general, the estimators which were commonly chosen in the

simulation runs were subsets of the one in the ideal scenario.

6.3 Gene-set data analysis

We perform two data analyses on genomic data, using standard gene-sets which

represent chromosomal regions and KEGG sets. We first present an analysis of a

dataset from Subramanian et al. (2005), which compares mRNA expression pro-

files from lymphoblastoid cell lines of 15 males and 17 females. This data was

originally analyzed via the GSEA method from Subramanian et al. (2005), and was

later analyzed with a different method, which used t-tests, in Irizarry et al. (2009).

The gene-sets used represented chromosomal regions. For illustration, we excluded

40 of the original 212 sets, in order to obtain nonoverlapping atoms. We compared

the methods in Subramanian et al. (2005) and Irizarry et al. (2009), as well as the

limma method, to our method. The results from the top ten sets using our method

are presented in Table 6.

The overall estimated expected fraction of false discoveries is 0.976. The set

which has the lowest Âfdr with our method is the only set which had a chromosomal
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region on the Y chromosome, and it also ranked first in terms of p-values and q-

values with the other two methods. Given that the primary difference between the

two group is gender, it can serve as a proof of principle. We note that our method is

much more interpretable than methods which rely on p-values or q-values: While

the estimate of the fraction of alternatives in the set chrYq11 is substantially higher

than both the overall estimate and the estimate for the set ranked second, it might

not be considered extremely high in absolute terms. Therefore, providing the actual

estimate and allowing direct comparisons appears to be much more useful than

trying to understand the difference between a q-value of nearly 0 and a q-value of

over 0.99.

We further analyzed a dataset from Sotiriou et al. (2006), consisting of ex-

pression microarrays from breast tumors. We looked at a subset of untreated tumors,

considering the differential expression between ER-positive and ER-negative sam-

ples. 10 of the samples were ER-negative, 53 were ER-positive. Using the KEGG

annotations for 10 pathways, which resulted in 22 atoms, we note that the strongest

signal is found in the atom represented by one of the three-way intersections. Re-

sults are shown in Table 7.

6.4 Brain ROI data analysis

We also perform an analysis involving brain imaging data arising from functional

magnetic resonance imaging (fMRI), where each set is a region of interest (ROI). A

common problem in fMRI is the analysis of so-called group contrast data (Friston

et al., 2007). Here, parameters from a first-stage subject-specific regression analysis

are compared across subjects in standardized space. Each data point is then a map

of regression coefficients, conceptually representing a subject’s blood oxygen level

dependent (BOLD) response to an experimental stimulus. In this case, the stimu-

lus presented at the subject level was the presentation of famous and non-famous

faces (Henson et al., 2002). The contrast of under study compared the appearance

of a face regardless of fame status to background. There were 12 subjects and we

considered the use of a canonical haemodynamic response function, or HRF, the

function that represents the shape of the BOLD response to a stimulus. Our test con-

sidered group level activation. That is, considering areas of common response to the

task across subjects. Following the SPM paradigm, this implies a one sample t-test

applied voxel by voxel to the contrast data. The data are freely available from the

Statistical Parametric Mapping (SPM) web site (http://www.fil.ion.ucl.ac.uk/spm/)

where further background information and details on preprocessing is given.

In this setting, set-level analysis requires a parcellation of the brain. There

are several methods of defining such sets, including: decomposing the imaging
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space at multiple resolutions, using functional clustering, and using a labeled anatom-

ical map. We use the latter; specifically, the anatomical decomposition given by

Tzourio-Mazoyer et al. (2002). As the anatomical atlas was at a finer resolution

than the observed data, we down-sampled it to the lower resolution. This leads

to small issues at boundary voxels of the parcellation that were not consequential

for the overall analysis by impacting a very small percentage of tests. 22 of the

brain regions had 1− Âfdr greater than 0.75 and 11 had 1− Âfdr greater than 0.85.

These regions are highlighted in Figure 4. The results show differences in the oc-

cipital lobe and parts of the frontal and parietal. These results are not surprising, as

the occipital lobe is associated with vision, and the task is visual, while the cortical

group activation likely is associated with processing the visual information.

6.5 Obtaining standard errors via the bootstrap

We can easily obtain standard errors for the estimate 1− Âfdr by using a boot-

strapping approach. In each bootstrap iteration, we sample with replacement from

the cases and, separately, from the controls, re-estimate the feature-level poste-

rior probabilities based on the new feature-level statistics, and obtain bootstrapped

values of 1− Âfdr. 100 such bootstrap iterations were used with the data from

Sotiriou et al. (2006) concerning differential expression between ER-negative and

ER-positive breast tumors. The bootstrap standard deviations for the 22 atoms de-

scribed in the previous section are all between 0.065 and 0.176.

7 Discussion

We introduced a general approach for set-level inference for high-dimensional data,

which casts the problem in a decision-theoretic framework and focuses on esti-

mation rather than testing. Set-level inference is an area of increasing interest in

many areas of science, because of the necessity of combining quantitative feature-

level data with annotations resulting from alternative sources of information. Our

method introduces the concept that set-level inference is best performed for dis-

joint sets (atoms), in order to obtain increased scientific clarity and interpretability.

We discuss in detail an implementation that focuses on quantifying the differences

between sets based on the expected number of false discoveries (EFD) and the ex-

pected number of missed discoveries (EMD). These have a clear interpretation and

provide information about the question of greatest interest, which relates to quanti-

fying the fraction of alternatives in each set.
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Our approach introduces a new paradigm in set-level inference. Most present

methods are based on performing a hypothesis test for each set. The p-values thus

obtained are fed into a set-level analysis which in turn requires a multiple testing

adjustment. The statistical properties of this overall strategy are difficult to inter-

pret. We provide a rigorous unified framework for feature and set-level analysis.

Our estimates have clearly defined optimality properties and are scientifically inter-

pretable.

We show that the loss function defined as the weighted sum of false dis-

coveries and missed discoveries for any union of atoms, can be reduced to a form

which depends only on the marginal feature-level posterior probabilities. These

probabilities can easily be estimated using existing Empirical Bayes methods. This

simplification enables us to obtain an easy algorithm for obtaining the Bayes esti-

mator, which is equivalent to setting a threshold and only letting those atoms whose

realized atomic false discovery rate is below it to enter the Bayes estimator. We also

provide alternate loss functions: Thus, we may either introduce linear constraints,

which are equivalent to a regularization penalty, or consider the fractions of missed

discoveries and false discoveries.
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Appendix A: Proofs of results from main manuscript

Proof of Theorem 1. Using Lemma 6 from the Appendix C:

EFD(U) = ∑
τ∈2M

∑
m∈U\τ

pτ = ∑
m∈U

∑
τ∈2M ,m/∈τ

pτ = ∑
m∈U

(1− p∗m) = |U |− ∑
m∈U

p∗m

EMD(U) = ∑
τ∈2M

∑
m∈τ\U

pτ = ∑
m/∈U

p∗m

Proof of Corollary 2. By the mixture model in Equation (1), when considered as

functions of the data, the marginal feature-level posterior probabilities can be rewrit-

ten as:

p∗m = P(feature m is from the alternative distribution|X ,Y )

= P(feature m is from the alternative distribution|Xm,Y )

= 1−P(feature m is from the null distribution|Xm,Y )

= 1−π0
f0(Xm|Y )

f (Xm|Y )

= 1− fdr(Xm|Y )

Thus, the results of Theorem 1 may be rewritten as:

EFD(U) = ∑
m∈U

fdr(Xm,Ym)

EMD(U) = ∑
m/∈U

[1− fdr(Xm,Ym)]

Proof of Lemma 3.

L (δ ) = (1−w) ∑
m∈U

(1− p∗m)+w ∑
m/∈U

p∗m

= (1−w) ∑
Al∈U

EFD(Al)+w ∑
Al /∈U

(nl−EFD(Al))

= (1−w)δ ′EFDA +w(1−δ )′(n−EFDA)

= δ ′{EFDA−wn}+w1′(n−EFDA)
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Proof of Theorem 4. The posterior expected losses of L, Lλ
f , and L

ξ
a can be parametrized

as affine functions of δ , for a fixed w between 0 and 1. Any affine function of δ ,

h(δ ) = δ ′a+b,δ ∈ {0,1}J,a∈RJ,b∈R is minimized when δ j = 1{a j ≤ 0}, since

h(t) is minimized when δ ′a is minimized. This is a linear function in each compo-

nent δ j of δ , and if we minimize it in each component we also minimize it overall.

As a result, it is minimized by choosing to sum only over those components of a

which are negative or zero.

Proof of Theorem 5.

Lr(δ ) = (1−w)
∑m∈U(1− p∗m)

|U |
+w

∑n/∈U p∗m

M−|U |

= (1−w)
∑Al∈U EFD(Al)

∑A j∈U nl

+w
∑Al /∈U(nl−EFD(Al))

∑Al /∈U nl

= (1−w)
δ ′EFDA

δ ′n
+w

(1−δ )′(n−EFDA)

M−δ ′n

= δ ′
{
(1−w)

δ ′n
EFDA−

w

(M−δ ′n)
(n−EFDA)

}
+

w

M−δ ′n
(n−EFDA)

Appendix B: Atoms

Overlapping sets of features may result in erroneous statistical inferences by induc-

ing correlations between sets. For example, in the case of methods which are based

on calculating a p-value for each set, multiple testing adjustments can be compli-

cated by correlations between the hypotheses. Overlap can also cause issues with

interpretability, e.g. if a large set in S gets a poor score, but a smaller set which

shares a large fraction of its genes with the large gene-set gets a good score, it is

unclear where this difference comes from. See Figure 5 for an example in terms of

gene-sets and their fraction of differentially expressed genes: In both (A) and (B),

the smaller set (set 1) has 50 genes, 30 of which are differentially expressed, the

larger set (set 2) has 100 genes, 40 of which are differentially expressed, and their

intersection has 20 genes. However, in panel (A), none of the genes in the intersec-

tion is differentially expressed, whereas in (B), they are all differentially expressed.

The percent of differentially expressed genes in the difference between sets 2 and 1

varied greatly between the two cases (50% and 25%, respectively).

Here we consider only non-overlapping sets, which we call atoms. By con-

sidering only non-overlapping sets we avoid the difficulties in analysis and inter-

pretation from overlap. We let A be the set of atoms which we obtain from the

Hosted by The Berkeley Electronic Press



sets, S where A = {A1, . . . ,AL} has L different non-overlapping sets. Each ele-

ment of A is a subset of an element in S and the intersection of any two elements

in A is empty. One way to obtain atoms is to divide the sets into their largest

non-overlapping subunits, so that the collection of atoms A is defined as the set of

minimal cardinality which has the following properties:

1. Given any set S ∈S , there exists I ∈ {1, . . . ,L} such that S = ∪i∈I Ai.

2. Given any atoms Ai and A j in A with i 6= j, Ai∩A j = /0.

In the examples shown in Figure 5 (A) and (B), this is a very natural step to take,

as we can simply consider three atoms, consisting of the intersection between sets

1 and 2, the difference between set 1 and set 2, and the difference between set 2

and set 1. In particular, in Figure 5 (A), there appear to be two disjoint sets with

large fractions of alternatives, whereas in Figure 5 (B), there seems to be a common

signal between sets 1 and 2. Hence, it is more informative to split the overlapping

sets.

Appendix C: Decision theory framework

We consider a decision theory framework to integrate the feature-level and set-level

inference. While the concept is general, we detail it here in terms of a loss function

that is linear in two components, one relating to false discoveries and the other to

missed discoveries. Within this context we study conditions under which the pos-

terior expected loss can be written in terms of feature-level posterior probabilities.

The discrepancy between τ and a candidate estimator U in U can be repre-

sented by a loss function. We consider the following general class of loss functions,

which depend on a discrepancy function d and a fixed constant w ∈ [0,1]:

L(τ,U) = (1−w) ∑
m∈U\τ

d(m,τ)+w ∑
m∈τ\U

d(m,U) (7)

for all U ∈U . We note that U \τ represents the set of false discoveries, while τ \U

represents the set of missed discoveries if we were to estimate τ by U . Thus, the

loss function is linear in two components, the first one measuring how close features

which are false discoveries are to the set of features from the alternative distribution

(τ), the second one measuring how close features which are missed discoveries are

to the candidate estimator (U).

We consider general discrepancy measures d between features in M which satisfy:

d : M ×M −> [0,∞)
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d(m,m) = 0 for any m ∈M

d(m1,m2) = d(m2,m1) for any m1,m2 ∈M

We could use for example the single-linkage (nearest neighbor) function to define

the discrepancy between a feature and a set d(m,A) := min{d(m,m0) : m0 ∈ A}.
Based on the loss function L, we get the following posterior expected loss:

L (U) = ∑
τ∈2M

L(τ,U)∗P(τ|X ,Y )

where 2M is the power set of M and P(τ|X ,Y ) is the posterior probability of set

τ exactly representing the set of features which are from the alternative distribu-

tion. In particular, P(τ|X ,Y ) can be seen as a discrete probability distribution with

support 2M . It fully reflects uncertainty from the feature-level modeling and de-

pendencies between features.

We use the following notation for the posterior probabilities, for simplicity:

pτ = P(τ|X ,Y )

Thus, the posterior expected loss may be written as:

L (U) = (1−w) ∑
τ∈2M

∑
n∈U\τ

d(m,τ)pτ +w ∑
τ∈2M

∑
n∈τ\U

d(m,U)pτ

= (1−w)Eτ|X ,Y{ ∑
m∈U\τ

d(m,τ)}+wEτ|X ,Y{ ∑
m∈τ\U

d(m,U)}

The two components may be interpreted as the posterior expected value of the sum

of distances from each false discovery (m ∈U \ τ) to the set of features from the

alternative distribution (τ) and the posterior expected value of the sum of distances

from each missed discovery (m ∈ τ \U) to the set of all discoveries (U).

The posterior expected loss is written in terms of posterior set-level proba-

bilities. In order to obtain a Bayes estimator, we would need to minimize it, which

could be extremely complicated from a modeling point of view, because we would

need to model the joint distribution of all features. It would also be extremely com-

putationally intensive, as the number of unions of atoms is 2L, where we recall that

L is the total number of atoms.

It would be much easier to estimate the posterior expected loss for a partic-

ular set and to find the union of atoms which minimizes it if we could write it in

terms of the posterior probabilities of individual features being from the alternative

distribution. We call these probabilities marginal feature-level posterior probabil-

ities. They can be estimated in a relatively straight-forward manner, by building
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a probability model and using a fully Bayesian framework or an Empirical Bayes

(EB) framework.

We introduce the following notation for the marginal posterior probability

for a set U , which is the sum of all posterior probabilities of sets which include U :

p∗U = ∑
τ∈2M ,U⊂τ

pτ

It represents the posterior probability that the set U is included in the set of all

features from the alternative distribution. For specific cases we can simply write

out the features in the set, e.g. p12 = p21 = p{1,2}. The marginal feature-level

posterior probabilities are a specific case of this, where the set represents a single

feature, i.e.:

p∗m = ∑
m∈τ

pτ

We prove a lemma which simplifies the form of the two components of the

posterior expected loss function. Note, in particular, that Eτ|X ,Y{∑m∈τ\U d(m,U)}
can be written as a linear function of marginal feature-level posterior probabilities.

Lemma 6. Under the loss function described in equation (7), in the case of a gen-

eral discrepancy measure d and single linkage, the following simplified forms of

Eτ|X ,Y{∑m∈U\τ d(m,τ)} and Eτ|X ,Y{∑m∈τ\U d(m,U)} are obtained:

Eτ|X ,Y{ ∑
m∈U\τ

d(m,τ)}= ∑
τ∈2M

∑
m∈U\τ

d(m,τ)pτ = ∑
m∈U

∑
τ∈2M ,m/∈τ

d(m,τ)pτ

Eτ|X ,Y{ ∑
m∈τ\U

d(m,U)}= ∑
τ∈2M

∑
m∈τ\U

d(m,U)pτ = ∑
m/∈U

d(m,U)p∗m

Proof.

∑
m∈U

∑
τ∈2M ,m/∈τ

d(m,τ)pτ = ∑
τ∈2M ,m∈U\τ

d(m,τ)pτ = ∑
τ∈2M

∑
m∈U\τ

d(m,τ)pτ

∑
m/∈U

d(m,U)p∗m = ∑
m/∈U

d(m,U) ∑
τ∈2M ,m∈τ

pτ = ∑
m∈τ\U,τ∈2M

d(m,U)pτ

= ∑
τ∈2M

∑
m∈τ\U

d(m,U)pτ

We now show that Eτ|X ,Y{∑m∈U\τ d(m,τ)} cannot be written as an affine

function of marginal feature-level posterior probabilities for a general discrepancy
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measure d which takes into account how far or close features are to each other, in

the case where the single linkage property holds. Thus, in general, to calculate the

posterior expected loss, we need to model the joint distribution of all the features.

This also leads to much more complex computations.

Lemma 7. Under the loss function described in equation (7), in the case of a gen-

eral discrepancy measure d and single linkage, Eτ|X ,Y{∑m∈U\τ d(m,τ)} cannot

be written as an affine function of marginal feature-level posterior probabilities.

Therefore L (U) also cannot be written as an affine function of marginal feature-

level posterior probabilities.

Proof. We show that we cannot write Eτ|X ,Y{∑m∈U\τ d(m,τ)} as an affine function

of the marginal feature-level posterior probabilities.

Step 1. We first show that, for any proper subset ν ( 2M , setting any affine

of the posterior probabilities of the sets in ν equal to 0 forces all the coefficients to

be 0, i.e.:

Denote the elements in ν by τl1 , . . . ,τl|ν |
. We will show that setting any

affine function of these elements to 0 implies that all the coefficients are 0. Thus,

we have:

∑
τ∈ν

aτ pτ +b = 0 (8)

We note that if ν = {τl1 , . . . ,τl|ν |
} ( 2M , then pτl1

+ . . .+ pτl|ν |
≤ 1 and

pτl1
≥ 0, . . . , pτl|ν |

≥ 0. Plugging in pτl1
= 1, pτl2

= . . . = pτl|ν |
= 0, followed by

pτl1
= 1

2
, pτl2

= . . . = pτl|ν |
= 0, and solving the resulting system of equations in

aτl1
and b results in aτl1

= b = 0. From here on, plugging in only one non-zero

probability for each τ ∈ ν in turn will result in aτl2
= . . .= aτl|ν |

= 0.

Step 2. We now apply the result in Step 1 to show that Eτ|X ,Y{∑m∈U\τ d(m,τ)}
can in general not be written as an affine function of the marginal feature-level pos-

terior probabilities. We note that we have:

Eτ|X ,Y{ ∑
m∈U\τ

d(m,τ)}= ∑
τ∈2M

∑
m∈U\τ

d(m,τ)pτ = ∑
τ∈2M ,τ 6=U

{ ∑
m∈U\τ

d(m,τ)}pτ (9)

since d(m,τ) = 0 if m ∈ τ . Using a simple transformation, we note that showing

that Eτ|X ,Y{∑m∈U\τ d(m,τ)} we need to show that we can find am and b such that:

Eτ|X ,Y{ ∑
m∈U\τ

d(m,τ)} = ∑
m∈M

am(1− p∗m)+b (10)
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= ∑
m∈M

am ∑
τ∈2M ,m/∈τ

pτ +b

= ∑
τ∈2M

∑
m/∈M \τ

am pτ +b

= ∑
τ∈2M ,τ 6=M

{ ∑
m∈M \τ

am}pτ +b

The coefficients am and b are more accurately written as am(U) and b(U), but we

use the simpler notation here. Setting the expressions in 9 and 10 equal to each

other, we get:

∑
τ∈2M ,τ 6=U

{ ∑
m∈U\τ

d(m,τ)}pτ = ∑
τ∈2M ,τ 6=M

{ ∑
m∈M \τ

am}pτ +b

We may now take ν = 2M \M , which is a proper subset of 2M . Using the result

in Step 1, we get:

∑
m∈U\τ

am = ∑
m∈U\τ

d(m,τ),

all the other coefficients being 0. Now consider cycling through all the sets τ such

that U \ τ consists of a single element. We thus obtain:

d(m,τ) = am for all m ∈U \ τ

regardless of how many elements there are in τ \U and how far away they are from

the elements in U \ τ .

To illustrate this last portion of the proof, consider M = {1,2,3} and U =
{1,2}. Then:

τ = {2} => d(1,{2}) = a1

τ = {2,3} => d(1,{2,3}) = a1

Given our use of the single-linkage property, d(1,{2,3})=min{d(1,{2}),d(1,{3})}.
So if d(1,{3}) ≥ d(1,{2}), then d(1,{2}) = d(1,{3}), which means that the dis-

crepancy measure d does not take into account how far or close features are to each

other.
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Appendix D: Algorithmic solution for the minimiza-

tion of Lr(δ )

We first consider the solution to the problem where we constrain the size of the

Bayes estimator |U | = δ ′n to some size ρ . In this case, we get the following con-

strained linear binary problem:

min
δ

δ ′
{
(1−w)

ρ
EFDA−

w

(M−ρ)
(n−EFDA)

}
(11)

s.t. δ ′n = ρ

This is an instance of the well-known 0-1 knapsack problem Garey and

Johnson (1979), which can be solved approximately by Dantzig’s greedy algorithm.

This uses a sorting strategy where atoms are sorted increasingly by the quantity

(1−w)

ρ
A f drl−

w

(M−ρ)
(1−A f drl)

and tl is set to 1, in order, until δ ′n = ρ . Note that when ρ = M/2, atoms are sorted

according to A f drl as in Theorem 4.

In principle, to solve the fractional problem, one can solve the 0-1 knapsack

problem for each possible value of ρ = |U | and select the best solution. Since ρ
can range over a large number of possible values, we use a strategy based on the

projected gradient of the fractional function at a given point to find a small number

of estimator sizes |U | to test.

In summary, the algorithm is as follows: (1) initialize ρ; (2) find solution

δ ρ by solving the 0-1 knapsack problem; (3) find point s as the minimizer of Lr(δ )
along the linear-piecewise path δ ρ −α(∇δ Lr(δ ρ))+ where (∇δ Lr(δ ρ))+ is the

projected gradient at δ ρ (see Wright and Nocedal (2006)); (4) stop if s′n = ρ ,

otherwise set ρ = s′n and repeat step (2). Step (3) is a univariate optimization prob-

lem which can be solved using any univariate numerical minimization technique

(golden-section method, for instance).
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Algorithms

Algorithm 1 Algorithm to obtain the Bayes estimator for the loss function Lr.

ρ ←min{n}.
Iiter ← 0.

while Iiter ≤ Imax
iter do

Find δ ρ = minδ δ ′
{

(1−w)
ρ EFDA−

w
(M−ρ)(n−EFDA)

}
, along δ ′n = ρ .

Find s = minδ Lr(δ ), along δ = δ ρ −α(∇δ Lr(δ ρ))+.

if s′n = ρ then

stop.

else

ρ ← s′n.

end if

Iiter ← Iiter +1

end while
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Algorithm 2 Algorithm to obtain empirical Bayes estimates of the feature-level

posterior probabilies.

1: Obtain B sets of null statistics by using distributional assumptions.

2: Denote the null statistics by Xb
m0, where m indexes the features, 1≤m≤M and

b the simulations under the null, 1≤ b≤ B.

3: Estimate the probability π0 of a randomly selected feature being from the null

distribution for a series of thresholds c by π̂0(c) =
#{Fm≤c}

#{F0b
m ≤c}/B

.

4: Choose the estimate π̂0 by smoothing over π̂0(c), employing the approach de-

tailed in Storey and Tibshirani (2003b). If the number of features is less than

500, make the conservative assumption that π0 is 1.

5: Estimate the ratio f0(Xm)/ f (Xm) for every feature m by logistic regression,

considering the observed statistics (Xm) as “successes” and the nulll statistics

(Xb
m0) as “failures,” employing the approach in Anderson and Blair (1982), with

a natural cubic spline using a fixed number of equally spaced knots, as in Green

and Silverman (1994).

6: Estimate the posterior probability of a specific feature m being from the alter-

native distribution by using the estimates for π0 and f0/ f from steps 4 and 5

above and the plug-in formula in Equation (6).
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Figures

Figure 1: Workflow diagram. Note that we are combining two sources of infor-

mation: The feature-level information from the present study, and the annotation

information, which represents a distillation of prior scientific knowledge. They are

combined to obtain the atom-level EFD (expected false discoveries) and EMD (ex-

pected missed discoveries), and finally, the Bayes estimator.

����������	��


����
��������
�

����������	��


���������


�������������

���


�����������

����


�����������

�������	��
���
���
���

�����
���������


������
��
������

�������


�����

�����


��� ���!�

http://biostats.bepress.com/jhubiostat/paper211



Figure 2: True fractions of alternatives for the simulated datasets described in Table

3. Each boxplot shows the values over the 100 simulation runs for 1− Âfdr (left

panel) and for the q-values (right panel) for different fractions of alternatives. The

blue line in the left panel represents the ideal scenario, where 1− Âfdr perfectly

estimates the fraction of alternatives.
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Figure 3: Histograms of the p-values obtained for the limma method for atoms of

sizes 10, 50, and 100 which have no features from the alternative distribution. Note

as the set size increases, the histograms are increasingly skewed towards 1. The

mean p-value for the atom of size 10 is 0.606, while for the atom of size 50 it is

0.646, and for the atom of size 100 it is 0.751.
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Figure 4: Rendered brain images in three orientations with the highlighted regions

being those with 1− Âfdr greater than 0.75 (in yellow), respectively 0.85 (in red).
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Figure 5: Set 1 has 60% of genes differentially expressed (30/50), while set 2 has

40% of genes differentially expressed (40/100). However, in (A) there are no dif-

ferentially expressed genes common to sets 1 and 2, and although set 2 has a lower

percentage of differentially expressed genes compared to set 1, the percentage of

differentially expressed genes which are in set 2 but not in set 1 is higher than the

percentage of differentially expressed genes which are in set 2 (50% compared to

40%). In (B), the percentage of differentially expressed genes which are in set 2 but

not in set 1 (25%) is lower than the percentage of differentially expressed genes in

set 2 (40%).
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Tables

Table 1: Summary from 100 simulations using sets 1A, 1B, 2A, and 2B. using the

limma method. The mean and standard deviation of the p-values and q-values are

calculated over the 100 runs. Set 1A and Set 2A have a fraction of alternatives of

0.6, while Set 1B and Set 2B have a fraction of alternatives of 0.4. Since the sets

are overlapping, the test gives no information about where the large difference in

p-values come from.

Set Fract. of mean sd mean sd

alt. p-value p-value q-value q-value

1 1A 0.6 0.045 0.057 0.109 0.115

2 2A 0.4 0.887 0.099 0.96 0.049

3 1B 0.6 0.05 0.054 0.119 0.115

4 2B 0.4 0.883 0.089 0.968 0.04

Hosted by The Berkeley Electronic Press



Table 2: Summary from 100 simulations using sets 1A, 1B, 2A, and 2B, employing

our method with the atoms obtained from the intersections and differences of the

original sets. The mean and standard deviation of the estimated 1−Afdr and the

mean and standard deviation of the p-values and q-values are calculated over the

100 runs. We note that the results are much more interpretable than those in Table

1.

Atom Fract. of mean sd mean sd mean sd

alt. 1− Âfdr 1− Âfdr p-value p-value q-value q-value

1 1A \ 2A 1 0.916 0.038 <0.001 <0.001 <0.001 <0.001

2 1A ∩ 2A 0 0.024 0.03 0.999 0.001 1 <0.001

3 2A \ 1A 0.5 0.467 0.019 0.294 0.166 0.572 0.301

4 1B \ 2B 0.33 0.318 0.028 0.864 0.112 0.993 0.033

5 1B ∩ 2B 1 0.914 0.044 <0.001 <0.001 <0.001 <0.001

6 2B \ 1B 0.25 0.245 0.018 1 <0.001 1 <0.001
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Table 3: Summary from 100 simulations with 6 atoms of size 50. There are 2500

features total, the 2200 which are not distributed among the atoms all being from

the null distribution. Thus, the overall percentage of features which are from the

alternative distribution is 5%. The mean and standard deviation of the estimated

1−Afdr, as well as the mean and standard deviation of the p-values and q-values

from the limma method, are calculated over the 100 runs.

Fract. of mean sd mean sd mean sd

alt. 1− Âfdr 1− Âfdr p-value p-value q-value q-value

1 0.9 0.746 0.039 <0.001 <0.001 <0.001 <0.001

2 0.7 0.59 0.034 <0.001 <0.001 <0.001 <0.001

3 0.5 0.43 0.032 <0.001 <0.001 <0.001 <0.001

4 0.3 0.271 0.026 0.007 0.021 0.011 0.03

5 0.1 0.107 0.027 0.36 0.263 0.407 0.285

6 0 0.029 0.027 0.672 0.247 0.686 0.238
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Table 4: Summary from 100 simulations with 3 atoms having fractions of alterna-

tives of 0.5, but different set sizes. The mean and standard deviation of the estimated

1−Afdr, as well as the mean and standard deviation of the p-values and q-values

from the limma method, are calculated over the 100 runs.

Size mean sd mean sd mean sd

1− Âfdr 1− Âfdr p-value p-value q-value q-value

1 10 0.44 0.059 0.019 0.031 0.019 0.031

2 50 0.436 0.034 <0.001 <0.001 <0.001 <0.001

3 100 0.438 0.026 <0.001 <0.001 <0.001 <0.001
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Table 5: Bayes estimators obtained from different loss functions over 100 runs.

Atom names use the fraction of alternatives and the set size; for example atom

0.5 - 50 has a fraction of alternatives 0.5 and 50 features. The ideal scenario (in

bold), gives posterior probabilities of 1 and 0 to the features from the alternative,

respectively from the null distribution. It is compared to the simulation results.

In parentheses are listed the number of simulations in which a particular union of

atoms is the Bayes estimator (only if it appeared in at least 20 out of 100 runs.)

w L Lλ
f L

ξ
a Lr

0.25 0.9 - 50, Empty set 0.9 - 50, 0.9 - 50,

0.9 - 100 0.9 - 100 0.9 - 100

0.9 - 50, Empty set

(100)

Empty set

(68)

0.9 - 50,

0.9 - 100

(79)

0.9 - 100

(61)

0.9 - 100

(27)

0.9 - 50

(37)

0.5 0.9 - 50, 0.9 - 50, 0.9 - 50, 0.9 - 50,

0.5 - 50, 0.9 - 100 0.9 - 100 0.9 - 100

0.9 - 100,

0.5 - 100

0.9 - 50, 0.9 - 50, 0.9 - 50, 0.9 - 50,

0.9 - 100

(87)

0.9 - 100

(97)

0.9 - 100

(100)

0.9 - 100

(84)

0.67 0.9 - 50, 0.9 - 50, 0.9 - 50, 0.9 - 50,

0.5 - 50, 0.9 - 100 0.5 - 50, 0.5 - 50,

0.9 - 100, 0.9 - 100, 0.1 - 50,

0.5 - 100 0.5 - 100 0.9 - 100,

0.5 - 100,

0.1 - 100

0.9 - 50, 0.9 - 50, 0.9 - 50, 0.9 - 50,

0.5 - 50, 0.9 - 100

(99)

0.5 - 50, 0.5 - 50,

0.9 - 100, 0.9 - 100, 0.1 - 50,

0.5 - 100

(100)

0.5 - 100

(79)

0.9 - 100,

0.5 - 100,

0.1 - 100

(52)

0.9 - 50

0.9 - 100

(36)
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Table 6: Comparison of our method to the GSEA, t-test, and Wilcoxon rank test

methods on a dataset from Subramanian et al. (2005). We present the results for the

top 10 sets using our method.

Set 1− Âfdr limma limma GSEA GSEA t-test t-test

p-values q-value p-value q-value p-value q-value

1 chrYq11 0.621 <0.001 0.014 <0.001 <0.001 <0.001 <0.001

2 chr4q22 0.956 0.154 0.995 0.195 0.996 0.176 0.92

3 chr2q14 0.958 0.867 0.995 0.411 0.996 0.302 0.92

4 chrXp11 0.959 0.204 0.995 0.149 0.996 0.058 0.641

5 chrXq26 0.963 0.999 0.999 0.677 0.996 0.79 0.984

6 chr14q21 0.965 0.939 0.995 0.902 0.996 0.742 0.984

7 chr10q21 0.966 0.939 0.995 0.54 0.996 0.358 0.92

8 chr7p22 0.966 0.92 0.995 0.891 0.996 0.986 0.992

9 chr5q33 0.966 0.872 0.995 0.263 0.996 0.328 0.92

10 chr12p12 0.967 0.103 0.995 0.636 0.996 0.893 0.984
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Table 7: The estimated fraction of alternatives (1− Âfdr) for the 22 atoms result-

ing from 10 KEGG pathways, using data from Sotiriou et al. (2006). Atoms are

labeled based on the KEGG sets they are in, each set having a numerical identifier.

Note that the highest estimated fraction is in atom 04310,04110,04120 which con-

sists of 6 genes and represents an intersection of three pathways (the Wnt signaling

pathway, the cell cycle, and ubiquitin mediated proteolysis). As a comparison, the

range of the estimated fraction of true discoveries for the original pathways was

approximately 0.15 to 0.37.

Atom Size 1− Âfdr

04310 223 0.22

04310,04110 23 0.06

04310,04120 7 0.12

04310,04110,04120 6 0.54

04110 174 0.34

04110,04120 30 0.22

04120 189 0.17

00010,00071 20 0.15

00010 40 0.24

00010,00030 18 0.22

00010,00020 11 0.25

00010,00230 4 0.00

00020 41 0.12

00030 16 0.25

00030,00230 4 0.11

00061 11 0.34

00071 51 0.20

03020,00230,00240 32 0.33

03022 43 0.23

00230 130 0.19

00230,00240 40 0.38

00240 34 0.38
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