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Statistical Learning of Origin-Specific
Statically Optimal Individualized Treatment

Rules

Mark J. van der Laan and Maya L. Petersen

Abstract

Consider a longitudinal observational or controlled study in which one collects
chronological data over time on n randomly sampled subjects. The time-dependent
process one observes on each randomly sampled subject contains time-dependent
covariates, time-dependent treatment actions, and an outcome process or single
final outcome of interest. A statically optimal individualized treatment rule (as
introduced in van der Laan, Petersen & Joffe (2005), Petersen & van der Laan
(2006)) is a (unknown) treatment rule which at any point in time conditions on
a user-supplied subset of the past, computes the future static treatment regimen
that maximizes a (conditional) mean future outcome of interest, and applies the
first treatment action of the latter regimen. In particular, Petersen & van der Laan
(2006) clarified that, in order to be statically optimal, an individualized treatment
rule should not depend on the observed treatment mechanism. Petersen & van
der Laan (2006) further developed estimators of statically optimal individualized
treatment rules based on a past capturing all confounding of past treatment his-
tory on outcome. In practice, however, one typically wishes to find individualized
treatment rules responding to a user-supplied subset of the complete observed his-
tory, which may not be sufficient to capture all confounding. The current article
provides an important advance on Petersen & van der Laan (2006) by developing
locally efficient double robust estimators of statically optimal individualized treat-
ment rules responding to such a user-supplied subset of the past. However, failure
to capture all confounding comes at a price; the static optimality of the resulting
rules becomes origin-specific. We explain origin-specific static optimality, and
discuss the practical importance of the proposed methodology. We further present
the results of a data analysis in which we estimate a statically optimal rule for
switching antiretroviral therapy among patients infected with resistant HIV virus.



1 Introduction.

Consider a longitudinal observational or controlled study in which one collects
data over time on n randomly sampled subjects. The time-dependent process
one observes on each randomly sampled subject contains time-dependent co-
variates, time-dependent treatment actions, and either an outcome process
or a single final outcome of interest. This time-dependent process is a ran-
dom variable defined by the experiment which randomly samples a subject
and subsequently measures this time-dependent process. In statistical learn-
ing one refers to this random variable as the experimental unit. The statistical
question we are concerned with can be stated as follows: Can we use data con-
sisting of n such time-dependent processes to estimate a treatment rule that
responds to a user-supplied subset of a subject’s measured history in such a
way that it aims to maximize the mean outcome of interest? Treatment rules
of this type, which respond to individual covariates, are called individualized
treatment rules or dynamic treatment regimes.

In order to address the question of interest, we focus on estimation of
statically optimal individualized treatment rules. A statically optimal indi-
vidualized treatment rule is an (unknown) treatment rule which at any point
in time conditions on a user-supplied subset of the past, computes the future
static treatment regimen maximizing a (conditional) mean future outcome of
interest, and applies the first treatment action of the latter regimen. We re-
fer to this treatment rule as a statically-optimal individualized treatment rule,
to distinguish it from an optimal dynamic treatment regime as modelled in
Murphy (2003) and Robins (2003).

We first introduced statically optimal individualized treatment rules in our
article van der Laan et al. (2005) in which we introduced (observed) history-
adjusted marginal structural models (HA-MSM). However, as made explicit
in Petersen et al. (2006), the optimality of rules estimated by HA-MSM can
depend on the treatment mechanism of the observed data, and as a result,
the HA-MSM-derived rule can fail to select the optimal future treatment plan
(given individual covariate values) if applied to an equivalent population with
a different observed treatment mechanism. Dependence on observed treatment
mechanism implies, in particular, that the rule can fail to select the statically
optimal treatment at each time point in the setting where the rule itself has
been applied to the population beginning at baseline (as, for example, would
occur if the rule were tested in a clinical trial). As a result, Petersen et al.
(2006) refine the definition of static optimality to specify that a statically
optimal rule must not depend on observed treatment mechanism. They further
point out that HA-MSM-derived rules are only truly statically optimal if the
covariates in the history-adjusted marginal structural model are sufficient to
capture all confounding of past treatment on outcome.
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The statically optimal rules discussed by Petersen et al. (2006) have the at-
tractive property that they select the optimal future treatment plan regardless
of how past treatment has been assigned. As a result, these rules will re-
tain their static optimality if applied to an exchangeable population that has
been following the rule in question (as would occur in the context of a clini-
cal trial) or if applied to an exchangeable population that has been following
some unknown treatment mechanism (as could occur in the course of clinical
practice). In order to achieve this generality, however, the statically optimal
rules must incorporate sufficient covariate history to control for confounding
of past treatment history on outcome.

Due to limited resources, practical sensibility, and reliability, clinical tri-
als will be forced to focus on candidate individualized treatment rules which
only respond to a small number of user-supplied bio-markers or other rele-
vant measurements. The current article provides an important advance by
presenting models and corresponding locally efficient double robust estima-
tors of individualized treatment rules responding to a user-supplied subset of
a subject’s past. However, failure to incorporate sufficient covariates to con-
trol for confounding has a price: the static optimality of the resulting rules
is origin-specific. In other words, the individualized treatment rules described
in this paper retain their optimality only in settings where the population has
been following the rule itself beginning at baseline (or in other words, a since
a specified origin). Thus the origin-specific statically optimal rules described
in this paper are appropriate for evaluation in the context of a clinical trial,
but not for application to an individual who has been following an unknown
past treatment mechanism, as may occur in the context of clinical practice.

1.1 Organization of article.

In Section 2 we define the observed data and a statistical framework/model
for the data generating distribution in which we formally state the statistical
learning problem to be addressed. In particular, we define the origin-specific
statically optimal treatment rule. We introduce a novel parameter, the coun-
terfactual history-adjusted mean outcome, which represents a mean outcome
conditional on a user-supplied subset of the past in the counterfactual world
in which each subject follows a particular static treatment regimen. We then
show that the counterfactual history-adjusted mean implies our desired origin-
specific statically optimal rule. We further demonstrate the identifiability of
the statically optimal individualized treatment rule. Our model corresponds
with only modelling the counterfactual history-adjusted mean outcome, while
leaving all nuisance parameters unspecified. In Section 3 we derive the class
of all estimating functions in this model for the data generating distribution,
which are orthogonal to the nuisance parameters and thereby result in robust
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estimation procedures. These estimating functions for the parameter of inter-
est are indexed by nuisance parameters: the treatment mechanism, and the
conditional distributions of the covariates given the past. However, due to
the orthogonality property of these estimating functions, they remain unbi-
ased if one (not both) of these two nuisance parameters is misspecified. In
the literature these estimating functions are referred to as double robust in-
verse probability of treatment weighted (IPTW) estimating functions (van der
Laan and Robins (2003)). By assuming models for these two nuisance pa-
rameters, which represent factors in the likelihood of the observed data, and
estimating them accordingly with maximum likelihood procedures, we obtain
double robust IPTW estimators of the origin-specific statically optimal indi-
vidualized treatment rules. In Section 4 we discuss statistical inference. In
Section 5 we review conditions under which the origin-specific statically opti-
mal treatment rule estimated using the counterfactual history-adjusted mean
parameter, as presented in this paper, is equivalent to the statically optimal
rule defined by Petersen et al. (2006). Section 6 presents the results of a data
analysis drawn from the treatment of patients infected with resistant HIV.
We estimate origin-specific statically optimal individualized rules for deciding
when to switch antiretroviral therapy regimen among patients with incom-
plete virologic suppression due to resistant virus. Section 7 discusses various
generalizations of practical interest.

2 The origin-specific statically optimal indi-

vidualized treatment rule and counterfac-

tual history-adjusted mean.

We adopt the counterfactual causal inference framework in order to formally
define the origin-specific statically optimal individualized treatment rule, and
the counterfactual history-adjusted mean outcome on which it is based, as
parameters of the data generating distribution.

2.1 The statistical framework.

The observed data structure on a randomly sampled subject is defined as a
missing data structure on the set of treatment-specific time-dependent processes,
where each treatment-specific process represents the counterfactual data we
would have observed on the subject, if, possibly contrary to the fact, the sub-
ject would have followed that particular treatment regimen. In addition, we
make the sequential randomization assumption (defined below), allowing us
to identify the probability distribution of the counterfactual processes, and
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thereby allowing us to learn causal parameters of interest from the observed
data.

Representation of the observed data as a missing data structure.
The chronological data structure observed on a randomly sampled subject/
experimental unit is given by

O = (L(0), A(0), L(1), A(1), . . . , L(T − 1), A(T − 1), L(T )),

where L(t) is data collected at time t, A(t) is treatment at time t assigned after
L(t), T ≤ K + 1 is a fixed end-point or a random end-point such as death
and K + 1 denotes a maximal follow up time. It is assumed that for each
subject and each possible treatment regimen ā = (a(0), . . . , a(K)) ∈ A there
exists a process Lā = Lā(0), . . . , Lā(Tā), and that the observed process L on
the subject is the treatment-specific process indexed by the treatment regimen
the subject actually took: L = LĀ. Here A denotes the support of the random
treatment process Ā = (A(0), . . . , A(K)). Thus, we define a collection of
treatment-specific time-dependent processes (Lā(t) : 0 ≤ t ≤ Tā), stopped by
some possibly random stopping time Tā, and indexed by a treatment regimen
ā = (a(0), . . . , a(K)).

We assume that there is an experiment resulting in the observation of all
these random processes, and we denote this random variable with X = (Lā :
ā ∈ A) (in the censored data literature, X is often referred to as the full data).
Let PX0 denote the probability distribution of this collection X of treatment-
specific processes. It is assumed that Lā(t) = Lā(t−1)(t), where we use the
notation ā(t) = (a(0), . . . , a(t)). The latter assumption is implied by the time-
ordering assumption that A(t) occurs after L(t) and before L(t+1). We make
the convention that Lā(t) = Lā(min(t, Tā)) and A(t) = A(min(t, T − 1)), so
that these processes are also defined after the stopping time. Let Yā(t) be a
treatment-specific outcome process, and Sā(t) denote the components of Lā(t)
on which the individualized treatment rule is based. It is assumed that Sā(t)
includes the stopping time indicator process I(Tā ≤ t). To conclude, the
observed data structure O on a randomly sampled subject can be represented
as

O = (Ā, LĀ),

or equivalently,

O = (L(0), A(0), LA(0)(1), A(1), . . . , LĀ(T−2)(T − 1), A(T − 1), LĀ(T−1)(T )),

where T = TĀ. Thus the observed random process O is a missing data struc-
ture on the full data structure X.

Let G0(· | X) denote the conditional probability distribution of Ā given X,
which is called the treatment mechanism since it determines how treatment is
assigned. We note that the observed data structure O is a random variable
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with a probability distribution PPX0,G0 implied by PX0 and G0(· | X). We
assume that we observe n i.i.d. copies O1, . . . , On of this random variable
O ∼ PPX0,G0 .

Sequential randomization assumption. In order to be able to identify
parameters of the probability distribution of X from the probability distribu-
tion of O, we assume the coarsening at random assumption on the missingness/
treatment mechanism G0(· | X). That is,

g0(ā(Tā − 1) | X) ≡
Tā−1∏

t=0

Pr(A(t) = a(t) | Ā(t− 1) = ā(t− 1), X)

=
Tā−1∏

t=0

Pr(A(t) = a(t) | Ā(t− 1), L̄Ā(t)).

In the context of causal inference this is often referred to as the sequential
randomization assumption.

In the following sections we first define the origin-specific statically optimal
treatment rule. We then show that this rule identified by the counterfactual
history-adjusted mean, a parameter of PX0.

2.2 The origin-specific statically optimal individualized
treatment rule.

We begin by defining counterfactuals indexed by individualized treatment
rules. For a given rule d with treatment assignment at time t a function of
L̄(t), the corresponding counterfactual process Ld is a random variable defined
by the deterministic function of the collection of treatment-specific processes
X = (Lā : ā) and the rule d given by Ld ≡ Lā(d,X), where ā(d,X) is the treat-
ment vector assigned by rule d for a subject with full data structure X. Thus,
counterfactual processes/random variables Ld indexed by any individualized
treatment rule d are also well defined, given our definition of static treatment
regimen-specific processes Lā for all ā.

Using this definition of a counterfactual covariate process indexed by an
individualized treatment rule, we provide the following definition of an origin-
specific statically optimal treatment rule. Yd(t,m) is a future rule-specific
(counterfactual) outcome such as, for example, Yd(t+m) for some user-supplied
integer m ≥ 0. In order to keep some generality, we allow this outcome Yd(t, m)
to be any function of the future outcome process (Yd(s) : s ≥ t) starting at time
t, indexed by a scalar m. We let dt denote the function assigning the treatment
decision under rule d at time t, d̄t = (d0, d1, . . . , dt) and a(t) denote a future
static treatment regimen beginning at time t, a(t) = (a(t), a(t+1), . . . , a(K)).
We use K(m) to denote the last time point t for which Y (t,m) is defined.
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For example, if Y (t,m) = Y (t + m), then Y (t,m) is only defined for t =
0, ..., K(m) = K + 1−m.

Note that T represents a stopping time that defines the end of the full
data of interest, rather than simply a censoring event acting as an additional
missingness mechanism on the full data. For example, T may represent death
or a specific failure time of interest; in such cases T will generally be incor-
porated explicitly in the outcome. For example, if T represents death, the
outcome of interest may be survival; i.e. Y (t, m) = I(T > t + m). Al-
ternatively, the outcome of interest might include both T and a covariate
process. For example, a researcher interested in disease progression might
consider an outcome that reflects both whether a patient is still alive, and if
so, whether a biomarker of interest (W ) has crossed a given threshold (th);
i.e. Y (t,m) = I(T > t + m)I(W (t + m) > th). Note that if T represents
death, then defining the outcome using only a covariate process, without in-
corporating T explicitly, will result in a covariate outcome defined for time
points following a patient’s death (specifically, an outcome reflecting the last
measurement of the covariate prior to death). In most cases such an outcome
will not be of interest. An alternative incorporation of T into the parameter
of interest is presented in the data example in Section 6.

Definition 1 Below we define an origin-specific statically optimal dynamic
treatment rule

d̄K ≡ d̄K(S̄d(K)) = (d0(S(0)), d1(S̄d(1)), . . . , dK(S̄d(K))),

where each function S̄d(t) → dt(S̄d(t)) describes how A(t) is assigned in re-
sponse to S̄d(t) for all t = 0, . . . , K.

This rule d is defined by the following algorithm:

a∗(0 | S(0)) = arg max
a(0)

E(Y0,a(0) | S(0))

d0 ≡ a∗(0 | S(0))(1)

a∗(1 | S̄d0(1)) = arg max
a(1)

E(Yd0,a(1) | S̄d(1))

d1 ≡ a∗(1 | S̄d(1))(1)

a∗(t | S̄d(t)) = arg max
a(t)

E(Yd̄t−1,a(t) | S̄d(t))

dt = a∗(t | S̄d(t))(1), t = 2, . . . , K(m),

where Yd̄t−1,a(t) ≡ Yd̄t−1,a(t)(t,m) is the counterfactual random variable corre-
sponding to following the treatment rule d from time 0 to time t− 1, and then
static treatment regimen a(t). Similarly, S̄d(t) ≡ S̄d̄t−1

(t) is the counterfactual
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random variable corresponding to following the treatment rule d from time
point 0 to time t− 1. a∗(t | S̄d(t))(1) is used to denote the first component of
the optimal static treatment regimen a∗(t | S̄d(t)).

For time points t = K(m) + 1, ..., K, the rule dt assigns the next action of
the static regimen

a∗(K(m) | S̄d(K(m))) = arg max
a(K(m))

E(Yd̄K(m)−1,a(K(m)) | S̄d(K(m)))

Note that the origin-specific statically optimal rule must assign treatment
deterministically at every time point. Thus, while in many settings there may
be several choices of a(t|S̄d(t)) that optimize the expected outcome (i.e. the
arg maxa(t) is not unique), in this case the user must specify a deterministic
way of choosing between these choices. Further, note that the rule defines
a treatment decision for each time point up till time K for each subject,
even though the full data of interest for some subjects may end at time T .
However, as T denotes the end of the full data for a subject, treatment decisions
occurring after T will not be relevant for the counterfactuals of interest.

The origin-specific statically optimal treatment rule of Definition 1 satisfies
the following property: it selects, at each time point t, the initial treatment of
the future static regimen (a(t)) which optimizes the expected outcome Y (t,m),
given the history S̄(t), in the world where treatment up till that time point
corresponds to following the statically optimal treatment rule d (and thus
S̄(t) = S̄d(t) and the counterfactual outcome is also indexed by d̄t−1). We
specify that the rule is origin-specific to clarify that, if applied to a population
with an identical full data generating distribution, the rule will assign the
optimal future static regimen at each time point if past treatment (beginning at
baseline, or the origin) has been assigned according to the rule itself. Thus the
rule is appropriate for evaluation in the context of a clinical trail, where the rule
itself is applied beginning at enrollment. The origin-specific statically optimal
rule can be distinguished from the statically optimal rule defined by Petersen
et al. (2006), in that the latter selects the optimal future static regimen at
each time point regardless of how past history has been assigned.

2.3 The counterfactual history-adjusted mean outcome
and corresponding treatment rule.

In this section, we show that the origin-specific statically optimal treatment
rule is a function of the counterfactual history-adjusted mean outcome. We
first define the counterfactual history-adjusted mean outcome as a parameter
of the full data generating distribution, and define an individualized treatment
rule based on this parameter. Next, we show that this treatment rule is equiv-
alent to the origin-specific statically optimal treatment rule, and thus that the
counterfactual history-adjusted mean outcome identifies the rule of interest.
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The counterfactual history-adjusted mean outcome is defined as

E(Yā(t−1),a(t)(t,m) | S̄ā(t−1)(t)), (1)

This counterfactual history-adjusted mean outcome provides us with the fol-
lowing individualized treatment rule:

Definition 2 Define

θ0(t, a(t) | ā(t− 1), s̄(t)) ≡ E(Yā(t−1),a(t) | S̄ā(t−1)(t) = s̄(t)).

We define the following treatment rule:

d̄K(θ0)(S̄(K)) = (d0(S(0)), d1(S̄(1)), . . . , dK(S̄(K))),

where each function S̄(t) → dt(S̄(t)) describes how A(t) is assigned in response
to S̄(t) for all t = 0, . . . , K.

This rule d̄K(θ0) is defined by the following algorithm applied to S̄(K) =
(S(0), . . . , S(K)):

a∗(0 | S(0)) = arg max
a(0)

θ(0, a(0) | S(0))

d0(S(0)) ≡ a∗(0 | S(0))(1)

a∗(1 | S̄(1)) = arg max
a(1)

θ(1, a(1) | d0(S(0)), S̄(1))

d1(S̄(1)) ≡ a∗(1 | S̄(1))(1)

a∗(t | S̄(t)) = arg max
a(t)

θ(t, a(t) | d̄t−1(S̄(t− 1)), S̄(t))

dt(S̄(t)) = a∗(t | S̄(t))(1), t = 2, . . . , K(m).

Here we use the notation d̄t−1(S̄(t− 1)) ≡ (d0(S(0)), d1(S̄(1)), . . . , dt−1(S̄(t−
1))) for the first t− 1 components of the dynamic treatment rule d applied to
S̄(t− 1), where we note that d̄t(S̄(t)) corresponds to a specific ā(t). As above,
a∗(t | S̄(t))(1) denotes the first component of the optimal static treatment
regimen a∗(t | S̄(t)). And as above, for time points t = K(m) + 1, ..., K, the
rule dt assigns the next action of the static regimen

a∗(K(m) | S̄(K(m))) = arg max
a(K(m))

θ(t, a(K(m)) | d̄K(m)−1(S̄(K(m)−1)), S̄(K(m)))

We now show that, once we condition on the covariates on which the treat-
ment rule depends, E(Yā(t−1),a(t) | S̄ā(t−1)(t) = s̄(t)) is equal to E(Yd̄t−1,a(t) |
S̄d(t) = s̄(t)) at a particular ā(t − 1), and thus the origin-specific statically
optimal regimen of interest (Definition 1) is identified by applying Definition
2 to the counterfactual history-adjusted mean (1). This is because, as shown
in Definition 1, given s̄(t), the origin-specific statically optimal treatment rule
applied at time t corresponds to a deterministic choice of a(t), t = 0, ..., K.
We presents these results formally as a Lemma:
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Lemma 1 Define

θ0(t, a(t) | ā(t− 1), s̄(t)) ≡ E(Yā(t−1),a(t)(t,m) | S̄ā(t−1)(t) = s̄(t)),

Given a dynamic treatment rule S̄(K) → d(S̄(K)), we have

E(Yd̄t−1a(t)(t,m) | S̄d(t) = s̄(t)) = θ(t, a(t) | ād̄t−1
(t− 1), s̄(t)), (2)

where Yd̄t−1a(t)(t,m) is the counterfactual random variable corresponding with
following rule d from time 0 till t − 1, and subsequently, following the static
treatment regimen a(t). Note that Yd̄t−1a(t)(t,m) is a random variable defined
as a deterministic function of X, the rule d, and static treatment a(t). We
use ād̄t−1

to denote the treatment history (through time t) corresponding to
applying rule d to s̄(t− 1).

Proof Given S̄d(t) = S̄d̄t−1
(t) = s̄(t), we have that d̄t−1 = (a(0), . . . , a(t− 1))

for some fixed ād̄t−1
(t − 1) defined by s̄(t). Thus, given S̄d(t) = s̄(t), with

probability equal to 1 we have Yd̄t−1a(t)(t,m) = Yād̄t−1
(t−1)a(t)(t,m) and S̄d(t) =

S̄ād̄t−1
(t−1)(t): that is, counterfactuals indexed by dynamic treatment regimens

are identical to counterfactuals indexed by a corresponding static treatment
regimen, which proves the result (2). 2

Origin-specific static optimality of d(θ0). The importance of this identity
(2) is established as follows. Suppose that the treatment decisions A(0), . . . , A(t−
1) have been assigned according to the treatment rule d = d(θ0) so that
A(0) = d0(S(0)), A(1) = d1(S̄d(1)), . . . , A(t − 1) = dt−1(S̄d(t − 1)), and that
we are now confronted with making a treatment decision at time t: thus, we
are given the treatment past Ā(t − 1) = d̄t−1(S̄d(t − 1)) and covariate past
S̄d(t) in the world in which we have been applying rule d = d(θ0). We want
to show that the origin-specific statically optimal treatment decision at time
t, given S̄d(t), is now precisely given by dt(S̄d(t)) with d = d(θ0). The origin-
specific statically optimal treatment decision at time t, given S̄d(t), is defined
by optimizing the wished expected outcome E(Yd̄t−1a(t)(t,m) | S̄d(t) = s̄(t))
over all static future treatment regimens a(t), and carrying out the first com-
ponent of this latter treatment regimen. By the previous lemma applied to
d = d(θ0), it follows that at time t, optimizing the wished expected outcome
E(Yd̄t−1a(t)(t,m) | S̄d(t) = s̄(t)) over all statically future treatment regimens
a(t) is equivalent with optimizing θ0(t, a(t) | ād(t − 1), s̄(t)) over a(t). This
proves that indeed the origin-specific statically optimal treatment decision at
time t, given S̄d(t), is now precisely given by dt(S̄d(t)). Thus, if treatment
decisions are assigned deterministically according to rule d(θ0), then it follows
that at each point in time t, given the observed S̄(t) = (S̄d(t)) = s̄(t), our
treatment decision at time t equals the first treatment in the future treatment
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regimen maximizing the mean outcome of Yd̄t−1a(t)(t,m), given S̄(t) = s̄(t),
over all future static treatment regimens a(t). This proves that indeed the
rule d(θ0) is an origin-specific statically optimal treatment rule, and thus that
estimates of this rule d(θ0) are potential candidates for treatment regimens to
be evaluated in clinical trials.

In this section we have established that the counterfactual history-adjusted
mean θ0 identifies the origin-specific statically optimal dynamic treatment rule,
and illustrated why such a rule is of interest. In the next section we discuss
estimation of θ0, and thus estimation of the origin-specific statically optimal
dynamic treatment rule d(θ0).

2.4 A model for the counterfactual history-adjusted mean.

In order to deal with the curse of dimensionality, we will assume a model for
our parameter of interest θ(PX)(t, a(t) | ā(t− 1), s̄(t)) = EPX

(Yā(t−1)a(t)(t, m) |
S̄ā(t−1)(t) = s̄(t)) of PX :

θPX
(t, a(t) | ā(t− 1), s̄(t)) = mβ(PX)(t, a(t) | ā(t− 1), s̄(t)) (3)

for some parametrization (mβ : β) indexed by a Euclidean parameter β. Let
β0 = β(PX0) denote the true parameter value of β. Note that we could also
extend the definition of this parameter to the nonparametric model consisting
of all full data distributions PX so that, if this model (3) is wrong, then β0 can
be interpreted as a summary measure of interest of the true θ0, in the same
manner as we might interpret a linear regression fit as a summary measure of
the true underlying regression curve.

2.5 Model for observed data.

Because of the sequential randomization assumption, the density of the data
structure O can be factorized into a PX0-part and G0-part as follows:

pPX0,G0(O) = QX0(O)g0(Ā(T − 1) | X),

where the PX0-part of the density is defined as

Q0(O) = QX0(O) ≡
T∏

t=0

Pr(L(t) | L̄(t− 1), Ā(t− 1)).

Our approach is to derive the class of estimating functions for β in the model
for the observed data structure O only assuming (3). This results in a class
of double robust inverse probability of treatment weighted estimating func-
tions for β indexed by nuisance parameters g0 and Q0, where the estimating
functions remain unbiased at β0 if one (but not both) of these two nuisance
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parameters is misspecified. That is, it is not possible to construct consistent
estimators of β0 without either consistently estimating Q0 or consistently esti-
mating the treatment mechanism g0. As a consequence, beyond the sequential
randomization assumption and the model for θ0, we either need a model G
for g0, or a model Q for QX0. (Alternatively, we can assume the union model
which states that either g0 ∈ G or QX0 ∈ Q.) Given these models, we assume
that valid estimators gn of g0 according to model G and Qn of Q0 according
to model Q are provided. For example, in the case that the models are small
enough, gn and Qn could be maximum likelihood estimators:

gn = arg max
g∈G

n∑

i=1

log g(Āi | Xi)

Qn = arg max
Q∈Q

n∑

i=1

log Q(Oi).

If the models are large, then it is typically necessary to use a sieve-based
maximum likelihood estimator which involves selection of sub-models of Q
and/or G.

2.6 Identifiability of the statically optimal individual-
ized treatment regimen.

In order to identify the statically optimal individualized treatment regimen
d(θ0) from the observed data probability distribution we need to be able to
identify θ0(t, a(t) | ā(t − 1), s̄(t)) ≡ E0(Yā(t−1),a(t,m) | S̄ā(t−1)(t) = s̄(t)), for
all ā ∈ A. Thus, it suffices to identify the joint distribution (Yā, Sā) for all
treatment regimens ā ∈ A. This requires the so called experimental treatment
assignment assumption (ETA) given by: for all ā ∈ A

g(ā(Tā − 1 | X) > 0 PX0-a.e. (4)

Equivalently, at each time t ≤ T − 1, we need that for all possible observed
histories Ā(t− 1) = ā(t− 1), L̄(t) = l̄(t)

P (A(t) = a(t) | Ā(t− 1) = ā(t− 1), L̄A(t) = l̄(t)) > 0 for all a(t)

compatible with ā(t− 1) in the sense that ā(t) is a possible regimen: that is,
ā(t) is in the support of Ā(t). Under the ETA, we have that the probability
distribution of the treatment-specific counterfactual process Lā is given by

P (Lā = l) =
T∏

t=0

Pr(L(t) = l(t) | L̄(t− 1) = l̄(t− 1), Ā(t− 1) = ā(t− 1)). (5)
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This formula (5) for the probability distribution of Xā was named the G-
computation formula by Robins (Robins (2000)). That is, the ā-specific mar-
ginal distribution of X is identified by a simple intervention on the QX-part
of the density of O. One can evaluate this probability distribution by simulat-
ing many realizations from this ā-specific density of a time-dependent process
(L(0), . . . , L(K +1)), which, in particular, provides us with a Monte-Carlo ap-
proximation of the probability distribution of (Yā, Sā). Given our model (3), a
large collection of realizations (Yā, Sā) can now also be used to obtain the cor-
responding approximation for β0. Application of this Monte-Carlo approach
to a maximum likelihood-based estimate of QX0 results in a likelihood-based
estimator of β0.

The disadvantage of likelihood-based estimation of β0 is that a misspecified
model for Q0 immediately implies a biased representation of β0 so that, for
example, testing a null hypothesis H0 : β0 = 0 based on this likelihood-based
estimator will practically fail to control the probability on a false rejection
of the null hypothesis. We are concerned with constructing maximally robust
estimators of β0. In particular, we are interested in estimating β0 based on data
generated in a clinical trial such as a sequentially randomized trial, in which
case the treatment mechanism g0 is known. The knowledge about g0 is not of
any help for the likelihood-based approach so that, in particular, the likelihood-
based estimator still fails to provide a valid test of the null hypothesis when
g0 is known. On the other hand, the inverse probability of treatment weighted
(IPTW) and double robust(DR)-IPTW estimators of β0, presented in the next
section, are known to be consistent and asymptotically linear if g0 is known.
In this case, the latter estimators yield an asymptotically valid test of a null
hypothesis H0 : β0 = 0, and yield root-n consistent estimators of our origin-
specific statically optimal individualized treatment regimen d(θ0) accompanied
by valid confidence intervals.

3 Double robust inverse probability of treat-

ment weighted estimating functions.

As presented in van der Laan and Robins (2003) (e.g. Chapter 6), given the
model mβ, the class of all estimating functions can be represented in terms of a
class of double robust IPTW estimating functions, derived by orthogonalizing a
class of IPTW estimating functions with respect to the treatment mechanism.

3.1 IPTW estimating functions.

In the next result we provide the class of IPTW estimating functions, and
thereby the corresponding class of IPTW estimators of β0.
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Result 1 Consider the following class of IPTW-estimating functions for β0

in the model for O only assuming θ0(t, a(t) | ā(t − 1), s̄(t)) = mβ0(t, a(t) |
ā(t− 1), s̄(t)):

Dh,IPTW (O | β, g) ≡ 1

g(Ā | X)

K(m)∑

t=0

h(t, Ā, S̄(t))(Y (t,m)−mβ(t, A(t) | Ā(t−1), S̄(t))).

If (4) holds, then
E0Dh,IPTW (O | β0, g0) = 0.

Proof. The conditional expectation of Dh,IPTW (O | β0, g0), given X, is given
by ∑

ā

∑

t

h(t, ā, S̄ā(t))(Yā(t,m)−mβ0(t, a(t) | ā(t− 1), S̄ā(t)).

Now, move the expectation operator within the sums and condition on S̄ā(t),
giving us the term E(Yā(t,m) | S̄ā(t)) − mβ0(t, a(t) | ā(t − 1), S̄ā(t)), which
equals zero. This completes the proof. 2

As a particular choice for the IPTW-estimating function we propose Dh∗,IPTW

with

h∗(t, Ā, S̄(t)) ≡ g(Ā | S̄(t))
d

dβ0

mβ0(t, A(t) | Ā(t− 1), S̄(t)),

where

g(Ā | S̄(t)) =
T−1∏

j=0

g(A(j) | Ā(j − 1), S̄(min(j, t)).

If the model mβ is linear in β, then h∗ does not depend on β and is thus known
up to the stabilizing factor g(Ā | S̄(t)). The advantage of this choice is that the
solution βn,IPTW of the estimating equation

∑n
i=1 Dh∗(β),IPTW (Oi | β, gn) = 0

corresponds with a weighted least squares estimator:

βn,IPTW = arg min
β

n∑

i=1

K(m)∑

t=0

wi(t)
{
Yi(t,m)−mβ(t, Ai(t) | Āi(t− 1), S̄i(t))

}2

with weights given by

wi(t) ≡ gn(Āi | S̄i(t))

gn(Āi | Xi)
.

This estimator can be calculated with standard regression software applied to
a pooled sample in which each subject contributes K(m) lines of data, using
the weight option.
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3.2 Double robust IPTW estimating functions for β0.

In the next result we present the class of double robust IPTW estimating
functions

Result 2 Consider the following class of DR-IPTW-estimating functions for
β0 in the model for O only assuming θ0(t, a(t) | ā(t − 1), s̄(t)) = mβ0(t, a(t) |
ā(t− 1), s̄(t)):

Dh,DR(O | g, Q, β) ≡ Dh,IPTW (O | g, β)−Dh,SRA(O | g, Q),

where

Dh,SRA(O | g,Q) ≡
K(m)∑

t=0

Eg,Q(Dh,IPTW (O | g, β(Q)) | Ā(t), L̄(t))

−
K(m)∑

t=0

Eg,Q(Dh,IPTW (O | g, β(Q)) | Ā(t− 1), L̄(t)).

We have that
Eg0,Q0(Dh,DR(O | g, Q, β0) = 0,

if g satisfies (4), and either g = g0 or Q = Q0.

Given estimators gn, Qn, corresponding likelihood-based estimator β(Qn)
of β0 (i.e., the G-computation estimator), and a possibly estimated index hn,
the double robust IPTW estimator βn,DR is defined as the solution in β of the
estimating equation

0 =
n∑

i=1

Dhn,DR(Oi | gn, Qn, β).

If β → mβ is linear, then this estimating equation in β is linear in β so that
the solution βn,DR exists in closed form.

3.3 Special case of counterfactuals indexed by restricted
treatment history.

We note that, in the special case that YĀ(t,m) = YĀ(t∗(m))(t,m), so that
the counterfactuals of interest are only indexed by treatment up till time
t∗(m), then the IPTW and DR estimating equations can be altered so that
g(Ā|X) = g(Ā(t∗(m))|X) and h(t, Ā, S̄(t)) = h(t, Ā(t∗(m)), S̄(t)). Such a sit-
uation occurs, for example, if the outcome of interest is Y (t + m), so that the
counterfactuals are indexed by treatment only until the outcome is measured
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at time Ā(t + m − 1). In this case, the IPTW estimating function can be
written as:

Dh,IPTW (O | β, g) ≡
K(m)∑

t=0

h(t, Ā(t∗(m)), S̄(t))

g(Ā(t∗(m)) | X)

(Y (t, m)−mβ(t, A(t, t∗(m)) | Ā(t− 1), S̄(t))),

where A(t, t∗(m)) = (A(t), A(t + 1), ..., A(t∗(m))) denotes future treatment
until the outcome is measured. We modify h∗ accordingly to

h∗(t, Ā(t∗(m))), S̄(t)) ≡ g(Ā(t∗(m) | S̄(t))
d

dβ0

mβ0(t, A(t, t∗(m)) | Ā(t−1), S̄(t)),

where

g(Ā(t∗(m)) | S̄(t)) =
t∗(m)∏

j=0

g(A(j) | Ā(j − 1), S̄(min(j, t))).

The corresponding DR-IPTW estimating function is derived simply by
subtracting off

Dh,SRA(O | g,Q) ≡
K(m)∑

t=0

Eg,Q(Dh,IPTW (O | g, β(Q)) | Ā(t), L̄(t))

−
K(m)∑

t=0

Eg,Q(Dh,IPTW (O | g, β(Q)) | Ā(t− 1), L̄(t)).

4 Statistical inference.

Under appropriate conditions, and the assumption that either gn converges
to g0 or Qn converges to Q0, it can be shown that these estimators of β0

are asymptotically linear with specified influence curve (see van der Laan and
Robins (2003) chapter 2). For example, if gn converges to g0, and Qn converges
to a possibly misspecified Q1, then under regularity conditions, we have that
βn,DR is a consistent and asymptotically linear estimator of β0 with influence
curve

IC(O) ≡ −c(β0)
−1Dh,DR(O | g0, Q1, β0)− Π(−c(β0)

−1Dh,DR | TG(P0)),

where

c(β) =
d

dβ
E0Dh,DR(O | g0, Q1, β)

is the usual derivative matrix of the estimating equation, TG(P0) is the tangent
space of the nuisance parameter g at P0 under model G, and Π(· | TG(P0))
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is the projection operator onto this tangent space within the Hilbert space
L2

0(P0) endowed with covariance inner product 〈f1, f2〉 = E0f1(O)f2(O). As a
consequence, conservative inference can be based upon the following influence
curve, which is simple to calculate:

IC∗(O) ≡ −c(β0)
−1Dh,DR(O | g0, Q1, β0).

In particular, in the case that G is correctly specified, a conservative asymptotic
0.95 confidence interval for β0(j) is given by

βn,DR(j)± 1.96σn/
√

n,

where

σ2
n ≡

1

n

n∑

i=1

(
IC∗

n(Oi)− 1

n

n∑

i=1

IC∗
n(Oi)

)2

,

and IC∗
n is an estimator of the function IC∗ obtained by substituting the

estimators gn, Qn, and estimating the derivative matrix c(β0) with its empirical
counterpart.

Since influence curve inference is heavily based on the first-order behavior
of the estimator, in the case that gn and Qn are highly data-adaptive estimators
we suggest the bootstrap method as a more honest method for establishing
the true variability of βn,DR and obtaining corresponding confidence intervals.

Regarding inference for the individualized treatment rule d(θ0) = d(β0),
we propose to use an estimate of the sampling distribution of βnDR. For ex-
ample, one could use as estimate of this sampling distribution the distribution
β#

nDR ∼ N(βnDR, σ2
n/n) or the bootstrap distribution of βnDR defined by the

distribution of the double robust IPTW estimator when applied to samples of
n i.i.d. observations from the empirical distribution. In this manner, one can
obtain the sampling distribution of dt(β

#
nDR)(S̄(t)) for treatment assignment

at time t for any given history S̄(t). That is, the estimate d(βnDR) of the
statically optimal individualized treatment rule will be accompanied with a
measure of uncertainty when applied at any time t and history S̄(t).

5 Comparison with statically optimal treat-

ment rules.

In the preceding sections, we have illustrated how an origin-specific statically
optimal treatment rule can be estimated based on the counterfactual history-
adjusted mean outcome. The results of Petersen et al. (2006) demonstrate
that this treatment rule is also statically optimal in a more general sense when
the following equality holds:

E(YĀ(t−1)a(t)|Ā(t−1) = ā(t−1), S̄(t) = s̄(t)) = E(Yā(t−1)a(t)|S̄ā(t) = s̄(t)). (6)
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Specifically, when the counterfactual history-adjusted mean outcome equals
the observed history-adjusted mean outcome (as estimated using the history-
adjusted marginal structural models of van der Laan et al. (2005)) then the
static optimality of the individualized treatment given by Definition 2 is no
longer origin-specific. That is, if equality (6) holds, then the resulting rule
chooses the future static treatment plan expected to optimize outcome, re-
gardless of how past treatment has been assigned. The rule thus retains its
optimality properties not only if applied to a population that has been fol-
lowing the rule of interest, but also if applied to a population that has been
following some other treatment mechanism.

There are several practical implications of this finding. If S̄(t) is chosen
so that equality (6) holds, the individualized treatment rules estimated using
the counterfactual history-adjusted mean will gain an additional property;
they will be generally statically optimal rather than origin-specific statically
optimal, and thus will be appropriate for application in contexts where the
past treatment mechanism is unknown. This suggests that, if general static
optimality is desirable, the researcher may wish to choose the covariates to be
included in the rule accordingly.

Petersen et al. (2006) provide criteria for S̄ sufficient to ensure (general)
static optimality. Specifically, equality (6) will hold if the covariates on which
the rule depends are sufficient to control for confounding of past treatment
history on future outcome. More formally,

If P (Ā(t− 1) = ā(t− 1)|Yā = y, S̄ā(t) = s̄(t))

= P (Ā(t− 1) = ā(t− 1)|S̄ā(t) = s̄(t))

then E(YĀ(t−1)a(t)|Ā(t− 1) = ā(t− 1), S̄(t) = s̄(t)) = E(Yā(t−1)a(t)|S̄ā(t) = s̄(t)).

Petersen et al. (2006) point out that if past treatment assignment is only a
function of the covariates of interest S̄(t), or if the covariates of interest S̄ā(t)
d-separate Ā(t−1) from Yā(t,m), then this identity will hold, and estimation of
either the observed history-adjusted parameter or the counterfactual history-
adjusted parameter will estimate the (general) statically optimal treatment
rule.

Inclusion of sufficient covariates in the rule to ensure that past treatment
assignment is only a function of S̄(t) may be undesirable or unpractical. In
the case where this condition is not met, the question may still arise as to
whether the static optimality of a rule based on the counterfactual history-
adjusted mean is origin-specific. The d-separation criteria provides one means
to evaluate the claim of general vs. origin-specific static optimality; however,
this aproach relies on background knowledge sufficient to inform the under-
lying causal graph. Alternatively, the observed history-adjusted parameter,
as described in van der Laan et al. (2005), can be estimated, and the null
hypothesis that the counterfactual history-adjusted parameter is equal to the
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observed history-adjusted parameter (i.e. that equality 6 holds) can be tested,
using, for example, a chi-square statistic.

6 Data example: When to switch antiretrovi-

ral therapy?

This section describes a data example focused on making treatment decisions
for individuals infected with resistant HIV. While antiretroviral regimens are
generally able to suppress HIV replication, viral drug resistance frequently
emerges. Resistance allows HIV replication to resume, resulting in an increase
in the amount of virus detectable in a patient’s blood (plasma HIV RNA level
or viral load), and potentially accelerating immunologic decline (reflected in a
falling CD4 T cell count) and disease progression. Ideally, a patient infected
with resistant virus will be switched to a new regimen to which the virus re-
mains susceptible (DHHS (2004)). However, a limited number of antiretroviral
regimens are available, and alternative regimens may be more toxic or difficult
to adhere to than a patient’s current regimen. Given evidence that some anti-
retroviral regimens continue to confer immunologic benefits in the presence of
viral resistance, it is unclear how long the clinician should wait before switch-
ing a patient who has lost viral suppression to a new antiretroviral regimen
(Deeks (2003). Switching too early risks prematurely depleting future treat-
ment options, while switching too late risks accelerating disease progression, as
well as allowing the virus to evolve new resistance mutations. We applied the
method described in this paper to estimate an origin-specific statically optimal
treatment rule for deciding when to switch therapy among HIV-infected indi-
viduals who have lost virologic suppression due to the emergence of resistant
virus.

6.1 Data.

The data are drawn from the Study of the Consequences of the Protease In-
hibitor Era (SCOPE), an observational clinical cohort of HIV-infected individ-
uals in San Francisco, California. Subjects were followed longitudinally over
time, and data were collected on all antiretroviral drug use, AIDS-defining
illnesses, use of recreational drugs, adherence to prescribed antiretroviral ther-
apies, homelessness, presence of hepatitis C virus antibody, CD4 and CD8
T cell counts, and plasma HIV RNA levels. In addition, baseline data were
collected on demographics (age, sex, income, race), sexual orientation, and
treatment history. We denote these covariates L̄.

We identified all episodes of virologic failure among patients followed in
SCOPE between 2000 and 2004. Virologic failure (t=0) was defined as at
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least 2 detectable and no undetectable plasma HIV RNA levels in either 1)
the first 6 months after starting a new regimen; or 2) over a 4 month period on a
stable regimen. The outcome of interest for a given time t was CD4 T cell count
m = 8 months in the future (Y (t+8) ⊂ L(t+8)). The treatment of interest was
time until treatment modification (switch), where treatment modification was
defined as change or interruption of at least 1 drug in the failing regimen. At
each time point during follow up, treatment was defined using a binary variable
(A) indicating whether a subject remained on his original non-suppressive
therapy (A = 1 until a subject switched, after which A = 0).

The analysis focused on the 8 months following loss of viral suppression
(t = 0, ..., 8, and thus K+1 = 16, and K(m) = 8). However, because a subject
could only switch therapy once, counterfactual outcomes of interest were only
defined for time points up till the point that a subject switched treatment. If
we denote this switching time R (a function of Ā), then the full data for a
given individual were thus L̄ā(T ), where T ≡ min((R + 8− 1), 16).

In the absence of censoring, the observed data thus would have consisted
of n i.i.d. copies of

O∗ = (L(0), A(0), L(1), A(1), ...L(K), A(K), L(K + 1)) = (Ā(T − 1), L̄Ā(T ))

We note that this observed data, in the absence of censoring, can also be
considered a time-dependent process:

O∗(t) = (Ā(t− 1), L̄Ā(t)),

where t = 0, ...T .
However, subjects were further subject to two distinct censoring processes;

the full data on a subject could be censored 1)when follow-up ended in 2004, or
2) as a result of death or loss to follow-up (here, we consider death a censoring
process rather than an outcome of interest). We denote the time at which
censoring occurred due to the end of follow-up as C1, and the time at which
censoring occurred due to death or loss to follow-up as C2. C = min(C1, C2)
denotes a subject’s censoring time, and we define T̃ = min(T, C). We further
define a censoring process over time:

C̄(t) = (C̄1(t), C̄2(t)) = (I(C1 ≤ t), I(C2 ≤ t))

The observed data thus consisted of n i.i.d. copies of

O = (O∗(T̃ ), C̄(T̃ ), T̃ )

In all, 133 subjects (167 episodes of failure) were evaluated. Of these,
66 episodes were censored due to the end of follow-up in 2004, and 18 were
censored due to death or loss to follow-up (3 deaths and 15 losses to follow
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up). In total, 116 episodes (100 subjects) had at least one outcome available
(corresponding to t = 0). Of these subjects, median time to switch was 6
months (IQR=4,11). The study population was primarily male (86%), and
primarily men who have sex with men (49%). Subjects were heavily treatment
experienced; 49% were treated with antiretroviral drugs prior to the availability
of protease inhibitors in 1996. Petersen et al. (2005) describe the sample in
greater detail.

6.2 Parameter of interest.

We aimed to identify the origin-specific statically optimal rule for deciding
when to modify treatment, given a specific set of covariates S̄(t). In other
words, we estimated for each time point the future switch time expected to
maximize CD4 T cell count 8 months later, given covariate values, among
individuals who had not yet modified treatment. Following, at each time
point, the first action (switch or not) of this optimal treatment plan provided
an individualized treatment rule. The static optimality of the rule was origin-
specific because it identified, for each time point, the optimal future switch
time given that subjects had followed the statically optimal rule itself up till
that time point.

Specifically, we considered treatment rules based on current CD4 T cell
count and an indicator of viral re-suppression prior to switching regimens.
The later covariate was included because our goal was to identify rules for
switching among individuals who were infected with resistant HIV. Individuals
who achieved viral re-suppression without switching regimens almost certainly
did not initially lose suppression due to the presence of resistant virus. Thus,
S̄(t) = (CD4(t), Sup(t)) where CD4(t) denoted CD4 T-cell count at time t,
and Sup(t) denoted an indicator that re-suppression of the virus had occurred
by time t.

As demonstrated in Lemma 1, the origin-specific statically optimal treat-
ment rule for deciding when to switch (among individuals who have not already
switched, i.e. ā(t− 1) = 1) is identified by the parameter

θ(t, a(t)|ā(t− 1) = 1, Supā(t) = 0, CD4ā(t))

= E(Yā(t−1)=1,a(t)(t + 8)|Supā(t) = 0, CD4ā(t)).

We further note that, as the outcome is measured at time t + 8, the
counterfactuals of interest are in fact indexed only by treatment up till time
t∗ = t + 8 − 1 (Yā(t−1)a(t) = Yā(t−1)a(t,t∗)), where we remind the reader that
a(t, t∗) = (a(t), a(t + 1), ..., a(t∗)).

20

http://biostats.bepress.com/ucbbiostat/paper210



6.3 Model for counterfactual history-adjusted mean.

We assumed the following model on the parameter θ(t, a(t, t∗)|ā(t−1), s̄(t)) =
mβ(t, a(t, t∗)|ā(t− 1)s̄(t)), where

mβ(t, a(t, t∗)|ā(t− 1) = 1, Sup(t) = 0, CD4(t)) =

β0 + β1

t∗∑

j=t

a(j) + β2CD4(t) + β3t + β4

t∗∑

j=t

a(j)× CD4(t) + β5

t∗∑

j=t

a(j)× t +

β6CD4(t)× t + β7

t∗∑

j=t

a(j)× CD4(t)× t,

where
∑t∗

j=t a(j) is the residual amount of time until either treatment is mod-
ified or the outcome is measured, under treatment regimen a(t, t∗).

6.4 Model for observed data.

Treatment mechanism. As defined in Subsection 2.1, we assumed sequen-
tial randomization; in other words, we assumed that the decision whether
to switch treatment or not at each time point only depended on covariates
measured prior to that time point. In addition, as defined in Subsection 2.6,
we assumed experimental treatment assignment; namely that an individual
who had not already switched had some positive probability of both switching
treatment and not switching, regardless of her observed past.
Censoring mechanism. We assumed that the probability of being censored
at every time point, given that censoring had not already occurred, only de-
pended on the observed past (censoring at random):

g(C̄(T ) = 0|O∗) ≡
T∏

t=0

Pr(C > t|C̄(t− 1) = 0, O∗)

=
T∏

t=0

Pr(C1 > t|C̄(t− 1) = 0, Ā(t− 1), L̄(t− 1))

T∏

t=0

Pr(C2 > t|C1 > t, C̄(t− 1) = 0, Ā(t− 1), L̄(t− 1))

We also made two additional identifiability assumptions (counterpart to the
experimental treatment assignment assumption). For each type of censoring
and every time point, we assumed that, given that censoring had not already
occurred, an individual had some positive probability of not being censored
regardless of his observed past:

Pr(C1 > t|C̄(t− 1) = 0, Ā(t− 1), L̄(t− 1)) > 0, t = 0, ..., T
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and

Pr(C2 > t|C1 > t, C̄(t− 1) = 0, Ā(t− 1), L̄(t− 1)) > 0, t = 0, ..., T

We note that censoring due to the end of follow-up in 2004 (C1)is not nec-
essarily non-informative, as calender time at baseline (t = 0) in the current
data analysis is itself a random variable that deterministically predicts censor-
ing due to end of follow-up in 2004, and could also potentially be related to
outcome (due to differences in the characterstics of subjects that lose virologic
suppression at different calender times).

6.5 IPTW estimation.

In the absence of censoring, the IPTW estimating function would be

Dh,IPTW (O|β, g) ≡
K(m)∑

t=0

h(t, Ā(t∗), S̄(t))

g(Ā(t∗)|X)

I(Ā(t− 1) = 1)I(Sup(t) = 0){Y (t + 8)−mβ(t, A(t, t∗)|Ā(t− 1)S̄(t))}.

We chose h as

h∗(t, Ā(t∗)S̄(t)) ≡ g(Ā(t∗)|S̄(t))
d

dβ
mβ(t, A(t, t∗)|Ā(t− 1), S̄(t))

where g(Ā(t∗)|S̄(t) =
∏t∗

j=0 g(A(j)|Ā(j − 1), S̄(min(j, t))).
However, in the presence of censoring, we use the following estimating

function, which incorporates an additional inverse probability of censoring
component:

Dh,IPTW (O|β, g) ≡
K(m)∑

t=0

I(C > t + 8)g(C̄(t + 8) = 0|Ā(t∗), S̄(t))

g(C̄(t + 8) = 0|O∗)
h(t, Ā(t∗), S̄(t))

g(Ā(t∗)|X)

I(Ā(t− 1) = 1)I(Sup(t) = 0){Y (t + 8)−mβ(t, A(t, t∗)|Ā(t− 1)S̄(t))}.

The estimator was implemented using weighted least squares, as described
in Section (3). Specifically, each subject contributed one weighted line of data
for each time point t ≤ K(m) for which censoring did not occur before the
outcome was measured (t+8 < C), and for which the subject had not already
switched treatments (I(A(t − 1) = 1) = 0), or achieved re-suppression of
the virus (I(Sup(t − 1) = 0) = 0). In this pooled dataset, we regressed the
observed CD4 T cell count 8 months in the future (Y (t + 8)) on future time
until switching treatment (a∗(t, t∗)), elapsed time t since failure, and current
CD4 T cell count (CD4(t)), according to the model mβ.
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For a given time point t, the weight was estimated as the product of a
treatment component,

g(Ā(t∗)|S̄(t))

g(Ā(t∗)|X)
,

and a censoring component,

g(C̄(t + 8) = 0|Ā(t∗), S̄(t))

g(C̄(t + 8) = 0|O∗)
.

Note that there is flexibility in choosing a numerator for these weights.
Given fits of the treatment mechanism and censoring mechanism, one gener-
ally selects a numerator with the purpose of making the weights minimally
variable (i.e. of making the weights as close to 1 as possible). Several ap-
proaches are available to do this; one general strategy involves simply using
the treatment/censoring mechanism selected, but setting all terms not included
in S̄(t), Ā(t∗) equal to zero.

By factorizing the censoring component, it can be further rewritten as a
product of a weight for censoring mechanism 1 (end of follow-up in 2004),

∏t+1

j=0
Pr(C1>j|C̄(j−1)=0,Ā(j−1),S̄(j−1))

∏t+8

j=t+2
Pr(C1>j|C̄(j−1)=0,Ā(j−1),S̄(t))∏t+8

j=0
Pr(C1>j|C̄(j−1)=0,Ā(j−1),L̄(j−1))

and a weight censoring mechanism 2 (death or loss to follow-up),

∏t+1

j=0
Pr(C2>j|C1>j,C̄(j−1)=0,Ā(j−1),S̄(j−1))

∏t+8

j=t+2
Pr(C2>j|C1>j,C̄(j−1)=0,Ā(j−1),S̄(t))∏t+8

j=0
Pr(C2>j|C1>j,C̄(j−1)=0,Ā(j−1),L̄(j−1))

Similarly, the treatment component of the weights can be written as:

∏t
j=0 g(A(j)|S̄(j), Ā(j − 1) = 1)

∏t∗
j=t+1 g(A(j)|S̄(t), Ā(j − 1) = 1)

∏t∗
j=0 g(A(j)|L̄(j), Ā(j − 1) = 1)

Implementation of the IPTW estimator, then, relied on estimation of the
following nuisance parameter models:

1. Treatment mechanism:

t∗∏

j=0

g(A(j)|L̄(j), Ā(j − 1) = 1)

We used the Deletion/Substitution/Addition algorithm (Sinisi and van der
Laan (2004)) and 5-fold cross validation to fit a pooled logistic regression
model of the probability of switching treatment given the observed past.
Note that the model was fit only among those who had not already been
censored or switched, as these were the only subjects at risk of switching.
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Estimation of the treatment mechanism employed inverse probability of
censoring weights for each time point j ( I(C>j)

g(C̄(j)=0|O∗)). In modelling the

treatment mechanism, we assumed that treatment assignment at time j
was independent of covariates at time j − 1 given covariates at time j.
In other words,

g(A(j)|L̄(j), Ā(j − 1) = 1) = g(A(j)|L(j), Ā(j − 1) = 1).

2. Numerator for treatment weight: In calculating the numerator of
the treatment weights, for j <= t we made the similar assumption that
g(A(j)|S̄(j), Ā(j−1) = 1) = g(A(j)|S(j), Ā(j−1) = 1). For time points
j > t, a different model had to be adopted, as the latest available co-
variates were measured at time t. To avoid the need to fit a separate
model for each time point after t (e.g., g(A(j)|S(j − 1), Ā(j − 1) =
1), g(A(j)|S(j − 2), Ā(j − 1)), etc.), for j > t we used the model
g(A(j)|S̄(t), Ā(j − 1) = 1) = g(A(j)|S(0), Ā(j − 1) = 1). Thus, the
numerator of the treatment weight consisted of

t∏

j=0

g(A(j)|S(j), Ā(j − 1) = 1)
t∗∏

j=t+1

g(A(j)|S(0), Ā(j − 1) = 1),

Estimates of g(A(j)|S(j), Ā(j − 1) = 1) and g(A(j)|S(0), Ā(j − 1) = 1)
were fit using logistic regression of the probability of switching on most
recent or baseline CD4 T cell count, respectively, and suppression history.

3. Censoring mechanisms:

t+8∏

j=0

Pr(C1 > j|C̄(j − 1) = 0, Ā(j − 1), L̄(j − 1))

t+8∏

j=0

Pr(C2 > j|C1 > j, C̄(j − 1) = 0, Ā(j − 1), L̄(j − 1))

As with the treatment mechanism, we used the D/S/A algorithm to
fit, for each censoring mechanism, a pooled logistic regression model of
the probability of being censored given that censoring had not already
occurred and the observed past. As in modelling the treatment mecha-
nism, we assumed that censoring probability at time j was independent
of covariates at time j − 1 given covariates at time j. In other words,

Pr(C1 > j|C̄(j − 1) = 0, Ā(j − 1), L̄(j − 1)) =

Pr(C1 > j|C̄(j − 1) = 0, Ā(j − 1), L(j − 1)),

and similarly for C2
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4. Numerators for censoring weight: In estimating the numerator for
the censoring weight, we made equivalent assumptions as when estimat-
ing the numerator for the treatment weight. The numerators of the
censoring weights consisted of:

t+1∏

j=0

Pr(C1 > j|C̄(j − 1) = 0, Ā(j − 1), S(j − 1))

t+8∏

j=t+2

Pr(C1 > j|C̄(j − 1) = 0, Ā(j − 1), S(0))

t+1∏

j=0

Pr(C2 > j|C1 > j, C̄(j − 1) = 0, Ā(j − 1), S(j − 1))

t+8∏

j=t+2

Pr(C2 > j|C1 > j, C̄(j − 1) = 0, Ā(j − 1), S(0))

The resulting estimates βn of β provided a origin-specific statically opti-
mal treatment rule according to Definition (2). Standard error estimates and
confidence intervals for the parameter β, and variability in the resulting deci-
sion rule, were calculated by applying the entire estimation algorithm to 100
non–parametric bootstrap samples.

6.6 Results.

The D/S/A algorithm and cross-validation selected a treatment mechanism
with 8 main terms. The corresponding odds ratios are reported in Table
(1). The same algorithm applied to the censoring mechansims selected an
intercept-only model for each of the censoring mechanisms; thus, the censoring
component of the weights was estimated as 1. Both prior work (Petersen et al.
(2006)) and background knowledge suggest that CD4 T cell count may be
the most important potential source of bias due to informative censoring. To
address this concern, we performed a sensitivity analysis, in which we fit a
model of censoring due to loss to follow-up/death (C2) based on most recent
CD4 T cell count and used this model in the estimation of the censoring
component of the weights. Changes in the causal coefficients estimated using
this censoring model were minimal (relative change or 3% or less), supporting
the presence of minimal bias due to informative censoring.

IPTW estimation relying on these fits yielded the following estimate of the
counterfactual history-adjusted parameter of interest:

mβ(t, a(t, t∗)|ā(t− 1) = 1, Sup(t) = 0, CD4(t)) =
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Table 1: Odds ratios for switching treatment based on data-adaptive fit of
treatment mechanism

Covariate Odds Ratio
Current diagnosis with an opportunistic disease 1.21
Number of protease inhibitor drugs experienced 1.11
Most recent HIV RNA level undetectable 0.44
Percent average adherence (per 10%) 0.92
Most recent CD4 T cell count (per 100 CD4 T cells) 0.92
Nadir CD4 T cell count (per 100 CD4 T cells) 1.06
Most recent HIV RNA level more than one month prior 0.90
Age (per 5 years) 0.80

92.8− 9.4×
t∗∑

j=t

a(j) + 0.48× CD4(t)− 16.12× t + 0.05×
t∗∑

j=t

a(j)× CD4(t)

+1.46×
t∗∑

j=t

a(j)× t + 0.07× CD4(t)× t− 0.009×
t∗∑

j=t

a(j)× CD4(t)× t,

This model yields the following origin-specific statically optimal treatment
rule:

dt = I({−9.4×
t∗∑

j=t

a(j) + 0.05×
t∗∑

j=t

a(j)× CD4(t)

+1.46×
t∗∑

j=t

a(j)× t− 0.009×
t∗∑

j=t

a(j)× CD4(t)× t} < 0),

where, dt is the treatment decision at time t (if dt = 1 then switch, if dt = 0
then wait). The coefficients which contribute to this rule, together with their
95% confidence intervals, are provided in Table 2.

Table 2: Coefficients contributing to origin-specific statically optimal rule for
when to switch therapy, based on model mβ(t, a(t, t∗)|ā(t − 1) = 1, Sup(t) =
0, CD4(t))

Term Coefficient 95% CI∑t∗
j=t a(j) -9.4 -17.8, -0.9∑t∗
j=t a(j)× CD4(t) 0.05 0.02, 0.08∑t∗
j=t a(j)× t 1.46 -0.5, 3.4∑t∗
j=t a(j)× t× CD4(t) -0.009 -0.02, -0.002
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In addition to providing confidence intervals for estimates of the coefficients
that contribute to the individualized treatment rule, bootstrap sampling pro-
vides a means to judge the variability of the treatment decision provided by
the rule. Figure 1 shows the proportion of bootstrap samples in which the
origin-specific statically optimal treatment rule indicated a switch, plotted for
each month following loss of viral suppression, and for four different CD4 T
cell counts.

Thus the results of these analyses can be summarized as follows:

• Immediately following loss of suppression, individuals with high CD4 T-
cell counts can wait to switch, while individuals with low CD4 T cell
counts should switch immediately.

• At later time points, an individual’s current CD4 T cell count is less
important to the decision whether to wait to switch. Thus at later time
points, the decision whether to switch or not is less clear, and should
likely depend on additional considerations.

It is interesting to compare these results with the results reported in Pe-
tersen et al. (2005). Petersen et al. (2005) reported estimates of the observed
HA-MSM parameter, using the same SCOPE dataset, same S̄(t), and same
model mβ, but estimating the observed history-adjusted parameter:

E[YĀ(t−1),a(t,t∗)|S̄(t), Ā(t− 1)).

The coefficients contributing to the resulting individualized treatment rule
are reported in Table 3. The similarity between the estimate of the coun-
terfactual history-adjusted mean (Table 2) and the estimate of the observed
history-adjusted mean (Table 3) supports the claim of Petersen et al. (2006)
that in this dataset, the choice S̄(t) = (CD4(t), Sup(t)) is sufficient to control
confounding of the effect of past treatment history (up till time t− 1) on the
outcome. Such a finding suggests that the static optimality of the treatment
rule presented here is not origin-specific; the rule should remain statically
optimal if applied to individuals remaining on their original non-suppressive
therapy at a given time point, regardless of how the decision whether to switch
therapy up till that time point has been made.

7 Discussion.

This paper has presented a new parameter of the full data-generating distri-
bution, together with corresponding estimating equations, and demonstrated
that this parameter directly identifies an origin-specific statically optimal in-
dividualized treatment rule. The proposed individualized treatment rule is
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Table 3: Estimated effect of each additional month waiting to switch on CD4
T cell count 8 months later, based on observed history-adjusted parameter
(Petersen et al. (2005))

Term Coefficient 95% CI∑t∗
j=t a(j) -9.2 -17.6, -7.6∑t∗
j=t a(j)× CD4(t) 0.05 0.02, 0.08∑t∗
j=t a(j)× t 1.5 -0.4, 3.4∑t∗
j=t a(j)× t× CD4(t) -0.009 -0.02, -0.004

relatively easy to estimate with standard software. We have further shown
that, applied to a data example, the method can provide both practical and
interpretable results.

If these methods are applied to data generated in a sequentially random-
ized trial, in which the treatment mechanism is known, then the DR-IPTW
estimator is known to be asymptotically consistent and asymptotically linear
under the assumption that the model for the counterfactual history-adjusted
mean is correct. In particular, since our model {mβ : β} for the counterfac-
tual history-adjusted mean always contains the null hypothesis H0 : β = 0, it
follows that the IPTW or DR-IPTW estimator provide a valid test of the null
hypothesis under no conditions when applied to data generated by randomized
trials.

As clarified in the discussion of van der Laan et al. (2005) our model for the
counterfactual history-adjusted mean of the outcome Yā(t,m) can be replaced
by a model for a counterfactual history-adjusted parameter of the conditional
distribution PYā(t,m)|S̄ā(t)) such as the conditional median, or conditional sur-
vival function of Yā(t, m). In this manner, our models yield estimators of
origin-specific statically optimal individualized treatment rules which are op-
timal w.r.t. any user-supplied parameters of the distribution of the future
outcome. For example, in the case that the outcome process of interest is an
indicator process jumping from 0 to 1 at a survival time (e.g., time till recur-
rence of cancer) our methods can be used to estimate individualized treatment
rules which at each point in time, conditional on a user-supplied subset of the
observed history, select the treatment action (statically) optimizing the sur-
vival probability at (e.g.) 5 additional years.

Finally, as illustrated in the data example, the general estimating function
methodology (van der Laan and Robins (2003)) for censored data can be used
to map the estimating functions based on observing (Ā, LĀ) presented in this
article into estimating functions for the censored longitudinal causal inference
data structure O = (C, Ā(C), L̄Ā(C)) for a right-censoring variable C (Chapter
3, van der Laan and Robins (2003)).
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Figure 1: Variability in statically optimal decision whether to switch therapy,
depending on current CD4 T cell count and elapsed time since failure
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8 Appendix.

8.1 An alternative derivation of DR-IPTW estimating
functions.

It is interesting to note the link between the DR-IPTW estimating functions
presented in the previous section and the estimating functions for the observed
history-adjusted mean presented in van der Laan et al. (2005). Consider a
treatment mechanism g∗(Ā | X) so that

EPX0
(Yā(t−1),a(t)(t,m) | S̄ā(t) = s̄(t))

= EPX0,g∗(Yā(t−1),a(t)(t,m) | S̄(t) = s̄(t), Ā(t− 1) = ā(t− 1)).

For example, any treatment mechanism g∗(Ā | X) =
∏T−1

t=0 g(A(t) | Ā(t −
1), S̄(t)) satisfies this condition: that is, if treatment assignment is only based
on the S(t) process, then the counterfactual history-adjusted mean equals the
observed history-adjusted mean. Thus, our model (3) can also be viewed as
the following model:

EPX0,g∗(Yā(t−1),a(t)(t,m) | S̄(t) = s̄(t), Ā(t−1) = ā(t−1)) = mβ0(t, a(t) | ā(t−1), s̄(t)).
(7)
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However, the latter kind of model is the HA-MSM introduced in van der Laan
et al. (2005), and in the latter article we also derived the corresponding class
of DR-IPTW estimator of β0 based on sampling from PPX0,g∗ . Let’s denote the
latter DR-IPTW estimating functions with Dh,g∗,Q(O | β) indexed by arbitrary
functions h, g∗, Q. Thus, we have

EPPX0,g∗Dh,g∗,Q(O | β0) = 0 for all h, g∗, Q.

The choice Q = 0 corresponds with the class of IPTW-estimating functions for
the HA-MSM (7) based on sampling from PPX0,g∗ . The latter IPTW estimating
functions are given by

Dh,g∗(O | β) =
K(m)∑

t=0

h(t, Ā, S̄(t))

g∗(A(t) | Ā(t− 1), X)
{Y (t, m)−mβ(t, A(t) | Ā(t− 1), S̄(t))},

where

g∗(A(t) | Ā(t− 1), X) =
T−1∏

j=t

g∗(A(j) | Ā(j − 1), S̄(j)).

The typical choice we recommend is

h∗(t, Ā, S̄(t)) ≡ d

dβ
mβ(t, A(t) | Ā(t− 1), S̄(t))g∗(A(t) | Ā(t− 1), S̄(t)), (8)

where

g∗(A(t) | Ā(t− 1), S̄(t)) ≡
T−1∏

j=t

g∗(A(j) | Ā(j − 1), S̄(t)).

This implies now the following class of IPTW-estimating functions based
on sampling from the actual true probability distribution PPX0,g0 of O:

Db=(h,g∗,Q),IPTW (O | g, β) ≡ Dh,g∗,Q(O | β)
g∗(Ā | X)

g(Ā | X)
. (9)

This class of IPTW-estimating functions is indexed by arbitrary functions
b = (h, g∗, Q). If we set Q = 0, then we obtain the following class of IPTW
estimating functions indexed by (h, g∗)

Db=(h,g∗),IPTW (O | g, β) =
∑K(m)

t=0
h(t,Ā,S̄(t))

g∗(A(t)|Ā(t−1),X)
{Y (t,m)−mβ(t, A(t) | Ā(t− 1), S̄(t))}g∗(Ā|X)

g(Ā|X)
.

If we choose h = h∗ (8), then the corresponding IPTW-estimator defined as
the solution of 0 =

∑n
i=1 Dh,g∗n,IPTW (O | gn, β) = 0 is the following weighted

least squares estimator:

βn,IPTW = arg min
β

n∑

i=1

K(m)∑

t=0

wi(t)
{
Yi(t,m)−mβ(t, Ai(t) | Āi(t− 1), S̄i(t))

}2
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with weights given by

wi(t) ≡ g∗n(Āi | Xi)

gn(Āi | Xi)

g∗n(Ai(t) | Āi(t− 1), S̄i(t))

g∗n(Ai(t) | Āi(t− 1), Xi)
.

Note, however, that this weight can be re-written:

wi(t) ≡ g∗n(Āi | S̄i)

gn(Āi | Xi)

g∗n(Ai(t) | Āi(t− 1), S̄i(t))

g∗n(Ai(t) | Āi(t− 1), S̄i)

=
gn(Āi | S̄i(t))

gn(Āi | Xi)
.

Thus this alternative mapping gives back the original IPTW estimating func-
tion, given in section 3.1. In the special case that S̄ is such that g∗ = g, then
this estimator reduces to the IPTW-estimator proposed in van der Laan et al.
(2005) for HA-MSM models (the first ratio now equals 1 in wi(t)).

As in the previous subsection, these IPTW estimating functions can be
mapped into DR-IPTW estimating functions.
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