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A Cautionary Note on the Effect of Treatment
Misclassification on the Average Treatment

Effect

Danielle Braun, Corwin Zigler, Malka Gorfine, and Francesca Dominici

Abstract

Comparative effectiveness research often relies on large administrative data, such
as claims data. Methods to estimate treatment effects assume that treatment as-
signment is error-free, but in reality the inaccuracy of procedural or billing codes
frequently misclassifies patients into treatment groups. Propensity score methods
are widely used to analyze observational studies in which patient characteristics
might not be balanced by treatment group. We evaluate the impact of treatment
misclassification on 1) propensity score estimation; 2) treatment effect estima-
tion conditional on propensity score estimation and implementation. We focus
on three common propensity score implementations: subclassification, matching,
and inverse probability of treatment weighting (IPTW). We show in simulations
that there is a clear relationship between the misclassification rate and the bias in-
troduced to both the propensity score and treatment effect estimates, and that even
when both specificity and sensitivity are relatively high (around 90%) the aver-
age treatment effect is biased. We briefly illustrate the impact of misclassification
using SEER-Medicare data on brain cancer.



A Cautionary Note on the Effect of Treatment Misclassification on the

Average Treatment Effect

ABSTRACT

Comparative effectiveness research often relies on large administrative data,

such as claims data. Methods to estimate treatment effects assume that treat-

ment assignment is error-free, but in reality the inaccuracy of procedural or

billing codes frequently misclassifies patients into treatment groups. Propen-

sity score methods are widely used to analyze observational studies in which

patient characteristics might not be balanced by treatment group. We eval-

uate the impact of treatment misclassification on 1) propensity score estima-

tion; 2) treatment effect estimation conditional on propensity score estimation

and implementation. We focus on three common propensity score implementa-

tions: subclassification, matching, and inverse probability of treatment weight-

ing (IPTW). We show in simulations that there is a clear relationship between

the misclassification rate and the bias introduced to both the propensity score

and treatment effect estimates, and that even when both specificity and sensi-

tivity are relatively high (around 90%) the average treatment effect is biased.

We briefly illustrate the impact of misclassification using SEER-Medicare data

on brain cancer.
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Causal Inference; Comparative Effectiveness Research; Measurement Error; Ob-

servational Data; Propensity Score; Validation Data.
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INTRODUCTION

When comparing the effectiveness of clinical therapies as they are employed

in routine practice, observational studies are often the only feasible option, but

have limitations. Absent the benefits of randomization, differences in patient

characteristics may confound treatment comparisons. Propensity score meth-

ods have gained widespread use for confounding adjustment in these settings

(Rosenbaum and Rubin, 1983).

The propensity score can be used in various procedures for estimating causal

effects. Analysis using propensity scores consists of three sequential stages

(Harder and others, 2010); 1) estimating the propensity score, 2) implementing

the propensity score to create pseudopopulations of observations where treat-

ment groups have similar values of the estimated propensity score, and 3) com-

paring outcomes among treated and untreated observations following the imple-

mentation stage. In this work, we consider three common implementations; sub-

classification, matching, and inverse probability of treatment weighting (IPTW)

Existing methods assume that treatment assignment is measured without

error, but in reality treatment assignment in observational studies is often mea-

sured with error, especially in analyses of claims data and in analyses of elec-

tronic medical records (Whittle and others, 1991; Du and others, 1999; Orrico,

2008). A literature review conducted by Jurek and others (2006), shows that

measurement error in the exposure (in this context, treatment assignment) is of-

ten ignored. Causal inference regarding the effect of an exposure may be biased

by these errors (Hernán and Cole, 2009).

Braun and others (2015) describe in detail the impact of the misclassified

treatment on the three stages of the analysis, and discuss the complexities that

arise due to the sequential nature of the three stages. They show that measure-

ment error in T always impacts the propensity score estimation stage and the
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outcome analysis stage, but that it may or may not impact the implementation

stage depending on how the propensity score is used. They do not evaluate

the impact of the treatment misclassification rate on the propensity score and

treatment effect estimates, which is the focus of this work.

The paper is structured as follows; the methods section describes in detail the

notation and model formulations. The results section includes comprehensive

simulation studies to evaluate the impact of the misclassification rate on the 1)

propensity score estimation, and 2) treatment effect estimation, as well as an

illustration of the impact of treatment misclassification in the context of brain

cancer data. Finally, we summarize the main results in the discussion.

METHODS

Notations

Let Y denote the true outcome (ex: binary disease status which is the focus

of this work, or a continuous, categorical, or survival outcome), T denote a true

binary treatment (ex: surgical assignment based on SEER procedural codes),

Tep denote the error-prone binary treatment (ex: surgical assignment based on

ICD9 billing codes from Medicare Part A), and X denote a vector of observed

confounders measured without error (ex: age, co-morbidity, etc).

The target estimand is the average treatment effect (ATE); ∆ = E[Y1] −

E[Y0], where Y0 is the outcome an individual would have had if he/she were

untreated, and Y1 is the outcome an individual would have had if he/she were

treated. The observed outcome, Y , is defined as Y = TY1+(1−T )Y0. The causal

effect ∆ can be estimated from the observed data provided that 1) (T, Y,X) are

measured without error, 2) each individual has a positive probability of being

either treated or untreated: 0 < P (T = 1|X) < 1 for all X, 3) the treatment

assignment is ignorable, so that, conditional on X, the potential outcomes are

independent of T : (Y0, Y1) ⊥ T |X. Under these assumptions, propensity scores
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can be used to estimate ∆ with observed-data comparisons among treated and

untreated observations with similar covariate profiles. Settings with treatment

misclassification present a challenge since Tep is observed instead of T , and

therefore it is unknown as whether any given observed value of Y represents Y0

or Y1. This will lead to biased estimation of ∆.

Propensity score estimation

To model the true propensity score, we consider a Generalized Linear Model

(GLM) relating T to X, that is PStrue = E(T |X = x, γ) = g−1(γ0 + γT1 x),

where g is known. We consider this the gold-standard propensity score estimate,

which could be estimated directly if T were known. Absent information on

T , an analogous error-prone propensity score can be modeled with: PSep =

E(Tep|X = x, γep) = g−1(γ0ep + γT1epx). The propensity score estimates derived

from these models will be denoted with ̂PStrue and P̂Sep respectively.

Treatment effect estimation

We consider outcome analyses that can be expressed via a likelihood func-

tion, where the likelihood function will be considered conditional on the propen-

sity score implementation stage. To model the true outcome model, we consider

a GLM relating Y to T and X, that is E(Y |T = t,X = x, β) = r−1(β0 + β1t+

βT
2 x), t = 0, 1,x ∈ Rp, where r is known. We consider this the gold-standard

outcome model, which could be estimated directly if T were known. Absent in-

formation on T , an analogous error-prone outcome model can be modeled with:

E(Y |Tep = tep,X = x, βep) = r−1(β0ep + β1eptep + βT
2epx), tep = 0, 1,x ∈ Rp,

where r is known.

For the implementations we consider, this GLM will be estimated either in

subclasses defined by the estimated propensity scores or via a likelihood that is

weighted by a function of the propensity score. Note that fitting this regression

model to adjust for X in the outcome stage in addition to the adjustment for
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propensity score in the implementation stage is not necessary since the propen-

sity score implementation would, in principle adjust for confounding due to X.

While we conduct all analyses assuming β2 = 0 to exclude X from the outcome

model, β2 6= 0 could be included to adjust for residual imbalances not cap-

tured by the propensity score implementation or to improve precision of causal

estimates (Stuart, 2010).

RESULTS

Simulation design

Our goal is to evaluate the impact of the misclassification rate on the 1)

propensity score estimation, and 2) treatment effect estimation, under three

propensity score implementations; subclassification, matching, and IPTW.

We consider a measurement error model that can be written asE(Tep|T,X) =

h−1(η0 + η1T + ηT2 X), where h is known. We generate a dataset with 3, 000

individuals. For each we consider six confounders X = (1, X1, . . . , X6) that in-

clude both continuous (X1 ∼ N(0, 1), X2 ∼ N(0, 2), X3 ∼ N(0, 3)) and binary

covariates (X4, X5, X6 each generated from Bern(0.5)). [T |X, γ], [Tep|T,X, η],

and [Y |T,X, β] were generated as Bernoulli random variables, with

γ = (γ0, 0.3,−0.3,−0.3, 0.3,−0.3, 0.3)T , η = (η0, η1, η2, 0, 0, η5, 0, 0)T , and β =

(0,−2,−1, 1, 1,−1, 1, 1)T .

We consider three different scenarios for γ0 = −1.55,−0.15, 1.2 correspond-

ing to three different prevalences of the true treatment, P (T = 1) = 25%, 50%, 75%.

For the evaluation of the impact on the propensity score estimation, we vary

η0 and η1 in increments of 0.4 from −6 to 6 to obtain scenarios covering a

wide range of sensitivity and specificity. Thus, we consider 961 different sim-

ulation scenarios for each of the prevalances. For evaluation of the impact on

the treatment effect estimation (which is more computationally demanding), we

selected 9 of these combinations of η0 and η1 representing the following sensitiv-
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ity/specificity; (0.1/0.1, 0.2/0.2, . . . , 0.9/0.9). We consider two different scenar-

ios; η2 = η5 = −0.4 and η2 = η5 = −2 corresponding to two different strengths

of association between Tep and X. For the treatment effect estimation each of

these 9 scenarios was simulated 500 times.

For subclassification we grouped observations into quartiles of the propensity

score. For matching, we use full matching to obtain weights for each individual

using the MatchIt R package. For IPTW, weights are calculated using the

inverse propensity score and stabilized by multiplying the weights for the treated

individuals by the expected value of being treated, and those for the untreated

individuals by the expected value of being untreated (Robins and others, 2000).

For the gold-standard approach, IPTW weights are stabilized based on the true

treatment assignment, whereas for the error-prone they are stabilized based on

the error-prone treatment assignments. All analysis was conducted in R.

Simulation results

We first evaluate the impact of the misclassification rate on the propen-

sity score estimation, by plotting the absolute value of the difference between̂PStrue and P̂Sep for each of the 961 simulations considered for η2 = η5 = −0.4

(Figure 1) (results for η2 = η5 = −2 are similar and not shown). For the

first scenario, where P (T = 1) = 25%, there are larger differences between the

true and error-prone propensity scores when sensitivity is high and specificity is

low, and smaller differences when sensitivity is low yet specificity is high. This

is expected, as sensitivity impacts those who are treated whereas specificity

impacts those who are untreated, and the proportion of treated observations

is smaller than untreated. The reverse is seen for the third scenario, where

P (T = 1) = 75%, and there are larger differences when sensitivity is low and

specificity is high. For the second scenario, where P (T = 1) = 50%, there is

symmetry of the impact of sensitivity and specificity, which is expected.
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Next we evaluate the impact of the misclassification rate on the treatment

effect estimate. For each of the three propensity score implementations consid-

ered we estimate the ATE for the 9 sensitivity/specificity combinations, as well

as under the assumption of no measurement error (Figure 2, η2 = η5 = −0.4).

We also compare the results to standard regression. As expected the ATE under

no measurement error is very close to the true estimate (in red), across the three

implementations and for standard regression. The bias in the ATE across all

three implementations and for standard regression decreases as we increase the

sensitivity and specificity across all three prevalences. The misclassification of

treatment does not introduce additional bias when implementing using propen-

sity score compared to standard regression. As we increase the dependence of

Tep on X, Figure 3, η2 = η5 = −2, we see that this is no longer true. The mis-

classification of treatment increases the variability of the estimates for matching

and IPTW compared to stratification and standard regression.

We selected 27 additional combinations corresponding to sensitivity/specificity

of (0.9/0.1, 0.8/0.2, . . . , 0.1/0.9), (0.5/0.1, . . . , 0.5/0.9), (0.1/0.5, . . . , 0.9/0.5) which

are described in detail in the supplementary materials. Briefly, for both η2 =

η5 = −0.4 and η2 = η5 = −2, we see that for (0.9/0.1, 0.8/0.2, . . . , 0.1/0.9)

the bias in the ATE remains constant across these sensitivity/specificity com-

binations, implying that the total error.. We see that as expected for a fixed

sensitivity or specificity of 0.5 the bias decreases as we vary the specificity or sen-

sitivity from 0.1 to 0.9. In addition, we consider β = (0,−1,−2, 2, 2,−2, 2, 2)T

representing a weaker association between the outcome and the treatment and

strong association between the outcome and confounders. As expected the bias

introduced by the misclassification is not as substantial under this setting.

Data illustration

We illustrate the impact of misclassification using SEER-Medicare data to
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estimate the effect of biopsy vs. resection on 1-year mortality among patients

diagnosed with brain tumors. ICD9 billing codes from Medicare Part A inac-

curately reflect surgical treatment, but additional data from SEER is available

which contains more accurate information regarding surgical treatment. This

data is described in detail in Braun and others (2015), briefly, Tep is based on

ICD9 codes, and T is based on more accurate medical chart review. The major-

ity of the patients that had a resection according to SEER procedural codes were

billed as such according to ICD9 codes (sensitivity, P (Tep = 1|T = 1) : 96.8%),

but patients with SEER procedural codes indicating a biopsy often have ICD9

codes indicating resection (specificity, P (Tep = 0|T = 0) : 26.2%).

Confounders with at least 2% prevalence in were selected to be included

in the propensity score model (Braun and others, 2015). For stratification, the

ATE based on T was−0.02[−0.07, 0.01] and based on Tep was−0.11[−0.17,−0.04].

For matching, the ATE based on T was −0.12[−0.09, 0.05] and based on Tep was

−0.14[−0.18,−0.02]. For IPTW, the ATE based on T was −0.03[−0.07, 0.02]

and based on Tep was −0.11[−0.17,−0.04]. Under this setting, with a high sen-

sitivity and a low specificity, we see that under stratification and IPTW, we have

substantial bias in the ATE. An ATE of −0.11 implies that the probability of

dying within one year is 11% larger for those who received a biopsy compared

to those who had a resection. Thus, under stratification, compared to truth

the error-prone indicates that surgery is 9% more effective for preventing death

within one year of diagnosis.

DISCUSSION

In this work we show there is a clear relationship between the misclassification

rate and the propensity score estimation which depends on the prevalence of the

true treatment. When estimating the treatment effect, substantial bias is intro-

duced across all sensitivity/specificity combinations considered which increases
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as we increase the misclassification rates. For the treatment effect estimation

the misclassification in treatment impacts the propensity score estimation, im-

plementation, and the final estimation of the treatment effect conditional on the

implementation. Even scenarios where there are relatively small differences in

propensity score estimation, can yield large bias in treatment effect due to the

sequential nature of these stages.

Treatment assignment is often measured with error. We have shown that

this misclassification can introduce substantial bias in the treatment effect esti-

mator. We illustrated using real data that this can lead to dramatically different

conclusions. Based on these results, there is a clear need for methods to adjust

for measurement error under this complex setting. Braun and others (2015)

provide a likelihood-based approach, but other approaches may also be consid-

ered.
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Figure 1: Difference between true and error-prone propensity score for various
rates of sensitivity specificity, under three different prevalences, η2 = η5 = −0.4.
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Figure 2: ATE estimator, across 500 simulations for sample size N = 3, 000,
based on varying rates of sensitivity and specificity. Also included are results
when there is no error. The true ATE is marked in red. η2 = η3 = −0.4,
β = (0,−2,−1, 1, 1,−1, 1, 1)T . Sens/spec=0.1/0.1,...,0.9/0.9.
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Figure 3: ATE estimator, across 500 simulations for sample size N = 3, 000,
based on varying rates of sensitivity and specificity. Also included are results
when there is no error. The true ATE is marked in red. η2 = η3 = −2,
β = (0,−2,−1, 1, 1,−1, 1, 1)T . Sens/spec=0.1/0.1,...,0.9/0.9.
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