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Summary: Covariate-specific ROC curves are often used to evaluate the classification accuracy of

a medical diagnostic test or a biomarker, when the accuracy of the test is associated with certain

covariates. In many large-scale screening tests, the gold standard is subject to missingness due to

high cost or harmfulness to the patient. In this paper, we propose a semiparametric estimation of

the covariate-specific ROC curves with a partial missing gold standard. A location-scale model is

constructed for the test result to model the covariates’ effect, but the residual distributions are

left unspecified. Thus the baseline and link functions of the ROC curve both have flexible shapes.

With the gold standard missing at random (MAR) assumption, we consider weighted estimating

equations for the location-scale parameters, and weighted kernel estimating equations for the residual

distributions. Three ROC curve estimators are proposed and compared, namely, imputation-based,

inverse probability weighted and doubly robust estimators. We derive the asymptotic normality of

the estimated ROC curve, as well as the analytical form the standard error estimator. The proposed

method is motivated and applied to the data in an Alzheimer’s disease research.

Key words: Alzheimer’s disease; covariate-specific ROC curve; ignorable missingness; verification

bias; weighted estimating equations.
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Semiparametric estimation of the covariate-specific ROC curve 1

1. Introduction

The receiver operating characteristic (ROC) curve is a useful tool to evaluate the classifi-

cation ability of a medical diagnostic test or biomarker. The ROC curve is a plot of test’s

sensitivity versus its 1-specificity as one varies the decision threshold for test positivity.

In the ROC analysis, covariates may impact the magnitude of the diagnostic test and/or

the diagnostic accuracy. Lack of covariate adjustment may not only bias the result, but

also impair the generalizability of the study results to other different populations. Thus the

covariate-specific ROC curve is widely used to evaluate the classification accuracy within

some particular sub-population. One may consider a stratified analysis and estimate the ROC

curve for each sub-population specified by the covariates. However, regression type analysis

is often preferred so that the covariates’ effect is estimated in a parsimonious fashion. Zhou et

al. (2002) and Pepe (2003) both give a detailed review of the existing methods in estimating

a covariate-specific ROC curve. Many methods require the true condition status of each

patient to be determined by the “gold standard”. In many large cohort studies, however, the

gold standard may not be available to everybody because it is expensive and/or invasive.

Deleting the subjects with missing gold results in biased estimators, which is referred to as

the “verification bias” (Begg and Greenes, 1983).

Using the missing data framework, we call the verification process to be missing at random

(MAR) if the probability of disease verification is only affected by the observed variables.

Under the MAR assumption, many existing methods are available for the verification bias

problem for binary tests (Begg and Greenes, 1983) and ordinal tests (Gary et al., 1984; Zhou,

1996; Zhou, 1998; Rodenberg and Zhou, 2000). Recently, Zheng el al. (2005) proposed to

use a weighted estimating equation (WEE) approach to estimate the covariate specific ROC

curve for ordinal tests. They considered a parametric binormal form of the ROC curve. The

theory of their WEE approach originated from Lipsitz et al. (1999). The weighted estimating
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equations utilize a model of missing mechanism as well as a model of disease probability in

order to estimate the parameters in the binormal ROC curve. The advantage of their method

is the robustness to some model mis-specification: either the disease model or the verification

model being correct guarantees the consistency of the ROC curve estimator, which is called

“doubly robust” property. Alonzo and Pepe (2005) considered the continuous test result and

proposed several empirical ROC curve estimators. Their ROC curve estimators are empirical

step functions, and could not incorporate the covariates effect on ROC curves.

Although covariate-specific ROC curve estimators for continuous test have been extensively

discussed in the literature, not much work has been done on the verification bias correction

for covariate-specific ROC curves. Page and Rotnitzky (2009) is the only published paper

so far, who proposed a fully parametric model for estimating the covariate-specific ROC

curve under verification bias. However, their binormal ROC curve assumption is often too

restrictive in practice, so we wish to estimate the “baseline shape” of the ROC curve instead.

A subgroup analysis is an option when the covariates are categorized. For example, Punglia

et al. (2003) studied the ROC curve for prostate-specific antegen (PSA) measurement in

detecting prostate cancer. They reported the bias corrected ROC curve stratified by age

group and digital rectal examination results. When some of the covariates are continuous,

however, subgroup analysis may not be feasible. In this paper, we propose a new semipara-

metric regression model for the covariate-specific ROC curve and the weighted estimating

equations to adjust for the verification bias, which extends the results in Alonzo and Pepe

(2005) and Page and Rotnitzky (2009).

We consider a continuous-scale diagnostic test and propose several semiparametric covariate-

specific ROC curve estimators. A location-scale model is constructed on the diagnostic

test to model the covariates effect, but the residual distributions are left unspecified. This

location-scale framework is commonly used in regression settings as well. The baseline and
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link function of the ROC curve both have flexible shapes. Pepe (1998) first proposed and

compared several regression methods to estimate the ROC curve without missing data, and

showed that the location-scale model is the most efficient. With missing gold standard, we

employ the weighted estimating equations for the location-scale parameters, similarly as in

Zheng el al. (2005) and Page and Rotnitzky (2009). The unspecified residual distributions are

estimated by the weighted kernel estimating equations, which yields the smooth ROC curve

estimators. We discuss three forms of weighting techniques based on imputation and inverse

probability weighting. The covariate-specific ROC curve is then estimated as a function of

the location-scale parameters and the residual distribution/quantile functions. We also show

the central limit theorem for the estimated ROC curve and derive the asymptotic variance

formula. Compared to Alonzo and Pepe (2005), our approach can incorporate covariates,

and we derive analytical variance formula; compared to Zheng el al. (2005) and Page and

Rotnitzky (2009), the form of our ROC curve is more flexible, as we do not specify the

baseline shape of the curve.

The paper is organized as follows. Section 2 outlines the location-scale model framework

and other basic model assumptions. Section 3 presents the weighted estimating equations

for the finite and infinite dimensional parameters. The limit theorems are also presented.

Section 4 reports some simulation results to examine the finite sample performance of our

proposed method. Section 5 applies our method to a real data example in an Alzheimer’s

disease research, followed by discussions in Section 6.

2. Location-scale model

Let Ti, Di, Vi and Xi be the continuous test result, the gold standard, the verification

indicator, and the covariates for the ith subject, respectively, where i = 1, 2, · · · , n. Let a

larger value of T indicate more likely to be diseased; let D = 1 denote a diseased subject

(case) and 0 denote a healthy subject (control); let V = 1 denote observed gold standard
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and 0 denote missing gold standard. We sometimes suppress the subscript i when there is

no confusion.

We assume a location-scale model for Ti:

Ti = µ(Xi, Di; β) + σ(Xi, Di; γ)× εi(Di),

where µ(Xi, Di; β) and σ(Xi, Di; γ) are the mean and standard deviation for Ti given the

values of the covariates and disease status, respectively, and εi(Di) is the residual. We may

also use µi and σi as an abbreviation. Let G0 and G1 be the unknown distribution functions

for εi(0) and εi(1), respectively, with mean 0 and variance 1. Our setting of the location-

scale model slightly extended the model in Section 2 of Pepe (1998), in that we allow the two

distribution functions to be different. Page and Rotnitzky (2009) also used this location-scale

model, but assumed the residual εi(Di) to follow standard normal distribution. As we will see

in the example in Section 5, the cases and controls can have quite different test distributions,

both of which are far from normal.

We could then write out the covariate-specific sensitivity and specificity at some cutoff

point c:

Sensx(c) = Pr(T > c|D = 1, X = x)

= 1−G1

(
c− µ(x, 1; β)

σ(x, 1; γ)

)
,

1− Specx(c) = Pr(T > c|D = 0, X = x)

= 1−G0

(
c− µ(x, 0; β)

σ(x, 0; γ)

)
.

The ROC curve is expressed as follows:

ROCx(t) = 1−G1

[
σ(x, 0; γ)

σ(x, 1; γ)
G−1

0 (1− t) +
µ(x, 0; β)− µ(x, 1; β)

σ(x, 1; γ)

]
.

Sometimes we call G1 and G−1
0 the link function and the baseline of the ROC curve,

respectively. Allowing the link and baseline to be unspecified grants the ROC curve more

flexibility. As a comparison, Pepe (1998), and Cai and Pepe (2002) both proposed a direct
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regression method for estimating the covariate-specific ROC curve; the former assumes both

G1 and G−1
0 have known parametric forms, while the latter assumes G1 to be known and

leaves G−1
0 to be unspecified. Pepe (1998) also mentioned that the location-scale model tends

to be more efficient than the direct regression method. Another advantage of the location-

scale model is that its extension to missing gold standard situation is more straightforward.

3. Estimation procedures

3.1 Complete data estimating equations

In the ROC curve expression, the unknown quantities to be estimated are finite dimensional

parameters β and γ, and infinite dimensional curves G−1
0 and G1. When the gold standard

is observed for each subject, the estimation of β and γ is easily obtained via the following

estimating functions:

U1 ≡
∑

i

U1i ≡
∑

i

(
∂µi

∂β

)T
(Ti − µi)

σ2
i

,

U2 ≡
∑

i

U2i ≡
∑

i

(
∂

∂γ
σ2

i

)T
(Ti − µi)

2 − σ2
i

var
[
(Ti − µi)

2] ,

where µi and σi are short for µ(Xi, Di; β) and σ(Xi, Di; γ) defined in the location-scale

model. Substituting the estimated β̂ and γ̂ into µi and σi, we denote ε̂i(Di) = (Ti−µ̂i)
σ̂i

to be

the fitted residual. For each fixed s, the two distribution functions, G1(s) and G0(s), can

then be estimated with the following kernel smoothing estimators:

U3(s) ≡
∑

i

U3i(s) ≡
∑

i

Di

[
K

(
s− ε̂i(Di)

h

)
−G1(s)

]
,

U4(s) ≡
∑

i

U4i(s) ≡
∑

i

(1−Di)

[
K

(
s− ε̂i(Di)

h

)
−G0(s)

]
,

where K(·) is some distribution function and h is the bandwidth. In order to obtain the 1− t

quantile of G0, G−1
0 (1− t), we solve the following estimating function for every fixed t:

U5(t) ≡
∑

i

U5i(t) ≡
∑

i

(1−Di)

[
K

(
G−1

0 (1− t)− ε̂i(0)

h

)
+ t− 1

]
.
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Although t may take infinitely many values between 0 and 1, we set finite grid points

to get good approximation for the smooth ROC curve. In the example, we choose t =

0.01, 0.02, · · · , 0.99 with linear extrapolation between the adjacent grid points. When the

kernel K(x) = I(x 6 0), we obtain the empirical estimators of G0 and G1. However, it is

usually desired that the ROC curve is a smooth curve rather than a step function. Therefore,

we use some continuous distribution function K(·), such as standard normal distribution

Φ. The estimated Ĝ0 and Ĝ1 have the same
√

n-consistency as the empirical distribution

function, as long as the bandwidth is sufficiently small (Nadaraya, 1964).

3.2 Weighted estimating equations under verification bias

As the gold standard is only available for a portion of the subjects, we reweight the esti-

mating equations. Let ρi = Pr (Di = 1|Ti, Xi) = Pr (Di = 1|Ti, Xi, Vi = 1) be the disease

probability, and πi = Pr (Vi = 1|Ti, Xi) be the verification probability. With the MAR

assumption, the two probabilities can be estimated separately, where logistic regressions

would be a convenient approach. We then construct the weighted estimating equations with

the estimated ρ̂i and π̂i. Three types of estimating methods are considered, namely, doubly

robust (DR), inverse probability weighting (IPW) and imputation based (IB) approaches.

Let

SDR
k ≡

∑
i

SDR
ki ≡

∑
i

{
Vi

π̂i

Uki +

(
1− Vi

π̂i

)
EDi|Ti,Xi

Uki

}
, (1)

SIPW
k ≡

∑
i

SIPW
ki ≡

∑
i

Vi

π̂i

Uki, (2)

SIB
k ≡

∑
i

SIB
ki ≡

∑
i

{
ViUki + (1− Vi) EDi|Ti,Xi

Uki

}
, (3)

for k = 1, 2, 3, 4, 5. We abbreviate the superscript and use Sk to denote the general weighted

estimating functions in the text below. The conditional expectation EDi|Ti,Xi
can be written

Hosted by The Berkeley Electronic Press



Semiparametric estimation of the covariate-specific ROC curve 7

as weighted summations, as Di takes the value of 0 or 1. For example,

EDi|Ti,Xi
U1i =

1∑

d=0

Pr(Di = d|Ti, Xi)

(
∂µ (Xi, d; β)

∂β

)T
(Ti − µ(Xi, d; β))

σ2(Xi, d; γ)

= (1− ρi)

(
∂µ (Xi, 0; β)

∂β

)T
(Ti − µ(Xi, 0; β))

σ2(Xi, 0; γ)

+ρi

(
∂µ (Xi, 1; β)

∂β

)T
(Ti − µ(Xi, 1; β))

σ2(Xi, 1; γ)
.

The DR estimating functions (1) enjoy the “doubly robust” property: as long as either

ρ̂i or π̂i is consistently estimated, the DR estimator is consistent; the IPW estimating

equations (2) require that the verification probability, πi, is consistently estimated; the IB

estimating equations (3) require that the disease probability, ρi, is consistently estimated.

In practice, our understanding of the missing mechanism or the disease risk may not be

accurate enough, so the DR estimator allows two shots for the model specification, while

IPW and IB estimators rely on a single model assumption.

All these weighted estimating equations can be solved by Newton-Raphson method. With

the estimated β̂, γ̂, Ĝ−1
0 and Ĝ1, we could estimate the covariate-specific ROC curve as

follows:

R̂OCx(t) = 1− Ĝ1

[
σ(x, 0; γ̂)

σ(x, 1; γ̂)
Ĝ−1

0 (1− t) +
µ(x, 0; β̂)− µ(x, 1; β̂)

σ(x, 1; γ̂)

]
.

3.3 Asymptotic normality

First we examine the asymptotic behavior of the location-scale parameters. Let B1(α1) =

∑
i B1i(α1) and B2(α2) =

∑
i B2i(α2) be the estimating functions for modelling ρ and π,

respectively. Let θ1 ≡




β

γ


 be the location-scale parameters, and θ̂1 be its estimated

version. Let U12,i ≡




U1i

U2i


 and S12,i ≡




S1i

S2i


. Define I ≡ − ∂

∂θT
1
ES12,i, J1 =− ∂

∂αT
1
ES12,i,

J2 = − ∂
∂αT

2
ES12,i, K1 = − ∂

∂αT
1
EB1i, K2 = − ∂

∂αT
2
EB2i. Let Qi = U12,i−J1K

−1
1 B1i−J2K

−1
2 B2i.

The asymptotic distribution of θ̂1 is stated in the following theorem:
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Theorem 1: Under the standard regularity conditions stated in the Web Appendix,

√
n

(
θ̂1 − θ1

)
d→ N(0, Ω1),

where

Ω1 = I−1var(Qi)I
−1.

The proof of this theorem is sketched in the Web Appendix. Note that Ω1 can be estimated

by replacing all the parameters θ, α1 and α2 with their estimates, and replacing all the

expectations in I, J1, J2, K1 and K2 with the sample mean.

Our primary interest is not to estimate the location and scale model, but to construct the

ROC curve. Before studying the asymptotic property of the estimated ROC curve, we first

take a look at the variances for Ĝ1 and Ĝ−1
0 . The influence functions of Ĝ−1

0 (1− t) and Ĝ1(s)

are stated in the following lemma.

Lemma 1: When n → +∞, h → 0 and nh4 → 0, both Ĝ−1
0 (1 − t) and Ĝ1(s) are

asymptotic linear for any t ∈ (0, 1) and s ∈ (−∞, +∞), :

√
n

(
Ĝ−1

0 (1− t)−G−1
0 (1− t)

)
=

1√
n

∑
i

A1i(t) + op(1),

√
n

(
Ĝ1(s)−G1(s)

)
=

1√
n

∑
i

A2i(s) + op(1)

where

A1i(t) =

(
− ∂

∂s
ES5i

)−1 [
S5i +

(
∂

∂θT
1

ES5i

)
I−1Qi +

(
∂

∂αT
1

ES5i

)
K−1

1 B1i

+

(
∂

∂αT
2

ES5i

)
K−1

2 B2i

]

,and

A2i(s) =

(
− ∂

∂G1(s)
ES3i

)−1 [
S3i +

(
∂

∂θT
1

ES3i

)
I−1Qi +

(
∂

∂αT
1

ES3i

)
K−1

1 B1i

+

(
∂

∂αT
2

ES3i

)
K−1

2 B2i

]
.
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As the estimated ROC curve can be written as functions of Ĝ1, Ĝ−1
0 , and θ̂, the point-wise

asymptotic variance of R̂OCx(t) is shown in the following theorem:

Theorem 2: As the conditions for Theorem 1 and Lemma 1 hold, for any t ∈ (0, 1),

√
n

(
R̂OCx(t)−ROCx(t)

)
d→ N(0, Ω2)

where the expression of Ω2 is given in the Appendix.

The proof of Lemma 1 and Theorem 2 is sketched in the Web Appendix. According to the

proof of Theorems 1 and 2, both asymptotic variances consist of two sources of variability:

one from the estimating functions Sk (k = 1, · · · , 5), the other from plugging in the estimated

probabilities ρ̂i and/or π̂i. However, a nice property for the DR estimator is that the second

source of variability may vanish under some special cases. In other words, the estimated

ROC curves with estimated ρ̂i and π̂i have a similar variance as the estimated ROC curve

with the true probabilities ρi and πi. This property is stated in the following Corollary 1,

which is proved in the Web Appendix:

Corollary 1: In the DR estimator, if ρ̂i is estimated with
√

n consistency, the vari-

ances Ω1 and Ω2 do not contain the variability of estimating π̂i; if π̂i is estimated with
√

n

consistency, Ω1 and Ω2 do not contain the variability of estimating ρ̂i.

4. Simulation studies

We conducted extensive simulation studies and only report the primary results in this section.

More results are shown in the Web Appendix. The first simulation compared the performance

of the proposed DR, IPW and IB estimators with the estimator in Page and Rotnitzky (2009).

The second simulation compares the smooth ROC curve with the empirical estimator in

Alonzo and Pepe (2005), when the covariates are not associated with the test result. The
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impact of different bandwidth selections is also investigated. Simulation three investigate the

model misspecification.

4.1 Simulation one: comparison to the parametric estimator

In this simulation, we compare our proposed methods to the doubly robust estimator in

Page and Rotnitzky (2009), denoted by PR estimator. Two covariates X1 and X2 are

generated from Bernoulli(0.5) and Uniform(−1, 1), respectively. The true disease status, D,

is generated from the conditional distribution, D|X1, X2 ∼ Bernoulli(ρ), where logit(ρ) =

−0.25+0.5X1+0.8X2. The test result is generated from T = µ(D, X)+σ(D, X)×ε(D), where

µ = 1+0.4D+0.2X1 +0.7X2 +X1D+0.5X2D and σ = 0.8D+1.2(1−D). Two scenarios for

the residual distribution are simulated: (A) ε(D) ∼ N(0, 1), (B) (4.5 + 3ε(0)) ∼ χ2(4.5) and

(8 + 4ε(1)) ∼ χ2(8). Apparently, the test distribution is symmetric in scenario A and skewed

in scenario B. The verification indicator is generated from the conditional distribution,

V |T, X1, X2 ∼ Bernoulli(π), where logit(π) = −1 + 0.5T + 0.4X1 + 0.6X2. This simulation

setup results in about 50% missingness of the gold standard.

[Table 1 about here.]

[Table 2 about here.]

We set the sample size to be 1000. From the data generation, we can see that the disease

probability ρ = Pr(D = 1|T, X1, X2) is jointly determined by D|X1, X2 and T |D,X1, X2,

i.e., ρ =
Pr(D=1|X1,X2)f T |D=1,X1,X2

(t)

Pr(D=0|X1,X2)f T |D=0,X1,X2
(t)+Pr(D=1|X1,X2)f T |D=1,X1,X2

(t)
. This is a complex function of

T , X1 and X2, and a linear logistic regression may not estimate the true disease probability

well enough. Therefore we also include quadratic terms of T and X2, as well as pairwise

interactions between T , X1 and X2. Indeed, under our data generation procedure in scenario

A, the quadratic form is exactly the correct model. With χ2 residual, this disease model

still closely approximates the true disease probability. We use the correct verification model
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to estimate π. The bandwidth is chosen to be 0.05. We see in simulation study two that

the bandwidth has little effect on the performance of our estimators, as long as they are

kept small. The results of 500 simulations are reported in Tables 1 and 2. Note that the PR

estimator for the location-scale parameters are exactly the same as the DR estimator. We

can see from Table 1 that the estimated location and scale parameters always have low bias

and close-to-nominal coverage rate. The scale parameters are not as well estimated as the

location parameters, which we would expect for most regression analysis.

Table 2 only reports the ROC curve at three 1-specificity levels: 0.1, 0.2 and 0.4 because of

two reasons: first, the left end of the ROC curve may be more interesting as those correspond

to thresholds with good specificities; second, in our simulation, the ROC curve may be too

close to 1 when 1-specificity is greater than 0.4. It is shown that with the normal residual,

the bias of the estimated covariate-specific ROC curve is generally small for all the four

methods and the coverage rate is close to 95%. However, if the residual distribution is χ2,

the binormal assumption does not hold for the PR estimator. Therefore, the PR estimator

is seriously biased and the coverage is much lower than 95%, while the proposed estimators

still work well. We notice that if the the true sensitivity is close to 1, the estimated standard

errors are not accurate. This is because the data is sparse in estimating the tail probability

of the residual distribution.

As for the comparison between the three proposed approaches, the IB estimator has the

smallest standard error in general; the DR estimator gains robustness at the cost to efficiency;

the IPW estimator is the least efficient among the three, as the estimating functions only

use the complete cases. More simulations and discussions on the efficiency issues are given

in the Web Appendix. In practice, when the risk factors of disease are well understood, we

would recommend the IB estimator; otherwise, the DR estimator is preferable because of its

robustness.
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We also try smaller sample size (n = 200) or lower verification proportion (30%), which

suggests that the proposed estimators still perform well with higher than 90% CI coverage

rates. These results are similar to Tables 1 and 2, and are omitted here.

4.2 Simulation two: empirical vs. smooth ROC curve

When the covariates are not related to the test results, our proposed estimators should be

close to that in Alonzo and Pepe (2005), which we refer to as the AP method. The only

difference is that we use the kernel smoothing method to estimate the test distribution while

they use empirical estimators. In this simulation study, we compare our proposed estimators

with the AP method in terms of the mean squared error of the estimated ROC curve.

The data generation is similar to scenario A of simulation one, but the mean test result is

generated by µ = 1 + 0.8D, which is not affected by the covariates. We only compared the

DR estimator here.

[Table 3 about here.]

Table 3 shows that our proposed estimator generally has comparable RMSE as the AP

estimator. When the bandwidth is very small, two methods lead to almost identical results.

It is also shown that the proposed estimator is not sensitive to the bandwidth selection: for

all the bandwidth from 0.01 to 0.2, the bias is small and the RMSE remains at the same

magnitude.

4.3 Simulation three: model misspecification

In this subsection, we conduct further simulations to examine the model misspecification.

First we consider the misspecification of the disease and verification models. Aside from

the DR, IPW and IB estimators in simulation one, we consider five additional estimators:

DR-V (correct disease model and incorrect verification model), DR-D (correct verification

model and incorrect disease model), DR-DV (incorrect disease and verification models),
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IPW-V (incorrect verification model), and IB-D (incorrect disease model) estimators. The

misspecified verification model ignores the test result, while the misspecified disease model

ignores the interactions and quadratic terms. The data generation settings are the same as

Scenario A in simulation one.

The simulation results are shown in Figure 1, which plots the ROC curve estimators with

covariates (0, 0). The results for other covariates levels look similar in general, so we omit

the redundant figures. As we expect, the averaging DR, IPW and IB estimators line up with

the true ROC curve pretty well. When either the disease model or the verification model is

incorrect, DR-D and DR-V estimators are still unbiased, but IB-D and IPW-V estimators

both have serious bias. DR-DV estimator is also biased, but the magnitude of bias seems to

be a bit smaller. For the CI coverage, all the estimators except DR-DV, IPW-V and IB-D

have around 95% coverage rate for the whole range of t. The average standard error is close

to the standard deviation of the estimates, suggesting that the asymptotic variance estimator

captures the true variability very well.

[Figure 1 about here.]

Furthermore, we check the misspecification of the location-scale model. The data is gen-

erated from a transformation model: take S = 1.6 × sign(T ) ×
√
|T | as the test result

instead, where T is the same as in simulation study one. The verification model uses S as a

covariate correspondingly. The results for ROC(0,0)(t) are shown in Figure 2. As the location-

scale assumption does not hold any more, it is not surprising that all the three proposed

estimators are seriously biased.

[Figure 2 about here.]

From the above three sets of simulation studies, we conclude that (1) our proposed methods

perform reasonably well in finite sample settings; (2) the PR estimator is seriously biased as

the test results do not follow normal distribution; (3) the proposed methods are not sensitive
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to the bandwidth selection; (4) the DR estimator is more preferable than the IPW and IB

estimators as it protects misspecification of either the disease model or the verification model;

(5) our proposed method is sensitive to the location-scale model assumption.

5. Example: NACC data

Our proposed method is illustrated using the data collected by National Alzheimer’s Coor-

dinating Center (NACC). We included a total of 17,403 deceased patients for our analysis.

The test under evaluation is the Mini Mental State Examination (MMSE), which is a brief

30-point questionnaire test used to screen for cognitive impairment. The MMSE score can

range from 0 to 30, with lower score indicating more severe impairment. The gold standard

ascertainment of AD, based on brain autopsy, is only available for about 31% of the cohort.

The missingness may be due to the patients’ or their family’s decision. We believe that

their decision of disease verification may be associated with the demographic characteristics

(such as age, gender, race, etc.), but is unlikely to be correlated with their true AD status.

So the ignorable missingness assumption seems to be reasonable here. Other covariates

extracted from the database are age (continuous variable indicating age at the MMSE test),

gender (binary variable with 1 indicating male), race (binary variable with 1 indicating white

people), marital status (binary variable with 1 indicating married); clinical diagnosis of AD

(binary variable with 1 indicating clinical diagnosed with AD), stroke (binary variable with

1 indicating having stroke before), Parkinson’s disease (binary variable with 1 indicating

presence of the disease), and depression (binary variable with 1 indicating presence of the

disease). Figure 3 displays the distribution of the MMSE score for all the patients and for

stratified verification and disease status. The distribution of the test result seems to be

irregular, so it is hard to assume any parametric distribution. The test distributions for the

cases and controls are very different too.
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[Figure 3 about here.]

We transformed the MMSE score using (30− T ) /5 so that a diseased subject tends to have

larger test result, and transform the age using (age− 70) /10 so that the reported coefficients

are in the appropriate magnitude. All the aforementioned covariates, as well as the MMSE

score are included in the verification model. The disease model also includes the quadratic

term of the test score, as well as the interaction between the test and the covariates. For

modelling the MMSE score, the location model has the main effects of D and X, as well as

their interactions, while the scale model only has the main effect of D with log link. The

estimated coefficients of the location and scale model are given in Table 4 using DR, IPW

and IB approaches. The results from the three methods generally coincide with each other.

The DR estimator identifies main effects of race, clinical AD, and true disease status to

be significant, indicating that these variables affects the magnitude of the test score. The

race×D interaction is significant, while gender, clinical AD and depression have marginally

insignificant interactions with D.

[Table 4 about here.]

We take the bandwidth to be 0.02 in estimating the ROC curve. Hence the covariate-

specific ROC curve could be plotted for every covariate level. For example, Figure 4 shows

the DR estimates of the two specific ROC curves: one for 70 years old non-white female with

other covariates being 0, the other for 60 years old white male with depression and other

covariates being 0. The 95% CI’s are also plotted. The results show that the classification

ability of the MMSE test could be very different according to the covariates stratification.

Although the test result can only take integer values from 0 to 30, the estimated ROC curve

is smooth as the kernel estimating equations are used for the distributions. The empirical

version of the ROC curve is more coarse, which could have at most 31 jumps.

[Figure 4 about here.]
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In Figure 5, we plot the DR and PR estimators of the area under ROC curve (AUC) as a

function of age, with other binary covariates fixed. The solid line is for a white married male

with clinical AD diagnosis and no other diseases; the dashed line is for a white not-married

female with clinical AD diagnosis and no other diseases. These two covariates groups are

the most prevalent in the NACC data set. We can see that the AUC is increasing by age

with almost linear trend. We also find some discrepancy between DR and PR estimators,

especially for older patients.

[Figure 5 about here.]

In screening for dementia or mild cognitive impairment (MCI), previous literatures suggest

that the AUC for MMSE score is usually above 0.7 (Kim, et al., 2005; Isella, et al., 2006;

McDowell, et al., 1997). However, we found that the MMSE score is not as promising

in detecting AD, especially in younger patients. This motivates for further study of new

biomarkers or combined biomarkers to improve early diagnosis of Alzheimer’s disease. On

the other hand, given the simplicity and low cost of the MMSE test, it is still of great use

in screening for cognitive impairment in practice.

6. Discussion

In this paper, we have proposed to estimate the covariate-specific ROC curve semiparametri-

cally when the gold standard is subject to missingness. The form of the ROC curve is flexible

as both the link and the baseline functions are unknown and estimated from data. Three ap-

proaches are proposed to adjust for the verification bias: DR, IPW and IB estimators, which

use different weights in the estimating equations. The disease probability and the verification

probability are the key components in constructing the weighted estimating equations. The

DR estimator only requires that either disease or verification model is correctly specified

to have a consistent ROC curve estimator. The doubly robust property allows two shots to
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assume the correct model, and is favorable in practice. Otherwise, if the disease probability

could be modelled correctly, the IB estimator is the most efficient. The IPW estimator is

the least efficient among the three estimators. Our estimating procedures are based on the

location-scale model framework, where the link and baseline functions of the ROC curve are

just a distribution function and a quantile function. The location-scale parameters as well

as the unspecified residual distributions are estimated, which determine the estimated ROC

curve together.

Although we are focusing on the MAR verification process in this paper, the extension to

nonignorable missingness (NI) is straightforward. Under the NI assumption, the observed

data likelihood involves both πi and ρi, that usually need to be estimated together. We can

adopt the likelihood-based estimation of the nonignorable selection model in Liu and Zhou

(2010). Or as in Rotnitzky et al. (2006) and Fluss et al. (2009), we specify the odds ratio

of verification given disease, and then estimate πi and ρi separately. With the estimated

disease and verification probabilities, our proposed weighted estimating functions still work

with slight modifications: for DR and IB approach, we replace ρi with ρi0 ≡ Pr(Di = 1|Vi =

0, Ti, Xi). The resultant asymptotic variances take the similar form as the MAR case.

An alternative method might be a transformation model, i.e., we assume that h(T ) follows

the distribution F (usually specified up to some parameters), where the smooth transforma-

tion h is left unspecified. The direct ROC curve estimation method in Cai and Pepe (2002)

is in fact a special case of the transformation model. They assume that h is the distribution

function of the test result for the controls. The direct estimation has the advantage of

easy interpretation of model parameters, i.e., the effects of covariates on the ROC curve.

The indirect estimation is relatively easy in modelling the location and scale of the test

result. Pepe (1998) pointed out that the indirect estimation yields more efficient estimators

than the direct estimation. Indeed, our proposed estimating equations for the location-scale
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parameters are just the gaussian score equations. Therefore, when the test distribution

is close to normal, the location-scale model would be the most efficient. For highly skew

data, the performance of direct and indirect ROC curve estimation is worthwhile for further

exploration.

It follows from Nadaraya (1964) that the bias of the kernel CDF estimator is negligible

relative to its variance, as long as the bandwidth is kept small enough. This property

guarantees the
√

n consistency of the estimated case and control distributions, and hence

the
√

n consistency of the estimated ROC curve. Another advantage of kernel smoothing is

that it gives smooth ROC curve estimates as often desired.

7. Supplementary Material

Web Appendices referenced in Sections 3 and 4 are available under the Paper Information

link at the Biometrics website http://www.biometrics.tibs.org.
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Figure 1. The true and estimated ROC curve, empirical standard deviation, average
standard error, and the CI coverage rate for the estimated ROC curves using DR, DR-D,
DR-V, DR-DV, IPW, IPW-V, IB and IB-D estimators.
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Figure 2. The true and estimated ROC curve and the CI coverage rate for the DR, IPW
and IB estimators under transformation model.
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Table 1
The bias (in percentage to the true value), empirical standard deviation (SD), average standard error (SE), and the

CI coverage rate for the location and scale parameters.

Location Scale
Intercept D X1 X2 X1 ×D X2 ×D Intercept D

Normal Bias (%) DR -0.5 2.3 1.9 -0.8 -0.8 -0.1 -3.0 -1.2
IPW 0.1 0.3 4.6 -0.8 -1.1 -0.4 -10.5 1.8
IB -0.4 1.6 1.9 -0.9 -0.7 0.6 -3.2 -0.3

SD DR 0.091 0.151 0.130 0.112 0.187 0.164 0.035 0.064
IPW 0.132 0.176 0.206 0.191 0.242 0.216 0.067 0.085
IB 0.086 0.138 0.124 0.105 0.172 0.145 0.035 0.059

SE DR 0.085 0.138 0.123 0.109 0.174 0.157 0.035 0.058
IPW 0.126 0.163 0.196 0.171 0.225 0.199 0.057 0.074
IB 0.083 0.133 0.120 0.105 0.165 0.147 0.034 0.055

Coverage (%) DR 95.0 92.2 94.2 94.0 93.6 93.6 93.6 93.0
IPW 94.2 93.2 94.0 91.4 94.2 93.2 87.4 91.4
IB 95.6 93.6 94.6 93.6 95.2 94.2 93.2 93.6

χ2 Bias (%) DR 0.3 -1.6 -7.2 -1.2 2.1 0.9 -2.4 -1.5
IPW 1.1 -3.5 -10.9 -1.6 2.8 1.1 -4.2 -0.7
IB 0.1 -0.3 -0.2 -0.1 -0.8 -1.0 -5.2 5.6

SD DR 0.083 0.130 0.117 0.105 0.157 0.149 0.052 0.072
IPW 0.114 0.150 0.169 0.148 0.195 0.177 0.055 0.074
IB 0.082 0.128 0.119 0.105 0.161 0.146 0.052 0.074

SE DR 0.082 0.126 0.120 0.106 0.162 0.147 0.050 0.070
IPW 0.105 0.140 0.164 0.145 0.192 0.172 0.055 0.074
IB 0.081 0.124 0.119 0.105 0.162 0.144 0.050 0.071

Coverage (%) DR 95.0 94.4 96.0 95.6 95.0 94.2 93.4 94.4
IPW 92.4 93.4 94.2 93.4 94.6 94.4 95.0 94.6
IB 94.2 94.8 95.6 95.2 95.2 94.6 93.0 91.8
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Table 3
The comparison of our proposed DR estimator and the AP estimator in terms of bias (in percentage of the true

value), 100 times empirical standard deviation (SD), and 100 times root mean squared error (RMSE).

Bias(%) SD RMSE
ROC(0.1) ROC(0.2) ROC(0.1) ROC(0.2) ROC(0.1) ROC(0.2)

DR h = 0.01 0.4 −0.1 5.0 4.4 5.0 4.4
h = 0.05 0.4 −0.1 4.9 4.3 4.9 4.3
h = 0.1 −0.1 −0.2 4.8 4.2 4.8 4.2
h = 0.2 −1.5 −0.9 4.5 4.0 4.6 4.1

AP 0.1 −0.2 5.0 4.4 5.0 4.4

http://biostats.bepress.com/uwbiostat/paper374
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Table 4
The estimated location and scale parameters with the associated standard errors for the NACC data.

DR IPW IB

Intercept 1.394 (0.125) 1.452 (0.199) 1.408 (0.131)
Age -0.064 (0.039) -0.114 (0.051) -0.054 (0.032)
Gender -0.049 (0.079) 0.046 (0.096) -0.028 (0.074)
Race -0.303 (0.131) -0.525 (0.203) -0.304 (0.128)
Marital status 0.083 (0.086) 0.219 (0.102) 0.031 (0.076)
Clinical AD 1.120 (0.077) 1.160 (0.097) 1.128 (0.070)
Stroke 0.129 (0.095) 0.100 (0.125) 0.129 (0.083)
Parkinson′s 0.186 (0.138) 0.228 (0.153) 0.292 (0.124)
Depression -0.007 (0.108) 0.144 (0.156) -0.006 (0.083)
D 0.984 (0.167) 1.090 (0.250) 0.982 (0.170)
D × Age 0.049 (0.052) 0.085 (0.063) 0.035 (0.041)
D ×Gender -0.146 (0.099) -0.065 (0.119) -0.180 (0.090)
D ×Race -0.322 (0.158) -0.339 (0.240) -0.330 (0.152)
D ×Marital status 0.039 (0.108) -0.090 (0.127) 0.110 (0.094)
D × Clinical AD -0.150 (0.106) -0.154 (0.127) -0.166 (0.095)
D × Stroke -0.124 (0.120) -0.082 (0.156) -0.115 (0.105)
D × Parkinson′s 0.074 (0.172) 0.012 (0.190) -0.058 (0.155)
D ×Depression -0.225 (0.135) -0.119 (0.180) -0.153 (0.102)

Intercept 0.301 (0.024) 0.391 (0.028) 0.310 (0.022)
D 0.120 (0.027) 0.149 (0.031) 0.109 (0.025)
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