
Johns Hopkins University, Dept. of Biostatistics Working Papers

8-31-2010

Mixed effect Poisson log-linear models for clinical
and epidemiological sleep hypnogram data
Bruce J. Swihart
Johns Hopkins School of Public Health, bruce.swihart@gmail.com

Brian S. Caffo PhD
Johns Hopkins Bloomberg School of Public Health, bcaffo@jhsph.edu

Ciprian Crainiceanu PhD
Johns Hopkins Bloomberg School of Public Health, ccrainic@jhsph.edu

Naresh M. Punjabi PhD, MD
Department of Medicine, Johns Hopkins University, npunjabi@jhmi.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Swihart, Bruce J.; Caffo, Brian S. PhD; Crainiceanu, Ciprian PhD; and Punjabi, Naresh M. PhD, MD, "Mixed effect Poisson log-linear
models for clinical and epidemiological sleep hypnogram data" (August 2010). Johns Hopkins University, Dept. of Biostatistics Working
Papers. Working Paper 215.
http://biostats.bepress.com/jhubiostat/paper215

http://biostats.bepress.com/jhubiostat


Research Article

Statistics
in Medicine

Received XXXX

(www.interscience.wiley.com) DOI: 10.1002/sim.0000

Mixed effect Poisson log-linear models for
clinical and epidemiological sleep hypnogram
data

Bruce J. Swihart∗, Brian S. Caffo, Ciprian Crainiceanu, Naresh M. Punjabi

Bayesian Poisson log-linear multilevel models scalable to epidemiological studies are proposed to investigate

population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings

of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects

while minimizing bias is of importance. Essentially, non-parametric piecewise constant hazards are estimated

and smoothed, allowing for time-varying covariates and segment of the night comparisons. The Bayesian Poisson

regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression

with a log(time) offset and survival regression assuming exponentially distributed survival times. Such re-derivation

allows synthesis of two methods currently used to analyze sleep transition phenomena: stratified multi-state

proportional hazards models and log-linear models with GEE for transition counts. An example data set from

the Sleep Heart Health Study is analyzed. Copyrightc© 2010 John Wiley & Sons, Ltd.

Keywords: multi-state models; recurrent event; competing risks; survival analysis; frailties; sleep;

hypnogram

1. Introduction

Hypnograms are time series of an individual’s sleep states from a single night’s sleep. The primary focus of this manuscript

is to describe methods for the analysis of hypnogram data, focusing on methods that scale to large cohort studies and

complex covariance structures. Log-linear random effect models can be derived and used to synthesize existing methods

for analyzing hypnogram transition data from large cohort studies and extended to multilevel settings, unearthing data

features classical measures bury. In the following section, a motivating discussion of two subjects from a community

based cohort study highlights how classical sleep measures may not capture transition and duration in state characteristics

of the hypnogram, prompting this work to better describe and model the sleep hypnogram.

1.1. Motivating example

Summaries of the measurement of sleep for two subjects with intrinsically different sleep behavior can highlight or mask

these differences. To illustrate, Subject A of Figure1 has severe sleep-disordered breathing (SDB, discussed further
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below), as indicated by a respiratory disturbance index (RDI) of 52.28 events per hour, while Subject B does not (RDI

0.57 events/hour). Each subject was monitored overnight during sleep via a polysomnogram for eight hours. The classical

summary of their sleep stages is similar across the two subjects: Subject A spent 69%, 16%, and 15% and Subject B

spent 70%, 16%, and 14% of total sleep time in the Non-Rapid Eye Movement (NREM), Rapid Eye Movement (REM)

and Wake states, respectively (Table1). While overall sleep stage percentages are similar betweenthese two subjects,

the temporal evolution of their sleep may not be. Sleep for an individual is often visualized with hypnograms depicting

states of sleep on the vertical axis and time from sleep onset on the horizontal axis. Subjects A and B have similar sleep

stage amounts yet dissimilar hypnograms (see Figure1). For example, in the zoomed-in portion around hour 7, we see

a critical difference in the duration of REM sleep for each subject. Subject A’s duration in REM sleep is fragmented,

whereas Subject B’s is non-fragmented. Degree of fragmentation is a feature that overall sleep stage percentages cannot

capture.

Population variations of this phenomenon have been described more fully elsewhere [1, 2]. Despite severe sleep-related

disease, sleep stage percentages remain consistent at the population level. Thus any statistical analysis of sleep stage

percentages as a measure of sleep quality may not account for sleep fragmentation, even in extreme comparisons of

severely diseased subjects to healthy ones.

Both scientific and methodological contributions are made in this paper. From a scientific perspective, 1) transition rates

are developed and substantiated as an informative population measure for sleep comparisons, 2) population variations in

transition rates for different segments of the night are reported, 3) a very large dataset of sleep hypnograms from∼5600

subjects is utilized, and 4) bias in our results is reduced via matching. From a methods standpoint, 1) a framework is set

forth to view the sleep of a population of individuals as a multi-state survival analysis problem with random effects, 2)

a classical algebraic equivalence between survival analysis and Poisson regression is re-derived and employed within the

framework, 3) piecewise constant hazards are smoothed, and 4) all of the aforementioned contributions are accomplished

with relative computational ease for scalability to epidemiological studies.

1.2. Set up and challenges

The sleep transition rate data to be modeled is complex. Our proposed solution is a multi-state, recurrent event, competing

risk, hierarchical, stratified survival model fit using Poisson hierarchical models. To elaborate, the model ismulti-state

because there are more than the traditional 2-states (i.e., alive/dead, wake/sleep, etc.) found in typical survival models.

Recurrent eventbecause no state is absorbing and all can recur.Competing riskbecause options exist for the state to

which one will transition (from Non-REM to either Wake or REM).Hierarchical because of nesting of times-to-event

within individuals and individuals nested within matched pairs.Stratifiedin such a way to render transition-type-specific

fixed effects in different segments of the night. Our models are necessarily complex to capture the fine structure of the

transition processes that are of interest. Oversimplification of data, as shown in our first example, may be misleading in

many applications.

In cohort studies of sleep transitional phenomena, “time” has several meanings which can lead to considerable

confusion. Three important distinctions aid in the discussion of time: duration in state (DIS) time, stopwatch accruing

cumulative (SAC) time, and local wall clock (LWC) time. To elucidate, consider an example: a subject falls asleep

when the alarm clock on her night stand displays 10:00PM. She goes through various states of sleep, and at 11:23pm

enters REM sleep. At 11:30pm she exits REM sleep and enters NREM. Consequently, her DIS-time is 7 minutes, which

simultaneously serves as the time-at-risk for bothREM→ NREMandREM→ Waketransition-types. Her SAC-time was 83

minutes when she entered REM, 90 minutes upon exiting. The LWC-time of her entering into REM was 11:23PM; of her

egress, 11:30PM. The distinction of each of these measurements of time is important, as DIS-times are the times-to-event

and SAC-times help in the segmentation of the night which allows for inference for time-varying transition effects. LWC-

time is useful to characterize diurnal effects as they are being increasingly recognized to have significance in defining the

temporal variability in specific outcomes such as sudden cardiac death in people with SDB. [3].
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2. Model and Implementation

An observation model is developed in the most general form for the Poisson representation of the hypnogram and

implemented with priors via MCMC inWinBUGSto render a posterior likelihood [4, 5]. The representation of a classical

survival likelihood with a piecewise constant hazard by a Poisson likelihood is well known in a setting without competing

risks and recurrent events [6, 7, 8]. The pieces of the hazard are the result of applying a binningscheme on the true

underlying hazard, as in an equally spaced grid or quantiles of survival times, and modeling the hazard as constant over

each bin. With the binning in place, time at risk for a transition as well as whether a transition occurred within each bin

is tallied. Thus, intuitively, the time-to-event data becomes a counting process of 0 events or 1 event occurring with an

offset of the time experienced at risk for the event, within each bin. With multi-state models, there is more than one hazard

because there is more than one type of transition, and thus each hazard is transition-type specific and can have distinct

binning schemes applied. Competing risks and recurrent events introduce considerations on how to tally the number of

transitions and calculate time at risk for those transitions within the bins of the transition-type specific scheme. Competing

risks will have each observed transition tallied in one bin of one hazard yet the time at risk for the transition will be

attributed to each possible transition, binned according to each transition-type’s binning scheme. Recurrent events imply

that multiple transitions of the same type contribute transition tallies and time at risk as per binning scheme in an additive

fashion across the recurrent transition times. Therefore, a multi-state model of sleep with competing risks and recurrent

events can be represented as a Poisson model relating the number of observed transitions during total time at risk spent in

each bin.

A detailed derivation of the likelihood equivalence is in the appendix. We establish minimal notation to set up an

intuitive derivation based on the classic survival-Poisson likelihood equivalence. For each transition-typeh allow binning

scheme{qhb} such that0 < qh1 < · · · < qhBh
to represent the time grid over whichBh constant piecesαhb will model the

underlying log-baseline hazard. The time to transition for transitionj of individual i is tij . Applying the transition-type-

specific binning scheme totij requires parsing the time among the bins:

dijhb =











qhb − qh(b−1) if qhb < tij

tij − qh(b−1) if qh(b−1) < tij < qhb

0 if qh(b−1) > tij

whereΣbdijhb = tij for eachh. Risk indicatorrijhb = 1 denotes iftij is pertinent as time at risk of a transition-typeh

for transitionj, andrijhb = 0 if transition-typeh is not possible as transitionj. With rijhb = 1, a transition is observed if

yijhb = 1 and censored ifyijhb = 0. Suppressing subscripts, the contribution to a survival log-likelihood for individuali

with fixed and random effects in linear predictorη at transitionj of typeh in time binb of Bh is

ry(α + η) + exp{α + η + log(rd)}

which is equivalent to a log-likelihood for ay ∼ Poisson(φ) log-linear model withφ = exp{α + η + log(d)} and is the

classic survival-Poisson likelihood equivalence wherey ∈ {0, 1}. In our setting of competing risks and recurrent events,

assuming the linear predictorη is not dependent onj, we can restate the log-likelihood by summing over the indexj,

yielding the contribution for an individuali, transition-typeh, bin b of Bh:

n(α + η) + exp{α + η + log(D)}

wheren ∈ {0, 1, . . . , Ji} is the total number of individuali’s observed transitions of transition-typeh in bin b of Bh as a

result of being at risk for that transition in that bin for total durationD. Of course, the above likelihood is equivalent to a

n ∼ Poisson(φ) log-linear model log-likelihood withφ = exp{α + η + log(D)}.

The linear predictorη = Xiβhk + Ziui contains fixed effectsβhk of covariatesXi as well as cluster-specific effects

Statist. Med.2010, 001–?? Copyright c© 2010 John Wiley & Sons, Ltd. www.sim.org 3
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to account for hierarchical clustering. The vectorui = (si, pi), wheresi is a subject-specific random effect (individual-

level log-frailty) andpi is a pair-specific random effect (pair-level log-frailty). Design matrixZi is two columns wide

and has the same number of rows asXi, one row if all covariates are constant through the night, orm rows form total

measurements of a time-varying covariate for the particular bin of the likelihood contribution. The time-varying case

involves data augmentation of other parameters and is covered in the appendix. A segmented SAC-time analysis amounts

to completing aforementioned aggregation of transition events and time at risk within segments of the night (1st and

2nd half, for example) defined as per individual and modeling fixed effects for each segment. Such segmented SAC-time

analysis is a vast improvement over the past raw stratification approach of fitting separate models in different portions of

the night [9, 1].

For a Bayesian analysis of the model, priors forβhk, ui, andαhkb of the observation model are selected asiid Gaussian

distributions, with inverse Gamma hyperpriors for the variance components. Inference was attained via component-wise

(as opposed to block-wise) Markov Chain Monte Carlo sampling inWinBUGS[4, 5].

3. Application and Results

The application makes use of hypnogram data from the Sleep Heart Health Study (SHHS), a multicenter study on

SDB and cardiac outcomes [10]. Subjects for the SHHS were recruited from ongoing cohort studies on respiratory and

cardiovascular disease. From the first SHHS cohort of over 6300 subjects, 5614 were identified as having reliable and high

quality in-home polysomnograms. To assess the independent effects of SDB on sleep structure, a matched subset of the

5614 with and without SDB was selected for the current study. Subjects with severe SDB were identified as those with

a RDI > 30 events/hour. Subjects without SDB were identified as those with an RDI< 5 events/hour. Other exclusion

criteria included prevalent cardiovascular disease, hypertension, chronic obstructive pulmonary disease, asthma, coronary

heart disease, history of stroke, and current smoking.

Matching is necessary as the data are observational and epidemologic confounding of the disease effect is of concern.

The number of subjects in the SHHS dataset motivating this manuscript allow for well populated, well selected sub-groups

for the desired comparisons. Propensity score matching was utilized to balance the groups on demographic factors and to

minimize confounding [11]. SDB subjects were matched with no-SDB subjects on the factors of age, BMI, race, and sex.

Race and sex were exactly matched, while age and BMI were matched using the nearest neighbor Mahalanobis technique

so that matches had to be within a Mahalanobis distance (caliper) of 0.10, with multiple matches within the caliper being

settled by random selection [12]. The resultant match was 51 pairs that met the strict inclusion criteria outlined above and

exhibiting very low standardized biases, a vast improvement on the imbalance of BMI between diseased and non-diseased

groups of past studies [1]. Polar opposites of SDB severity, isolated from comorbities, were used to increase the likelihood

of finding 1) differences in sleep stage percentages (see Table3) and 2) independent effects of SDB on sleep continuity.

Conceptualizing sleep as a multi-state competing risks process, we focused only on three states of sleep, collapsing the

four stages of non-REM into one state, “NREM”, leaving the traditional “Wake” and rapid eye movement “REM” states.

From any of the three states one may transition into the others producing six possible transition types: Wake to NREM

(WN), NREM to Wake (NW), NREM to REM (NR), REM to Wake (RW), REM to NREM (RN), and Wake to REM

(WR).

In the context of the application,i = 1, ..., 102 indexes individual,h = 1, ..., 6 denotes the transition-type,k = 1, 2

segments the night,(B1, B2, B3, B4, B5, B6) = (2, 6, 12, 12, 12, 1) are the number of bins for each transition-type specific

hazard. TheBh were determined by the distinct quantiles of the duration in state times per transition-typeh. FindingBh

was done iteratively, first attempting to have 12 bins with approximately the same number of transitions of typeh in them

for model stability. The number 12 was selected for its versatility: one pass through the data binning hazards into 12ths

and one could easily construct 12, 6, 4, 3, 2, or 1 piece models by summing number of transtions and total duration in state
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time, collapsing 1/12 bins into larger fraction binning. If the transition-typeh did not yield distinct quanitles for 12 bins,

then bin sizes of 6, 4, 3, 2, and 1 were sequentially tried. The quantiles are of times to transition but will be used to bin

time at risk, which implies the final grid point for binning schemes of a competing risk set will need to be the maximum

of the maximum times to transition for each transition-type of the competing risk set (Table4).

The vectorui = (si, pi), is a vector of additive random effects for subject and pair, respectively. The vectorZi = (1, 1) in

models with individuals nested within matched pair,(1, 0) for models not accounting for pairs. The vectorXi is composed

of the design variables and (potentially) the demographic covariates. The design variables are the 3-way interaction of

disease status, thekth segment of the total SAC-time, and transition-typeh. These design interaction variables require

the data to be at the “cross-binned”i − h − k − b level and enables the correspondingβhk vector to have elementsβhk

which quantify the average transition frequency of typeh in thekth segment of the total SAC-time for diseased versus

non-diseased. In the case ofK = 2, this allows sampling from the posterior distribution of the composite quanitity of

the rate ratio between the two segments of night (exp(βh2)
exp(βh1)

), enabling inference as to whether transition intensities change

over the course of sleep. The multiple stratifications on transition-type, DIS and SAC-time interacted with disease status

can easily make for high dimension parameterizations as well as binning combinations. Following recent research in

smoothing [13, 14], we propose a fine level of binning and allow a smoothing/penalty to prevent over-parameterization

via transition-type specific 1st order random walk priors, a strategy similar to the correlated pieces approach [15, 16, 17].

In the smoothing of the piecewise constant hazard across bins, the priorαhkb ∼ N(µhkb, σ
2) is assigned for eachαhkb,

whereµhkb = 0 if b = 1, µhkb = αhk(b−1) if b > 1. Thus, constant pieces from adjacent bins are “similar” to each other.

The 1st order random walk prior just described is referenced hence forth as the “smoothed” model. Models with various

combinations of bin smoothing, accounting for pair frailty, and number of included demographic covariates were fitted.

All models were fitted with two segments of total SAC-time (K = 2) and the aforementioned number of binsBh. For

each model, we ran five chains for 1200 iterations and used the last 200 of each chain, yielding 1000 samples from each

relevant full conditional ofβhk, ui andαhkb. Our hyper-parameter values were selected to favor small values but allow

larger values of variances components, with1/σ2 ∼ Gamma(1, .1) having a mean and standard deviation of 10 [17].

Upon visual inspection of trace plots, the chains were well mixed and the lag auto-correlation was acceptable (see

Appendix). Convergence monitoring was conducted using the Brooks and Gelman diagnostic [18, 19] (acknowledging

the limitations of such convergence diagnostic measures). A vast majority of these univariate diagnostics are greater than

but close to 1, suggesting convergence and appropriately overdispersed starting values. From graphical inspection of the

diagnostic over iterations, a vast majority not only narrow to 1, but also show the stabilization of the pooled and within

interval widths.

All models exhibit SDB subjects transitioning significantly more of typeNREM→ Wake in both halves of the night,

Wake→ REMin the first half of the night, and significantly less of typeNREM→ REMfor both segments of the night

(Table5). In other words, given a SDB subject is in NREM, he is more likely than a no-SDB subject to transition to Wake

and less likely to transition to REM regardless of how long he has been asleep. These results elucidate findings of SDB

subjects having higher all cause mortality [20] and increases inNREM→ Wakeand decreases inNREM→ REMleading to

higher all cause mortality [21].

Given a SDB subject is in Wake he is on average∼ 2.6 times as likely as his no-SDB counterpart to transition to REM

in the 1st half of the night. However, there is no significant difference between the SDB groups for the WR transition in

the second half of the night. The segmented SAC-time analysis of the 2nd half of the night to the 1st shows a reduction

of 60% of the disparity between average transition frequencies of diseased and non-diseased for type WR (Table6). This

suggests the second half of the night has both groups getting to REM from Wake at more simliar rates than the first half.

Table5 shows very little difference between models differing only by the accounting of pairs. In those comparisons,

the magnitudes and directions mirror well, and the only difference in significant results are due to 95% credible intervals

containing 1.00. It appears that in this analysis, the gain in parsimony would favor the omission of pairing information,

echoing sentiments of not needing to account explicitly for pairing in models that utilized propensity score matching [22].
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4. Discussion and Conclusion

The transition information of a sleep hypnogram is accounted for by the Poisson model and is eschewed by traditional

sleep percentages, where only percent time in REM differed: SDB 17%, no-SDB 21% (Table3). Showing the derivation

of the Poisson representation provides motivation for a shift in the conceptualization of modeling sleep. The problem

can be thought of as a multi-state, recurrent event, competing risk, hierarchical, stratified survival model or a Poisson

process with the sufficent statistics of number of transitions arising from time at risk for those transitions. This shift makes

concerns about tie handling of DIS-times inconsequential. The ability to piecewise model the hazard, segment the night,

and account for transition-type allow for a very flexible model that can easily incorporate time-varying covariates. The

Poisson model inWinBUGSis scalable, with an analysis of 5,614 unpaired individuals (6% SDB) taking five hours. A

comparable multistate survival analysis inbayesX of 3,000 unpaired individuals (11% SDB) produced a conservative

prediction of 14 hours to run [23, 24]. All analyses were conducted with the Windows operating system GUIs on a laptop

with a 1.83 GHz processor.

Sleep hypnogram data ultimately comprise of six states and 30 transition-types. Although three states and six transition-

types is a simplification, it is a closer repesentation of the competing risks structure of the data generating process than

a hierarchy of transitions-types [25, 26, 27, 15]. The softwarebayesX and the work on structured additive regression

(STAR) models that has fueled its development accommodates sample sizes typically generated by a clinical study and

has the capability to fit the Poisson representation of the classical piecewise exponential survival model or a multistate

survival model (with time-varying covariates and effects) [28, 29, 30, 15]. We acknowledge that our formulation of the

Poisson model is a specific instance of a STAR model with zero-degree penalized splines modeling the baseline hazard.

The proposed Poisson implementation of a multistate model of this specific instance may be beneficial in analyzing

epidemiological studies because they typically are of a larger sample size and have constant subject-level covariates.

Clinical studies up to moderate sample sizes with time-varying covariates are well-suited for STAR models inbayesX .

MCMC allowed us to account for the correlation induced by repeated measurements on the same individual nested

within matched pairs and would facilitate the examination of the heterogeneity in our population through random

intercepts. Heterogeneity of populations is a very crucial topic in epidemiological studies. Through the assumption of

exponential survival times we gain a framework that potentially allows us to eschew/relax parametric assumptions about

the hazard. These reasons plus the eloquence of jointly modeling the frequency of transitions and times to transition make

the Bayesian Poisson regression framework a powerful and flexible tool in modeling sleep as represented by hypnograms.
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Current state
Subject A Subject B

Previous state N R W N R W
Non-REM (N) 625 19 21 652 3 18

REM (R) 15 138 4 1 155 4
Wake (W) 24 0 119 19 2 111

Total epochs 664 157 144 672 160 133
Total in hours 5.54 1.31 1.91 5.61 1.33 1.10

Sleep Architecture (%) 69 16 15 70 16 14

Table 1.Cross Tabulation of Pairwise Contiguous Epochs for Subjects A and B.

Subject A

0 1 2 3 4 5 6 7 8

N
R

W

Subject B

0 1 2 3 4 5 6 7 8

N
R

W

Subject A

6.75 7 7.25

N
R

W

Subject B

6.75 7 7.25

N
R

W

Figure 1. Left panels, 8 hour sleep hypnograms of Subjects A and B; Right panels, zoomed half-hour portions of the corresponding left panel. On all hypnograms, the vertical axis
represents the states of sleep (N: Non-REM, R: REM, and W: Wake) a subject can occupy. The horizontal axis is time of night, with 0 being sleep onset, thus a hypnogram is a
state-time graph, showing the trajectory of sleep for an individual.
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W
b=2 b=2 b=2 b=2

.

Figure 2. A sample hypnogram of three state sleep over 9 hours from sleep onset, illustrating binning for the 2nd bin of of the hazard of transition-type NR, as well as (potentially)
aK = 2 analysis where SAC-time less than 4.5 hours is segmentk = 1 and greater than 4.5 hours is segmentk = 2. No time is spent in REM and each DIS-time is 60 minutes
long. The different data formats of this graphic are in Table2

Survival format Poisson format (K=1) Poisson format (K=2)

j type h t r y type h k b n D type h k b n D

1 WN 1 60 1 1 WN 1 1 1 0 75 WN 1 1 1 0 30

1 WR 6 60 1 0 WN 1 1 2 4 225 WN 1 1 2 2 90

2 NW 2 60 1 1 WR 6 1 1 0 300 WR 6 1 1 0 120

2 NR 3 60 1 0 NW 2 1 1 0 20 NW 2 1 1 0 10

3 WN 1 60 1 1 NW 2 1 2 0 200 NW 2 1 2 0 100

3 WR 6 60 1 0 NW 2 1 3 4 20 NW 2 1 3 2 10

4 NW 2 60 1 1 NR 3 1 1 0 80 NR 3 1 1 0 40

4 NR 3 60 1 0 NR 3 1 2 0 80 NR 3 1 2 0 40

5 WN 1 60 1 1 NR 3 1 3 0 80 NR 3 1 3 0 40

5 WR 6 60 1 0 WN 1 2 1 0 45

6 NW 2 60 1 1 WN 1 2 2 2 135

6 NR 3 60 1 0 WR 6 2 1 0 180

7 WN 1 60 1 1 NW 2 2 1 0 10

7 WR 6 60 1 0 NW 2 2 2 0 100

8 NW 2 60 1 1 NW 2 2 3 2 10

8 NR 3 60 1 0 NR 3 2 1 0 40

9 WN 1 60 1 0 NR 3 2 2 0 40

9 WR 6 60 1 0 NR 3 2 3 0 40

Table 2.(Accompanies Figure2): Multistate survival data of times-to-transitiont in minutes represented as a Poisson
process without(K = 1) and with(K = 2) SAC-time segmenting. The Poisson formats assume binning schemes{qhb}:
for WN {q1b} = (0, 15, 60), for WR {q6b} = (0, 60), for NW {q2b} = (0, 5, 55, 60), for NR {q3b} = (0, 20, 40, 60). All
duration in state times are 60 minutes and no time is spent in REM, therefore transition-types RW and RN are not possible
(Figure2). The total time spent in NREM is 240 minutes, which implies that 240 minutes were simultaneously the total
time at risk for NW and NR transitions. Each transition-type has a different binning scheme, thus when survival data is
converted to unsegmented (K = 1) Poisson data, the 240 minutes are parsed differently: for NW, three bins of dissimilar
sizes, and for NR three bins of equal sizes. For the (K = 2) Poisson data, the times and transitions are aggregated within
each segment, thus the 240 minutes in NREM gets split into 120 minutes ink = 1 and 120 minutes spent ink = 2. Once
appropriated to the correct segment, the binning scheme is applied. For binb = 2 of the NR binning scheme, transition
tallies and time at risk between 20 and 40 minutes are summed over the duration in state times. No transitions happen in
the four durations, so 0 tallies are recorded and 80 minutes total time at risk are attributed to binb = 2 of the hazard of NR
of the unsegmented Poisson model. Note the last transition (j = 9) is censored, so there is no transition tally contributed,
but time at risk is. Also note that the transition from Wake to NREM that crosses the segmenting line at SAC-time 4.5

hours is attributed in total to segment (k = 2) because the transition took place in segmentk = 2.
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Variable SDB no-SDB p-value

RDI ( events/hour) 40.532 2.114 0.000
BMI ( kg/m2) 30.275 30.247 0.972
Age ( years) 61.804 61.804 1.000
Race ( % white) 92.160 92.160 1.000
Sex ( % male) 66.667 66.667 1.000
Total Sleep Time ( min.) 351.397 357.466 0.593
% Total Sleep Time asleep 81.941 83.364 0.743
% Night in Stage 1 5.750 5.577 0.815
% Night in Stage 2 62.693 59.109 0.121
% Night in Stage 3 or 4 13.647 13.908 0.904
% Night in REM 17.909 21.406 0.002

Table 3.Demographic Covariates and Sleep Variables, means of the two groups. All measures are not significantly
different except for % Night in REM (RDI is different by design).

Type Bh Scheme Binning Grid

qh0 qh1 qh2 qh3 qh4 qh5 qh6 qh7 qh8 qh9 qh10 qh11 qh12

WR 1 {q6b} 0.0 * 317.0

WN 2 {q1b} 0.0 0.5 317.0

NW 6 {q2b} 0.0 0.5 1.5 3.5 7.5 18.5 * 163.5

NR 12 {q3b} 0.0 0.5 1.0 1.5 2.0 3.0 4.5 6.0 8.5 14.0 25.5 41.5 163.5

RN 12 {q4b} 0.0 1.0 1.5 2.5 3.0 4.5 5.5 7.0 8.5 11.0 14.0 19.5 * 77.5

RW 12 {q5b} 0.0 0.5 1.0 1.5 2.5 3.5 5.0 7.0 10.0 13.5 18.0 25.0 77.5

Table 4.Transition-type specific binning schemes, (in minutes): The distinct quantiles are calculated on the times to
transition, not the time at risk. This nuance has implications for the final grid point, where the maximum grid point for
transition-type specific binning schemes of the same competing risk set will be the maximum time to transition of the
competing risk set, not necessarily the maximum time to transition for the transition-type. Therefore, the asterisk denotes

where this substitution is made; the actual maximum time to transition follows accordingly:
* 317.0=166.0, * 163.5=140, * 77.5=62.5
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Model Rate Ratios by Transition Type h

Pair No. Night

Smoothed Frailty Covariates Segment WN NW NR RW RN WR

Yes Yes 4 1 0.991.121.28 1.101.251.42 0.560.720.92 1.021.321.73 0.670.931.24 1.572.664.95

2 0.870.981.11 1.111.261.42 0.540.660.81 0.871.071.31 0.740.981.3 0.781.011.32

Yes Yes 2 1 0.991.121.29 1.101.261.43 0.550.710.92 1.011.311.72 0.670.901.23 1.592.694.55

2 0.870.981.10 1.111.271.43 0.530.660.81 0.871.081.33 0.761.001.31 0.781.031.38

Yes Yes 0 1 1.001.131.27 1.111.271.43 0.560.730.93 0.981.301.70 0.700.931.29 1.572.654.36

2 0.880.981.11 1.121.271.43 0.530.660.81 0.891.081.31 0.750.991.32 0.771.031.36

Yes No 0 1 0.971.121.29 1.101.241.39 0.550.710.91 1.001.311.69 0.670.911.26 1.622.714.43

2 0.860.971.09 1.101.251.41 0.530.660.82 0.881.071.28 0.750.981.28 0.781.021.35

No No 0 1 0.981.121.26 1.071.221.39 0.530.680.86 0.961.251.61 0.640.871.14 1.572.564.42

2 0.850.961.09 1.101.241.42 0.500.630.78 0.871.051.29 0.720.951.25 0.771.011.33

No Yes 0 1 0.981.111.26 1.091.241.40 0.530.680.87 0.981.251.66 0.650.871.18 1.512.484.24

2 0.860.971.10 1.101.261.41 0.510.640.81 0.861.051.29 0.720.951.24 0.761.011.32

Table 5.Rate Ratios for SDB vs. no-SDB by Transition Type. Blue indicates diseased transition significantly more than
non-diseased. Red indicates diseased transition significantly less than non-diseased. The tables are in a format where the
elements are the triplet with credible intervals as the left and right subscripts and the center number as the rate ratio

estimate [31].

Model Relative Rate Ratios

Pair No. of segment 2 vs segment 1 by Transition Type h

Smoothed Frailty Covariates WN NW NR RW RN WR

Yes Yes 4 0.750.871.01 0.570.821.15 0.871.011.18 0.721.081.64 0.660.921.24 0.200.400.71

Yes Yes 2 0.750.871.02 0.590.841.14 0.861.011.18 0.741.141.72 0.690.941.27 0.210.400.72

Yes Yes 0 0.750.871.01 0.620.841.14 0.861.011.18 0.701.081.59 0.670.921.24 0.220.410.70

Yes No 0 0.750.871.02 0.600.821.11 0.861.011.18 0.711.101.62 0.680.941.28 0.210.390.64

No No 0 0.740.861.00 0.610.851.12 0.861.021.19 0.731.111.64 0.670.941.29 0.220.410.67

No Yes 0 0.750.881.02 0.610.851.15 0.871.021.19 0.741.111.66 0.670.961.33 0.230.430.69

Table 6.Comparisons of beta coefficients, 2nd segment of night to 1st segment. Blue indicates the relative rate of
2nd segment of night for diseased transitioning compared to the non-diseased is significantly more than that of the 1st
segment. Red indicates the relative rate of 2nd segment of night for diseased transitioning compared to the non-diseased
is significantly less than that of the 1st segment. The tables are in a format where the elements are the triplet with credible

intervals as the left and right subscripts and the center number as the relative rate ratio estimate [31].
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Appendix: Likelihood equivalence with SAC-time constant covariates

For each transition-typeh = 1, . . . , H allow binning scheme{qhb} such that0 < qh1 < · · · < qhB(h)
to represent the time

grid over whichBh constant piecesαkhb will model the underlying log baseline hazard within the segmentk = 1, . . . , K

of SAC-time. For transitionj = 1, . . . , Ji of individual i = 1, . . . , I the time to transition istij . Applying the transition-

type-specific binning scheme totij requires parsing the DIS-time among the bins on the hazard within the segmentk of

SAC-time:

dijhkb =











qhb − qh(b−1) if qhb < tij

tij − qh(b−1) if qh(b−1) < tij < qhb

0 if qh(b−1) > tij

whereΣbdijhkb = tij for eachh for the transitionj that takes place in segmentk. Risk indicatorrijhkb = 1 denotes if

dijhkb is pertinent as time at risk of a transition-typeh for transitionj in segmentk, andrijhkb = 0 if transition-typeh

is not possible as transitionj. With rijhkb = 1, a transition is observed ifyijhkb = 1 and censored ifyijhkb = 0. In the

case of SAC-time constant covariates, row vectorXi contains the values of the covariates and column vectorβhk are the

fixed effects of those covariates. The column vectorui = (si, pi) accounts for within-subject and within-pair correlation,

respectively. Design row vectorZi = (1, 1) for models accounting for pairing,Zi = (1, 0) for ignoring pairing. Note that

the definition of “segment” of total SAC-time is subject-specific and “ragged” in a sense. If atij started in segmentk − 1

and ends in segmentk, it is assigned in its entirety to segmentk. With that stated, the segmenting of SAC-time supersedes

binning the DIS-time: total SAC-time is divided into K segments (i.e. K=2 implies 1st half and 2nd half of night) on

an individual basis. Then the DIS-times are assigned in their entirety to one of the segments. Then the DIS-times are

partitioned among theb = 1, ..., Bh bins within the segment of SAC-time.

Now, the established relation between survival data and the Poisson likelihood will be reanimated in the outlined

framework [6, 7, 8]. Let the hazard for transition-typeh, segmentk and bin b be λhkb(dijhkb | xi, zi,ui) =

λ0hkb(dijhkb)e
xiβhk+ziui .

The hazard is defined as

λhkb(dijhkb | xi, zi,ui) =
fhkb(dijhkb;xi, zi,ui)

Shkb(dijhkb;xi, zi,ui)
=

fhkb(dijhkb;xi, zi,ui)

1 − Fhkb(dijhkb;xi, zi,ui)
,

wherefhkb(dijhkb;xi, zi,ui), Shkb(dijhkb;xi, zi,ui), andFhkb(dijhkb;xi, zi,ui) are the density, survivor, and distribution

functions associated with the survival (DIS) times. Suppressing subscripts for the three most recently mentioned entities,

the conditional likelihood is:

I
∏

i=1

J
∏

j=1

H
∏

h=1

K
∏

k=1

Bh
∏

b=1

[

f(dijhkb;xi, zi,ui)
yijhkb{1 − F (dijhkb;xi, zi,ui)}

1−yijhkb
]rijhkb

=
I

∏

i=1

J
∏

j=1

H
∏

h=1

K
∏

k=1

Bh
∏

b=1

[λhkb(dijhkb;xi, zi,ui)
yijhkb{S(dijhkb;xi, zi,ui)}]

rijhkb (1)

Consider the instance wherelog λ0hkb(dijhkb) = αhkb; hence the strata-specific hazard does not depend on time (dijhkb)

and thusf is the exponential density. UtilizingS(dijhkb;xi, zi,ui) = exp{
∫ dijhkb

0 λhkb(t;xi, zi,ui)dt}, the conditional

likelihood simplifies to

I
∏

i=1

J
∏

j=1

H
∏

h=1

K
∏

k=1

Bh
∏

b=1

{exp(αhkb + xiβhk + ziui)}
yijhkbrijhkb exp{−rijhkbdijhkbe

αhkb+xijhkbβhk+zijhkbui}
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Taking the log and summing overj,

=

I
∑

i=1

H
∑

h=1

K
∑

k=1

Bh
∑

b=1

nihkb(αhkb + xiβhk + ziui) − eαhkb+xiβhk+ziui+log(Dihkb) (2)

Noting the general form of the log likelihood forn ∼ Poisson(φ) is proportional tonlog(φ) − φ, (2) could arise from a

Poisson log-linear model withφ = exp{αhkb + xiβhk + ziui + log(Dihkb)}. Formally written, the conditional model is:

nihkb | αhkb,xi, βhk, zi,ui, Dihkb ∼ Poisson[eαhkb+xiβhk+ziui+log(Dihkb)]

Above,nihkb is the count of the number of observed transitions committed duringDihkb, the total time at risk for personi

committing a transition of typeh, occuring in segmentk and binb. Accounting forDihkb is crucial when modeling relative

counts, for if a subject makes twice as many transitions as another but had twice as long to do so the rate of transitioning

is not truly elevated. IfBh = 1, ∀h andK = 1 then (2) is equivalent to an exponential survival model. AsBh → ∞, the

model approaches having a completely non-parametric piecewise constant hazard for transition-typeh.

Appendix: Likelihood equivalence with SAC-time-varying covariates
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  0
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.

Figure 3. The sample hypnogram of three state sleep (as in Figure2 and Table2) over hours from sleep onset, superimposed on a SAC-time-varying covariate. Binning for the 2nd
bin of the hazard of transition-type NR is illustrated, as well as (potentially) aK = 2 analysis where SAC-time less than 4.5 hours is segmentk = 1 and greater than 4.5 hours is
segmentk = 2. With SAC-time-varying covariates,Xi in the likelihood becomes a matrix comprised of stacked row vectors of values occurring in a particular binb and segment
k.

As Figure3 implies, SAC-time-varying covariates will necessitate data augmentation for theM measurements taking

place in binb and segmentk, whereM is the total number of epochs (the finest and uniform time grid for all subjects)

taking place in binb and segmentk of the SAC-time. ThenXi of the previous section is a matrix of rowsXim and the

likelihood is:

=

I
∑

i=1

H
∑

h=1

K
∑

k=1

Bh
∑

b=1

Mkb
∑

m=1

nihkb(αhkb + ximβhk + ziui) − eαhkb+ximβhk+ziui+log(Dihkb) (3)
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Appendix: Subset of Chains from MCMC Sampling

Figure 4. Each plot is 5 chains of a component draw. Each chain is 1200 samples long with a burn-in of 1000 used for each chain. From top panel to bottom, the chains of fixed
effectbeta[2] = β21, individual log-frailtyu[2] = si = s2, mu[2] = αhkb = α112 andcompare[2] = exp(β22)/ exp(β21), respectively.
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