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Abstract

We propose a new regression model and inferential tools for the case when both the outcome and

the functional exposures are observed at multiple visits. This data structure is new but increasingly

present in applications where functions or images are recorded at multiple times. This raises new

inferential challenges that cannot be addressed with current methods and software. Our proposed

model generalizes the Generalized Linear Mixed Effects Model (GLMM) by adding functional pre-

dictors. Smoothness of the functional coefficients is ensured using roughness penalties estimated by

Restricted Maximum Likelihood (REML) in a corresponding mixed effects model. This method is com-

putationally feasible and is applicable when the functional predictors are measured densely, sparsely

or with error; code implementing the proposed procedure is freely available. Methods are applied to a

longitudinal diffusion tensor imaging (DTI) study relating changes in the microstructure of intracranial

white matter tracts to cognitive disability in multiple sclerosis patients, but we note that the discussed

data structure is increasingly common and our methods apply generally. An online appendix compares

two implementations, one likelihood-based and the other Bayesian, and provides the software used in

simulations.

Keywords: Functional Regression, Longitudinal Regression, Smoothing Splines, Mixed Models.

1 Introduction

Traditionally, longitudinal studies have collected scalar measurement on subjects over time. As technolo-

gies for the collection and storage of larger measurements have become widely available, longitudinal

studies have begun to collect functional observations on subjects over several visits. However, tech-

niques for the incorporation of functional covariates in longitudinal regression models are not currently

available. We address this problem by introducing a novel longitudinal functional regression model that
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adds subject-specific random effects to the well-studied cross sectional functional regression model. We

also develop inferential techniques for all parameters in this new model, and implement these methods

in computationally efficient and publicly available software. Our proposed approach is based on the

single-level functional regression model developed in [13] but is extended to the statistically novel and

scientifically useful longitudinal setting. We distinguish our data structure an inferential framework from

the rich work in single-level functional regression [6, 12, 20, 24, 27, 28], from Functional ANOVA methods

which decompose observed functions into group and subject components [3, 15], and from the important

work in which scalar longitudinal observations are treated as a sparsely observed functional covariates

[16, 23, 32].

In this paper we are motivated by a longitudinal diffusion tensor imaging (DTI) study, designed to in-

vestigate the effect of multiple sclerosis on patient disability. Multiple sclerosis is an autoimmune disease

that results in the formation of lesions in the cerebral white matter and leads to severe patient disability;

DTI is a noninvasive imaging procedure that yields quantitative information about tissue microstruc-

ture in individual functional systems in the brain. By collecting longitudinal information about patient

cognitive function and about disease progression via DTI, researchers hope to better understand the rela-

tionship between MS and disability.

From this study, we have densely sampled mean and parallel diffusivity measurements from several

white matter tracts, as well as cognitive disability measurements for each patient over several visits. In

Figure 1 we display a functional predictor and cognitive disability outcome for two subjects over time;

the study contains 100 subjects with a median of 3 visits roughly 6 months apart. We stress that this

data structure, with very large predictors and scalar outcomes observed longitudinally, is increasingly

common. Moreover, we emphasize that our methods are motivated by this study, but are generally appli-

cable. A single-level analysis of these data was presented in [13].

More formally, we consider the setting in which we observe for each subject 1 ≤ i ≤ I at each visit

1 ≤ j ≤ Ji data of the form [Yij ,Wij1(s), . . . ,WijL(s), Xij ], where Yij is a scalar outcome, Wijl(s) ∈

L2[0, 1], 1 ≤ l ≤ L, are functional covariates, and Xij is a row vector of scalar covariates. We propose the
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Figure 1: Structure of the data. The center panel displays the scalar PASAT-3 cognitive disability measure
for two subjects over five visits; above and below are the parallel diffusivity tract profiles of the right
corticospinal tract corresponding to each subject-visit outcome, which we use as a functional regressor.

longitudinal functional regression outcome model

Yij ∼ EF(µij , η)

g(µij) = Xijβ + Zijbi +
L∑
l=1

∫ 1

0
Wijl(s)γl(s)ds (1)

where “EF(µij , η)” denotes an exponential family distribution with mean µij and dispersion parameter η.

Here Xijβ is the standard fixed effects component, Zijbi is the standard random effects component, bi ∼

Normal(0, G) are subject-specific random effects, and the
∫ 1
0 Wijl(s)γl(s)ds are the subject/visit-specific

functional effects. Model (1) is novel in that it adds subject-specific random effects to the standard cross-

sectional functional regression model; the random effects are used to account for the correlation between
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repeated observations at the subject level. Many different structures of random effects, bi, will be needed

and used. Of course, in practice theWijl(s) are not truly functional but are observed on a dense (or sparse)

grid and often with error; moreover, the predictors are not necessarily observed over the same domain.

In fact, while the measurement error is negligible in our application, there are some missing values in the

functional predictor in Figure 1, and the mean and parallel diffusivity functional predictors have different

domains. We point out that solutions to these problems are well known [11, 27, 29, 31], and do not discuss

them here.

Our proposed method to fit model (1) extends the approach to single-level functional regression in

[8, 13] to the current longitudinal setting. Specifically, we use functional principal components decompo-

sition to parsimoniously express the Wijl(s) and a large spline basis to estimate the coefficient function

γl(s). Smoothness of γl(s) is induced via penalization in a mixed effects model. Some strengths of this ap-

proach are that: 1) it extends functional regression to model the dynamic association between outcomes

and functional predictors in longitudinal studies; 2) it casts a novel functional model in terms of well-

understood mixed models; 3) it is applicable in any situation in which the Wijl(s) are observed or can

be estimated, including when they are observed sparsely or with error; 4) it can be fit using standard,

well-developed statistical software; and 5) it provides confidence or credible intervals for all the param-

eters of the model, including the functional ones. We emphasize this final point, as confidence intervals

are rarely discussed in the functional regression literature, and in penalized approaches to functional re-

gression they are typically bootstrap or empirical intervals. The connection to mixed models provides

a simple, statistically principled approach for constructing confidence or credible intervals. Thus our

software implementations provide the confidence intervals as a byproduct of the fitting procedure.

We contrast the setting of this paper with the large body of existing functional regression work. Fore-

most, existing functional regression work [5, 6, 7, 4, 10, 18, 17, 21, 24, 27, 28] deals only with cross sectional

regression. Here, we are focused on longitudinally observed functional predictors and outcomes, which

necessitates the addition of random effects to the standard functional regression model. To the best of

our knowledge, this setting has not been considered previously. Moreover, the addition of random effects

increases the complexity of the functional regression model, requiring new methodology implemented in

efficient software.
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Additionally, we point out that several alternative penalized approaches to single-level functional re-

gression exist [6, 7, 28], but that each of these incorporates a computationally expensive cross-validation

procedure. How and whether such methods would extend to fitting longitudinal models of type (1)

remains to be elucidated. The additional complexity of a longitudinal model may increase the compu-

tational burden, perhaps prohibitively. Low-dimension approaches to single-level functional regression

[24], in which the smoothness of γl(s) depends on the dimension of its basis, are less automated than

penalized approaches but are, notably, generalizable to the longitudinal setting. In fact, such models are

a special case of the method we propose in Section 2.

It is also important to distinguish the proposed longitudinal functional regression model with well de-

veloped Functional ANOVA models [3, 15]. Here, one observes functions organized into groups; the goal

is to express the functions as a combination of a group mean, a subject-specific deviation from the group

mean, and possibly a subject-visit-specific deviation. Much of this work has focused on the estimation of

and inference for the group means, and has employed penalized splines in expressing these functions. A

scalar-on-function regression that incorporates random effects to account for group effects, as proposed

in this paper, is not considered; we however point out that the work in FANOVA suggests that numer-

ous datasets necessitating such a model exist and are under investigation. Others [11, 14] have extended

functional principal components analysis to the multilevel and longitudinal settings, emphasizing parsi-

monious and computationally efficient methods for the expression of subject-visit specific curves. While

these methods are the state of the art in describing the variability in observed multilevel and longitudinal

functions, they do not consider accompanying longitudinal outcomes.

Finally, we highlight the distinction between the treatment of scalars observed longitudinally as sparse

functional covariates [16, 23, 32] and the current setting, in which functions are observed longitudinally.

The introduction of a longitudinal functional regression model, therefore, fills a gap in the functional

data analysis literature. While the proposed approach is based on the framework described in [13] and

arises naturally therein, the longitudinal extension developed here defines a broadly useful class of func-

tional regression models. Moreover, computationally feasible software for the estimation and inference

related to longitudinal functional regression models is freely available online.

The manuscript is organized in the following way. Section 2 describes the proposed general method
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for longitudinal functional regression. In Section 3 we pursue a simulation study to examine the viability

of the proposed method and in Section 4 we apply our method to the DTI data. We end with a discussion

in Section 5. Implementations of the method proposed in Section 2, provided in both likelihood-based

and Bayesian frameworks and accompanied by a discussion of the the advantages and disadvantages of

each, are available in an online appendix which also contains all software used in the simulation exercise.

2 LPFR

The longitudinal penalized functional regression (LPFR) method builds on an approach to single-level

functional regression in which the penalization is achieved via a mixed model [13]. The addition of

random effects to this model therefore arises naturally and with a minimal increase in complexity.

2.1 Single-level Penalized Functional Regression

We briefly describe the penalized functional regression (PFR) approach for single-level data with outcome

model

Yi ∼ EF(µi, η)

g(µi) = α+Xiβ +
∫ 1

0
Wi(s)γ(s)ds . (2)

The first step in PFR is to express the functional covariate in terms of a truncated Karhunen-Loéve de-

composition. That is, we let ΣW (s, t) = Cov[Wi(s),Wi(s)] be the covariance operator on the observed

functions and
∑∞

k=1 λkψk(s)ψk(s) be the spectral decomposition of ΣW (s, t), where λ1 ≥ λ2 ≥ . . . are

the non-increasing eigenvalues and ψ(·) = {ψk(·) : k ∈ Z+} are the corresponding orthonormal eigen-

functions. Note that if Wi(s) is observed with error then a good estimator of ΣW (s, t) is obtained by

smoothing the off-diagonal elements of the observed covariance operator [29, 31]. Moreover, in the case

that the Wi(s) are sampled sparsely or over different grids, one can construct an estimate of the covari-

ance operator using the following two-stage procedure [11]. First, use a fine grid to bin each subject’s

observations to construct a rough estimate of the covariance operator based on these under-smoothed

functions; second, smooth the rough covariance operator estimated in the previous step. A truncated
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Karhunen-Loéve approximation for Wi(s) is given by Wi(s) = µ(s) +
∑Kw

k=1 cikψk(s), where Kw is the

truncation lag, the cik =
∫ 1
0 {Wi(s)− µ(s)}ψk(s)ds are uncorrelated random variables with variance λk,

and µ(s) is the mean function over all subjects and visits. Unbiased estimators of cik can be obtained ei-

ther as the Riemann sum approximation to the integral
∫ 1
0 {Wi(s)− µ(s)}ψj(s)ds or via the mixed effects

model ([9, 11])

Wi(s) = µ(s) +
∑Kw

k=1 cikψk(s) + ε(s)

ci ∼ N(0,Λ), ε(s) ∼ N(0, σ2
ε ),

(3)

where Λ is a Kw × Kw matrix with (k, k)th entry λk and 0 elsewhere, and the cik, εij are mutually inde-

pendent for every i, k.

The second step in PFR is to model the coefficient function γ(s) using a large spline basis with smooth-

ness induced explicitly via a mixed effects model. For example, let φ(s) = {φ1(s), φ2(s), . . . , φKg(s)}

be a truncated power series spline basis, so that γ(s) = φ(s)g = g0 + g1t +
∑Kg

k=3 gk(t − κk)+ where

g = {g1, . . . , gKg}T and {κk}
Kg

k=3 are knots. Thus,

∫ 1

0
Wi(s)γ(s)ds = a+

∫ 1

0
c′iψ

T (s)φ(s)g ds = a+ c′iMψφg,

where c′i = (ci1, . . . , ciKw),Mψφ is aKw×Kg dimensional matrix with the (k, l)th entry equal to
∫ 1
0 ψk(s)φl(s)ds

and a =
∫ 1
0 µ(s)γ(s)ds. Let C be the I ×Kw matrix of PC loadings with ith row c′i; the outcome model (2)

is posed as

Y |W (s) ∼ EF (µ, η)

g(µ) = Xβ +Zu (4)

u ∼ N[0, σ2
gI],

where X = [1 X (CMψφ)[,1:2]] is a matrix consisting of non-functional covariates and the first two

columns of CMψφ, which are fixed effects used in the modeling of γ(s), Z = (CMψφ)[,3:Kg ] consists

of the columns of CMψφ which are random effects used in the modeling of γ(s), β = [α, β, g1, g2] is the

vector of fixed effects, and u = {gk}
Kg

k=3 is the vector of random effects; the term a =
∫ 1
0 µ(s)γ(s)ds is

incorporated into the overall model intercept α. We note that other spline bases for γ(s) can (and, in
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the Bayesian software implementation, will) be used with appropriate changes to the specification of the

random effects u used to model γ(s).

2.2 Longitudinal Penalized Functional Regression

Longitudinal penalized functional regression is natural in this framework. Given data of the form [Yij ,Wij1(s), ...,WijL(s), Xij ]

for subjects 1 ≤ i ≤ I over visits 1 ≤ j ≤ J , we model the functional effect in the following way. First,

express the Wijl(s) using a functional principal components decomposition with eigenfunctions ψl(·)

and loadings C l. Then, estimate the coefficient functions γl(s) using a flexible spline basis φ(·) so that

γl(s) = φ(s)gl. Smoothness of the coefficient functions is induced via a mixed model, and subject-specific

random effects are included as additional random components.

Specifically, define Z1 to be the (IJ) × I design matrix obtained by row-stacking the design vec-

tors Zij of subject-specific random effects in (1) and Mψφl to be the Kw × Kg matrix with (k, j)th entry∫ 1
0 ψkl(s)φj(s)ds. We write the longitudinal outcome model (1) as

Y |W (s) ∼ EF (µ,γ)

g(µ) = Xβ +Zu

u ∼ N





0

0

...

0


,



σ2
bII 0 . . . 0

0 σ2
g1
IKg−2 0

...
. . .

...

0 0 . . . σ2
gL
IKg−2




.

Here,X = [1 X (C1Mψφ1)[,1:2] . . . (CLMψφL)[,1:2]] is the design matrix consisting of scalar covariates and

fixed effects used to model the γl(s); Z = [Z1 (C1Mψφ1)[,3:Kg ] . . . (CLMψφL)[,3:Kg ]] is the design matrix

consisting of subject-specific random effects and random effects used to model the coefficient functions;

β = [α, β, g11, g12, . . . , gL1, gL2] is the vector of fixed effect parameters; andu = [{bi}Ii=1, {g1k}
Kg

k=3, . . . , {gLk}
Kg

k=3]

is the vector of subject-specific random effects and the random effects used to model the γl(s). In this way

longitudinal functional regression models can be flexibly estimated using standard, yet carefully con-

structed, mixed effects models. As in [8], it is possible to model jointly the principal component loadings

cilk and the outcome, though this is not necessary if good estimates of the cilk are available. Note that we
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have assumed the same spline basis φ(·) for each functional parameter γl(s) and the same truncation lags

Kw,Kg for each functional predictor and coefficient, but that these assumptions are easily relaxed.

A related approach, which can be advantageous in the setting in which the shape of γl(s) is known,

takes φl(·) as a collection of parametric functions, i.e. φl(s) = {1, t} if γl(s) is a linear function, and uses

random effects to model the longitudinal structure of the data but not to induce smoothness on γl(s).

However, absent setting-specific knowledge of the shape of γl(s) we typically advocate the more flexible

penalized approach described above.

3 Simulations

We pursue a simulation study to test the effectiveness of our proposed method in estimating one or more

functional coefficients in longitudinal regression models. We use two implementations, a likelihood-

based approach and a Bayesian approach, and briefly note a few differences between the two. First, the

likelihood based approach estimates the matrix of PC loadings C using a Riemann sum approximation

and then treats this matrix as fixed, while the Bayesian approach estimates C as in equation (3). Sec-

ond, the Bayesian implementation uses a b-spline basis for γ(s) to improve mixing of the MCMC chains.

A more detailed discussion of the two implementations is available in an online appendix. To ensure

reproducibility, full code for the simulation exercise is also available online.

3.1 Univariate Simulations

We first generate samples from the model

Yij = bi +
∫ 10

0
Wij(s)γ(s)ds+ εij , i = 1, . . . , 100

W ′ij(s) = Wij(s) + δij(s)

Wij(s) = uij1 + uij2t+
10∑
k=1

{
vijk1 sin

(
πk

5
t

)
+ vijk2 cos

(
πk

5
t

)}

where εij ∼ N[0, σ2
Y ], δij(s) ∼ N[0, σ2

W ], bi ∼ N[0, σ2
b ], uij1 ∼ N[0, 25], uij2 ∼ N[0, 0.04], vijk1, vijk2 ∼

N[0, 1/k2] and W ′ij(s) denotes the observed functional predictor for subject i at visit j. By construction

the Wij(s) are a combination of a vertical shift, a slope, and sine and cosine terms of various periods.
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The Wij(s) are observed on the dense grid [tg = g
10 : g = 0, . . . , 100]. We assume I = 100 subjects, and

select γ1(s) = 2 sin(πt/5) and γ2(s) =
√
t. Note that the first true coefficient function is selected to be an

early principal component of the observed functions, and the second is an arbitrary smooth function. We

take J ∈ {3, 10}, σ2
ε ∈ {5, 10}, σ2

W ∈ {0, .5} and σ2
b ∈ {5, 50}, which gives a total of 16 possible parameter

combinations and two coefficient functions. For each of these combinations, we generate 100 datasets and

fit model 5 using both likelihood-based and Bayesian approaches. For the Bayesian implementation, we

used chains of length 500 with the first 100 as burn-in.

0 2 4 6 8 10
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0
1

2

γ1(t)

t

β(
t)

Truth
Likelihood-Based
Bayesian

0 2 4 6 8 10

0
1

2
3

γ2(t)

t

β(
t)

Truth
Likelihood-Based
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Figure 2: For both true coefficient functions and both implementations, we show the estimate γ̂(s) with
median MSE. Median MSEs for likelihood-based and Bayesian approaches are, respectively, 0.016 and
0.012 for γ1(s) and 0.006 and 0.009 for γ2(s).

We calculate the mean squared error of the estimated coefficient function γ̂(s) as

MSE =
100∑
g=0

{γ̂(tg)− γ(tg)}2 .

Table 1 provides the average mean squared error (AMSE) using the both implementations taken over the
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Likelihood-based Bayesian
γ1(·) γ2(·) γ1(·) γ2(·)

J=3
σ2
W =0 =.5 =0 =.5 =0 =.5 =0 =.5
σ2
Y = 5
σ2
b = 5 0.019 0.020 0.007 0.008 0.013 0.015 0.010 0.013
σ2
b = 50 0.020 0.021 0.007 0.009 0.014 0.017 0.011 0.014

σ2
Y = 10
σ2
b = 5 0.028 0.028 0.009 0.010 0.025 0.028 0.015 0.017
σ2
b = 50 0.030 0.031 0.009 0.010 0.031 0.036 0.016 0.019

J=10
σ2
Y = 5
σ2
b = 5 0.008 0.009 0.005 0.006 0.006 0.009 0.004 0.006
σ2
b = 50 0.008 0.009 0.005 0.006 0.006 0.008 0.004 0.006

σ2
Y = 10
σ2
b = 5 0.012 0.013 0.006 0.007 0.008 0.009 0.006 0.008
σ2
b = 50 0.012 0.013 0.006 0.007 0.008 0.009 0.006 0.008

Table 1: Average MSE for the likelihood-based and Bayesian implementations in the univariate setting
over 100 repetitions for each possible parameter combination and true coefficient function.

100 simulated datasets for each possible combination of J , σ2
W , σ2

Y , σ2
b and coefficient function. In Figure

2, we show the estimates resulting in the median MSE for J = 3, σ2
W = 0, σ2

Y = 5, σ2
b = 5 under both

coefficient functions.

From Table 1 and Figure 2, we see that the estimation of γ(s) is very accurate regardless of the magni-

tude of the random effect variance or, notably, the presence or absence of measurement error. As expected,

there is a substantial decrease in AMSE when one observes 10 visits per subject compared to 3 visits per

subject. Doubling the error variance on the outcome has the largest impact on the AMSE, but in many

situations this impact is small.

We note that several differences between the results for the likelihood-based and Bayesian implemen-

tations are apparent for J = 3. Particularly, notice that the likelihood-based implementation generally

has better performance for γ2(s). A possible reason for this is that the Bayesian implementation uses a

smaller basis for both the functional predictors and the coefficient function and uses a b-spline basis for

γ(s), rather than a truncated power series. With fewer observations, the smaller b-spline basis may lack

the flexibility to adequately represent γ2(s). A second difference in the results for the different imple-

mentations is the larger impact of measurement error on AMSE for the Bayesian implementation. Recall

that this approach jointly estimates the model parameters and the matrix of PC loadings C. The added
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variability in estimating C in the presence of measurement error may lead to more variable estimation of

the functional coefficient γ(s); however, it is possible that using longer chains would minimize the impact

of observing the predictor functions with error. We also note that for J = 10, these differences largely

disappear.

Finally, in Figure 3 we show the coverage probabilities for the 95% confidence and credible intervals

produced by a subset of the simulations described above. We show the two extreme situations: first, we

let J = 3, σ2
W = 0, σ2

Y = 5, and σ2
b = 5; second, we let J = 10, σ2

W = .5, σ2
Y = 10, and σ2

b = 50. For γ1(s),

we generally see that the confidence intervals have coverage probabilities somewhat lower than the nom-

inal level, while the credible intervals are slightly conservative with the exception of one region. A more

interesting situation is apparent for γ2(s). We note from Figure 2 that both implementations tend to over-

smooth the leftmost tail of the coefficient function; this is reflected in the very low coverage probabilities

there. The Bayesian implementation recovers from this initial oversmoothing and has conservative credi-

ble intervals over the remainder of the domain, but the likelihood-based implementation has a second dip

corresponding to a second region of oversmoothing before achieving coverage probabilities more similar

to those for γ1(s).

3.2 Multivariate Simulations

Next, we generate samples from the model

Yij = bi +
∫ 10

0
Wij1(s)γ1(s)ds+

∫ 10

0
Wij2(s)γ2(s)ds+ εij , i = 1, . . . , 100

W ′ijl(s) = Wijl(s) + δijl(s)

Wijl(s) = uijl1 + uijl2t+
10∑
k=1

{
vijkl1 sin

(
πk

5
t

)
+ vijkl2 cos

(
πk

5
t

)}

where εijl ∼ N[0, σ2
Y ], δijl(s) ∼ N[0, σ2

W ], bi ∼ N[0, σ2
b ], uijl1 ∼ N[0, 25], uijl2 ∼ N[0, 0.04], vijkl1, vijkl2 ∼

N[0, 1/k2] and W ′ijl(s) denotes the lthobserved functional predictor for subject i at visit j. Thus the Wijl(s)

are independent functions constructed in the same manner as in the univariate simulations. The Wij(s)

are observed on the dense grid [tg = g
10 : g = 0, . . . , 100] and we set I = 100. Again we choose γ1(s) =

2 sin(πt/5) and γ2(s) =
√
t and we take J ∈ {3, 10}, σ2

ε ∈ {5, 10}, σ2
W ∈ {0, .5} and σ2

b ∈ {5, 50}. For
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Figure 3: Coverage probabilities for 95% confidence and credible intervals for both true coefficient func-
tions.

each of these combinations, we generate 100 datasets and fit model 5 using both of the implementations

described in Section A. Due to the added complexity of the model, we used chains of length 1000 with

the first 500 as burn-in.

Table 2 provides the AMSEs resulting from both likelihood-based and Bayesian implementations of

the multivariate longitudinal functional regression model taken over the 100 simulated data sets. We

see that the results in the multivariate setting are remarkably similar to those in the univariate case, de-

spite the additional complexity of the model. Specifically, the AMSEs are negligibly affected and the

comparisons between the likelihood-based and Bayesian implementations remain valid. Though not pre-

sented, figures examining the coverage probabilities of confidence and credible intervals are also largely

unchanged.
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Likelihood-based Bayesian
γ1(·) γ2(·) γ1(·) γ2(·)

J=3
σ2
W =0 =.5 =0 =.5 =0 =.5 =0 =.5
σ2
Y = 5
σ2
b = 5 0.018 0.019 0.007 0.008 0.015 0.012 0.010 0.010
σ2
b = 50 0.028 0.019 0.007 0.008 0.015 0.015 0.011 0.010

σ2
Y = 10
σ2
b = 5 0.025 0.028 0.009 0.010 0.026 0.025 0.016 0.015
σ2
b = 50 0.026 0.038 0.010 0.011 0.031 0.029 0.017 0.016

J=10
σ2
Y = 5
σ2
b = 5 0.009 0.009 0.005 0.004 0.008 0.008 0.005 0.004
σ2
b = 50 0.009 0.009 0.005 0.004 0.007 0.008 0.005 0.004

σ2
Y = 10
σ2
b = 5 0.013 0.013 0.006 0.006 0.010 0.010 0.006 0.006
σ2
b = 50 0.013 0.014 0.006 0.006 0.010 0.009 0.006 0.006

Table 2: Average MSE for the likelihood-based and Bayesian implementations in the multivariate setting
over 100 repetitions for each possible parameter combination and true coefficient function.

4 Application to Longitudinal DTI Regression

Our application explores the relationship between cerebral white matter tracts in multiple sclerosis (MS)

patients and cognitive impairment over time. White matter tracts are made up of myelinated axons:

axons are the long projections of a neuron that transmit electrical signals and myelin is a fatty substance

surround axons in white matter that enables these signals to be carried very quickly. Multiple sclerosis,

an autoimmune disease which results in demyelinated lesions in white matter tracts, leads to significant

disability in patients.

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) based modality that traces the

diffusion of water in the brain. Because water diffuses anisotropically in the white matter and isotrop-

ically elsewhere, DTI is used to generate images of the white matter specifically [1, 2, 19, 22]. Several

measurements of water diffusion are provided by DTI, including fractional anisotropy and mean diffu-

sivity, and continuous summaries of white matter tracts, parameterized by distance along the tract and

called tract profiles, can be derived from diffusion tensor images.

In this study, 100 patients are scanned approximately once per year and undergo a collection of tests

to assess cognitive and motor function; patients are seen between 2 and 8 times, with a median of 3 visits
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per subject. Here we focus on the mean diffusivity profile of the corpus callosum tract and the parallel

diffusivity profile of the right corticospinal tract as our functional predictors and the Paced Auditory

Serial Addition Test (PASAT), a commonly used examination of cognitive function affected by MS with

scores ranging between 0 and 60, as our scalar outcome.

Univariate Analyses Multivariate Analysis
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Figure 4: Results of univariate and multivariate analyses. On the left, we show the estimated coefficient
function the mean diffusivity (MD) profile of the corpus callosum and the parallel diffusivity (PD) profile
of the right corticospinal tract treated separately in univariate analyses. On the right we show the results
of a multivariate analysis including both profiles.

We begin by fitting univariate models of the form

Yij = α+Xijβ + ui +
∫ 1

0
Wij(s)γ(s)ds+ εij (5)

ui ∼ N[0, σ2
u], εij ∼ N[0, σ2

ε ]

where Yij is the PASAT score for subject i at visit l, Wij(s) is functional predictor for subject i at visit l, and

the variable Xij = I(l > 1) is used to account for a learning effect that causes PASAT scores to generally

rise between the first and second visit. Two such models are fit, one using the mean diffusivity profile

of the corpus callosum and another using the parallel diffusivity profile of the right corticospinal tract.

These models are fit using both likelihood-based and Bayesian implementations of the method describe

in Section 2. Estimates of the functional coefficient γ(s), along with credible and confidence intervals,

are presented in the left panels of Figure 4. Note that in both cases the credible and confidence intervals

are quite different; we recall from our simulations that the credible intervals were conservative, while the
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confidence intervals generally did not achieve nominal coverage. However, for the corpus callosum both

intervals indicate that the first half of the tract and region 60-80 have a significant impact on the PASAT

outcome. For the corticospinal tract, the region from 40-50 is indicated as having a significant impact on

the outcome.

In Table 3 we show the percent of the outcome variance explained in each of several models. We

note that the largest source of variation in the outcome is the subject-specific random effect, but that the

univariate regression models improve on this. In fact, it appears the two functional predictors explain a

similar amount of variability beyond the random intercept only model. However, the right corticospinal

tract mediates movement and strength, not cognition, and therefore should not have a direct impact on

the PASAT score. We hypothesize that this tract profile is correlated with overall disease burden and,

therefore, decreased cognitive ability but does not itself effect the PASAT outcome. On the other hand,

the corpus callosum is plausibly linked to cognitive performance; degradation of this tract should affect

the PASAT score [25].

Random Int. Only Univariate: MD Univariate: PD Multivariate
PVE 81.2 % 88.6% 88.7 88.8%

Table 3: Percent of the variance in the PASAT outcome explained by a random intercept only model, two
univariate longitudinal functional regression models, and a multivariate longitudinal functional regres-
sion model.

Finally, we carry out a multivariate analysis that includes both the corpus callosum mean diffusivity

profile and the corticospinal tract parallel diffusivity profile. The estimated functional coefficients in this

model are given in the right panels of Figure 4. We see that the estimate for the corpus callosum and

accompanying confidence intervals are largely unchanged from the univariate regression, but that the

estimate for the corticospinal tract is quite different. Rather than a peak from 10-20 and a dip from 40-

50, the coefficient for the corticospinal tract is near zero over its entire range, and no regions appear

particularly important in predicting the outcome. Based on the univariate and multivariate analyses,

it seems that the right corticospinal tract is a functional confounder in that it is correlated with disease

burden and cognitive ability but not biologically linked to the outcome, while the direct relationship

between the corpus callosum and the PASAT score appears statistically plausible.
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5 Discussion

In this paper we have proposed a novel longitudinal functional regression model and explored a gen-

eral approach to estimate the parameters of this model, including scalar and functional coefficients and

subject-specific random effects. This approach is appealing in that in casts difficult longitudinal functional

regression problems in terms of the popular and well-known mixed model framework. The method is: 1)

very general, allowing for the functional coefficient to be fit using a flexible penalized approach or mod-

eled parametrically; 2) applicable in whether the functional covariates are sparsely or densely sampled, or

measured with error; and 3) computationally efficient and tractable. To the last point, we developed two

implementations for this approach using common statistical software and discussed their comparative

advantages and disadvantages in an online appendix.

Additionally, we have carefully tested our proposed method under both likelihood-based and Bayesian

approaches in a detailed simulation study considering both univariate and multivariate settings. The re-

sults of this study demonstrate the effectiveness of the method in estimating functional coefficients under

a variety of conditions, including few or many visits per subject, different levels of outcome and random

effect variance, and in the presence or absence of measurement error on the functional predictor. We have

also applied our method to a scientifically interesting and clinically important data set exploring the rela-

tionship between intracranial white matter tracts and cognitive disability in multiple sclerosis patients.

Future work may take several directions. Basing longitudinal functional regression on functional de-

composition techniques tailored to the structure of the data may give results that are simpler to implement

or interpret. The treatment of longitudinal functional observations as outcomes will continue to be scien-

tifically interesting and statistically challenging. Penalized approaches that use cross validation to impose

smoothness, though computationally expensive, could provide a useful alternative to the mixed model

approach presented here. Finally, functional regression techniques for data sets in which the predictor

is very large, either from extremely dense observation or because the predictor is a 2- or 3-dimensional

image, will be needed as such data sets are collected and analyzed.
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A Computational Issues

The models described in the Section 2 are necessarily complex to account for the size and complexity of

the data set. This raises reasonable concerns about computational feasibility, especially because many

competing methods are slow even in the single-level case. To dispel these concerns we present key seg-

ments of code from two implementations, a likelihood-based approach in R and a Bayesian approach in

WinBUGS, of our method for longitudinal functional regression. We also provide overview of the benefits

and drawbacks of each. Complete code for each is available online.

For simplicity, the code given below assumes Gaussian outcomes and subject-specific random inter-

cepts, with the I subjects observed J times each. The functional coefficient is modeled using a large spline

basis with explicit penalty. Straightforward alterations to the basic code presented here allow for more

complex models.

A.1 Likelihood-based R Implementation

Because LPFR takes advantage of standard mixed effects models to express longitudinal functional mod-

els, we can take advantage of standard mixed effects software to fit such models. Here, we use the lme

function in the nlme package [26] to fit Gaussian functional models using the following code:

# evaluate the J matrix using numeric integration; assumes

# t is observed over an even grid

M.mat <- t(psi) %*% phi *(max(s) - min(s))/(length(s)-1)

# compute the CJ matrix

CJ <- C[,1:Kw] %*% M.mat

# the following code creates the design matrices so that

# the lme function performs the correct estimation

X=cbind(1, CJ[,1:2])

Z1=matrix(rep(c(rep(1, J), rep(0, I*J)), I), nrow=length(Y), ncol=I)

Z2=as.matrix(CJ[,3:Kw])
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Z=cbind(Z1, Z2)

# give the columns of the design matrices meaningful names

colnames(X)=c("intercept", "1", "t")

colnames(Z)=c(paste("int.",1:dim(Z1)[2], sep=""), paste("spline.",3:Kg,sep="" ))

# these commands organize the inputs for the lme() function

re.block.inds=list(1:dim(Z1)[2], (dim(Z1)[2]+1):(dim(Z)[2]))

Z.block=list(length=2)

for (i in 1:length(re.block.inds))

Z.block[[i]] <- as.formula(paste("˜Z[,c(",paste( re.block.inds[[i]],

collapse=","),")]-1")) group=rep(1, I*J)

grouped=data.frame(X,Y,Z)

model.data=groupedData(Y˜X|group, data=grouped)

# fit the longitudinal functional regression model

fit.smooth=lme(Y˜-1+X, random=list(group=pdBlocked(Z.block,

pdClass=rep("pdIdent",length(Z.block)))))

The quantities I= I , J= J , M.mat= Mψφ, C= C, Y= Y , X= Z, Z1= Z1, Z2= Z2, and Z= Z, are as

defined in Section 2. We note that general scalar outcomes can be fit by using the glmmPQL function in

the MASS package [30] in place of the lme function here.

This approach has several advantages, especially as compared to the WinBUGS implementation. The

first, and perhaps most important, is familiarity: R is commonly used among statisticians, and this imple-

mentation will be readily understood. Another advantage is that this code executes very quickly, so that

computation time is significantly shorter. However, there is an important disadvantage of this implemen-

tation. After our best efforts, we have been unable to use standard mixed effects software to fit models

with n > 120, though we have not found a limit on the number of visits per subject. For larger studies, this

constraint is very important. This is a problem related to the R implementation of mixed effects models

and not a problem with our methodology. The problem is that the matrix of random effects explodes in

size, which is not well handled by R.
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A.2 Bayesian WinBUGS Implementation

WinBUGS is a powerful alternative when fitting mixed effects models, and as such can be used to imple-

ment the LPFR method. We note two minor changes that arise in this implementation: 1) we use a cubic

b-spline basis for γ(s) with a first order random walk prior to give better mixing properties; and 2) we

take advantage of the ability to jointly model the exposure and outcome models (3 and 5). Further, to

increase the computation efficiency of this implementation, we use a variation on the projection method

described in [11]. In particular, let

Aijk =
∫ 1

0
{Wij(s)− µ(s)}ψk(s)ds = cijk + ε′ijk

where ε′ijk includes the variance from the excluded dimension in the truncated Karhunen-Loéve decom-

position and the integrated measurement error. Note that Aijk can be estimated using numerical integra-

tion, and that by lettingAij = (Aij1, . . . , AijKw)T we can replace the exposure model 3 with

Aij = cij + ε′ij

cij ∼ N(0,Λ), ε′ij ∼ N(0, σ2
ε′I),

(6)

These changes are implemented in the following code segment; note that we do not use the function

inprod to substantially reduce computation time, and that the quantity JxGam = Mψφg is updated once

per model iteration, outside the main loop over subjects.

model

{ # Start model

for (i in 1:I) { # Begin loop over subjects

for (j in 1:J) { # Begin loop over visits

Y[((i-1)*J+j)]˜dnorm(fitted.val[((i-1)*J+j)], tau_Y)

fitted.val[((i-1)*J+j)]<-alpha + u[i] + eta[((i-1)*J+j)]

eta[((i-1)*J+j)]<-C[((i-1)*J+j),1]*JxGam[1]+C[((i-1)*J+j),2]*JxGam[2]+

C[((i-1)*J+j),3]*JxGam[3]+C[((i-1)*J+j),4]*JxGam[4]+

C[((i-1)*J+j),5]*JxGam[5]+C[((i-1)*J+j),6]*JxGam[6]+

C[((i-1)*J+j),7]*JxGam[7]+C[((i-1)*J+j),8]*JxGam[8]+
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C[((i-1)*J+j),9]*JxGam[9]+C[((i-1)*J+j),10]*JxGam[10]

for (k in 1:Kw) {# Begin loop over observations within subject and visit

A[((i-1)*J+j), k]˜dnorm(C[((i-1)*J+j),k], tau)

C[((i-1)*J+j),k]˜dnorm(0,ll[k])

} # End loop over observations within subject and visit

} # End loop over visits

u[i]˜dnorm(0, tau_u)

} # End loop over subjects

for(l in 1:Kw){ # Begin loop over rows of M.mat matrix

JxGam[l]<-M.mat[l,1]*g[1]+M.mat[l,2]*g[2]+M.mat[l,3]*g[3]+

M.mat[l,4]*g[4]+M.mat[l,5]*g[5]+M.mat[l,6]*g[6]+

M.mat[l,7]*g[7]+M.mat[l,8]*g[8]+M.mat[l,9]*g[9]+

M.mat[l,10]*g[10]

} # End loop over rows of M.mat

for (i in 1:Kw){ # Begin loop over precisions of PC loadings

ll[i]˜dgamma(0.1,0.1)

lambda[i]<-1/ll[i]

} # End loop over precisions of PC loadings

for (l in 2:Kg){ # Begin loop over g coefficients

g[l]˜dnorm(g[l-1],tau_g)

}

... # Here are the prior distributions for non-functional covariates

}#End model

There are several important advantages that arise in this implementation. Most importantly, this im-
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plementation allows for the easy construction of posterior credible intervals. As noted above, the func-

tional regression literature has focused on estimation of functional coefficients, while very little attention

has been paid to confidence intervals. Even then, among papers using a penalized approach to estimation,

confidence intervals are generally empirical or bootstrap intervals. The direct computation of posterior

credible intervals therefore addresses a major need in the functional regression literature. Another ad-

vantage is joint modeling, which accounts for the uncertainty in estimating the PC loadings; while in

many cases this variability in negligible, it can be very important in the presence of large measurement

error or when the functional predictors are sparsely observed. That said, the WinBUGS implementation

also has the disadvantage that hyperparamters sometimes must be chosen with care for the program to

successfully execute.
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