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The Myth Of Making Inferences For An
Overall Treatment Efficacy With Data From

Multiple Comparative Studies Via
Meta-analysis

Takahiro Hasegawa, Brian Claggett, Lu Tian, Scott D. Solomon, Marc A. Pfeffer,
and Lee-Jen Wei

Abstract

Meta analysis techniques, if applied appropriately, can provide a summary of the
totality of evidence regarding an overall difference between a new treatment and a
control group using data from multiple comparative clinical studies. The standard
meta analysis procedures, however, may not give a meaningful between-group
difference summary measure or identify a meaningful patient population of in-
terest, especially when the fixed effect model assumption is not met. Moreover,
a single between-group comparison measure without a reference value obtained
from patients in the control arm would likely not be informative enough for clin-
ical decision making. In this paper, we propose a simple, robust procedure based
on a mixture population concept and provide a clinically meaningful group con-
trast summary for a well-defined target population. We use the data from a recent
meta analysis for evaluating statin therapies with respect to the incidence of fatal
stroke events to illustrate the issues associated with the standard meta analysis
procedures as well as the advantages of our simple proposal.
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                                           Abstract 

 

Meta analysis techniques, if applied appropriately, can provide a 

summary of the totality of evidence regarding an overall difference 

between a new treatment and a control group using data from multiple 

comparative clinical studies. The standard meta analysis procedures, 

however, may not give a meaningful between-group difference summary 

measure or identify a meaningful patient population of interest, 

especially when the fixed effect model assumption is not met. Moreover, 

a single between-group comparison measure without a reference value 

obtained from patients in the control arm would likely not be 

informative enough for clinical decision making. In this paper, we 

propose a simple, robust procedure based on a mixture population 

concept and provide a clinically meaningful group contrast summary for 

a well-defined target population. We use the data from a recent meta 

analysis for evaluating statin therapies with respect to the incidence of 

fatal stroke events to illustrate the issues associated with the standard 

meta analysis procedures as well as the advantages of our simple 

proposal.   
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1. Introduction 

 

In comparing two treatments (for example, a new intervention vs. 

standard care) using the data from multiple studies, meta 

analysis can be a powerful tool to combine information across the 

studies for evaluating an overall group difference. As an example, 

recently Taylor et al. performed an extensive meta analysis to 

assess the effects, both risk and benefit, from various statins [1]. 

The meta analysis included randomized controlled clinical trials of 

statins vs. placebo or the standard care control with minimum 

duration of one year and follow-up of six months in people without 

a past history of cardiovascular disease (CVD). There are various 

outcome variables considered in their meta analysis. Here we 

consider the case with the fatal stroke event as the outcome of 

interest. In Table 1, we report the data from three studies: 

CARDS, JUPITER and WOSCOPS.  The observed risk ratios 

(RRs) of statin to control across the three studies range from 0.14 

to 1.43. A standard method for combining these RRs would be 

based on the Mantel–Haenszel procedure assuming a fixed-effect 

model [2, 3]. That is, we assume that the true RRs are the same 

across three studies. Under this assumption, the resulting 

estimated RR is 1.14 with a 95% confidence interval of (0.78, 1.66), 

indicating there is no significantly increased risk for fatal stroke 

associated with either treatment option. This estimate is 

essentially a weighted average of the observed study-specific RRs. 

The weights depend on the data. When the fixed-effect model 

assumption is plausible, one may interpret that for each study 

population in Table 1, the increase in risk associated with the 

statin could be about 14%. Note that since there is no summary 

measure for the event rate across the studies for either treatment 

group, it is not clear how to interpret whether or not a 14% risk 

increase would be clinically meaningful. This is a common 
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problem for the conventional meta analysis even when the fixed 

effect model assumption is plausible. 

 

 

Table 1. Risk of fatal stroke events for statin and standard care 

 

Study 

Control Statin Risk ratio 

(RR)* 

[95% CI] 
N Events N Events 

CARDS [4] 1412 7 1429 1 
0.14 

[0.02-1.15] 

JUPITER [5] 8901 6 8901 3 
0.50 

[0.13-2.00] 

WOSCOPS [6] 3293 37 3302 53 
1.43 

[0.94-2.17] 

* The risk ratio is defined as the event rate in the statin group divided by the event 

rate in the control group. 

 

Empirically, Taylor et al. [1] found that the above fixed-effect model is 

not appropriate for the data in Table 1, evidenced by a p-value of 0.04 

from a standard heterogeneity lack of fit test.  The weights used to 

derive the fixed-effect estimate of 1.14 depend on the underlying study-

specific event rates in a rather complex, data-dependent form. When the 

fixed-effect assumption is not reasonable, it is difficult, if not 

impossible, to interpret the meaning of the weights used or to what 

patient population the estimated RR would apply. 

 

 Instead of using the fixed effect model, Taylor et al. utilized a 

random-effects model [7] to combine the data across the studies. Under 

the random-effects framework, one assumes that the three observed 

studies were random samples from a hypothetical “super-population” of 

studies and that the true treatment contrast may differ from one study 

to another but follows a specific distribution across the super-population 

of studies. The resulting RR estimate, allowing for such heterogeneity 

between studies, is a 37% decrease in risk associated with statin use 
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and with a wide 95% confidence interval [RR=0.63, (0.18-2.23)]. It is 

interesting to note that numerically the RR estimates for the fixed and 

random effects appear to be quite different. This estimate is also a 

weighted average of observed study-specific risk ratios and the weights 

used depend on the underlying study-specific event rates.  Note that the 

random effect model procedure may be considered as a mixture 

population approach as discussed using Bayesian hierarchical modeling 

approaches [8, 9].  

 

There are several issues with this random effects model approach. 

Firstly, the resulting confidence interval when the number of studies is 

small (here, only three studies in the meta analysis) may not have the 

correct coverage level, a well-known fact in the statistical literature [10, 

11]. This limitation has recently been pointed out in an excellent, 

extensive review article by Cornell et al. [12] in the clinical literature 

along with three specific alternative methods which attempt to account 

for the increased uncertainty induced by between-study differences. 

However, these improved alternatives do not address a fundamental 

issue regarding random-effects meta analysis. That is, the previously 

mentioned hypothetical “super-population” of studies is generally not a 

well-defined or easily understood concept.  For example, it is difficult to 

determine if the inference results based on a random effects model 

would be applicable to a new study population since there is often no 

clear rule to determine if the new study of interest belongs to the 

“super-population” of studies. Because of this, the resulting estimated 

RR cannot be viewed as a valid estimate of the true RR for any of the 

three patient populations or a future target population. Even if there is 

a well-defined super-population, a complete summary of the between-

group difference cannot be conveyed without a description of the full 

distribution of the estimated random effects, not just its center (e.g., 

average) value [13]. However, this approach poses additional technical 

challenges and has been rarely employed in practice.  Furthermore, the 

validity of the resulting point and interval estimates requires a strong 

http://biostats.bepress.com/harvardbiostat/paper207



 5 

distributional assumption (for example, normal distribution for the 

random effects) regarding the true RR's across all of the studies from 

the super-population, an assumption that may easily be misspecified 

and is difficult to justify empirically. Lastly, as in the fixed-effect 

modeling approach, there is no obvious summary event rate estimate 

for each strategy to interpret whether a potential 37% reduction in risk 

for the statins relative to the control would represent a clinically 

meaningful difference.  

 

As described, the standard procedures for meta analysis do not 

identify a target patient population of interest or utilize a clinically 

meaningful summary to quantify the between-group difference, 

especially when the fixed effect model assumption is not met. Therefore, 

there is a resurrected interest in conducting simple pooling analysis, 

where data from individual studies are pooled by the treatment group, 

and analyzed as if from a single study. However, the pooling analysis 

still does not identify a target population, Moreover, when the 

treatment allocation rates vary across individual studies, this analysis 

may yield spurious results [14, 15].   

 

In the next section, we use the above example to illustrate a simple, 

robust procedure via the well-known mixture model approach [16, 17] to 

combine information across multiple studies. This procedure can 

identify a target study population and a simple, meaningful group 

contrast summary measure with an overall estimated event rate from 

the control arm, which can be used as a reference value for clinical 

decision making. In this paper, we first consider the case that only 

summary data for the patients’ baseline covariates and outcomes are 

available from individual studies. To combine information for the 

between-group comparisons, the ideal situation is to have patient-level 

data from individual studies so that we may be able to make efficient 

inference for a target population with a pre-specified joint covariate 

distribution or its summaries thereof. We discuss a potential approach 
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to handle the case that we are interested in a pre-specified target 

population. We use the data from a large global cardiovascular clinical 

trial by treating each sub-study conducted in a country involved as the 

individual study in the meta analysis.     

 

2. Identifying a mixture, target population and estimating an overall 

group difference 

 

To illustrate our simple approach, consider the aforementioned 

comparison of fatal stroke rates between the standard care and statins. 

Note that like other meta analyses, there was no target population of 

interest pre-specified in this meta analysis. The selection process of 

studies was driven by the availability of data [4–6]. The first question is 

whether we can use available information in the literature to identify a 

potential target population from this specific meta analysis. For each of 

the three clinical studies, there is a parent patient population well 

specified in its study protocol (for example, via the study inclusion and 

exclusion criteria based on the subjects' baseline covariates). However, 

only summary data including the study patients’ baseline 

characteristics for individual studies are available in the publications. 

In Table 2, we provide an empirical summary of some of the patients' 

baseline characteristics (e.g., average age, proportion of males, average 

BMI, average LDL, average SBP and DBP) from each of the three 

studies available in the literature. These summaries empirically  

characterize the patients’ profiles of the underlying study populations. 

Note that these three study populations seem rather different, for 

example, with respect to the proportion of males in each study (ranging 

from 62% to 100%) as well as patients' average LDL cholesterol 

(ranging from 2.79 mmol/L to 4.97 mmol/L). Within the random effects 

modeling framework, it is not clear from which “super population” these 

studies were selected. 
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Table 2. A summary of baseline characteristics from each of the three 

studies 

 

Study 

Mean 

age 

(years) 

Male 

(%) 

Mean 

BMI* 

(kg/m2) 

Mean 

LDL* 

(mmol/L) 

Mean 

SBP* 

(mm Hg) 

Mean 

DBP* 

(mm Hg) 

CARDS [4] 62 68 29 3.03 144 83 

JUPITER [5] 66 62 28 2.79 134 80 

WOSCOPS [6] 55 100 26 4.97 135 84 

* BMI = body mass index. LDL = low-density lipoprotein. SBP = systolic blood 

pressure. DBP = diastolic blood pressure. 

 

A possible target population can be constructed via a mixture of 𝐾 

individual study populations in the meta analysis. To this end, assume 

that 𝑃𝑘  and 𝐹𝑘(𝒙) are, respectively, the 𝑘th patient population and the 

corresponding cumulative joint distribution function of the patients' 

baseline covariate vector 𝒙 = (𝑥1, ⋯ , 𝑥𝑝)′ for 𝑘 = 1, ⋯ , 𝐾. Note that these 

populations may be overlapped. The 𝐹𝑘(𝒙) may be estimated with the 

patients’ level data from the 𝑘th  study, 𝑘 = 1, ⋯ , 𝐾.   If there are no 

patient level data, the summaries in Table 2 may be used to 

characterize a target population. A mixture population ℙ of these 𝐾 

populations with a set of nonnegative weights 𝒘 = (𝑤1, ⋯ , 𝑤𝐾)′, where 

∑ 𝑤𝑘
𝐾
𝑘=1 = 1 , represents a patient population consisting of these 𝐾 

populations. A typical subject of this mixing population is obtained as 

follows. First, we generate a multinomial random variable from 

{1, ⋯ , 𝐾} with cell probabilities {𝑤𝑘}. Suppose that the realization is  𝑘, 

then the subject is chosen randomly from 𝑃𝑘 . The cumulative 

distribution function of the covariates of this mixture, target population 

would be 𝐹0(𝒙) = ∑ 𝑤𝑘𝐹𝑘(𝒙)𝐾
𝑘=1 . In the following, we assume that the 

parameter of interest is 𝜃 = 𝑔(𝑝1, 𝑝0) , a contrast between 𝑝1  and 𝑝0, 

where 𝑝𝑗  is the underlying event rate of group 𝑗  in the mixture 

population ℙ. If 𝑔(𝑥, 𝑦) = 𝑥/𝑦 , then 𝜃 is RR, as used in the example 

above. 
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To make inference about 𝜃, one needs to specify the target population 

𝑃0 by choosing the mixing proportions. The mixing weights {𝑤𝑘} can be 

chosen to be reflective of the relative “clinical importance and 

relevance” of the individual study populations. As an example using the 

above meta analysis, we might consider those three study populations 

to be equally important with a weight of 1/3 each. With this set of 

mixing weights, the average age, proportion of males, average BMI, 

average LDL, average SBP and DBP are approximately 61 years, 77% 

male, 28 kg/m2, 3.60 mmol/L, 138 mmHg, and 82 mmHg, respectively in 

this “equal-mixture” target population. If more detailed information is 

available from the publications of these three parent studies, one can 

further characterize this target population in terms of other relevant 

patients’ characteristics. For instance, the standard deviation for 

continuous variables could be obtained for this mixture population 

based on the standard deviations reported in the papers of the three 

studies if available.   

 

The inference for 𝜃 in this case is straightforward. For example, (𝜃 −

𝜃) can be approximated by a mean zero normal distribution with a 

variance of  

�̂�2 =  �̇�1
2(�̂�1, �̂�0) ∑

𝑤𝑘
2�̂�𝑘1(1 − �̂�𝑘1)

𝑛𝑘1

𝐾

𝑘=1

+ �̇�0
2(�̂�1, �̂�0) ∑

𝑤𝑘
2�̂�𝑘0(1 − �̂�𝑘0)

𝑛𝑘0

𝐾

𝑘=1

, 

where 𝜃 = 𝑔(�̂�1, �̂�0), �̂�𝑗 = ∑ 𝑤𝑘�̂�𝑘𝑗
𝐾
𝑘=1 ,  �̂�𝑘𝑗  is the observed event rate in 

the group j of the 𝑘th study with 𝑛𝑘𝑗  observations and �̇�𝑗(𝑝1, 𝑝0) is the 

partial derivative of 𝑔(𝑝1, 𝑝0) with respect to 𝑝𝑗. The confidence interval 

for 𝜃 can then be constructed accordingly.  

 

Now, with the data from the above fatal stroke meta analysis, for this 

“equal-mixture” population ℙ, we may first estimate the event rate for 

the control group using a simple average of its three observed event 

rates: 0.50%, 0.07%, and 1.12% from Table 1. This results in an 

estimate of 0.56%: 
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(0.50%×33.3%) + (0.07%×33.3%) + (1.12%×33.3%) = 0.56%. 

 

Similarly we obtain an average event rate for the statin arm, which is 

0.57%. Then the underlying RR between the two treatment groups is 

the ratio of the two event rates can be estimated as 0.57%/0.56% (=1.01) 

with a 95% confidence interval of (0.67, 1.53). Note that the 

interpretation of the estimated RR of 1.01, coupled with the two 

estimated event rates 0.57% and 0.56% for the statin and control is 

more informative for clinical decision making. Moreover, this simple 

mixture approach allows for the use of different metrics to quantify the 

between-group difference. For instance, one can easily obtain the 

absolute risk difference estimate and numbers needed to treat (NNT) or 

harm (NNH).  For this specific mixture population, the risk difference 

would be 0.01% with a 95% confidence interval of (-0.22%, 0.24%). 

 

Rather than assuming that each study population is equally clinically 

relevant, we may consider a scenario that the study sample size is 

reflective of how common certain types of patients are in the general 

population, suggesting that the study weights should be proportional to 

the study sample size. For the present example, the study weights 

would be 10.4%, 65.4%, and 24.2%, respectively. In this "study size 

mixture" target population, the average age, proportion of males, 

average BMI, average LDL, average SBP and DBP are approximately 

63 years, 72% male, 28 kg/m2, 3.34 mmol/L, 135 mmHg, and 81 mmHg, 

respectively. The event rates are estimated to be 0.42% for the statin 

group and 0.37% for the control group. Then the RR is 1.14 with a 95% 

confidence interval of (0.77, 1.67). Note that for this mixture population, 

the observed event rates are lower than those for the mixture 

population with the equal mixing weights discussed above. The 

summaries of the patients’ baseline characteristics indicate that this 

second population contains relatively more females and has lower 

average LDL and blood pressure values. We may be able to differentiate 

these two populations further if more information about the patients’ 
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baseline characteristics is available in the individual study-specific 

publications.  

 

3. Identifying a mixture population from studies in meta analysis to 

match a pre-specified target population 

 

A key principle in the conduct of a clinical study is to define the patient 

population first, then collect data in order to make inference about a 

certain characteristic of this population. Ideally, meta analyses should 

follow this principle as well. Once a well-defined target patient 

population has been established, for instance, with respect to the 

distribution 𝐹0(𝒙) of the patients' baseline variables, the investigator 

may select studies for the meta analysis whose parent populations are 

similar or relevant to the target patient population with respect to the 

distribution of the vector of baseline variables 𝒙. Now, let �̂�𝑘(𝒙) be the 

empirical distribution function for the 𝑘th study, 𝑘 = 1, ⋯ , 𝐾. Then, in 

theory, one may choose the mixing weights �̂� = (�̂�1, ⋯ , �̂�𝐾)′ such that 

∑ �̂�𝑘�̂�𝑘(𝒙)𝐾
𝑘=1 ≈ 𝐹0(𝒙), for all 𝒙 in the support of the covariate vector. 

Note that the above equations may be relaxed by matching certain sets 

of moments of covariate variables, for example, via the mean values of 

covariates. In this section, we assume that we have the patient level 

data from individual studies.  

 

We use the data from a clinical trial, VALsartan In Acute myocardial 

iNfarcTion (VALIANT) trial, to illustrate our proposal [18].  This study 

is a multi-center double-blind randomized clinical trial comparing the 

effect of the angiotensin-receptor blocker valsartan, the ACE inhibitor 

captopril and the combination of the two on mortality/mobility in 

patients with myocardial infraction, heart failure or both.  There are 

14703 patients with 30 baseline covariates from 24 countries.  We treat 

each sub-study conducted in a country as a “study” for the purposes of 

meta-analysis.  For illustration, the outcome of interest is the event of 

the first hospitalization or death during the first 18 months of the 
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follow-up and we compare the monotherapy treatments with the 

combination therapy by grouping the patients receiving either valsartan 

or captopril alone into a single arm. To simplify the illustration, five 

baseline covariates (age, history of diabetes, history of heart failure, 

history of stroke and usage of other diuretics) were selected as the most 

statistically important covariates via the standard logistic regression 

with the entire dataset.  There are 9737 and 4843 patients with 

complete covariate information in the monotherapy and combination 

therapy arms, respectively. The empirical means of those five baseline 

factors by country are summarized in Table 3. 

 

 

Table 3. A summary of baseline characteristics from each of the 24 

countries in VALIANT study. 

 

 

Country (n) 
Age, yrs 

(mean) 

Diabetes 

(%) 

Heart 

failure 

(%) 

Stroke 

(%) 

Usage of 

other 

diuretics (%) 

Argentina (633) 62.2 20.2 7.7 3.5 34.9 

Australia (306) 65.9 26.8 13.1 6.9 54.9 

Austria (26) 62.5 23.1 7.7 11.5 50.0 

Belgium (66) 67.4 22.7 4.5 6.1 24.2 

Brazil (213) 63.1 23.5 12.7 7.5 55.9 

Canada (1081) 66.8 29.4 15.8 6.7 60.3 

Czech (204) 65.7 25.5 6.4 4.9 36.3 

Germany (323) 63.4 21.4 9.3 5.3 52.3 

Denmark (674) 69.2 24.5 13.2 9.3 73.1 

Spain (122) 66.5 34.4 21.3 5.7 46.7 

France (161) 65.5 19.3 8.1 5.6 72.0 

United Kingdom (820) 64.4 21.2 5.1 4.1 47.1 

Hungary (396) 61.9 14.4 7.8 4.0 63.6 

Ireland (38) 68.5 21.1 7.9 7.9 47.4 

Italy (739) 66.4 20.0 7.0 3.4 59.5 

Netherlands (253) 67.9 24.5 5.5 4.7 65.2 

Norway (263) 70.6 27.8 17.1 5.7 91.3 

New Zealand (134) 67.9 29.1 8.2 6.7 67.9 

Poland (342) 63.0 28.1 14.0 6.1 43.9 

Russian Federation (3120) 63.6 36.2 24.1 7.0 43.8 

Slovakia (184) 62.8 23.4 9.2 4.9 33.3 
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Sweden (485) 72.1 29.3 12.4 7.4 73.2 

U.S.A. (3939) 63.7 29.4 16.0 6.4 43.4 

South Africa(58) 59.5 19.0 3.4 0.0 60.3 

Target 1* 65.3 28.2 15.1 6.1 53.2 

Target 2 61.0 25.0 10.0 5.0 45.0 

* The moments of this target population are set to be same as observed 

counterparts of all participants from Europe.  

 

 

 

 

In practice, the target population is generally described via certain 

summaries of individual covariates’ profiles (for example, the mean and 

standard deviation for a continuous covariate). Therefore, to obtain the 

weights {�̂�𝑘}, one may minimize the distance 

𝑀(𝒘) = ∑ [∑ 𝑤𝑘∫ 𝑚𝑙(𝒙)𝑑�̂�𝑘(𝒙)

𝐾

𝑘=1

− ∫ 𝑚𝑙(𝒙)𝑑𝐹0(𝒙)]

2𝐿

𝑙=1

  ,  

subject to the constraint 

∑ 𝑤𝑘

𝐾

𝑘=1

= 1  and  𝑤𝑘 ≥ 0, 𝑘 = 1, ⋯ , 𝐾, 

where 𝑚𝑙(𝒙)  is a function of the covariate vector for example, 

𝐸{𝑚𝑙(𝒙)} can be the first or second moment of a single covariate. That is, 

we approximate the distribution  𝐹0(𝒙) by a mixture of individual study-

specific empirical moments. When 𝐿 is small, one may not have enough 

information to uniquely define the mixture population, that is, there are 

multiple sets of weights matching the target population perfectly, i.e., 

∑ 𝑤𝑘∫ 𝑚𝑙(𝒙)𝑑�̂�𝑘(𝒙)𝐾
𝑘=1 = ∫ 𝑚𝑙(𝒙)𝑑𝐹0(𝒙), 𝑙 = 1, ⋯ , 𝐿.     

 

In the VALIANT study, if we let the covariate means of the target 

population be the observed empirical averages of all participants from 

Europe (see Target 1 of Table 3), i.e., 𝑚𝑙(𝒙) = 𝑥𝑙 , 𝑙 = 1, ⋯ , 5, there are 

multiple ways to form the mixture population matched with the desired 
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covariate means. For example, it is straightforward to verify that both 

weights 

�̂�1 =(4.0, 1.7, 0.0, 0.0, 0.0, 7.8, 0.6, 1.6, 5.0, 1.8, 1.5, 5.2, 3.1, 0.3, 6.8, 

2.2, 5.2, 0.1, 1.0, 20.7, 0.1, 5.0, 26.0, 0.1)% 

and  

�̂�2 =(3.7, 5.5, 0.3, 0.3, 5.1, 7.4, 2.1, 3.5, 3.4, 12.4, 1.5, 1.0, 2.3, 0.9, 1.9, 

0.2, 7.0, 1.6, 7.3, 14.5, 4.4, 3.5, 8.6, 1.5)% 

can be used to match the specified covariate means.  In fact, there are 

infinite number of weights {𝑤𝑘} satisfying the constraints. While all the 

candidate weights generate a target population with desired moments, 

we may prefer to more efficiently utilize the observed data for making 

inferences about the treatment difference.  Intuitively, one would assign 

a relatively large weight for a large study. Specifically, we may choose 

the mixing weight solving the original optimization problem and also 

minimizing the loss function  

𝐷(𝒘) = ∑(𝑤𝑘 − 𝜋𝑘)2

𝐾

𝑘=1

, 

where 𝒘 = (𝑤1, ⋯ , 𝑤𝐾) and 𝜋𝑘 is the proportion of the patients from the 

𝑘th study/country in the combined patient cohort.  In this case, the 

solution is �̂�1 given above. 

 

 

Now, suppose that there is a unique solution 𝒘 to the limit of 𝐷(𝒘) 

subjects to all the constraints, and also a unique solution �̂� =

(�̂�1, ⋯ , �̂�𝐾)′  to 𝐷(𝒘). Under certain regularity conditions, �̂� converges 

to 𝒘 = (𝑤1, ⋯ , 𝑤𝐾)′ in probability as the sample sizes of all studies go to 

infinity. Furthermore, if we assume that 0 < 𝑤𝑘 < 1, 𝑘 = 1, ⋯ , 𝐾, then 

(�̂� − 𝒘)  can be approximated well by a mean zero Gaussian 

distribution. With slight abuse of notation, 𝜃, the parameter of interest, 

is the underlying between group contrast in the mixture population 

with weights 𝒘. To make inferences about the between-group difference 

𝜃, consider the aforementioned heart failure incidence example. For this 

case, a consistent estimator for 𝜃 is  

Hosted by The Berkeley Electronic Press



 14 

𝜃 = 𝑔(�̂�1, �̂�0), 

where 

�̂�𝑗 = ∑ �̂�𝑘�̂�𝑘𝑗

𝐾

𝑘=1

, 𝑗 = 0, 1.  

Furthermore, by the delta method, the distribution of (�̂� − 𝜃) can be 

approximated by a normal distribution 𝑁(0, 𝜎2).  The variance 𝜎2 can be 

estimated via a resampling method, for example, bootstrapping.  Note 

that the weights �̂� are also random. One needs the patient level data 

from individual studies to obtain a consistent estimator for this limiting 

variance.  

 

 

In the VALIANT example, if we choose �̂�1, the minimizer of 𝐷(𝒘), as 

the mixing weights, the estimated incidence rate of hospitalization or 

death during the first 18 months of the study is 57.43% and 57.65% for 

the combination therapy and mono therapy arms, respectively.  Thus, 

the treatment effect measure of the difference of incidence rates 

between the two arms is -0.22%.  To obtain a confidence interval, we 

bootstrapped individual patients within each of the study to account for 

the variations of both the weights and study-specific treatment effect 

estimator. The estimated standard error is 0.96% and the corresponding 

95% confidence interval is (-2.10%, 1.66%), suggesting that the 

treatment effect, if any, is relatively small in magnitude.  On the other 

hand, if we prefer less variation in weights across studies, we may use 

the modified loss function 

𝐷(𝒘) = ∑(𝑤𝑘 − 𝐾−1)2

𝐾

𝑘=1

 

to guide the selection of the mixing weight.  The resulting mixing 

weight is �̂�𝟐  and the estimated treatment effect is 1.67% (-4.81%, 

1.73%).  Note that the variance of this estimator triples that of the 

previous estimator with the weights selected via the study sizes, which 
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demonstrates the important role of the study sizes in improving the 

precision of the inference procedure.  

 

The requirement of individual patient data for making statistical 

inference when the weights are data dependent can be difficult to meet 

in practice.  However, the individual level data are needed to estimate 

the joint distribution of �̂�  and the study-specific treatment effect 

estimates (𝜃1, ⋯ , 𝜃𝐾)′.  If we ignore correlations between the two, the 

variance of 𝜃 can be approximated with only study-level summary data. 

In the VALIANT study, the resulting variance estimator is very close to 

that based in individual patient data. However, such an observation 

may not be reproducible in other settings.  

 

For certain situations, we may not be able to create a mixture of 

individual study populations to perfectly match those pre-specified 

moments of the target population, especially when 𝐿 ≥ 𝐾. For example, 

in VALIANT study, if we consider the second target population in Table 

3, representing a younger (mean age 61) and healthier population (25% 

diabetic, 10% with heart failure, 5% with stroke, 45% diuretic use) than 

the European patients, then there is no set of weights which would 

produce a perfect match with 𝑀(𝒘) = 0.   If we search for the most 

similar mixture population by minimizing 𝑀(𝒘) , then the resulting 

population consists of patients only from Austria, Russia Federation, 

Slovakia and South Africa.  In general, we may check whether the 

empirical moments of the resulting mixture population specified above 

are similar to those for the target population. If they are not similar in a 

practical sense, the resulting mixture population would not be a good 

approximation to the target population. In the above example, the 

covariate means are 61.9 years for age, 24.5% for diabetic history, 

10.2% for history of heart failure, 4.9% for history of stroke and 46.8% 

for other diuretics usage, which are close to the specified levels of the 

target population.  The treatment effect estimator is -3.86% with a 
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much wider confidence interval of (-14.61%, 6.89%) based on bootstrap 

methods. 

 

 

 

It is interesting to note that all the matchable covariate mean vectors 

consist the convex hull generated by points in 𝑅𝐿  representing the 

observed covariate means in each of the studies.  For demonstration 

purposes, we consider to match only age and history of diabetes in the 

VALIANT study. In this setting, Figure 1 shows the convex hull within 

which all the combinations of age and history of diabetes can be 

matched using those from the 24 studies.  For example, (61 years, 25%) 

is within the convex hull and indeed if we weigh Poland, Russia 

Federation and South Africa by 3.1% 33.3% and 63.5%, respectively, 

then we can match the average age of 61 years and diabetic prevalence 

of 25%. The sparseness in weight is a reflection of the fact that (61 

years, 25%) is very close to the boundary of the convex hull.  It is also 

clear that (61 years, 30%) is outside the constraint set and thus there is 

no mixture population with an average age of 61 years and a diabetic 

prevalence of 30%. However, using our proposal, we may find the best 

approximation to the target population, whose mean is (62 years, 29%) 

marked on the Figure 1.  

 

 

Figure 1: Matchable combinations of age and history of diabetes in 

Valiant study and the graphic demonstration of approximating an 

unmatchable target populatin. 
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For the conventional meta analysis, we obtain each study-specific 

between-group risk ratio first, and then combine them across studies 

using weights that depend on, for example, study-specific event rates. 

The resulting overall estimate and reference population may be difficult 

to interpret clinically or may fail to represent a meaningful patient 

population. Instead we recommend obtaining an overall event rate 

estimate from an interpretable mixture of study populations for each 

treatment group first, and then construct the between-group difference 

measure. This approach does not require any modeling assumptions 

and provides a clinically interpretable empirical group difference 

estimate for a well-defined study population. Moreover, this procedure 

also provides the overall event rate estimates for two groups (for 

example, 0.37% vs 0.42% for fatal stroke incidence for the control and 

statin groups), allowing for the interpretation of the relative risk ratio 

in a more meaningful way. Note that like other meta analysis methods, 

the inference procedure for this simple proposal may not perform well 

when there are studies with zero events. An exact inference procedure 

may be needed to handle this situation. 

 

It is important to note that the above approach is quite different from 

the controversial “pooling analysis.” For pooling analyses, we would 

combine the “statin therapy” patients from all three studies to obtain 

the event rate estimate, and then similarly for the “control therapy” 

patients. Then the RR would be constructed from these two estimated 

rates. In our example, the resulting RR estimate would be 1.14 with a 

95% confidence interval of (0.78, 1.66), which is not drastically different 

from the estimates for the above mixture population with weights 

proportional to the study sizes due to the fact that among these three 

studies, there is no study with a marked imbalance in sample size 

between the two groups. While our proposal is similar to pooling 

analysis with respect to simplicity of implementation, our proposal is 

flexible with respect to prespecified mixing proportion and importantly, 

remains valid when the treatment allocation proportions are different 
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across individual studies, while the pooling procedure may produce 

unreasonable results, reflecting Simpson’s paradox [19]. As an 

illustrative example, we consider the well known example of the study 

in gender bias among graduate school admissions at UC Berkeley (see 

Appendix for data). In the pooling analysis, the overall admission rate 

of males was 45% compared to 30% for females, suggesting an 

admissions processed that strongly favored male applicants. However, 

when applying our method using total number of applications per 

department as the weights, the resulting estimates are 39% acceptance 

for males and 43% for females, estimates much closer in magnitude and 

reversing the original suspected gender discrepancy. 

 

In time-to-event analyses, the conventional meta analysis procedure 

is to estimate each study-specific hazard ratio and obtain a weighted 

average of those hazard ratio estimates. The interpretability of the 

resulting estimate depends on two strong model assumptions: i) the 

proportional hazards assumption within each study; and ii) the equality 

of all underlying study-specific hazard ratios. With the mixture 

population model approach, we cannot obtain a weighted average of the 

study-specific hazard functions for each group due to the fact that the 

hazard function is not a probability. On the other hand, an alternative 

summary measure such as the event rate or the restricted mean 

survival time at a specific follow-up time point can be considered for 

each group [20, 21]. We may then similarly obtain an estimate based on 

an interpretable mixture of these study-specific event rates (or 

restricted mean event times) across all studies to construct a group 

contrast measure for a target mixture population. 
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Appendix: Data Set for Graduate Admissions Example 
 Male Female 

Department applicants accepted applicants accepted 

A 825 512 108 89 

B 560 353 25 17 

C 325 120 593 202 

D 417 138 375 131 

E 191 53 393 94 

F 373 22 341 24 

total 2691 1198 1835 557 
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