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Robust alternatives to ANCOVA for estimating
the treatment effect via a randomized

comparative study

Fei Jiang, Lu Tian, Haoda Fu, Takahiro Hasegawa, Marc Alan Pfeffer, and L. J.
Wei

Abstract

In comparing two treatments via a randomized clinical trial, the analysis of covari-
ance technique is often utilized to estimate an overall treatment effect. The AN-
COVA is generally perceived as a more efficient procedure than its simple two
sample estima- tion counterpart. Unfortunately when the ANCOVA model is not
correctly specified, the resulting estimator is generally not consistent especially
when the model is nonlin- ear. Recently various nonparametric alternatives, such
as the augmentation methods, to ANCOVA have been proposed to estimate the
treatment effect by adjusting the covariates. However, the properties of these al-
ternatives have not been studied in the presence of treatment allocation imbalance.
In this paper, we take a different approach to explore how to improve the precision
of the naive two-sample estimate even when the observed distributions of baseline
covariates between two groups are dissimilar.

Specifically, we derive a bias-adjusted estimation procedure constructed from a
condi- tional inference principle via relevant ancillary statistics from the observed
covariates. This estimator is shown to be asymptotically equivalent to an augmen-
tation estimator under the conditional setting. We utilize the data from a clinical
trial for evaluating a combination treatment of cardiovascular diseases to illustrate
our findings.
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Abstract

In comparing two treatments via a randomized clinical trial, the analysis of covari-

ance technique is often utilized to estimate an overall treatment effect. The ANCOVA

is generally perceived as a more efficient procedure than its simple two sample estima-

tion counterpart. Unfortunately when the ANCOVA model is not correctly specified,

the resulting estimator generally is not consistent especially when the model is nonlin-

ear. Recently various nonparametric alternatives, such as the augmentation methods,

to ANCOVA have been proposed to estimate the treatment effect by adjusting the

covariates. However, the properties of these alternatives have not been studied in the
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presence of treatment allocation imbalance. In this paper, we take a different approach

to explore how to improve the precision of the naive two-sample estimate even when

the observed distributions of baseline covariates between two groups are dissimilar.

Specifically, we derive a bias-adjusted estimation procedure constructed from a condi-

tional inference principle via relevant ancillary statistics from the observed covariates.

This estimator is shown to be asymptotically equivalent to an augmentation estimator

under the conditional setting. We utilize the data from a clinical trial for evaluating

a combination treatment of cardiovascular diseases to illustrate our findings.

Keywords: Ancillary statistic; Augmentation estimation procedure; Conditional inference;

Stratified analysis

1 Introduction

In comparing two treatment groups, let θ be the parameter of interest for quantifying the

between-group difference with respect to the study endpoint. For example, let Y be the

outcome variable, Z be the binary treatment indicator, µ0 = E(Y |Z = 0), µ1 = E(Y |Z = 1),

and θ = µ1 − µ0. Let θ̂ be the corresponding two-sample estimator with the data from a

comparative, randomized clinical trial with a M : 1 treatment allocation rule (Group 0 vs.

1). If Y is a binary outcome, θ may be the risk or odds ratio. In general, with a large

sample size, the distribution of θ̂ is approximately normal with mean θ. Inferences about

θ can be made accordingly. When the patient’s potentially predictive baseline covariate

vector X is available, one may utilize an analysis of covariance (ANCOVA) procedure to

estimate θ. However, when the ANCOVA model is non-linear (e.g., a logistic or proportional

hazard model) and not correctly specified, the resulting estimator for the treatment effect

is not consistent to θ (Gail et al., 1984; Lin & Wei, 1989; Struthers & Kalbfleisch, 1986).

For this case, various robust, nonparametric adjust estimation procedures for θ have been

proposed, which are well summarized in a recent paper by Rosenblum & van der Laan (2010).

For instance, an argumentation estimation procedure with covariate adjustment provides a

consistent estimator for θ (Leon et al., 2003; Tsiatis, 2006; Tsiatis et al., 2008; Lu & Tsiatis,

2008; Zhang et al., 2008; Gilbert et al., 2009; Zhang & Gilbert, 2010; Tian et al., 2012).

Such an estimator, say, θ̂aug, is or asymptotically equivalent to a linear combination of θ̂ and

∆̂X = X̄1 − X̄0, where X̄k is the sample mean of the covariate vectors or a transformation

thereof, for treatment k, k = 0, 1. The distribution of θ̂aug is also approximately normal with

mean θ. The standard error estimate for θ̂aug can be substantially smaller than that based on

θ̂ when the augmented covariates are highly correlated with the response endpoint. Unlike

the ANCOVA, the augmentation method is a model-free technique. Note that the stochastic
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properties of the above estimators were studied only under an unconditional setting in the

literature, that is, with the study size n, their sample space is generated by all possible

realizations of a random sample consisting of n independent, identically distributed copies

of (Y, Z,XT)T. Also note that under the unconditional setting, the naive estimator θ̂ is

consistent.

Another important goal of utilizing the covariate-adjustment technique for estimating

the treatment difference is to reduce bias of the simple estimator θ̂ when, by random chance,

the observed distributions of the covariate vectors are dissimilar between two comparative

groups. For this case, θ̂ can be severely biased. It is not clear, however, that the above

robust alternatives would be better than θ̂ in the presence of covariate imbalance. To

quantify the potential bias from θ̂, one may consider an appropriate sample space other

than the aforementioned unconditional one. For instance, if the ANCOVA model is correctly

specified, conditional on all observed covariate vectors, an asymptotically unbiased estimator

for θ can be constructed accordingly, but the naive estimate θ̂ can be severely biased under

this conditional setting. Note that the study subjects’ covariates are ancillary statistics, that

is, they are not directly related to the treatment difference θ. In general, analyzing data

under a conditional inference principle on certain ancillary statistics makes the resulting

inference more relevant to the observed data (Cox, 1958; Cox & Hinkley, 1979; Fraser &

McDunnough, 1980; Berger et al., 1988; Casella, 1992; Fraser et al., 2004; Ghosh et al.,

2010). Under the ANCOVA setting, to study the stochastic behavior of an estimator for

θ, the sample space consists of all realizations from a random sampling scheme, but the

covariate vectors of each realization would be the same as the observed counterpart so that

the resulting realized estimate is generated under the most “similar” experimental condition

as the observed profile of baseline covariates. It may be desirable to consider such a fine level

of the conditional setting to obtain consistent estimators for θ in the presence of covariate

imbalance. Unfortunately, the ANCOVA model is likely misspecified in practice.

The choice of the conditioning ancillary statistic is not unique (Basu, 1959; Cox, 1971;

Ghosh et al., 2010). For the present case, instead of conditioning on the entire set of

observed covariates, a relevant ancillary statistic one may consider to study the stochastic

behavior of estimators for θ would be the aforementioned ∆̂X = X̄1 − X̄0, which is a

natural, and commonly used summary measure of covariate-imbalance in clinical studies

(Pocock et al., 2002). That is, we only consider the realization of the sample space generated

from the randomized clinical trial setting, whose imbalance measured by the two-sample

covariate mean difference is identical to the observed counterpart. In this paper, we show

that based on this conditional inference principle, a bias-adjusted estimator θ̂adj from θ̂

is asymptotically equivalent to the aforementioned augmentation procedure derived from

the uncondtional setting. We used the data from a comparative clinical trial to evaluate

treatments for cardiovascular diseases to illustrate our findings. Furthermore, a numerical
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study is conducted to examine the performance of θ̂adj. We find via this study that if the

covariates of the ancillary statistics are highly correlated with the outcome variable and/or

the treatment allocation proportions, θ̂adj can be substantially better than the two sample

estimator θ̂.

2 The distributions of θ̂ conditioning on ∆̂X and a bias-

adjusted estimator θ̂adj

Let θ = g(µ0, µ1), where g is a smooth function. Then θ̂ = g(µ̂0, µ̂1) is the two sample naive

estimator for θ. Under the random treatment assignments, θ̂− θ and ∆̂X are approximately

normal with mean 0 and covariance matrix

Σ̂ =

 Σ̂11 Σ̂12

Σ̂12 Σ̂22

 ,

where

Σ̂11 ≈ ġ21(µ0, µ1)var(µ̂0) + ġ22(µ0, µ1)var(µ̂1),

Σ̂12 ≈ ġ2(µ0, µ1)cov(µ̂1, X̄1)− ġ1(µ0, µ1)cov(µ̂0, X̄0), and

Σ̂22 ≈ var(X̄0) + var(X̄1),

are the estimated variance of θ̂− θ, the estimated covariance matrix between ∆̂X and θ̂− θ
and the estimated covariance matrix of ∆̂X, respectively. Here ġ1 and ġ2 are the partial

derivatives of g with respect to the first and second argument. Now, let d be the observed

value of ∆̂X. Then for large n, the distribution of θ̂ − θ given ∆̂X = d is approximately

normal with mean Σ̂12Σ̂
−1
22 d, and variance Σ̂11 − Σ̂12Σ̂

−1
22 Σ̂21. It follows that, when d is not

zero, θ̂ is not consistent under this conditional argument and a bias-adjusted estimator for

θ is

θ̂adj = θ̂ − Σ̂12Σ̂
−1
22 d.

The justification of this conditional distribution approximation is not straightforward and

the details as well as the sufficient conditions are given in Appendix A. The conditions to

ensure a Gaussian approximation to the conditional distribution are not too stringent. They

are satisfied, for instance, when θ̂ is a regular estimator with a limiting Gaussian distribution

and the covariates are bounded with a non-singular variance-covariance matrix.
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For example, when θ is the log-transformed odds ratio (OR), i.e., g(µ0, µ1) = log
{
µ1(1−µ0)
µ0(1−µ1)

}
,

θ̂adj = log

{
µ̂1(1− µ̂0)

µ̂0(1− µ̂1)

}
− Σ̂12Σ̂

−1
22 ∆̂X,

Σ̂11 =
1

n1µ̂1

+
1

n1(1− µ̂1)
+

1

n0µ̂0

+
1

n0(1− µ̂0)
,

Σ̂12 =
Σ̂121

n1µ̂1(1− µ̂1)
+

Σ̂120

n0µ̂0(1− µ̂0)
, and

Σ̂22 =
Σ̂221

n1

+
Σ̂220

n0

,

where nk, Σ̂12k and Σ̂22k are the sample size, empirical covariance between Y and X and

the variance-covariance matrix of X in arm k, k = 0, 1, respectively.

Note that θ̂adj is equivalent or asymptotically equivalent to augmentation estimators

(Tsiatis et al., 2008; Tian et al., 2012). The justification is given in Appendix B.

3 Example and a numerical study

In this section, we used the data from a cardiovascular trial: “Valsartan in acute myocardial

infarction” (VALIANT) study (Pfeffer et al., 2003) to illustrate our findings. The study pa-

tients were equally randomized to three arms: ARB valsartan, captopril and a combination

of these two drugs. Here, we consider a binary outcome as the endpoint, which indicates

whether the patient had hospitalization/death by Month 18. Since there was no difference

between two mono-therapies with respect to this outcome, we combined the data from two

mono-therapy groups to evaluate the combo-treatment effect. The study enrolled a total of

14,703 patients. The observed event rates for mono- and combo are 0.58 and 0.57, indicat-

ing that there was no benefit from the combo with respect to this outcome. On the other

hand, with the data from 302 patients in Australia, the mono-therapy somehow appears

to be statistically significantly better than its combo counterpart based on the simple two

sample estimate (the observed event rates for combo and mono are 0.80 and 0.67). Now, let

θ be the log OR, and θ̂ be its naive estimate. The point estimate of OR (combo vs. mono),

i.e., exp(θ̂) and 0.95 confidence interval are 1.99 and (1.12, 3.51), respectively. Note that

Australia was the only country among 24 countries participated in the VALIANT study,

whose patients appear to have better outcomes for the mono-therapy. It is not clear whether

the Australian patients were quite different from those from the rest of world to have such

a discrepancy on the treatment effect profile.

To explore this further for the Australia study, we found that there was treatment

allocation imbalance between these two treatment groups with respect to, for example, the

patients binary pre-existing diabetes status (DIAS) and baseline heart rate (HR). In Figure

5
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1, we show the fitted curves stratified by DIAS via two logistic regression models with

the treatment assignment being the outcome and standerdized HR, HR2 and HR3 as the

independent variables. If the randomization treatment allocation scheme were working for

the Australia study, these two curves would be flat around 2/3. Figure 1 indicates that

there was indeed nontrivial treatment allocation imbalance between the mono and combo

groups. Now, let θ̂adj be the biased-adjusted estimate for the log OR. The corresponding

bias-adjusted estimator of OR, i.e., exp(θ̂adj) and the 0.95 confidence interval conditional on

DIAS, HR, HR2 and HR3 are 1.68 and (0.95, 2.94), respectively. Note that the confidence

interval contains the null value of 1. Also note that one of the reasons we considered the

HR variable up to the third order for the conditioning inference is that most distributions

can be characterized with their first three moments. This conditioning setting would be

approximately the same as that with the entire distribution of HR.

To explore whether increasing the degree of correlation between the outcome and the co-

variates would increase the precision of θ̂adj, we considered three cases of correlation profiles

between the outcome and DIAS/HR. In Figure 2(a), we show the fitted curves stratified by

DIAS via two logistic regression models with the binary outcome and independent variables

of HR, HR2 and HR3 using the entire data over three arms from VALIANT. Note that

DIAS seems correlated with the outcome, but not the baseline HR. We then used these two

regression models and the curves in Figure 1 to generate the outcomes and the treatment

assignments for the Australian patients with their observed covariates. With 1000 simulated

set of realizations, in Figure 2(b), we present the empirical density function estimates for

the naive and bias-adjusted estimators of OR. It appears that the improvement from the

adjusted estimator over the naive estimator is modest for this scenario. For this case, the

average absolute difference between the true parameter value and the estimator is 0.99 for

the naive estimator and 0.68 for the bias-adjusted estimator.

On the other hand, when we increase the degree of correlation between the outcome and

the covariates (See Figures 3 and 4), exp(θ̂adj) performs much better than exp(θ̂) with re-

spect to the estimation precision. For instance, the empirical absolute biases for exp(θ̂) and

exp(θ̂adj) are 0.15 and 0.01 for Figure 3(b) and are 0.29 and 0.003 for Figure 4(b). Similar

phenomena has also been observed when the degree of treatment allocation imbalance in-

creases with respect to the covariates, the precision of the bias-adjusted estimator increases

over the naive one.

4 Remarks

In this paper, we take a different angle to explore how to improve the precision of the

naive two sample estimator θ̂ for the treatment effect with the patients baseline covari-

ates. Conceptually our approach by conditioning on the ancillary statistics is similar to

6
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that of ANCOVA, but without heavy modeling involved. The resulting estimate is asymp-

totically equivalent to a certain augmentation estimation counterpart, which was derived

under the unconditional setting from a semi-parametric efficiency argument. Like other

covariate-adjusted estimation procedures, the proper choice of the covariates to construct

the ancillary statistics for our proposal is crucial. The precision gain can be substantial if

the covariates included in the analysis are highly correlated with the outcome and/or the

treatment allocation proportions. Under the unconditional setting, the simple two sample

estimator θ̂ and any augmentation estimators are consistent, Tian et al. (2012) proposed

a sequential procedure to select an optimal set of covariates for the augmentation method.

However, it is not clear how to generalize their method to the current conditional setting.

Further research along this line is needed.

Stratified analysis can be regarded as a special case of the covariate-adjusted procedure.

On the other hand, due to its discrete nature of possible values of the covariates, using

the present conditioning approach, one may consider the ancillary statistic consisting of the

entire observed covariate vectors for stratified analysis (Tian et al., 2016). For the general

case when some of the covariates are continuous, such a fine level of conditioning would be

difficult, if not impossible to implement.

Lu & Tsiatis (2008) and Tian et al. (2012) discussed the augmentation method with

covariates when the outcome is an event time observation. It is straightforward to show

that our bias-adjusted estimator conditional on the empirical averages covariate imbalance

measures is asymptotically equivalent to an augmentation estimator with censored observa-

tions via the justification in Appendix B. Note that in this case, the conventional ANCOVA

with the Cox model may result in a hazard ratio estimate for the group contrast measure,

which is difficult to interpret clinically.

7
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Figure 1. The treatment allocation proportions to mono-therapy arm: solid line is for

DIAS = 1; dashed line is for DIAS = 0.
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Figure 2(a). The estimated event rate curves with respect to diabetes status and heart rate

at the baseline with data from the VILIANT study

50 60 70 80 90 100 110

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

HR

E
ve

nt
 r

at
e

DIAS=0
DIAS=1

Figure 2(b). The empirical density functions for θ̂ and θ̂adj
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Figure 3(a). The event rate curves with respect to diabetes status and heart rate at the

baseline
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Figure 3(b). The empirical density functions for θ̂ and θ̂adj
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Figure 4(a). The event rate curves with respect to diabetes status and heart rate at the

baseline

50 60 70 80 90 100 110

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

HR

E
ve

nt
 r

at
e

DIAS=0
DIAS=1

Figure 4(b). The empirical density functions for θ̂ and θ̂adj
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Appendix A. Asymptotic properties of bias-adjusted es-

timator

Let (Yi, Zi,X
T
i )T, i = 1, . . . , n, be the independent identically distributed (i.i.d.) copies of

(Y, Z,XT)T. In this Appendix, we will drive the limiting distribution of

n1/2(θ̂ − θ)

given ∆̂X under the following three conditions that

(A1) cov(Y,X) is a finite, non-degenerate matrix.

(A2) The characteristic function of X is integrable.

(A3) θ̂ is a regular estimator for θ, i.e.,

θ̂ − θ = n−1
n∑
i=1

Ui + ξθ,

where

Ui = ġ2(µ0, µ1)
Zi(Yi − µ1)

π
+ ġ1(µ0, µ1)

(1− Zi)(Yi − µ0)

(1− π)
, i = 1, · · · , n,

are i.i.d. random variables, π = pr(Z = 1) = 1/(M + 1), and ξθ = oa.s.(n
−1/2).

Under Condition (A3), θ̂ − θ

∆̂X −∆X

 = n−1
n∑
i=1

 Ui

Vi

+

 ξθ

ξX

 , (1)

where Vi = π−1Zi(Xi−τ )+(1−π)−1(1−Zi)(Xi−τ ), τ = E(X) and ξX = oa.s.(n
−1/2). Let

Un = n−1/2
∑n

i=1 Ui and Vn = n−1/2
∑n

i=1 Vi. Then (Un,VT
n )T converges weakly to (U ,VT)T,

a Gaussian vector with mean 0 and a finite covariate matrix nΣ, where

Σ =

 Σ11 Σ12

Σ12 Σ22

 .

Here

Σ11 = n−1ġ21(µ0, µ1)
var(Y |Z = 1)

π
+ n−1ġ22(µ0, µ1)

var(Y |Z = 0)

1− π
,

Σ12 = n−1ġ1(µ0, µ1)
cov(Y,X|Z = 1)

π
− n−1ġ2(µ0, µ1)

cov(Y,X|Z = 0)

1− π
, and

Σ22 = n−1
var(X)

π(1− π)
.
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Now, let {vn ∈ An} be any sequence of vectors such that vn → v0, a constant vector, as

n→∞, where An is the support of Vn. It follows from Steck (1957) that under Conditions

(A1) and (A2),

sup
u
|F vn
n (u)− F v0(u)| = oa.s.(1), (2)

where F v
n (u) is the cumulative distribution function of the conditional distribution of Un

given Vn = v, and F v(u) is the cumulative distribution function of the conditional Gaussian

distribution of U given V = v.

Let Bn be the support of n1/2∆̂X. For any sequence of vectors δn ∈ Bn, such that

δn − δ0 = o(1), δ̃n also converges to δ0, as n→∞, where δ̃n = δn − ξX ∈ An. Therefore,

Pr{n1/2(θ̂ − θ) ≤ u|n1/2∆̂X = δn}
= Pr(Un ≤ u− n1/2ξθ|Vn = δ̃n) + oa.s.(1)

= F δ0
n (u− n1/2ξθ) + oa.s.(1)

= F δ0(u) + oa.s.(1). (3)

Note that the first equality is a direct consequence of (1), and the last equality is implied

by (2) and the fact that F δ(u) is uniform continuous in u.

Now, let δn = n1/2d. Since F δ0(·) is a conditional Gaussian distribution function with

mean Σ12Σ
−1
22 δ0, (3) implies n1/2(θ̂ − θ) given n1/2∆̂X = δn converges to a conditional

Gaussian distribution with mean n1/2Σ12Σ
−1
22 δ0 almost surely. Since δ0 − n1/2d = o(1) and

Σ̂ij −Σij = oa.s.(1), the bias-adjusted estimator θ̂− Σ̂12Σ̂
−1
22 d is an asymptotically unbiased

estimator for θ under the conditional setting with asymptotic variance Σ11 − Σ12Σ
−1
22 Σ21.

Appendix B. Equivalence between θ̂aug and θ̂adj

Firstly, the efficiency-augmented estimator for θ = g(µ0, µ1) studied by Tsiatis et al. (2008)

and Zhang et al. (2008) is given by

θ̂aug = g(µ†0, µ
†
1),

where

µ†1 = µ̂1 −
n1∑
i=1

(1− π)
{
n−11 â1(X1i)− n−10 â1(X0i)

}
,

µ†0 = µ̂0 −
n0∑
i=1

π
{
n−10 â0(X0i)− n−11 â0(X1i)

}
,

15

Hosted by The Berkeley Electronic Press



where Xki is the covariate vector for the ith patient in kth arm, âk(x) = α̂k + β̂T
k x and α̂

and β̂k are the least squares estimators of αk and βk in regression model E(Yki | Xki) =

αk + βT
k Xki, k = 0, 1, respectively. Using the fact that

∑nk

i=1(α̂k + β̂T
k Xki) = µ̂k, we have

µ†1 = πµ̂1 + (1− π)(α̂1 + β̂T
1 X̄0) and µ†0 = (1− π)µ̂0 + π(α̂0 + β̂T

0 X̄1).

Since α̂k = µ̂k − β̂T
k X̄k and (µ̂k − µk)2 + (µ†k − µk)2 = oa.s.(n

−1/2),

θ̂aug − θ̂ = −(1− π)ġ2(µ̂0, µ̂1)
{
µ̂1 − (α̂1 + β̂T

1 X̄0)
}
− πġ1(µ̂0, µ̂1)

{
µ̂0 − (α̂0 + β̂T

0 X̄1)
}

+ oa.s.(n
−1/2)

= −
{

(1− π)ġ2(µ̂0, µ̂1)β̂1 − πġ1(µ̂0, µ̂1)β̂0

}T

∆̂X + oa.s.(n
−1/2).

Now, β̂k = Σ̂−122kΣ̂
T
12k. It follows that

θ̂aug = θ̂ −
{

(1− π)ġ2(µ̂0, µ̂1)Σ̂121Σ̂
−1
221 − πġ1(µ̂0, µ̂1)Σ̂120Σ̂

−1
220

}
∆̂X + oa.s.(n

−1/2),

where Σ̂22k is the empirical estimate for var(X|Z = k) and Σ̂12k is the empirical estimate

for cov(Y,X|Z = k), k = 0, 1. Note that in constructing the bias-adjusted estimator,

Σ̂12 = n−1

{
ġ2(µ̂0, µ̂1)Σ̂121

π
− ġ1(µ̂0, µ̂1)Σ̂120

1− π

}
and

Σ̂22 = n−1

{
Σ̂221

π
+

Σ̂220

1− π

}
.

This, coupled with the fact that Σ̂221 − Σ̂220 = oa.s.(1), implies that{
(1− π)ġ2(µ̂0, µ̂1)Σ̂121Σ̂

−1
221 − πġ1(µ̂0, µ̂1)Σ̂120Σ̂

−1
220

}
− Σ̂12Σ̂

−1
22 = oa.s.(1),

and

θ̂aug − θ̂adj = oa.s.(∆̂X + n−1/2).

Therefore

pr
{
n1/2|θ̂aug − θ̂adj| ≥ δ|∆̂X

}
= oa.s.(1)

as n→∞ for any positive δ.
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