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Abstract

We propose a novel class of models for functional data exhibiting skewness or other shape

characteristics that vary with spatial or temporal location. We use copulas so that the marginal

distributions and the dependence structure can be modeled independently. Dependence is mod-

eled with a Gaussian or t-copula, so that there is an underlying latent Gaussian process. We

model the marginal distributions using the skew t family. The mean, variance, and shape pa-

rameters are modeled nonparametrically as functions of location. A computationally tractable

inferential framework for estimating heterogeneous asymmetric or heavy-tailed marginal distri-

butions is introduced. This framework provides a new set of tools for increasingly complex data

collected in medical and public health studies. Our methods were motivated by and are illus-

trated with a state-of-the-art study of neuronal tracts in multiple sclerosis patients and healthy

controls. Using the tools we have developed, we were able to find those locations along the tract

most affected by the disease. However, our methods are general and highly relevant to many

functional data sets. In addition to the application to one-dimensional tract profiles illustrated

here, higher-dimensional extensions of the methodology could have direct applications to other

biological data including functional and structural MRI.
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1 Introduction

Most models used in functional data analysis (FDA) focus on modeling the mean and covariance

functions. Although such models are often adequate, there are important cases where interest

is focused on skewness or other shape characteristics. For example, the right panel of Figure 1

illustrates profiles of multiple sclerosis (MS) patients, recorded along the corpus callosum tract of

the brain. The functions have skewed pointwise distributions, with the amount of skewness varying

spatially. Modeling data with such characteristics represents the main focus and novelty of our

work.
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Figure 1: Parallel diffusivity profiles within the corpus callosum tract in 162 MS patients (right
panel) and 42 healthy controls subjects (left panel). Penalized spline estimates of the mean functions
are shown as thick grey curves. Distance units are arbitrary.
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In this paper, we develop models and inferential methods for the analysis of functional skewed

data. Fundamentally different from the common method of moment-based approaches of modeling

functional data (Di et al., 2009; Crainiceanu et al, 2010; Staicu, Crainiceanu, and Carroll, 2010

etc.), our methods are based on pointwise distributional assumptions of the underlying stochastic

process. The parametric assumptions are used to capture higher order moments of the pointwise

distributions; by comparison the non-parametric approaches use only the first two moments. Specif-

ically, our approach assumes that the pointwise distributions of the underlying stochastic process

are in a parametric family with one or more shape parameters, for example, a skew normal or skew

t family. The shape parameters, as well as the mean and variance, are modeled non-parametrically

as function of location.

The third novel feature here is the use of copulas to model spatial dependence. We use Gaussian

or t-copulas, since, unlike Archimedean copulas, they include correlation functions which are funda-

mental to FDA. The use of copulas allows a modular approach where the marginal distributions and

dependencies can be modeled separately. In our model, the observed functions are transformations

of an underlying latent Gaussian processes and, for a t-copula, a chi-squared random variable that

induces tail dependence. Principal components analysis (PCA) and a Karhunen-Loève expansion

can be applied to the latent Gaussian process, much as they would be applied if the observed data

were Gaussian.

1.1 The diffusion tensor imaging study

The methodology described in this paper is motivated by a state-of-the-art diffusion tensor imag-

ing (DTI) study that analyzes and compares white matter tracts in healthy individuals and MS

patients. DTI is an in vivo magnetic resonance technique for imaging the white matter tracts in

the brain by measuring the three-dimensional directions of water diffusion (Basser, et al. 1994,

2000). In the DTI study, we are interested in modeling DTI profiles, such as mean diffusivity

and parallel diffusivity, along the corpus callosum, the major tract connecting the two cerebral

hemispheres. Mean diffusivity is an orientation-independent measure of water movement within

the tract, whereas parallel diffusivity estimates the component of that movement co-axial with the

tract’s axon bundles.

Figure 1 displays parallel diffusivity profiles for healthy controls and MS patients. Parallel
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diffusivity is recorded at many locations along the tract, so that the tract profile can be viewed

as a continuous curve sampled at a discrete set of points. Scientific interest includes comparing

the means, quantiles, and correlation functions of the two samples; see Greven, et al. (2010) for

more details on the scientific questions. At a quick look, the control and MS data seem to differ in

few ways, such as mean and variability along the tract, but perhaps even more so with respect to

skewness. The MS subjects’ profiles exhibit skewness compared to the controls, especially around

locations 50–80 along the corpus callosum tract.

These data suggest that there is a need for methods that can accommodate strong temporally-

or spatially-varying skewness and within-function correlation. The computational speed is essen-

tial, since FDA is faced with continuously larger and more complex data sets. Moreover, one

needs inferential methods, for example, to test whether skewness differences between spatial loca-

tions, or between groups of subjects, are statistically significant. In addition to the application to

one dimensional tract profiles illustrated here, higher-dimensional extensions of the methodology

could have direct applications to other biological data including functional and structural MRI. In

these applications, accurate modeling of the tails of distributions is a critical step in identifying

abnormalities as well as limiting false positive results.

1.2 Current methods

A reasonable approach for the analysis of tractography data is functional data analysis (FDA)—see,

for example, the excellent monographs of Ramsay and Silverman (2005), Ferraty and Vieu (2006),

and Ramsay, Hooker, and Graves (2009) and a journal literature too extensive to list here. A

fundamental idea in FDA is to decompose the space of curves into principal directions of variation

by a Principal Component Analysis (PCA) of the raw data or smoothed curves. PCA provides

a simple recipe for dimension reduction by including only eigenvalue–eigenvector pairs where the

estimated eigenvalue is relatively large. However, PCA is a second-order methodology in that

it uses only the mean and covariance functions, and the Karhunen-Loève expansion based on its

eigen-decomposition assumes a joint Gaussian distribution (Yao, Müller, and Wang, 2005).

The focus of current FDA methods on mean and covariance functions ignores subtler differ-

ences in distributions that could be better characterized by quantiles. Quantiles, like means, have

tremendous data compression potential and are easy to interpret, a sine-qua-non in the century
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of data. In some simulation experiments, we have shown that the quantiles of asymmetric data

are estimated with substantial bias if the Gaussian model typical of FDA is assumed. Since these

results were to be expected, we omit the details.

The paper is organized as follows. Section 2 introduces functional processes with heterogeneous

shape characteristics and describes the modeling methodology. Section 3 develops the estimation

procedure. Section 4 contains an extensive simulation study. Applications to the tractography data

are presented in Section 5. A brief discussion is given in Section 6.

2 Functional models with spatially-varying marginal distributions

Let {Yi(tij); tij ∈ T } with j = 1, . . . ,mi be the data for subject i, i = 1, . . . , N . We assume that

Yi is a random curve defined on domain T and sampled at a grid of points {ti1, . . . , timi} ∈ T ;

typically we take T = [0, 1]. Furthermore, suppose that

Yi(t) = µ(t) + σ(t)G−1{Wi(t);α(t)} (1)

where µ(t) is the mean function, σ(t) is the standard deviation function, and Wi(t) is a latent process

such that Wi(t) is uniformly (0, 1) distributed for each t. Here G(·; α) is a cumulative distribution

function in a parametric family of distributions with zero mean, unit variance, and shape parameter

vector α. For example, α can be the scalar shape parameter of the skew normal distribution

(Azzalini, 1985) or the two-dimensional shape parameter vector of the skew t distribution due

to Azzalini and Capitanio (2003) or a somewhat different skew t distribution of Fernandez and

Steel (1998). Also, G−1(·; α) denotes the usual inverse CDF. We assume that the shape parameter

α(t) varies smoothly with t. To simplify notation, we sometimes use Gt := G{·;α(t)}. Our main

objectives are to estimate the population functions µ(t), σ(t), and α(t) and describe the dependence

of the functional process.

We refer to model (1) as the quantile-induced functional model, because model (1) implies the

following model for the pth quantile: Qp(t) = µ(t) + σ(t)G−1
t (p), 0 < p < 1. The advantage of

representing the functional data using model (1) is that it allows the specification of the dependence

of the random process Yi through the latent process Wi. Since Wi(t) is uniformly distributed for each

t, the joint distribution of {Wi(ti1), . . . , Wi(timi)} is a copula, which we will model parametrically

using Gaussian or t copulas.
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2.1 Population-level parameters

We model the mean function µ(t), variance function σ2(t), and the shape parameter functions

α(t) using penalized splines, though other basis expansion approximations can be used. Because

the variance is positive, we use log-splines to model σ2(t). Let B(t) = {B1(t), . . . Bq(t)}T be a

truncated power series spline basis with dimension q having a fixed number of knots. Because the

penalty prevents overfitting, the number of knots has very little effect on a penalized spline fit,

provided the number of knots is sufficiently large to accommodate fine-level features in the data

(Ruppert, 2002; Li and Ruppert 2008). However, an excess of knots will slow the computations.

Therefore, in practice, we allow a different number of knots for µ, σ, and α, since some of these

functions may require more knots than others. However, to keep notation simple, in our exposition

we will use the same spline basis for each of these three functions. We write µ(t) = B(t)T βµ and

log{σ2(t)} = B(t)T βσ, where the spline bases and coefficient vectors are q-dimensional. In some

cases it is desirable to model, not α(t), but a suitable transformation of α(t), say h{α(t)}, where

h(·) is a one-to-one transformation. For example, if any component of α(t) is positive we could

log-transform that component. Our model for α(t) is α(t) = h−1{B(t)T βα}.

2.2 Functional dependence and copulas

A copula is a multivariate distribution function whose univariate marginal distributions are all

uniform on (0,1). If X = (X1, . . . , Xn) is a random vector and if Fi is the continuous marginal

distribution of Xi, then the distribution of {F1(X1), . . . , Fn(Xn)} is called the copula of X. Copulas

offer a convenient way of modeling multivariate observations because the modeling is broken into

two independent parts: (1) modeling the dependencies through a copula; and (2) modeling the

univariate marginal distributions (Sklar, 1959).

A Gaussian copula is the copula of some multivariate Gaussian distribution. The copula of a

random vector is unchanged by strictly increasing transformations of its components, so a Gaussian

copula is completely specified by a correlation matrix. If X has a Gaussian copula, this does not

imply that X is Gaussian, only that X has the same copula as some Gaussian random vector.

Stated differently, X has the same dependence structure as some multivariate normal random

vector, but its marginal distributions need not be Gaussian. Similarly, a t-copula is the copula of
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some multivariate t-distribution and is specified by a correlation matrix and a scalar degrees of

freedom parameter.

Gaussian copulas offer a convenient way to model multivariate dependencies, because these are

determined by a familiar quantity, a correlation matrix. The limitation of the Gaussian copula

concerns the tail dependence behavior. The coefficient of the tail dependence between a pair

(X,Y ) of random variables is limp→∞ P{Y > F−1
Y (p)|X > F−1

X (p)}, which is easily shown to be

symmetric in X and Y . For a bivariate Gaussian pair, this coefficient is zero unless their correlation

equals 1 (Embrechts, McNeil & Straumann, 2002). This means that under a Gaussian copula, the

components behave in the extreme tails as they were either independent, or perfectly correlated.

In contrast, t-copulas exhibit tail dependence even in the case of zero-correlation; see McNeil, Frey,

and Embrechts (2005). We found evidence of strong tail dependence in the DTI data; see Section 5.

3 Estimation Methodology

We use penalized maximum likelihood to estimate the mean, standard deviation and shape param-

eter functions, µ(t), σ(t) and α(t). Each of these functions contains a reasonably large number

of parameters and the correlation matrix of the Gaussian or t-copula is also of sizable dimension.

Because of the large number of parameters, simultaneous estimation of all parameters can take an

excessive amount of computational time. To circumvent this problem, we have developed a more

rapid multi-stage estimation procedure.

3.1 Mean, variance, and shape parameter functions

To speed computations, the estimates of µ(t), σ(t) and α(t) are obtained in two steps. In the first,

the sample of curves is reduced to undersmoothed estimates of these three functions. In the second,

these curve estimates are further smoothed by penalized splines.

Step 1: For simplicity, we start with the case where the functions are sampled on a common

dense grid of points, so that tij = tj for j = 1, . . . , m and all i. Initial estimates of the mean, variance

and shape parameter functions are constructed as follows: for each fixed j, define µj = µ(tj),

σj = σ(tj) and αj = α(tj). Then, the parametric estimates of µj , σj and αj are obtained by
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maximizing the pointwise likelihood function

`j(µj , σj , αj) =
n∑

i=1

log[g{(Yij − µj)/σj ; αj}]− log(σj), (2)

where g(x; αj) = ∂G(x; αj)/∂x is the density function corresponding to the distribution Gtj . For

example, when Gt is in the skew normal or skew t family of distributions, the functions sn.mle or

st.mle of the sn package for R (Azzalini, 2010) can compute these estimates.

Maximum likelihood estimation of α often requires some care. For example, if g is a skew

normal density or a skew t density with known degrees of freedom, then the estimate of α is infinite

with positive probability for moderate sample sizes (Azzalini, 1985; Genton, 2004; Sartori, 2006).

This instability problem is due to the choice of parameterization in that large changes in α lead

to small changes in the density. It should be noted, however, that infinite values of α give valid

densities, the half-normal (or half t) densities. The problem is that some estimation methods, for

example, spline smoothing, have problems accommodating infinite values. A possible remedy for

this problem is mentioned in “Alternative 1” below.

When the curves are sparsely sampled, another estimation method is needed. Note that the

estimates of µj , σj and αj in (2) are obtained by local polynomial estimating equations (Carroll,

Ruppert, and Welsh, 1998), with degree zero polynomials and a bandwidth so small that only data

exactly at tj are used to estimate the functions at tj . For sparse and irregularly spaced data, local

estimating equations with larger bandwidths and higher polynomial degree can be used to compute

estimates on a grid t1, . . . , tm, say. The estimates should be undersmoothed, since they will be

smoothed further in Step 2.

In summary, regardless of whether we have sparse or dense data, at the end of Step 1 we have

undersmoothed estimates on a grid t1, . . . , tm. These estimates will be denoted by µ̃j , σ̃j , and α̃j ,

j = 1, . . . , m. Step 2 uses µ̃j and σ̃j and, in Alternative 1, α̃j is also used.

Step 2: The final estimates of µ(t), σ(t) and α(t) are constructed by smoothing the Step

1 estimates using penalized splines. The mean parameter βµ, where µ(t) = B(t)T βµ, is esti-

mated by minimizing the penalty criterion PLµ(βµ) =
∑m

j=1

(
µ̃j −BT

j βµ

)2
+ λµΩµ(βµ), where

Ωµ(βµ) = βT
µ Dµβµ, Bj = B(tj), and Dµ is a q × q penalty matrix; see Ruppert et al. (2003)

for a discussion of penalty matrices. In a similar way β̂σ is obtained by minimizing PLσ(βσ) =
∑m

j=1

{
2 log(σ̃j)−BT

j βσ

}2
+ λσΩσ(βσ) for Ωσ(βσ) = βT

σ Dσβσ.
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For the shape function parameters, we propose a penalized marginal likelihood criterion where

the mean and variance functions parameters are fixed at estimates (see also Sartori, 2006). More

specifically, let Ŷij = {Yij − µ̂(tij)}/σ̂(tij) be the standardized observations, using the estimates of

the mean µ̂(·) and variance functions σ̂(·) obtained above. Define the penalized marginal likelihood

function:

PLα(βα) = −2
n∑

i=1

m∑

j=1

{
`ij(βα; Ŷij)

}
+ λαΩα(βα),

where `ij(βα; Ŷij) = log
[
g

{
Ŷij ;h−1

(
BT

j βα

)}]
is, up to an additive constant, the log-likelihood

function corresponding to the distribution of Ŷi(tij). We use Ωα(βα) = βT
α Dαβα as the roughness

penalty, where Dα is the roughness penalty matrix. The shape parameter βα is obtained as the

minimizer of the penalized criterion PLα(βα).

For the mean and variance estimation, we selected the smoothing parameters λµ and λσ using

the restricted maximum likelihood estimation (REML) (Wood, 2006). For the shape parameter

function estimation λα we used using the corrected AIC criterion (Ruppert et al., 2003); other

choices, such as CSV or AIC can be used. The function optim of the stats package for R with the

BFGS algorithm can be used for optimization. Let µ̂(t) = B(t)T β̂µ, σ̂(t) = exp{B(t)T β̂σ/2}, and

α̂(t) = h−1
{
B(t)T β̂α

}
be the estimated mean, standard deviation and shape parameter functions

respectively.

Alternative 1. One fast alternative is to estimate the shape parameter functions using the

same approach as for the mean and variance function. To handle infinite values of αj , we model

transformed parameters h(αj) instead. For example, if G(·; α), −∞ ≤ α ≤ ∞, is the skew normal

distribution, then an appropriate transformation is h(·) = Φ(·/s), the normal CDF with standard

deviation s, which maps [−∞,∞] to [0, 1]; the choice s = 5 was used in our simulation study

and worked satisfactorily. This transformation eliminates the infinite values that cause problems.

The shape parameter βα minimizes the penalized criterion PLα(βα) =
∑m

j=1{h(α̃j) − BT
j βα}2 +

λβT
α Dαβα, with λ and Dα defined as above. While this approach is extremely fast, it estimates the

shape parameter function with higher variability.

Alternative 2. The estimation method described in this section estimates µ(t), σ(t) and α(t)

without accounting for the dependence of the process. One way to incorporate the functional

dependence is via a penalized full likelihood approach. We briefly outline this idea. Let C(; Ω)
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be a copula distribution, where Ω is the set of copula parameters. Estimation of Ω is discussed in

Section 3.2. Denote by c(·; Ω) the copula density. It follows that the log-likelihood of the full model

can be written as:

`(βµ, βσ, βα, Ω) =
N∑

i=1

m∑

j=1

`ij(βµ, βσ, βα;Yij) +
N∑

i=1

log [cti{FY,ti1(Yi1), . . . , FY,tim(Yim); Ω}] , (3)

where ti = (ti1, . . . , tim), Yij = Yi(tij), `ij(βµ, βσ, βα;Yij) = log
[
g
{

(Yij − BT
ijβµ)/ exp(BT

ijβσ/2);

h−1
(
BT

ijβα

)}]
−BT

ijβσ/2 is the penalized log-likelihood function of Yij and FY,tij (Yij) = G
{

(Yij−
BT

ijβµ)/ exp(BT
ijβσ/2); h−1

(
BT

ijβα

)}
. Here Bij = B(tij) for all i and j. To avoid over-

smoothness of the population-level functions, which may be caused by large-dimensional func-

tion bases, a penalized criterion will be used instead. The mean, variance and shape param-

eter functions parameters βµ, βσ and βα are chosen to minimize the penalized log-likelihood

PL(βµ, βσ, βα, Ω) = −2N−1`(βµ, βσ, βα, Ω) + λµΩµ(βµ) + λσΩσ(βσ) + λαΩα(βα), where Ωµ, Ωσ

and Ωα are roughness penalties.

Our experience from simulation studies is that Alternative 2 estimates of the population func-

tions µ(·), σ(·), and α(·) are not very different from the estimates that use the working independence

assumption, while the computational cost of Alternative 2 is considerably higher.

3.2 Calibrating copulas

Estimation of the copula parameters is done somewhat differently, according to the type of copula

used. A Gaussian copula requires only estimation of the correlation matrix of the underlying

Gaussian distribution. A t-copula requires estimation of a correlation matrix and a degree of

freedom parameter. First, we describe estimation of the correlation matrix, which is similar for the

two copula families, and then describe estimation of the degree of freedom parameter.

If a Gaussian copula is assumed, then the copula correlation is precisely the Pearson correlation

of the Gaussian process

Zi(t) = Φ−1
(
G

[
{Yi(t)− µ(t)}/σ(t);α(t)

])
. (4)

This process has standard normal marginal distributions, so K(s, t) = cov{Zi(s), Zi(t)} is both the

process covariance and correlation function, and thus it is the latent copula correlation function.

One straightforward way to estimate K is to use method of moment estimators of the covariance
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function corresponding to the approximately Gaussian processes obtained by replacing the popu-

lation functions by their estimates, Ẑi(tij) = Φ−1
(
G

[
{Yi(tij) − µ̂(tij)}/σ̂(tij); α̂(tij)

])
. We model

Ẑi(t) as the sum of two independent components: a finite basis expansion process, say Z̃i(t) with

covariance function G̃(s, t), and a white noise process with variance σ2
ε 1(t = s). By a finite basis

expansion process, we mean a Karhunen-Loève expansion truncated at a finite, and generally small,

number of eigenvectors. This is a relatively common technique for handling the high correlation in

functional data; see for example Kneip and Sarda (2010).

Let Ĝ(s, t) be the method of moment estimator of cov{Ẑi(s), Ẑi(t)}. Let G̃(s, t) = Ĝ(s, t) for

s 6= t; for s = t, G̃(t, t) is estimated using a bivariate thin-plate spline smoother applied to Ĝ(t, s)

for t 6= s. This approach to estimation of the diagonal elements removes the “nugget effect” due

to the white noise term, and was proposed by Staniswalis and Lee (1998). Because Z̃i is modeled

by a finite basis expansion process, it makes sense to use a reduced rank approximation of the

covariance of Z̃i. We estimate σ2
ε by σ̂2

ε =
∫ 1
0 {Ĝ(t, t) − G̃(t, t)} dt; if this estimate is not positive,

then it is replaced by a small positive number. Assume that the reduced rank approximation of G̃ is

ΨΛLΨT , where ΛL is diagonal matrix of dimension L < m and Ψ is an m×L matrix with orthogonal

columns. The correlation matrix of the copula density is the correlation matrix corresponding to

the covariance matrix G̃ + σ̂2
ε Im. Because σ2

ε > 0, this correlation matrix is guaranteed to be

positive definite.

The estimates of the correlation matrix just described use the estimates of the population mean,

variance, and shape functions, and will be degraded by errors in the estimation of these functions.

As an alternative, the sample Kendall’s tau matrix can be used to estimate the latent correlation

matrix K (McNeil, et al., 2005, section 5.3.2). Estimation of the correlation matrix using Kendall’s

tau is easiest when tij = tj for all i, which is the case we will discuss. The sample Kendall’s tau is

invariant to increasing transformations, so that using the data Yi(tj), or the transformed Ẑi(tj) gives

the same result. Using (5.32) of McNeil, et al. (2005), let ρ̂τ (tj , tj′) be the sample Kendall’s tau

between {Y1(tj), . . . , YN (tj)} and {Y1(tj′), . . . , YN (tj′)} and define Ĝ(tj , tj′) = sin{πρ̂τ (tj , tj′)/2}.
Then, the estimation of K proceeds as described above.

In our extensive simulation study, the two methods of estimating the copula correlation matrix

performed almost identically. When the data are sparse and tij = tj for all i does not hold, then one

can estimate the correlation matrix using the techniques in Yao et al. (2005). A full investigation
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of the sparse case is beyond the scope of this paper.

Suppose now that a t-copula is assumed. Consider the transformed random functions

Z∗i (t) = T−1
ν

(
G

[
{Yi(t)− µ(t)}/σ(t);α(t)

])
, (5)

where Tν is the t-CDF with ν degrees of freedom; these curves are distributed according to a

t-process with ν degrees of freedom. One easy way to understand the t-process is through the

following explicit construction. Let {Zi(t) : t ∈ T } be a Gaussian process with mean 0 and

covariance function K(s, t) = cov{Zi(s), Zi(t)} such that K(t, t) = 1, so that K(t, t) is also the

correlation function. Write Z∗i (t) = Zi(t)/
√

χ2
ν,i/ν, where χ2

ν,i is a chi-squared random variable

with ν degrees of freedom and independent of Zi. If ν > 2, then the covariance function of Z∗i is

K∗
Z(s, t) = ν/(ν − 2)K(s, t) and so its correlation function is K(s, t). If ν ≤ 2, then Z∗i has infinite

second moments, so it does not have a covariance or a correlation function. However, K can still

be regarded as an “association function” of Z∗i and it is the correlation function of Zi.

Calibrating the t-copula requires estimation of both K and ν. Estimation of K can be achieved

using Kendall’s tau as in the case of Gaussian copula. To estimate ν, we use a “pseudo-likelihood”

method. Pseudo-likelihood means estimating certain parameters by maximizing the likelihood with

all other parameters fixed at estimates. Denote by K̂ the estimate of the latent correlation matrix.

Let F̂j be the empirical distribution function of {Yi(tj) : i = 1, . . . , N} except that the denominator

is N + 1, and not N . Let Ŵij = F̂j{Yi(tj)} = Rij/(N + 1), where Rij is the rank of Yi(tj) among

{Yi(tj) : i = 1, . . . , N}, where j = 1, . . . m. The “full pseudo-likelihood” method for estimation of

ν is to fit the t-copula to the Ŵij with K fixed at the estimate K̂.

4 Simulation studies

We conducted an extensive simulation study to assess the performance of the proposed estimation

procedures described in Section 3. In this section, we summarize the main findings based on 100

data sets, each consisting of N = 200 random trajectories generated from model (1). Each curve

was sampled on a grid of equi-spaced timepoints {tij : j = 1, . . . , 80} in [0, 1], where i = 1, . . . , N .

The simulated processes use Wi(t) = FX,t{Xi(t)}, where Xi’s are a sample of mean-zero Gaussian

curves and FX,t(·) is the CDF of Xi(t) for all 0 ≤ t ≤ 1.
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Two main covariance structures of the underlying processes are considered:

I. Finite basis expansion of the covariance function plus white noise. We have Xi(t) =

Zi(t) + εi(t), where εi(t) are assumed to be independent N(0, σ2 = 0.10) and Zi’s are a sample of

random curves with mean 0 and covariance function KZ(s, t) = cov{Zi(t), Zi(s)}. The covariance

function is assumed to have the expansion KZ(s, t) =
∑L

`=1 λ`ψ`(s)ψ`(t) in terms of eigenfunctions

ψ`’s and eigenvalues λ`’s. In the simulations, the covariance function had L = 3 eigenfunctions:

(i) ψ1(t) =
√

2 sin(2πt), ψ2(t) =
√

2 cos(4πt) and ψ3(t) =
√

2 sin(4πt); or

(ii) ψ1(t) =
√

3(2t2 − 1), ψ2(t) =
√

5(6t2 − 6t + 1) and ψ3(t) =
√

7(20t3 − 30t2 + 12t− 1),

where 0 ≤ t ≤ 1. We choose λ` = (1/2)`−1 for ` = 1, 2, 3.

II. Matern covariance structure. We let Xi be Gaussian process with mean zero and Matérn

auto-correlation function

ρ(∆;φ, κ) =
1

21−κΓ(κ)

(
2κ1/2∆

φ

)κ

Kκ

(
2κ1/2∆

φ

)
(6)

with (i) range φ = 0.07 and order κ = 1; and (ii) with range φ = 0.14 and order κ = 1. For both

cases the pointwise variance is set to 1. Here Kκ is the modified Bessel function of order κ.

We set Gt to be the standardized skew normal distribution with shape parameter α(t), which

is implemented in the sn package of R. The standardization is such that the resulting distribution

has mean 0 and variance 1. We consider all the possible combinations from the following scenarios:

1. mean function: (a) µ(t) = 6; and (b) µ(t) = −2.2t5 + 3t3 − 1.2t + 0.7;

2. variance function: (a) σ2(t) = exp(−5); and (b) σ2(t) = {2.2t5 − 3t3 + 1.2t + 0.3}/ exp(4);

3. shape parameter function: (a) α(t) = 0; (b) α(t) = −21(t ≤ 0.5) + 41(t > 0.5);

(c) α(t) = 5t2 − 19t + 5; and (d) α(t) = −10 sin(2πt), for t ∈ [0, 1].

For the estimation of the mean and variance functions, the smoothing parameters were selected

using REML implemented in the R package mgcv (Wood, 2006). For the estimation of the shape

parameter functions, we used cubic regression splines with 5 knots, with the smoothing parameter

selected by the corrected AIC criterion. We used a Gaussian copula to model dependence. For

bivariate smoothing of the covariance function, tensor product penalized cubic regression splines

with 10 knots per dimension were used, and REML estimation was used for the selection of the

smoothing parameter (Wood, 2006).

Figure 2 shows a data set generated from covariance structure (IIii), mean function (1b), vari-
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Figure 2: Simulated data. Displayed are: one dataset along with an estimate of the mean as a
dashed line (top left panel), the 100 estimates of mean (top, right), log-variance (bottom, left) and
shape parameter (bottom, right) functions.
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ance function (2b), and shape function (3d) along with the estimates of the mean, log-variance

and shape parameter functions from 100 simulated data sets. The estimates of all population-level

functions show nearly no bias and various degrees of smoothness. In particular, the log-variance

estimates are somewhat undersmoothed, which is what is expected in the case of smoothing de-

pendent data with a working independence assumption. Nonetheless, the undersmoothing does

not degrade the MSE by much, as will be seen soon. In Table 1, we report estimates of the

squared root of the integrated mean squared error (IMSE), the integrated squared bias (IBIAS),

and the integrated variance (IVAR). For example, for µ̂(t), these quantities are defined as: IMSE =
∫ 1
0 E[{µ̂(t)−µ(t)}2] dt, IVAR =

∫ 1
0 Var{µ̂(t)} dt and IBIAS =

∫ 1
0 [E{µ̂(t)}−µ(t)]2 dt. Here E{µ̂(t)}

and Var{µ̂(t)} denote the sample mean and sample variance of µ̂(t), for 0 ≤ t ≤ 1. The results

confirm our previous observations: the mean function estimator has very small IMSE, irrespective

of the covariance structure. The somewhat larger IMSE of the log-variance function estimator is

caused by its larger variability. For the shape parameter function estimator both the bias and

the variability cause a larger IMSE. In general, estimation of the mean, log-variance and shape

functions is not affected by the structure of the dependence of the latent process in cases where

the latent process exhibits stronger dependence. As expected, when the latent process has very

weak dependence, such as in scenario (II i), better estimates are obtained for all the population

functions.

Figure 3 illustrates the performance of our methodology with respect to capturing the true

dependence of the functional process. Figure 3 displays the estimates of the first three eigenfunctions

and eigenvalues of the copula correlation matrix in 100 simulated data sets from scenario (Ii). The

true eigenfunctions and eigenvalues correspond to the correlation function derived from the model

specified by the covariance structure (Ii); these eigenfunctions/eigenvalues are different from the

ones defying the covariance functions. The copula correlation was estimated using Kendall’s tau;

however, similar performance was noted when the sample Pearson correlation of the transformed

curves was used.

One important advantage of our model is that it provides access to explicit estimates of the

pointwise quantile functions. Let p ∈ (0, 1) be some specified quantile level; the estimated quantile

function is Q̂p(t) = µ̂(t) + σ̂(t)G−1{p; α̂(t)}. Table 2 shows the estimates of the IMSE of the

estimated quantile functions Q̂p(t) for several levels p, for one particular scenario. Our proposed
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Table 1: Estimates of the squared root of IBIAS, the root of IVAR and the root of IMSE for the

estimates of the mean function (1b), the log-variance function (2b), the shape parameter function

(3d) when the latent process is specified as in (Ii) and (Iii) or in (IIi) and (IIii).

Latent Population
√

IBIAS (×102)
√

IV AR (×102)
√

IMSE (×102)

Covariance Level Functions

(I i) Mean 0.27 0.68 0.72

(I ii) Mean 0.26 0.71 0.76

(II i) Mean 0.27 0.57 0.63

(II ii) Mean 0.27 0.66 0.71

(I i) Log-variance 1.94 10.18 10.32

(I ii) Log-variance 1.90 10.74 10.86

(II i) Log-variance 1.10 7.72 7.76

(II ii) Log-variance 1.31 9.57 9.62

(I i) Shape 66.76 117.13 134.31

(I ii) Shape 64.34 106.59 124.05

(II i) Shape 61.62 63.51 88.26

(II ii) Shape 65.68 79.58 102.87

method gives estimated quantile functions with a better integrated mean square error and integrated

variance, though with a slightly larger integrated bias, compared to the counterparts given by the

pointwise sample quantiles. However, the estimated quantile functions are smooth functions, as

opposed to the sample quantile functions which are not; see Figure 4 which plots the estimated and

empirical quantile functions of levels 1%, 10% and 50%.

5 Application: DTI tractography

We apply our proposed method to a study of the diffusion characteristics of white matter tracts in

patients with multiple sclerosis (MS) and healthy controls. White matter tracts consist of axons,

often-long processes that connect one nerve cell to another and that convey electrical information

in the form of nerve impulses. These axons are covered with a white fatty coating, called myelin.

The myelin sheath helps the nerve transmit signals at a very fast rate. Myelin damage, as seen

in MS and other demyelinating diseases, impairs axonal conduction and can be associated with

axonal degeneration. Inflammatory demyelination and axon damage in the corpus callosum tract
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Figure 4: True and estimated quantiles when the simulation model uses mean function (1b), vari-
ance function (2b), shape function (3d), and latent covariance structure (Ii). Shown are the model-
based estimated pointwise quantile function (top panels), the pointwise empirical quantiles (bottom
panels) for each of 100 simulations and the true quantile functions (dashed) for levels p = 1%, 10%
and 50%.
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Table 2: Estimates of the squared root of IBIAS, the root of IVAR and the root of IMSE for the

estimates of the quantile functions of levels 1%, 2%, 5% and 10%, for the case when the true mean

function is (1b), the log-variance function is (2b), the shape parameter function is (3d) and the

latent process is specified by (Ii).

Method Quantile level
√

IBIAS(×102)
√

IV AR(×102)
√

IMSE(×102)

Model based 1% 0.43 1.58 1.63

Empirical 1% 0.32 2.67 2.68

Model based 2% 0.37 1.40 1.44

Empirical 2% 0.31 2.07 2.08

Model based 5% 0.31 1.16 1.19

Empirical 5% 0.20 1.49 1.50

Model based 10% 0.29 0.97 1.01

Empirical 10% 0.11 1.19 1.19

Model based 50% 0.30 0.64 0.71

Empirical 50% 0.06 0.89 0.89

are prominent features of MS and may partially account for impaired performance on complex tasks

(Ozturk et al., 2010).

DTI reveals microscopic details about the architecture of the white matter tracts by measuring

the three-dimensional directions of water diffusion in the brain (Basser et al. 1994, 2000). Our study

involves measurements of the parallel diffusivity within the corpus callosum for 162 MS patients

and 42 healthy controls. Goldsmith et al. (2010) used parallel diffusivity within left intracranial

cortico-spinal tracts to classify subjects as MS cases or controls. Figure 1 displays tract profiles

sampled at 93 locations in MS patients and controls.

A quick inspection of Figure 1 suggests that the controls and MS patients have somewhat

similar means but different variability and asymmetry across tract location. We assumed that at

each tract location, the parallel diffusivity for each group has a skew t distribution with constant,

but unknown, degrees of freedom and location-specific skewness. The degrees of freedom parameter

(ν) was estimated through maximum likelihood under a working independence assumption. This

approach yields ν̂ = 6.79 for the MS group and ν̂ = 16482.29 for the control group. Because ν̂
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Figure 5: Estimated mean, variance, and third-moment skewness coefficient functions of the parallel
diffusivity profiles within the corpus callosum tracts of MS patients and controls. Top panel:
estimates for the MS group (black lines) and control group (grey lines); the skewness coefficient
functions were calculated using the estimates of the shape parameter function and, for the t-copula
used for the MS cases, the degrees of freedom. Bottom panel: Estimated differences between the
mean (left), log-variance (middle), and skewness (right) functions of the MS and control groups,
with 90% confidence intervals using 1000 bootstrap samples (dashed).
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of the control group is very large, and since the skew t distribution reduces to skew normal when

ν = ∞, we used the skew normal for the control group.

In the top left panel of Figure 5, the estimated mean of parallel diffusivity is slightly larger for

cases than for controls. Figure 5 (bottom left panel) shows the 90% bootstrap confidence intervals

(based on 1000 resamples) for the differences between the means of the groups and indicates that the

observed differences are statistically significant. The middle panels in Figure 5 depict significantly

higher variability for the parallel diffusivity in the MS group than in the control group. The

rightmost panels study the third-moment skewness coefficient functions of the two groups. For the

control group, the skewness function depends solely on the shape parameter that governs a skew

normal distribution; while it depends on both the degrees of freedom and the shape parameters for

the MS group. The figure shows that the skewness function in the MS sample of parallel diffusivity

is significantly larger than the skewness function in the control sample for locations 30-85 along the

corpus callosum tract.

Figure 6 illustrates the comparison between the quantile functions of the parallel diffusivity

profiles corresponding to the two groups at the quantile levels 1%, 50%, 95% and 99%. The lower

quantile functions seem comparable for the two groups: this is expected when the mean functions

are close to each other and the variance functions are small, which is our case. The higher level

quantiles are indicative of the differences between the two groups in both the shape parameter and

the variance. Figure 6 (bottom panel) shows the 90% pointwise confidence intervals of the estimated

difference between the quantile functions of the two groups: the quantile functions for the MS group

are significantly larger than the corresponding ones for the control group for probabilities of 50%

and higher.

We first used Gaussian copulas, with group specific parameters, to model the dependencies in

the parallel diffusivity profiles. Figure 7 shows the estimated eigenfunctions and eigenvalues of the

correlation matrices for the MS patients and control groups. The similarity between these estimates

in the two groups is remarkable. It suggests that to compare groups of curves, models with common

correlation functions can be used in future analyses.

In addition, t-copulas were fit to the MS and control groups. The correlation matrices, esti-

mated by the Kendall’s tau approach in Section 3.2, are very similar with to the Gaussian copula

correlation matrices. The maximum likelihood estimates of copula degrees of freedom were 3.30
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Figure 6: Estimated quantiles of the parallel diffusivity profiles within the corpus callosum tracts
of the MS patients and controls. Top panel: Estimated quantiles functions for the MS group (black
lines) and the control group (grey lines). Bottom panel: Estimated difference between the quantiles
of the MS and control groups (solid lines) with 90% pointwise confidence intervals (dashed lines)
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Figure 7: Estimated eigenfunctions of the latent Gaussian copula correlation functions in the MS
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for the control group and 4.88 for the MS group. (These estimates should not be confused with

the estimates of ν for the marginal skew t distributions.) Such small values of the copula degrees

of freedom parameter imply substantial tail dependence. The tail dependence would have been

missed if Gaussian models had been used, since there is no tail dependence in a multivariate nor-

mal distribution, except in the case of perfect correlation. The tail dependence also seems apparent

in the data, for example in Figure 1 where individual curves that are extreme at one tract location

tend to be extreme at other locations.

Our findings are consistent with previous studies of diffusivity. These have shown that acute

axonal injury at first decreases parallel diffusivity, but, as the tissue gets cleaned up, parallel

diffusivity normalizes and then increases above normal. This is likely due to increased overall

diffusivity and is probably not specific for a particular kind of tissue injury, e.g., not specific to MS.

Another possibility is that the researchers have overestimated parallel diffusivity, because as the

tract atrophies, one get contributions from adjacent cerebrospinal fluid (where diffusivity is high).

However, the investigators have tried to minimize this effect, and it not considered to be a major

problem.

The main contributions of this new method to the understanding of MS are (1) identification

of the most severely affected cases; and (2) identification of the interesting parts of the tract.

6 Conclusion

This paper introduces a model for functional data that exhibit non-Gaussian characteristics such

as skewness, heavy tails, and tail dependence. Our model includes a Karhunen-Loève expansion

for a latent, but estimable, Gaussian process that induces dependencies. Our approach is based on

copula methodology and combines elements of parametric and non-parametric modeling. However,

robustness of our methodology to the choice of the parametric families of marginal and copula

distributions and goodness-of-fit testing of these families remain open problems.
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