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Population functional data analysis of group

ICA-based connectivity measures from fMRI
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Brian Caffo

Suresh Joel

Stewart Mostofsky

James Pekar

Susan Spear Bassett

Abstract

In this manuscript, we use a two-stage decomposition for the analysis of func-

tional magnetic resonance imaging (fMRI). In the first stage, spatial independent

component analysis is applied to the group fMRI data to obtain common brain

networks (spatial maps) and subject-specific mixing matrices (time courses). In

the second stage, functional principal component analysis is utilized to decompose

the mixing matrices into population-level eigenvectors and subject-specific loadings.

Inference is performed using permutation-based exact conditional logistic regression

for matched pairs data. Simulation studies suggest the ability of the decomposition

methods to recover population brain networks and the major direction of variation

in the mixing matrices. The method is applied to a novel fMRI study of Alzheimer’s

disease risk under a verbal paired associates task. We found empirical evidence of

alternative ICA-based metrics of connectivity in clinically asymptomatic at risk

subjects when compared to controls.

1 Introduction

Functional MRI is a driving force in the field of brain mapping and cognitive neuroscience.

Functional connectivity is the study of correlations in measured neural signals. Recently,

attention in fMRI research has been focused on discovering spatial correlations in the

BOLD (blood oxygen level dependent) signal, rather than functional activation related

to a paradigm. Independent component analysis (ICA) and principal component analysis
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(PCA) are popular exploratory data analysis techiniques to account for unknown - yet

structured - spatiotemporal processes in fMRI data (Beckmann and Smith 2004, 2005).

Spatial independent component analysis is an approach for decomposing fMRI data

into spatial maps multiplied by their respective time courses , where the maps are drawn

from spatial distributions that are statistically independent (Calhoun et al., 2001). The

spatial independence assumption is well suited to the sparse nature of the spatial pattern

for typical brain activation (McKeown and Sejnowski, 1998; Guo and Giuseppe, 2008).

The time courses estimated from spatial ICA describe the temporal characteristics of

functional networks, i.e. areas of temporal correlation in the BOLD signal. Variation in

subjects’ time courses reflects population heterogeneity in ICA-based metrics of connec-

tivity.

We propose functional principal component analysis and regression (FPCA and FPCR)

as unifying frameworks for analysis of temporal mixing matrices. FPCA is a common

method to capture the main directions of variation and dimension reduction in a collec-

tion of functions (Ramsay and Silverman, 2005; Hall and Hosseini-Nasab, 2006; Di et

al., 2008). We use FPCA to identify the population-level eigenvectors that characterize

the geometric directions of variation of the time courses acquired from ICA. FPCA sum-

marizes the subject-specific loadings, called principal component scores, by projecting

subject curves on the basis of principal components (Di et al., 2008). PC scores can

be used in functional regression, so called FPCR, to assess the effect of fMRI temporal

patterns on diagnostic classification. Notably, we propose and implement a use of FPCA

on temporal mixing matrices within the context of exact permutation-based conditional

logistic regression to analyze risk status for Alzheimer’s disease in matched-pairs study.

That is, this manuscript considers investigating population variation in brain networks

by summarizing temporal mixing matrices using functional PCA in conditional logistic

regression.

The methodology is explored within the context of a longitudinal verbal paired asso-

ciates paradigm fMRI study of subjects at high risk for Alzheimer’s disease and controls.

In this manuscript, we consider subjects with evidence for mild cognitive impairment at

the time of scanning and closely matched asymptomatic controls. We note, however, that

the methods are applicable without modification to resting state data as well.

The remainder of the paper is organized as follows. Section 2 describes the studied

dataset. Section 3 introduces our two-stage method, which involves ICA on the group

data in the first stage and PCA on the time courses of independent components in the

second stage. Section 4 shows the performance of our procedure in an extensive simulation

study. Section 5 provides the application of the two-stage methods to an ongoing study

with 13 pairs of subjects, while Section 6 gives a discussion.
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2 Data

The data derive from an ongoing study of Alzheimer’s disease progression. This study

follows roughly two hundred subjects, such that 100 were at high familial risk for AD

while 100 were at low risk. Longitudinal imaging, biomarkers and a neuro-bevavioral

battery of tests were collected. Further details on the study can be found in Bassett et

al. (2006).

Our analysis considers 26 subjects, of which 13 showed no evidence of cognitive decline

and 13 were declared as mildly cognitive impaired. All 13 non-cases were from the low-

risk group, while 11 of the 13 cases were from the high risk group. Control subjects were

matched to cases via age, gender and education.

Three waves of neuroimaging data collection have been planned. Two have been

completed. The fMRI data used in the analysis are from the second wave, which is

concurrent with the measurements used to declare subjects as having MCI. All fMRI

data used were part of a protocol that involved a verbal memory paradigm (see below).

Functional neuroimaging was obtained via a 1.5 T Philips Intera-NT scanner (Philips

Medical Systems, Best, The Netherlands) at the F.M. Kirby Functional Imaging Research

Center (Kennedy Krieger Institute, Baltimore, MD). The TR was 1,000 MS. Slices were

acquired in a band focused on the medial temporal lobe. Hence, for example, much of

the anterior portion of the component frontal and posterior portion of the occipital lobe

were not studied.

The paradigm was an auditory word-pair association task. It consisted of two 6 min

and 10 s sessions with each session having six sets of three blocks. Three types of blocks

were considered: encoding, recall, and rest. When in the encoding block, subjects were

presented with seven unrelated word pairs. When in the recall block, subjects were

presented with the first word of each pair and instructed to silently recall the second. In

the baseline block, subjects were presented with an asterisk.

3 Methods

3.1 Independent Component Analysis

Independent component analysis (ICA) is a commonly used method for recovering un-

derlying independent sources from their mixtures, i.e. so-called blind source separation.

ICA has been frequently utilized on the analysis of functional neuroimaging data since

1998 (McKeown et al., 1998a, 1998b; Calhoun et al., 2001; Guo and Giuseppe, 2008).

Two key benefits of ICA are its empirical nature and its (often considered reasonable)

underlying generative model. Specifically, it models collected signals as linear weighted
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combinations of independent sources. Notationally, a noise-free ICA model specifies

X = AS,

where X is the data matrix (usually dimension reduced by an SVD), rows of S con-

tain the non-Gaussian independent components and A is a linear mixing matrix. ICA

attempts to obtain S by seeking an unmixing matrix W such that WX is a good ap-

proximation to the original sources S. Without further restrictions, this problem is not

identified. Different implementations of ICA get around lack of identifiability by consid-

ering different criteria for estimation. FastICA is a fixed-point scheme frequently used

for independent component estimation (see http://www.cis.hut.fi/projects/ica/fastica/)

by iteratively maximizing negative entropy. It is easily accessible and subroutines have

been made available for several scripting languages. We use fastICA as our optimization

criteria in this manuscript, as it is a popular ICA fitting algorithm, though note that

the proposed modeling strategy is largely agnostic to this choice. Note further that we

use a so-called ‘noise-free’ ICA model. Of course, such assumptions are not realistic for

fMRI and hence measurement error and other sources of variation will be absorbed in

the estimated time courses and spatial maps. Our simulations, however, show that this

does not impact our regression approach. Regardless, we reiterate that one could use a

probabilistic ICA method (Beckmann and Smith, 2004) for estimation instead.

There are a wide variety of group ICA approaches for multi-subject fMRI data (see

Calhoun et al., 2009), in this paper we use temporal concatenation approach, also called

spatial group ICA, as introduced by Calhoun et al. (2001). Figure 1 illustrates the details

of spatial group ICA. Each subject’s data can be decomposed into the outer products

of spatially independent components and associated time courses. However, we do not

decompose the data individually, because independent components are not ordered (as in

the case of principal component analysis), and it is difficult to identify matching compo-

nents across subjects. Instead, by assuming common spatial maps, we can concatenate

all subjects’ data in the temporal domain, and apply ICA to the aggregated data matrix.

The group mixing matrix is the concatenated time course for all subjects (Figure 1 B).

Individual mixing matrices can be backreconstructed by partitioning the group mixing

matrix into submatrices corresponding to each subject (Figure 1 A). Inferences will be

made on those individual mixing matrices.

Following the notations in Guo and Giuseppe (2008), let i = 1, ... N index subjects,

t = 1, ... T index time points, and v = 1, .... V index voxels. Let Xi be a T × V data

matrix for subject i. The group ICA model can be expressed as

X =MS, (1)
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where X = [X t
1, ..., X

t
N ]

t is the NT × V group data matrix formed by concatenating N

subjects’ data in the temporal domain. Assume there are q independent components,

then S is a q × V matrix containing q statistically independent spatial maps in its rows.

M = [At
1, ..., A

t
N ]

t is the NT × q group mixing matrix, where Ai is the T × q submatrix

corresponding to the ith subject. Let A(k) = [A
(k)
1 , A

(k)
2 , ..., A

(k)
N ], where A

(k)
i is the kth

column of Ai, k = 1, 2, ..., q. A
(k)
i is the time course associated with the kth spatial map

for subject i. A(k) can be acquired by reshaping the kth column of M to a T ×N matrix.

3.2 Principal Component Analysis and Generalized Functional

Regression

Generalized functional regression is a powerful tool to explore the association between

functional variables and scalar outcomes, such as binary disease outcomes (Ramsay and

Silverman, 2006; Crainiceanu et al., 2009a; Goldsmith et al., 2010) . Here, we propose

the functional variables to be the individual mixing matrices, which ideally characterize

the temporal patterns in brain networks. We start with univariate functional analysis.

That is, by fixing k a specific index for the independent component, we only consider

one functional regressor at a time, though acknowledge that multivariable regression

models are a relatively straightforward extension. Assume for each subject i, Yi is the

scalar outcome, A
(k)
i are random functions, and Zi is a vector of nonfunctional covariates.

Without loss of generality, we assume A
(k)
i are mean zero stochastic processes (which

can be achieved by subtracting the population average function). A generalized linear

functional model can be expressed as (Crainiceanu et al., 2009a):











Yi ∼ EF (µi, η);

g(µi) = α +

∫ T

0

A
(k)
i (s)β(k)(s)ds+ Zt

iγ.
(2)

Here EF (µi, η) denotes an exponential family distribution with mean µi and dispersion

parameter η. The functional parameter β(.) is the main target of inference. The func-

tional component of model (2) is basically a weighting scheme, which tends to emphasize

or de-emphasize components of the regressor. In our context, it relates the temporal

mixing matrices to the disease status outcomes.

We use Functional Principal Component Analysis (FPCA) to estimate the first few

eigenvectors that capture most of the variability of the space spanned by A
(k)
i across

subjects. This simultaneously yields a convenient, data-driven basis for which to decom-

pose model (2) into easily estimated parts, as well as recasts the problem in the terms

of the greatest direction of inter-subject variation in the temporal mixing of ICA-based

brain networks. To simplify notation, we omit the index k in the following illustration.

5
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FPCA considers a complex functional regression space by decomposing the covariance

operator KA(t, s) = Var{Ai(t), Ai(s)}. The spectral decomposition of the covariance ma-

trix is given by KA(t, s) =
∑∞

j=1 λjψj(t)ψj(s) (as noted in Di et al., 2008, via Mercer’s

theorem, Indritz 1963 chapter 4), where λ1 ≥ λ2 ≥ ... are the ordered eigenvalues and

ψj(.) are the associated orthonormal eigenfunctions. The spectral decomposition yields

a parsimonious expansion of the subject level functions Ai(t) =
∑∞

j=1 ξijψj(t), referred

to as the Karhunen/Loève (KL) decomposition (Karhunen, 1947; Loève, 1945). Here,

ξij =
∫ T

0
Ai(t)ψj(t)dt are referred to as the principal component scores. Distributionally,

E(ξij) = 0, Var(ξij) = λj and Cov(ξij, ξij′) = 0 for every i and j 6= j′. For practicality, we

truncate the decomposition at L terms (though see Goldsmith et al., 2010). We follow

the approach proposed by Di et al. (2008) to estimate L based on proportion of variance

explained. Let P1 and P2 be two thresholds, and define

L = min{k :
k

∑

j=1

λj/

∞
∑

j=1

λj ≥ P1, λk < P2}.

Here, P1 stands for the cumulative explained variance threshold and P2 stands for the

individual explained variance. In this manuscript, we choose P1 = 0.95 and P2 = 0.02.

These choices work well in our simulations and application. However, they should be

carefully tuned in other settings, perhaps using simulations.

The true mixing matrices are not observed. Instead we obtain the model-based esti-

mates from the fastICA algorithm (Crainiceanu et al., 2009b). (Note, of course, the fact

that the ICA algorithm we are using does not assume noise does not mean that there

is actually no noise in the estimated time courses.) Hence, assume we get noisy signals

Wi(t) = Ai(t)+ εi(t), where εi(t) is a white noise process with variance σ2
ε . Under this as-

sumed model, the covariance operator for the observed data isKW (s, t) = KA(s, t)+σ2
ε δts,

where KW (s, t) = Cov{Wi(s),Wi(t)}, KA(s, t) = Cov{Ai(s), Ai(t)}, and δts = 1 if t =

s and is 0 otherwise (Di et al., 2008). This equation reveals that the diagonal elements

of KW (s, t) incorporate the nugget measurement error. A simple and natural solution is

to drop the diagonal elements and smooth the covariance matrix. We use the standard

(moment based) estimate K̂W (s, t) of KW (s, t) from the observed data. Second, estimate

K̂A(s, t) by smoothing K̂W (s, t) for s 6= t, as suggested by Staniswalis and Lee (1998)

and Yao et al. (2003). The eigenvalues λj and eigenfunctions ξj(.) can then be derived

from K̂A(s, t) (Di et al., 2008).

Once the eigenfunctions, ψj(.), and truncation lag, L, are fixed, the model for the

6
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noisy signals can be written as:















Wi(t) =
L
∑

j=1

ξijψj(t) + εi(t);

ξij ∼ N(0, λj); εi(t) ∼ N(0, σ2
ε ).

(3)

As stated in Crainiceanu et al. (2009a), this is a linear mixed model with random effects

ξij used in the outcome model.

Since {ψj(t)} is an orthonormal basis in L2[0, T ], both Ai(t) and β(t) have unique

representations Ai(t) =
∑

j≥1 ξijψj(t), β(t) =
∑

j≥1 βjψj(t) and equation (2) can be

rewritten as:















Yi ∼ EF (µi, η);

g(µi) = α +
L
∑

j=1

ξijβj + Zt
iγ.

(4)

Following the definition of Crainiceanu et al. (2009a), model (3) is the exposure

model and model (4) is the outcome model. In our context, the exposure model considers

the temporal mixing matrices from group ICA; the outcome model relates the principal

components from the exposure model to a disease status outcome model. As disease

status is fixed (the 13 control subjects were matched to the 13 cases), the outcome model

employs logits hence using traditional case-control logistic regression (Prentice and Pyke,

1979; Breslow and Cain, 1988). We first estimate the random effects ξij in model (3)

using FPCA, and plug them in model (4).

Since there are q components of the mixing matrix M, we can extend the model to

the case of multiple functional regressors.











Yi ∼ EF (µi, η);

g(µi) = α +

∫ T

0

A
(1)
i (s)β(1)(s)ds+ ...+

∫ T

0

A
(q)
i (s)β(q)(s)ds+ Zt

iγ.
(5)

Similarly, equation (5) can be rewritten as

g(µi) = α +

L1
∑

j=1

ξ
(1)
ij β

(1)
j + ...+

Lq
∑

j=1

ξ
(q)
ij β

(q)
j + Zt

iγ.

This extension is, in principle, trivial to implement once the PC scores are obtained.

However, with small numbers of subjects, large multivariate models are not realistic

options. Hence, in our study we investigate variables one or two at a time.

Another extension is to study the association between functional connectivity (Friston

et al., 1993, 1994) and diagnostic classification. Functional connectivity is biologically

7
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meaningful because it is assumed that “memory and other cognitive abilities are the result

of the integrated activity in networks of regions, rather than activity in any one region

in isolation” (Grady et al., 2001). Joel et al. (in press) argue for the important inter-

pretation of inter- and intra-network connectivity ostensibly measured by the correlation

and variance of the temporal mixing matrices respectively. As these matrices have zero

mean, we consider their products and squares. Mathematically, ICA-based inter-network

functional connectivity is defined as (Joel et al., in press):

∫

A(k)(t)A(k′)(t)dt,

and intra-network functional connectivity is defined as
∫

A(k)(t)2dt,

where A(k)(t) is the time course modulating spatial map k, and A(k′)(t) is the time course

modulating spatial map k’.

To study the association between inter-network functional connectivity and the out-

comes, i.e. Alzheimer’s disease, we apply functional regression on the product of time

courses associated with two different spatial maps:











Yi ∼ EF (µi, η);

g(µi) = α +

∫ T

0

A
(k)
i (s)A

(k′)
i (s)β(s)ds+ Zt

iγ.
(6)

Notice that if β(s) is estimated to be a constant, then model (6) simply regresses the

outcome on the measure of inter-network connectivity suggested by Joel et al. (in press).

Similarly, to study the association between intra-network functional connectivity and the

health outcomes, we apply functional regression on the squares of time courses associated

with one spatial map:











Yi ∼ EF (µi, η);

g(µi) = α +

∫ T

0

A
(k)
i (s)2β(s)ds+ Zt

iγ.
(7)

Again, notice if β(s) is a constant, this model corresponds to regressing the outcome on

the measure of intra-network connectivity suggested by Joel et al. (in press).

3.3 Related Work

Beckmann and Smith (2005) proposed a tensor PICA model, which factors the group

data as a trilinear combination of three outer products, representing group spatial maps

and time courses but subject-specific loadings. The tensor PICA is a simplified version

8
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of our model in the sense that, by assuming common time courses, they only retain one

eigenvector in the PCA stage. We can check the validity of their model by calculating the

ratio of the largest eigenvalue and the sum of all the eigenvalues. Their approach may

not work well if the temporal dynamics are different across subjects, such as in a resting

state study (Calhoun et al., 2009). Our method allows heterogeneity in time courses and

hence is more robust.

An alternative two-stage decomposition for the analysis of fMRI data was proposed

by Caffo et al. (2010). Their approach first used singular value decomposition (SVD) to

obtain subject-specific eigenimages (spatial maps) and eigenvariates (time series). Then

the collections of eigenimages and eigenvariates were decomposed to form population-level

brain networks and time series. Subject-level data were projected onto these population

eigenvectors to obtain subject-specific loadings and those loadings can be used in gener-

alized functional regression. One potential weakness of their approach is the ignorance

of variance ordering of subject-specific eigenvectors in the population analysis. Compar-

atively, the components in ICA are not ordered, so the problem is avoided. In addition,

the SVD forces orthogonal eigenimages and eigenvariates, which may or may not reflect

actual biology. In principle, the relevant information content of ICA-based regressors is

equivalent to SVD-based regressors for FPCA. However, the ICA-based regressors tend

to be more interpretable by not requiring orthogonality of the time courses. In addition,

our use of group ICA adds a level of parsimony, by assuming common brain networks

across subjects (see Calhoun et al., 2001). In contrast, the methods of Caffo et al. (2010)

consider separate spatial networks for each subject.

4 Simulation

We conducted a simulation study to investigate the properties of two-stage decomposi-

tions for group fMRI data. In our simulation, assume there are I = 50 subjects, q = 3

independent components. Each spatial map contains V = 64 × 64 elements, while each

time course contains T = 80 time points. For time courses associated with each indepen-

dent component, assume there are n = 2 eigenvalues and eigenfunctions. The estimation

parameters are listed in table 1. The underlying spatial maps and the eigenfunctions for

time courses are depicted in Figure 2. We consider a variety of scenarios, according to

different amount of noise. The signals are standardized and the deviation for the noise

is 0 (no noise), 0.3 (moderate), 1 (large) respectively. We conducted 100 simulations for

each scenario.

Figure 3 displays the accuracy of the simulation results. The spatial correlation is the

absolute correlation between the estimated spatial map and the true spatial map without

9
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noise. In the case of no noise, the mean of the spatial correlation is 0.998 (SD < 0.001)

across the three independent components. For moderate noise, the mean of the spatial

correlation is 0.946 (SD < 0.001) across the three independent components. For large

noise, the mean of the spatial correlation is 0.946 (SD < 0.001). The results reveal that

the quality of the recovered image is not affected by the amount of noise, within the range

of signal to noise considered. The variation of the estimation results is very small, which

indicates a level of robustness in the estimation method.

The temporal correlation is the absolute correlation between the estimated principal

components of the time courses and the true principal components of the time courses.

For the noise-free scenario, the mean of the absolute correlation for the first eigenfunction

(PC 1) is 0.973 (SD = 0.021) across the three independent components; the mean of the

absolute correlation for the second eigenfunction (PC 2) is 0.973 (SD = 0.021) across the

three independent components. For moderate noise, the mean of the absolute correlation

for the first eigenfunction (PC 1) is 0.975 (SD = 0.023) across the three independent

components; the mean of the absolute correlation for the second eigenfunction (PC 2) is

0.975 (SD = 0.023) across the three independent components. For large noise, the mean

of the absolute correlation for the first eigenfunction (PC 1) is 0.974 (SD = 0.024) across

the three independent components; the mean of the absolute correlation for the second

eigenfunction (PC 2) is 0.973 (SD = 0.023) across the three independent components.

The results indicate that the principal components for time courses are also estimated

very well. The bias is negligible, even in the case of large noise.

5 Application

We apply our method to a novel fMRI study of Alzheimer’s disease risk under a verbal

paired associates task. The study population, scanning methods and description of the

paradigm are described in section 2 (also see Caffo et al., 2010). This study is part of

an ongoing longitudinal study of Alzheimer’s disease risk. In this particular analysis, we

focus on 26 subjects, 13 of which meet criteria for mild cognitive impairment (MCI) with

13 matched controls. The fMRI data contains 79× 95× 68 = 510340 voxels measured at

370 time points, with a TR of 1000 MS, for each subject. A group data matrix is generated

by concatenating 26 subjects’ fMRI data in the temporal domain. The aggregated matrix

has dimension NT × V , where N = 26, T = 370 and V = 510340.

In the practical application of ICA, identifying the number of independent components

is an important step. For fMRI, the number of informative components is often assumed

to be less than the spatial or temporal dimension; further the mathematics mandate that

the number of ICs be less than the smaller of NT and V (typically NT). This manuscript
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adopts a simple approach to estimate the number of components based on the eigenvalues

of the covariance matrix.

It is easy to show that based on model (1), the covariance matrix of X can be expressed

as:

Cx =

q
∑

i=1

MiM
T
i + σ2I,

where Mi is the ith column of M, q is the number of independent component, I is the

identity matrix with dimension NT ×NT (Hyvärinen et al. 2001). The eigenvalues are

now the eigenvalues of
∑q

i=1MiM
T
i plus a constant σ2. But the matrix

∑q

i=1MiM
T
i has

at most q nonzero eigenvalues, so the first q eigenvalues of Cx form a decreasing sequence

with the rest eigenvalues being constant σ2:

d1 > d2 > ... > dq > dq+1 = dq+2 = ... = dNT = σ2.

Figure 4 (the scree plot) shows the first 80 ordered eigenvalues of the group matrix.

By visual inspection, the eigenvalues decay to a constant roughly at 30. So we apply

ICA on the group data matrix specifying there are 30 independent components. The

retention of all 30 components in subsequent modeling could potentially have issues of

variance inflation. Moreover, we stipulate that the choice is admittedly ad hoc. We

do not address this further in this manuscript, though emphasize the importance of

performing sensitivity analysis to the number of retained eigenvalues. In addition, we do

note success in using penalties terms in functional regression (see Goldsmith et al., 2010)

that are insensitive to the choice of the number of components.

In the second stage, PCA is performed on the time courses for each independent

component acquired from ICA. We then apply functional logistic regression on the scores

derived from PCA, accounting for case-control matching. We first consider univariate

regression analysis, that is, we conduct 30 regressions, with each regression on time

courses associated with one specific spatial map. In our context, model (2) becomes

logit{P (Dip = 1|αp)} = αp +

∫ T

0

A
(k)
i (s)β(k)(s)ds, (8)

where k ∈ {1, 2, ..., 30} is the index for independent component, p ∈ {1, 2, ..., 13} is the

index for pair, αp is the pair-specific random effect, Dip ∈ {0, 1} represents the risk status

for subject i in pair p . Let {ψ(k)
j (.)} be the eigenfunctions for {A(k)

i (.)}, then β(k)(s) can

be written as β(k)(s) =
∑L

j=1 β
(k)
j ψ

(k)
j (s). Thus, model (8) becomes

logit{P (Dip = 1|αp)} = αp +
L
∑

j=1

ξ
(k)
ij β

(k)
j ,

which is a conditional logistic regression model with subject level PC scores as predictors.

Since we only have 26 subjects in our dataset, the sample size is not large enough for
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asymptotic results to be valid. We conduct permutation test to calculate the SE of the

predictors. The idea is to permutate all the possible outcomes, get the likelihood ratio test

(LRT) statistic under each scenario, and calculate the probability that the LRT statistic

from a random set of outcomes exceeds the actual observed LRT statistic. The null

permutation distribution in this case (matched binary pairs) is equivalent to randomly

permuting case status among matched pairs. Thus, each matched pair will have exactly

one case and one control in every permutation. This permutation test is a special case of

conditional logistic regression (Agresti, 2002). Our statistical inferences are based on the

p-value calculated from the permutation distribution. No adjustment for multiplicity is

made as our results are exploratory in nature.

Table 2 summarizes the regression results. Figure 5 exhibits the eigenfunctions of time

courses that are associated with significant PC scores. Some predictors are negatively

associated with odds of Alzheimer’s disease, including the first PC score of time courses

modulating spatial map 13, the third PC score of time courses modulating spatial map

19 and the first PC score of time courses modulating spatial map 26. For example, a

subject with one unit higher in the first PC of time courses modulating spatial map 13

has e−5.44 = 0.004 times the odds of AD. After standardization, one standard deviation

increase in the first PC score of time courses modulating spatial map 13 is associated with

an odds ratio e−1.60 = 0.202. Other predictors are positively associated with Alzheimer’s

disease, including the second PC score of time courses modulating spatial map 11, the

fourth PC score of time courses modulating spatial map 22 and the first PC score of time

courses modulating spatial map 28. After standardation, one standard deviation increase

in the first PC score of time courses modulating spatial map 28 is associated with an

odds ratio e1.60 = 4.95.

Univariate analysis reveals that spatial maps 11, 13, 19, 22, 26, 28 are regions of

interest, that is, their corresponding PC scores are significant predictors in models (3)

and (4). Figure 6 exhibits three-D rendering of these spatial maps. Figure 7 displays

brain regions that have over 20% overlap with the identified spatial maps, based on the

anatomical parcellation given in Tzourio-Mazoyer et al., (2002). IC number 11 loads

primarily on the temporal lobe and a small portion of the cerebellum in the imaging

area. IC 19 covers the majority of cerebellum and vermis areas. IC 28 also covers the

cerebellum and vermis areas. IC 22 loads specifically on the Heschl gyrus and the superior

portion of the temporal lobe. IC 26 loads heavily on the cerebellum and the Heschl gyrus.

Note that the spatial maps and time courses of ICA are unique only up to scalings, thus

the positive and negative regions could be reversed without loss of information (Caffo et

al., 2010).

A clinically interesting question is whether network interaction is related to diagnostic
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classification. To study the association between inter-network functional connectivity

and the adverse health outcomes, i.e. Alzheimer’s disease, we apply conditional logistic

regression on the product of time courses associated with two different spatial maps. In

our context, after accounting for pair matching, model (6) becomes

logit{P (Dip = 1|αp)} = αp +

∫ T

0

A
(k)
i (s)A

(k′)
i (s)β(s)ds,

where k, k′ ∈ {11, 13, 19, 22, 26, 28} and k 6= k′. If taking the product of A
(k)
i (s) and

A
(k′)
i (s) as a new function, all the procedures in univariate regression will follow imme-

diately. Similarly, to study the association between intra-network connectivity and the

adverse health outcomes, model (7) becomes

logit{P (Dip = 1|αp)} = αp +

∫ T

0

A
(k)
i (s)2β(s)ds.

The results are listed in table 3. After standardization, one standard deviation increase

in the second PC score of the integrated activity of network 19 and 28 is associated with

an odds ratio e−1.6 = 0.214; one standard deviation increase in the second PC score of the

integrated activity of network 22 and 28 is associated with an odds ratio e−1.30 = 0.273;

one standard deviation increase in the third PC score of the integrated activity within

network 26 is associated with an odds ratio e−1.74 = 0.176.

6 Discussion

In this manuscript, we use temporal concatenation of multi-subjects’ data for group ICA.

There are other competing group ICA approaches in the literature. Calhoun et al. (2009)

reviewed that the existing group ICA approaches can be separated into five categories:

temporal concatenation, spatial concatenation, pre-averaging, combining single subject

ICA, and tensor-based approaches. Schmithorst and Holland (2004) compared the first

three group ICA methods and concluded that temporal concatenation appears to work

better for fMRI data. Therefore, we employ temporal concatenation, which allows for

unique time courses for each subject, but assumes common group maps. From a biologi-

cal perspective, this is akin to assuming that there are common group-level spatial brain

networks, but how those networks mix over time varies by subject. Indeed, spatial group

ICA has so far dominated the application of group ICA to fMRI. Practically, it is com-

putational easier to have the ICs be the larger index. Biologically, the assumption that

the maps are drawn from distributions which are statistically independent is consistent

with the principle of segregation of brain function, or the idea that ‘different parts of the

brain do different things’.
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Figure 7 displays the overlap of the spatial maps and a parcellation of the template

brain (Tzourio-Mazoyer et al., 2002). Because of the narrow imaging area, the spatial

independent components overlap heavily on temporal regions. The most significant pre-

dictor is IC number 22. This map is primarily located in the temporal poles, olfactory

areas and Heschl regions. This mirrors results found in (Caffo et al., 2010) who noted

that these regions are areas of known interest in AD. In addition, a less significant region,

13, overlaps with the hippocampus, the primary brain region of interest in the study of

AD. Note specifically that most of these spatial maps intersect with the olfactory areas,

which have been hypothesized to be associated with neurodegenerative disorders and

Alzheimer’s disease in particular (see Mesholam et al., 1998). Looking across regions,

the temporal poles, Heschl regions, cerebellum, amygdala and limbic olfactory areas are

widely implicated across ICs. However, the results are non-specific.

These results must be viewed with caution given the large number of tests performed

and the small number of MCI cases available for study. Moreover, the analysis was largely

exploratory, without a priori regional hypotheses.

One difficulty of analyzing fMRI data is its high dimensionality. Existing algorithms

may break down or become less reliable when performing on very large data sets. Our

approach includes two steps. In the first stage, we attempt to decompose a group matrix

with dimension NT×V . In the second stage, we perform PCA on the time courses matrix

with dimension N × T . Hence, the computational time is mostly spent on the first stage

group ICA. For studies with large number of subjects, theNT×V matrix may be too large

in both dimensions to admit group ICA without dimensionality reduction. By conducting

data reduction in the temporal domain, we could reduce one dimension of the large matrix

to make it computationally practicable (Calhoun et al., 2001; Beckmann and Smith,

2005). More precisely, we perform PCA on the aggregated data set obtained by using

temporal concatenation of all subjects’ data, i.e. YT×NV = [X1, ..., XN ]. Each subject’s

data is then projected onto the common subspace spanned by the first R eigenvectors,

thus reduced to a R × V matrix. Accordingly, the group data matrix would be reduced

to a NR × V matrix. In this manuscript, N = 26, so it is computationally manageable

without subject-specific dimension reduction in the temporal domain. For studies with

large number of participants, such data dimension reduction is a necessary preprocessing

step. ICA on the reduced data will yield a mixing matrix with dimension NR× q, where
q is the number of independent components. The mixing matrix can be transformed

back to the original scale NT ×q, as illustrated in Beckmann and Smith (2005); Guo and

Giuseppe (2008).

This manuscript addresses decomposition methods to evaluate cross-sectional vari-

ation in brain networks. However, it can be easily extended to hierarchical models.
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Longitudinal functional imaging studies are becoming increasingly common. For exam-

ple, subjects may have fMRI records at multiple visits. Our two-stage method can be

generalized for multi-level data very easily. In the first stage, we concatenate individ-

ual subjects’ data in the temporal domain across all visits. That is, given J visits per

subject, YNTJ×V = [X t
11, ..., X

t
1J , X

t
21, ..., X

t
2J , ..., X

t
N1, ..., X

t
NJ ]

t is the concatenated data

matrix, where Xij is the T × V matrix representing fMRI data for subject i at visit

j. Decomposition of Y by spatial ICA yields a compound mixing matrix of dimension

NTJ × q, where q is the number of independent components. Subject and visit specific

time courses can be acquired by partitioning the group mixing matrix. In the second

stage, multilevel functional principal component analysis (Di et al. 2008) can be applied

on the time courses to identify and quantify the subject-specific and subject/visit specific

variation. Subject-specific loadings on principal components can be utilized as predictors

to quantify the association between neuro-imaging signals to diagnostic classification. If

we are interested in changes of time courses over visits, longitudinal functional princi-

pal component analysis (Greven et al., 2010) can be utilized as an extension of MFPCA.

MFPCA only allows for random intercept, whereas LFPCA allows for both random inter-

cept and random slope of time, thus is a more generalized model to deal with multi-level

functional data.
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Eigenvalue Eigenfunction

IC 1, PC 1 0.50
√
2 cos(πt)

IC 1, PC 2 0.25
√
2 cos(2πt)

IC 2, PC 1 0.50
√
2 sin(4πt)

IC 2, PC 2 0.25
√
2 sin(6πt)

IC 3, PC 1 0.50
√
5(6t2 − 6t+ 1)

IC 3, PC 2 0.25
√
7(20t3 − 30t2 + 12t− 1)

Table 1: Eigenvalues and Eigenfunctions of time courses used for simulation study

Estimate SE LRT Permutation Test

IC 11, PC 2 9.19 5.59 p = 0.028 p = 0.039

IC 13, PC 1 -5.44 3.40 p = 0.050 p = 0.071

IC 19, PC 3 -25.00 14.60 p = 0.016 p = 0.023

IC 22, PC 4 20.40 9.98 p = 0.009 p = 0.011

IC 26, PC 1 -3.70 2.13 p = 0.030 p = 0.039

IC 28, PC 1 7.82 4.90 p = 0.024 p = 0.043

Table 2: Univariate regression analysis results

Estimate SE LRT Permutation Test

IC 19 and 28, PC 2 -11.60 7.51 p = 0.007 p = 0.015

IC 22 and 28, PC 2 -36.80 28.40 p = 0.037 p = 0.050

IC 26 and 26, PC 3 -75.9 43.7 p = 0.026 p = 0.031

Table 3: Regression results using the functional connectivity as the predictors. IC 19 and 28 stands

for the between network connectivity of spatial maps 19 and 28; IC 22 and 28 stands for the

between network connectivity of spatial maps 22 and 28; IC 26 and 26 stands for the within network

connectivity of spatial maps 26.
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Figure 1: group ICA on temporally concatenated data

Figure 2: Spatial maps and time courses used for the simulation study. Panel (A) represents the

spatial maps of the three independent components. Panel (B) displays the associated time courses

of the three spatial maps for five randomly selected subjects. Panel (C) represents the principal

components of the time courses. They are the main directions of variations of the time courses

across subjects.
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Figure 3: Box plots of correlations between the true and estimated spatial maps (A) and principal

components of time courses (B). Three scenarios are considered in the simulation: the deviation for

the Gaussian noise are 0, 0.3 and 1 respectively.

Figure 4: The first 80 ordered eigenvalues of the group data matrix.
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Figure 5: Plot of eigenfunctions associated with the significant predictors.

Figure 6: Three-D rendering of thresholded spatial maps associated with the significant predictors.

Red areas load positively while blue areas load negatively. The figures from the upper left to the

upper right are spatial maps of IC 11, 13 and 19 respectively. The figures from the lower left to the

lower right are spatial maps of IC 22, 26 and 28 respectively.
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Figure 7: Regions with over 20% overlap with the specified spatial maps. Red areas load positively,

blue negatively, purple have partial volumes loading positively and negatively. Abbreviations: Amyg.

= Amygdala, Cer. = Cerebellum, Fr. = Frontal, Hippo = hippocampus, Inf. = Inferior, Ins. =

Inusla, L. = Left, Olf. = Olfactory, Op. = Opercular part, Pal. = pallidum, PHG = Para-

Hippocampal Gyrus, Put. = putamen, R. = Right, Sup. = Superior, Temp. = Temporal, Tri. =

triangularis.
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