University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year 2007 Paper 224

Time-Dependent Performance Comparison of
Stochastic Optimization Algorithms

David Shilane* Jarno Martikainen'

Seppo Ovaska?

*Division of Biostatistics, School of Public Health, University of California, Berkeley, dshi-
lane @stanford.edu

THelsinki University of Technology, martikainen @iki.fi

YHelsinki University of Technology, sovaska@cc.hut.fi
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.
http://biostats.bepress.com/ucbbiostat/paper224

Copyright (©2007 by the authors.



Time-Dependent Performance Comparison of
Stochastic Optimization Algorithms

David Shilane, Jarno Martikainen, and Seppo Ovaska

Abstract

This paper proposes a statistical methodology for comparing the performance of
stochastic optimization algorithms that iteratively generate candidate optima. The
fundamental data structure of the results of these algorithms is a time series. Al-
gorithmic differences may be assessed through a procedure of statistical sampling
and multiple hypothesis testing of time series data. Shilane et al. propose a general
framework for performance comparison of stochastic optimization algorithms that
result in a single candidate optimum. This project seeks to extend this framework
to assess performance in time series data structures. The proposed methodology
analyzes empirical data to determine the generation intervals in which algorithmic
performance differences exist and may be used to guide the selection and design
of optimization procedures for the task at hand. Such comparisons may be drawn
for general performance metrics of any iterative stochastic optimization algorithm
under any (typically unknown) data generating distribution. Additionally, this pa-
per proposes a data reduction procedure to estimate performance differences in
a more computationally feasible manner. In doing so, we provide a statistical
framework to assess the performance of stochastic optimization algorithms and to
design improved procedures for the task at hand.



1 Introduction

Many optimization procedures iteratively estimate a function’s global optimum over the course of many
generations. When an elitist selection mechanism is employed [Béack, 1996, Fogel, 2005], results in subse-
quent generations are refined estimates of those previously obtained, and these generational results may be
encompassed in a time series data structure. We are interested in studying both the convergence of the
algorithm’s final result and the rate at which its estimates improve as a function of generation. For sto-
chastic algorithms, probabilistic analysis is necessary to ascertain the quality and reliability of a procedure’s
estimates of the global optimum. This assessment often involves a statistical performance comparison of
the competing algorithms. Shilane et al. [2006] establish a general procedure for the statistical performance
comparison of competing algorithms that each result in a single candidate optimum. This paper seeks to
extend this methodology to encompass the time series data structure so that performance differences may be
assessed as a function of generation in iterative stochastic optimization algorithms. The proposed method-
ology establishes an experimental framework that collects performance data through statistical sampling
and analyzes these data using multiple hypothesis testing. In doing so, we seek to identify the generational
intervals in which two candidate algorithms significantly differ in performance.

Because Wolpert and Macready [1997] have shown that no single optimization algorithm can best solve all
problems, we typically select among a number of candidate algorithms in particular settings based upon the
available data. Because a candidate procedure’s performance curve is typically unknown, we may estimate
it through statistical sampling and assess performance differences among candidate algorithms using a sta-
tistical hypothesis test. Shilane et al. [2006] establish a general procedure for performance comparison of
stochastic optimization algorithms seeking to solve a particular problem when run for the same number of
generations. Within this framework, statistical sampling is used to collect performance data for each algo-
rithm, and a multiple hypothesis testing procedure [Dudoit and van der Laan, 2006, Dudoit et al., 2004] based
on bootstrap resampling [Efron and Tibshirani, 1994] of the data is used to identify significant performance
differences. This approach allows the user to compare a single result from two algorithms for general data
generating distributions [Pollard et al., 2005a, Pollard and van der Laan, 2004] and performance measures.
This paper seeks to adapt the procedure of Shilane et al. [2006] to the time series data structure in order to
compare algorithms in terms of their estimated performance curves.

In addition, we present a data reduction technique that estimates the test results in a more computationally
feasible manner. The proposed methodology offers a convenient approach to evaluate competing stochastic
optimization algorithms based upon empirical data. The procedure is applicable to general performance
curves and data generating distributions under minimal assumptions and may be applied to arbitrary sets
of stochastic algorithms in any optimization setting. We also provide a case study that seeks to compare
the mean performance of four candidate evolutionary algorithms seeking to solve an example of Ackley’s
function.

2 Time Series Data

An iterative optimization algorithm, which we index by a, produces at each generation an estimate of a
function’s global optimum. Suppose we wish to study a function f : RP? — R with D € Z*. If we allow
algorithm a to run for G € ZT generations, then at each generation g € {1,...,G}, the algorithm produces
a point estimate Xqg = (Xag1,. .., Xagn) of the global optimum and a corresponding fitness value f(Xqq).
For algorithms that employ an elitist selection mechanism, the algorithm’s iterative estimate of the function
f’s global optimum at generation g + 1 fundamentally depends upon that obtained at generation g; indeed,
if the optimization procedure cannot improve upon the previous estimate, both quantities are the same.
Because each generational result depends upon the previous generation’s estimate, the fitness values may be
viewed as a time series data structure Y, = (Ya1,...,Yeq) = (f(Xa1), .-, f(Xaq))-
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The general framework of Shilane et al. [2006] establishes a methodology for performance comparison that
may consider either an algorithm’s relative improvement of the fitness function given an initial candidate
solution or the absolute fitness obtained from sampling an initial value on each trial. In the latter setting,
a performance comparison of two algorithms at a single generation is determined in the test of a single
hypothesis, and therefore we may simultaneously test hypotheses at each of G generations using a multiple
hypothesis testing procedure. We will adopt this convention for the remainder of this study; however, the
following procedure may be easily adapted to compare relative improvement by testing a hypothesis for each
choice of the candidate initial value at each generation.

Suppose we wish to study algorithms in an index set A. Because randomized optimization algorithms
follow a stochastic process, we seek to estimate the performance curve for each algorithm a € A based on
sampled data. In order to do so, the researcher must establish a performance curve p(Y,) as a measure of
the algorithm’s quality at each generation. In practice, the user selects a G-dimensional parameter of the
algorithm’s data generating distribution. The resulting performance curve may be considered the algorithm’s
parameter of interest. One such choice for the performance curve is the G-dimensional vector-wise expected
(mean) value of the algorithm’s estimate of the global optimum as a function of generation:

to = 1 (Yy) = EYa]; ac A (1)

Collecting data from n, € Z* independent, identically distributed trials of algorithm a results in n, time
series observations Y;, = (Yia1,. .., Yiag), @ € {1,...,n4}, which may be stored in an n, x G data matrix.
Using the data collected, we can estimate the performance of algorithm a according to a statistic i (Y;). An
appropriate estimate of the parameter of interest applies the same function to the data collected that the
parameter of interest applies to the data’s distribution. For the parameter (1), the sample (empirical) mean
is used:

. A . A 1 MNa 1 Na
fla = 1Y) = (iYar)s -, ilYag)) = (n > Yo, — Zm) ;o acA (2)
@ =1 @ i=1

3 Performance Comparison with Multiple Hypothesis Testing

For a given performance curve p,, algorithmic performance can be estimated based on the data collected
according to (2), and competing algorithms may be ranked at each generation. However, it is not clear
how generational results should be combined to compare algorithms in a generation-dependent manner. De-
pending upon the researcher’s preferences, asymptotic performance may be the most meaningful measure;
alternatively, one may consider one algorithm superior to another if its performance exceeds another’s for at
least some proportion of all generations (i.e. algorithm a; produces a larger estimated maximum of function
f than algorithm as for at least 75 percent of all generations). However, in randomized algorithms, any
data-based estimate of performance fi, follows a stochastic process, and as such, estimated performance
differences between algorithms may not reflect true differences simply as a result of random chance. To
account for this possibility, we wish to perform a pairwise comparison of algorithms in a hypothesis testing
framework to determine the generations at which significant performance differences exist.

As in Shilane et al. [2006], a multiple hypothesis testing procedure [Dudoit and van der Laan, 2006] is
appropriate for performance comparison. For each pair of algorithms a,b € A, the researcher must establish
null hypotheses that define a difference in performance in terms of the algorithms’ performance curves at
each generation. Though others may be employed, a typical set of hypotheses is the equality of means (1)
at each generation:

H:(p(Yar) =p(Yor) =05 (Yag) = (Yoq) =0)  a,be Ay a#b (3)
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In order to test these hypotheses, we need to estimate the standard error of the observed performance
difference at each generation, which relies upon the following estimate of the variance vector o2(Y,) for each
algorithm a:

6% (Ya) = (62 (Yar), .., 6%(Yag)) = (;Z[Yl i(Yal))? iz Yia — (Y a@)] ) ja€ A (4)

It should be noted that the bootstrap estimate of variance in (4) divides by the sample size n,, whereas the
traditional estimate of this quantity instead divides by n, — 1 to create an unbiased estimate [Efron and
Tibshirani, 1994]. The latter estimate may be substituted at the user’s discretion, but these quantities differ
by only a small amount for large sample sizes. Using the statistics (2) and the estimated variance (4), the
hypothesis (3) may be tested using two sample t-statistics:

— 4V 0 (Yoe) — (Y
t=t(1,...,G) = A0 - 80e6) i M6) )y gy, (5)
al) N 02(3@1) \/&2(Yac) oy 52(Yye)
Ng ngy

Once test statistics are computed, the process of adapting the time series data structure to the general
performance comparison framework is complete. The remainder of the hypothesis testing procedure is oth-
erwise identical to that proposed in Shilane et al. [2006]. A bootstrap procedure is used to estimate the
joint distribution of the test statistics (5), and a multiple testing procedure (MTP) must be selected to
control a desired Type I Error Rate at level o € (0,1). It should be noted that time series data structures
produce a highly dependent null hypothesis structure — indeed, for any optimization algorithm that stores
its cumulatively optimal observed result, the performance metric at generation g + 1 must be at least as fit
as that produced at generation g. As a result of the dependence structure in time series data, a joint MTP
is necessary. A marginal MTP is not appropriate for performance curve comparisons because these tests
assume the independence of the G hypotheses [Dudoit and van der Laan, 2006].

Although the choice of Type I Error Rate is left to the researcher, using the False Discovery Rate (FDR)
may provide results that can be easily interpreted within a scientific context. The FDR Type I Error Rate
is defined as the mean proportion E[V/R] of false positives among the rejection set, where V € ZT is the
number of false positive rejections and R € Z* is the number of total rejected hypotheses. By controlling an
MTP at FDR level «, we can assure with probability 1 —a that the average proportion of false positives is «,
which provides the user with a measure of reliability for the results. Within the context of the optimization
problem, an MTP that controls the FDR at level o ensures that an average proportion of 1 — a of the
rejected hypotheses reflect true performance differences. Additionally, the FDR procedure ensures that if
results were collected for a larger number of generations G*, then we could also expect a proportion of 1 — «
of the rejected hypotheses in the range [G + 1,...,G*] to be reliable.

MTPs may be summarized in terms of adjusted p-values and confidence region plots. For each hypothesis,
the adjusted p-value is the minimum value of a necessary to reject the hypothesis. Confidence regions depict
a range of estimates for the difference in performance. At each generation, we reject the null hypothesis (3) if
and only if the confidence region does not contain zero at that generation. Because confidence regions are a
function of the data, they either contain or do not contain the true performance difference at each generation;
however, if the comparison experiment is repeated a large number of times, a proportion of 1 — « of all confi-
dence regions produced would contain the true performance difference curve for the two algorithms compared.

Estimated confidence regions are currently available for bootstrap-based MTPs controlling the Family-Wise
Error Rate (FWER), which is defined as P(V > 0), and the generalized Family-Wise Error Rate (cFWER)
P(V > k),k € Z* |[van der Laan et al., 2004]. However, deriving an estimate of FDR confidence regions
or mapping from gFWER, confidence regions to the FDR Type I Error Rate is currently an active area of
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research.

Although the bootstrap is an effective tool that allows one to estimate the distribution of effectively any
parameter without relying upon assumptions, this technique is computationally intensive and may require
many resamplings (i.e. B > 10000) to produce accurate results in hypothesis testing applications. Analytical
techniques may be employed when one is able to validate distributional assumptions about the data (such
as the Normal distribution). However, as a result of the inherent dependence of time series data structures,
we propose limiting the testing methodology to data collected at regular generational intervals. Although
less comprehensive than a test encompassing data collected at every generation, the loss of accuracy may
be small in comparison with the computational savings. In this setting, reduced data confidence regions
would be constructed only at the intervals under study, and the confidence region for the remainder of the
generations may be interpolated using a smoother.

In the case of a performance curve comparison based on interval sampling, the main question of interest is
how large to set the interval size h. This selection may be performed qualitatively based upon a graphical
analysis, as presented in Section 4, chosen according to the Nyquist-Shannon sampling theorem [Nyquist,
1928], or selected to satisfy heuristic criteria. In practice, the researcher may choose among candidate values
of h in terms of the relative improvement. For instance, if testing were conducted at every 50th generation
and also exclusively at every 100th generation, then we could evaluate the efficacy of the larger interval size
in terms of its ability to interpolate the confidence regions at every 50th generation according to a distance
metric such as the mean squared error.

4 Example: A Performance Curve Comparison of Competing Op-
timization Procedures
In order to illustrate the proposed methodology, we will analyze performance curve data from several com-

peting evolutionary algorithms (EAs) [Fogel, 2005] that seek to minimize the following variant of Ackley’s
function [Béck, 1996]:

D D
1 1
Y =—cyxexp | —c2 5] dg_l X2 | —exp (D dg_l cos (c3 * Xd)> +c1 + exp(1). (6)

The following parameters supplied for this example:

1 =20; cg =0.2; c3 =2m; D =10; X4 € (—20,20), d € {1,...,D}.

The candidate EA described in Shilane et al. [2006] was applied to this problem in a study to select among
four candidate mutation rates. The four corresponding algorithms will be indexed by the set A = {2, 4,6, 8},
which respectively denote the gene-wise mutation rate of each EA expressed as a percentage. These EAs were
identical in all other aspects. We will employ the expected value u(Y,) given by (1) as our performance curve.

A total of n, = 100 trials of each algorithm a € A were conducted to collect time series data and estimate
the performance curve u(Y;) (1) by the sample mean [i(Y,) given by (2). Each trial was conducted for a
total of G = 10000 generations with data recorded at each generation. The sample mean performance curve
for each algorithm is plotted in Figure 1. On average, it appears that EA 4 best minimizes the Ackley
function (6) for approximately the first 2000 generations, and it is thereafter eclipsed by EA 6, which ap-
pears to outperform all other procedures for the duration of the trials. In order to substantiate the validity
of these claims based upon both the empirical mean and sample variance of the performance of each algo-
rithm, we will conduct pairwise comparisons of the algorithms via the multiple testing procedure of Section 3.
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Sample Mean Performance of Ackley EAs
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Figure 1: Sample mean fitness as a function of generation in 4 EAs seeking to optimize the Ackley function
(6). Each plot is an estimate of the EA’s expected value performance curve at each generation based upon
n, = 100 trials.

We tested each pair of algorithms a,b € A; a # b for a difference in mean performance at each generation.
The null hypothesis (3) states that there exists no difference in expected performance between EAs a and b
at each generation. We tested this null hypothesis using the boostrap based SSMaxT [Dudoit and van der
Laan, 2006) FWER-controlling MTP and also using the FDR Conservative MTP, both of which controlled
their respective Type I Error Rates at level & = 0.05 with B = 10000 bootstrap re-samplings. The results
of these tests are contained in Table 1:

The Rejections column of Table 1 shows the number of rejected hypotheses in the pairwise test. Because
the null hypothesis (3) has a two-sided alternative, a rejection may correspond to a significant performance
difference in either direction and may be determined by examining the sample mean performance curve plot
of Figure 1. The pairwise FDR Conservative tests of o — p4, 4 — pts, and pug — pg all result in significant
performance differences at all G = 10000 generations. As shown in Figure 1, EA 4 appears to better optimize
(6) compared with EAs 2 and 8, and because all G hypotheses were rejected, we can conclude that EA 4
performs significantly better than EAs 2 and 8 for the duration of this experiment. Likewise, we can also
conclude based on the data collected that EA 6 significantly outperforms EA 8 across all generations studied.
However, one cannot extrapolate from these limited results the asymptotic properties of the algorithms in
question; the best algorithm over the first G generations may yield to one of the other three if the experiment
is extended to a larger number of generations G*.

For each pairwise comparison, the maximum insignificant generation (Max Insig. Gen.) column of Table
1 indicates that last generation at which the null hypothesis is not rejected. Using these values and the
mean performance plot in Figure 1, we can draw conclusions about the range at which particular algorithms
outperform others. For instance, EA 2 produces a smaller empirical mean performance than that of EA 8
over much of the observed spectrum, which results in 8159 rejections for the FWER SSMaxT test. However,
the null hypothesis is not rejected at the 10000th generation, meaning that EA 8’s performance improves
sufficiently to conclude that no significant performance difference exists between EAs 2 and 8 at the final
generation. Moreover, we see that EA 6 creates significant separation in performance from EA 2 for all gen-
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Test TI Error | MTP Rejections | Max Insig. Gen. | Max Adjp | Preferred EA
wo — g | FWER SSMaxT 9952 261 - 4
po2 — g | FDR Conservative 10000 0 0.0256 4
pue — e | FWER SSMaxT 8707 1394 - 6
w2 — ug | FDR Conservative 8824 1243 - 6
we — g | FWER SSMaxT 8159 10000 - 2
pe — s | FDR Conservative 8272 10000 - 2
s — e | FWER SSMaxT 8960 2285 - 6
wa — pe | FDR Conservative 9004 2285 - 6
ws — pus | FWER SSMaxT 9984 29 - 4
we — ps | FDR Conservative 10000 0 0.005 4
e — g | FWER SSMaxT 9989 22 - 6
ue — us | FDR Conservative 10000 0 0.005 6

Table 1: Summary results for pairwise performance curve comparisons of four EAs seeking to optimize the
Ackley function (6) based upon multiple hypothesis testing of the null hypothesis (3) at each generation

gef{l,...,G}.

erations after the 1394th generation in the FWER SSMaxT test, and likewise EA 6 significantly outperforms
EA 4 at all generations after 2285.

For the three pairwise performance comparisons that resulted in rejections of all G null hypotheses, we have
displayed the maximum adjusted p-value (Max Adjp) in Table 1 of the G simultaneous tests. This value
provides the minimum possible level of « at which all hypotheses would be rejected. In the case of the FDR
Conservative tests of us — ug and pg — g, this minimum value of « is 0.005, meaning we could reduce a by
a factor of 10 without changing the conclusion drawn.

Finally, the Preferred EA column of Table 1 displays a qualitative overall judgment of the preferred al-
gorithm. As a heuristic standard, we choose to prefer an algorithm if it performs significantly better than
another for at least 75 percent of the generations sampled. For all comparisons except that of EAs 2 and 8,
this includes the final generation considered. Although EAs 2 and 8 do not differ significantly at the 10000th
generation, EA 2 does significantly outperform EA 8 for more than 8000 generations. The comparisons of
EAs 2 and 4 to EA 6 are also of interest. In both tests, EA 6 performs significantly worse than the others
at early generations but later overtakes both algorithms. In each of these comparisons, EA 6 significantly
outperforms the competing algorithm for the duration of the final 7500 generations.

These observations are further substantiated in Figures 2-13, which display FWER 1 — « confidence regions
for each of the pairwise SSMaxT tests at level & = 0.05. In each of the comparisons, the null hypothesis is
rejected at generation g if and only if the confidence region does not contain the value zero at that generation.
When significant performance differences exist, the confidence region will lie below zero if the first algorithm
better minimizes (6), and this region will lie above zero if the second algorithm performs significantly better.
(For a maximization problem, the situation is reversed.) Each test result is depicted in two plots: the first
depicts the confidence region at all generations, and the second provides a magnified view that restricts
attention to generations greater than 1000.

Figures 2-13 also contain estimated confidence regions produced by restricting comparison to a subset of
the data collected using the data reduction technique suggested at the end of Section 3. A total of 100
hypotheses were tested using the performance data gathered from every 100th generation. In this case, the
choice of i = 100 for the interval size was selected. The entirety of the confidence region was estimated using
a linear interpolation of the upper and lower limits at the missing generational values. Qualitatively, the
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Figure 2: 0.95 confidence region for the test of pus — py over the full 10000 generation interval. For greater
magnification, please refer to Figure 3.
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Figure 3: 0.95 confidence region for the test of us — p4 after generation 1000. For the confidence region over
the full generational interval, please see Figure 2.
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Figure 4: 0.95 confidence region for the test of pus — pug over the full 10000 generation interval. For greater
magnification, please refer to Figure 5.
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Figure 5: 0.95 confidence region for the test of us — ug after generation 1000. For the confidence region over
the full generational interval, please see Figure 4.
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Figure 6: 0.95 confidence region for the test of pus — ug over the full 10000 generation interval. For greater
magnification, please refer to Figure 7.
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Figure 7: 0.95 confidence region for the test of us — ug after generation 1000. For the confidence region over
the full generational interval, please see Figure 6.
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Figure 8: 0.95 confidence region for the test of py — pg over the full 10000 generation interval. For greater
magnification, please refer to Figure 9.
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Figure 9: 0.95 confidence region for the test of u4 — g after generation 1000. For the confidence region over
the full generational interval, please see Figure 8.
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Figure 10: 0.95 confidence region for the test of py — pg over the full 10000 generation interval. For greater
magnification, please refer to Figure 11.
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Figure 11: 0.95 confidence region for the test of uy — pg after generation 1000. For the confidence region
over the full generational interval, please see Figure 10.
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Figure 12: 0.95 confidence region for the test of pg — pg over the full 10000 generation interval. For greater
magnification, please refer to Figure 13.
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Figure 13: 0.95 confidence region for the test of ug — pg after generation 1000. For the confidence region
over the full generational interval, please see Figure 12.
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estimated confidence regions appear to approximate the full data regions reasonably well. Furthermore, the
computational time required to perform all six pairwise tests of the 4 algorithms studied was reduced from
approximately two days to 15 minutes using multtest package [Pollard et al., 2005b] of the R statistical
programming language. In this particular application, it is reasonable to conclude that the computational
savings justifies the relatively small loss in accuracy of the confidence region plots. For comparison purposes,
a numeric summary analogous to Table 1 of the reduced data test results is contained in Table 2.

Test TI Error | MTP Rejections | Max Insig. Gen. | Max Adjp | Preferred EA
e —pga | FWER SSMaxT 100 0 0.0022 4
o — g | FDR Conservative 100 0 0.0044 4
e — e | FWER SSMaxT 88 1200 - 6
we — e | FDR Conservative 89 1100 - 6
wo — pus | FWER SSMaxT 83 10000 - 2
pe —pus | FDR Conservative 84 10000 - 2
wa — e | FWER SSMaxT 92 2200 - 6
ws — pug | FDR Conservative 93 2200 - 6
us —ps | FWER SSMaxT 100 0 0 4
us —pus | FDR Conservative 100 0 0 4
ue — ps | FWER SSMaxT 100 0 0 6
we — pus | FDR Conservative 100 0 0 6

Table 2: Summary results for pairwise performance comparison tests of reduced data collected at every 100th
generation. A total of 100 hypotheses were tested.

The results of the pairwise comparisons suggest clear performance differences between the EAs over many
of the G = 10000 generations studied. EA 4 was shown to significantly outperform EAs 2 and 8 at all
or nearly all generations, depending upon the choice of Type I error rate. EA 4 initially outperforms EA
6 by a significant margin but is eventually overtaken. Table 3 displays conclusions drawn from a closer
inspection of the FDR, comparison between EAs 4 and 6 at a variety of generational intervals. After frequent
lead changes in the first 68 generations, EA 4 outperformed EA 6 through generation 1862. However, this
performance difference became insignificant at generation 1548. Likewise, EA 6 insignificantly outperformed
EA 4 from generation 1863 to generation 2285, and the results were significant for the remainder of the
experiment. We may therefore conclude on the whole that EA 4 is the preferred algorithm for most of the
first 1547 generations and was weakly preferred until generation 1862, whereas EA 6 was weakly preferred
from generations 1863 to 2285 and significantly outperforms all other candidates in generations 2286 to
10000.

5 Discussion

The rate of convergence is a primary consideration in the design of effective optimization algorithms. In
studying stochastic procedures, a probabilistic analysis is necessary to ascertain the underlying properties
of these algorithms. However, even relatively simple stochastic procedures may involve complex data gener-
ating distributions when iterated over a large number of generations. By contrast, a statistical analysis of
empirical data produced from the algorithms in question is relatively straightforward. The proposed method-
ology allows the researcher to choose how an algorithm’s performance is measured, this performance curve
may be studied in terms of its rate of convergence to the global optimum as a function of the generation.
The time series data collected through statistical sampling provides an intuitive estimate of the algorithm’s
performance curve, and competing procedures may be compared at each generation using multiple hypoth-
esis testing. The resulting confidence regions and adjusted p-values may be studied to determine whether
observed performance differences are significant in specific generational intervals. This information may be
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Generation Interval Preferred EA Difference
1—-68 Mixed Insignificant
69 — 127 4 Insignificant

128 — 1128 4 Significant

1129 — 1466 4 Mixed

1467 — 1547 4 Significant
1548 — 1862 4 Insignificant
1863 — 2285 6 Insignificant

2286 — 10000 6 Significant

Table 3: A comparison of EAs 4 and 6 at a variety of generational intervals in the Ackley function case study.
The preferred EA is selected by mean performance at each generation, and this performance is classified as
either significant or insignificant based upon the results of the FDR multiple hypothesis test of equality in
means. Both EAs were competitive in the first 68 generations with frequent lead changes. In the interval
from generation 1,129 to generation 1,466, a total of 130 test results were insignificant. All other generation
ranges are homogeneous in their respective conclusions.

used to study existing optimization strategies and explore the effects of varying their components (e.g. the
mutation frequency) in controlled scientific experiments.

The proposed methodology offers a convenient and flexible framework for evaluating algorithmic perfor-
mance and designing improved strategies for the problem at hand. The researcher may choose any desired
performance curve and does not need to rely upon distributional assumptions for the data collected. These
techniques may be applied to compare arbitrary sets of stochastic algorithms in any optimization setting.
Random algorithms may be compared to deterministic functions with only small changes to the hypothesis
structure 3 and test statistics 5. Furthermore, the proposed data reduction technique provides an avenue
for researchers to estimate the results of a full generational analysis in a more computationally tractable
manner. The use of a tournament selection technique may also lead to additional computational savings in
examples such as the case study of Section 4: because EA 4 significantly outperformed EAs 2 and 8 at all
generations for the FDR test, the comparison of these inferior procedures to EA 6 could have been foregone
completely.

Performance comparison is largely a retrospective procedure for validating experimental results. As such, it
is not designed to seek out the best candidate optimum for the problem at hand; indeed, running any one of
the four candidates of Section 4 for all the computational time allotted to our comparison would certainly
have produced a better result than any obtained in our study. However, statistical performance comparison
may be especially helpful in optimization applications that are sufficiently similar to well-studied examples.
In this case, the lessons learned from performance comparison may be used to design general procedures
that may be useful in a variety of settings.

As with any analysis that makes use of hypothesis testing, the proposed methodology assumes that a suf-
ficiently large sample of data is collected to discern the performance differences between the algorithms
studied. However, the selection of this sample size to ensure a minimum threshold of statistical power is cur-
rently an open problem in the multiple testing literature for general settings with unknown data generating
distributions. Therefore, the researcher should collect as much data as time constraints allow.

Finally, some care should be taken to ensure that the definition of a generation is relatively consistent in all
algorithms compared. One possible approach is to collect performance data at regular time intervals instead
of at each generation, which may be of greater interest in comparing algorithms of differing population sizes
or computational complexity within a single generation cycle.
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