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Bootstrap-based inference on the difference in the means of two
correlated functional processes

Ciprian M. Crainiceanu1 Ana-Maria Staicu2 Shubankar Ray3 Naresh Punjabi4

Abstract

Nonparametric inference methods on the mean difference between two correlated func-
tional processes are proposed. We compare methods that: 1) incorporate different levels of
smoothing of the mean and covariance; 2) preserve the sampling design; and 3) use paramet-
ric and nonparametric estimation of the mean functions. We apply our method to estimating
the mean difference between average normalized δ-power of sleep electroencephalograms for
51 subjects with severe sleep apnea and 51 matched controls in the first 4 hours after sleep
onset. Data are obtained from the Sleep Heart Health Study (SHHS), the largest community
cohort study of sleep. While methods are applied to a single case study, they can be applied
to a large number of studies that have correlated functional data.
Some key words: EEG, sleep, penalized splines, measurement error, spectrogram.

1 Introduction

We propose nonparametric methods for estimating the mean difference and the associated
variability between two correlated functional processes. There is a vast literature on estimat-
ing parametric fixed effects with correlated residuals, which led to two separate “schools” of
thought in Statistics: estimating equations and covariance modeling. In short, estimating
equations have focused on using a working covariance matrix to obtain unbiased estimators
of the mean. The empirical covariance matrix is then used in a sandwich formula to obtain
corrected covariance estimators; see [1, 2, 3] for more details. Covariance modeling can be
done either explicitly using parametric, parametric mixtures or nonparametric methods or
implicitly using random effects; see [4, 5, 6, 7, 8] for more details. Nonparametric smoothing
with correlated residuals has a similar long history, with most papers being inspired and
applied to smoothing of time series data [9, 10, 11, 12, 13].

The literature on functional data analysis also contains some papers on comparing the
means of two functional processes. In particular, Benko et al. [14] provide theoretical ar-
guments for using bootstrap tests for assessing the equality of means, eigenfunctions and
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eigenvalues of the covariance functions for the two sample problem. Hall and Van Keilegom
[15] use bootstrap for the hypothesis testing of the equality of distributions of two indepen-
dent samples of curves. Zhang et al. [16] proposed L2- and bootstrap-based statistics for
testing the equality of two mean curves when curves are independent and observed without
noise. Several Bayesian approaches to mean difference estimation with complex correlation
structures have also been published including [17, 18, 19, 20, 21, 22].

The main novelty in our paper is that we propose methods for inference on the difference
in the means of two functional processes that exhibit complex correlation patterns. In Section
1.1 we introduce our motivating example obtained from a matching case-control study, where
subjects with severe sleep disrupted breathing were matched to controls. The correlation
between cases and controls case is induced by matching. There are many other examples
where correlated functional data appear naturally: 1) longitudinal observations of images or
functions; 2) replication experiments; and 3) multilevel sampling experiments.

This is a new and important problem, as many new medical and public health studies
contain non-independent samples of functions. Our primary aim is to estimate the difference
in means between two correlated functional samples together with its associated variability.
Our secondary aim is to test whether and where the difference in means is statistically dif-
ferent from zero. We provide three easy to use, fast, and statistically principled techniques
that address our primary and secondary aims. These techniques contain variations, adapta-
tions and refinements of ideas sprinkled throughout the literature and are easy to implement,
computationally fast, scalable, and adaptable to increasingly complex designs.

Our methods and discussion will be general, but we consider a motivating example from
the Sleep Heart Health Study [23], the largest community cohort study of sleep.

1.1 Short description of the data and problem

The SHHS collected in-home polysomnogram (PSG) data on thousands of subjects at mul-
tiple visits. Two-channel Electroencephalograph (EEG) data was collected as part of the
PSG at a frequency of 125Hz, or 125 observations per second. Thus, for each subject, visit,
and EEG channel a total of 3.6 millions observations were collected for a typical 8 hour sleep
interval. Here we focus on modeling a particular characteristic of the spectrum of the Elec-
troencephalograph (EEG) data, the proportion of δ-power. For more details on the definition
and interpretation of δ-power see, for example, [24, 25, 26]. For our purpose, it is sufficient
to know that percent δ-power is a summary measure of the spectral representation of the
EEG signal; in this paper we use percent δ-power calculated in 30-second intervals. Figure 1
displays the sleep EEG proportion of δ-power in each of the 30-second intervals of the first 4
hours after sleep onset for 8 matched pairs of subjects. Each panel displays a matched pair
with the red lines corresponding to subjects with sleep disrupted breathing (SDB) and the
blue lines corresponding to their matched controls. The x axis represents time in hours since
sleep onset and the y axis represents the estimated proportion of δ-power. Observations are
shown in adjacent 30-second intervals with missing observations indicating wake periods.

A total of 51 matched pairs were obtained using propensity score matching [27]. Sub-
jects with severe SDB were identified as those with a respiratory disturbance index (RDI)
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Figure 1: Normalized δ power for the first 4 hours after sleep onset for 8 matched pairs of
controls (blue) and sleep apneics (red).
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greater than 30 events/hour. Subjects without SDB were identified as those with an RDI
smaller than 5 events/hour. Other exclusion criteria included prevalent cardiovascular dis-
ease, hypertension, chronic obstructive pulmonary disease, asthma, coronary heart disease,
history of stroke, and current smoking. Propensity score matching was utilized to balance the
groups on demographic factors and to minimize confounding. SDB subjects were matched
with no-SDB subjects on the factors of age, BMI, race, and sex. Race and sex were exactly
matched, while age and BMI were matched using the nearest neighbor Mahalanobis tech-
nique with a caliper of 0.10. The resultant match was 51 pairs that met the strict inclusion
criteria outlined above and exhibiting very low standardized biases, a vast improvement on
the imbalance of BMI between diseased and non-diseased groups of past studies [28].

Inspection of the 8 pairs displayed in Figure 1 reveals several notable features of the data.
First, there is large within/between-subject as well as within-group variability. Second, there
are no readily recognizable patterns within groups. Third, and more conspicuous, functions
are correlated within groups due to the matching process. Fourth, missing data patterns
are subject-specific with the proportion of missing observations varying dramatically across
subjects; note, for example, that more than 50% of data are missing for the healthy subject
in the third plot. Thus, simply taking the within-group differences would be inefficient by
throwing away data.

1.2 Short description of challenges

Data of the type shown in Figure 1 has many of the complexities encountered in similar
applications: missing observations, correlated functions, complex dependence structures and
noise. The problem we are interested in is estimating the difference in the mean functions
corresponding to sleep apneics (red lines in Figure 1) and matched controls (blue lines in
Figure 1).

To better understand the problem and the various assumptions it helps to provide a
reasonable statistical framework. The data in our study are pairs of functions {YiA(t), YiC(t)},
where i denotes subject, t = t1, . . . , tT = 480 denotes the time measured in 30 second intervals
from sleep onset, A stands for apneic and C stands for control. For each subject some of the
observations might be missing. We write both processes as

{
YiA(t) = µA(t) + ViA(t);
YiC(t) = µC(t) + ViC(t),

(1)

and we are interested in estimators of d(t) = µA(t)− µC(t) and their associated variability.
Many functional data papers concerned with estimating d(·) [14, 15, 16] assume that ViA(·)
and ViC(·) to be independent, an unreasonable assumption in our and other contexts. Thus,
the main challenge is to estimate the function d(·) when the residual processes ViA(·) and
ViC(·) have complex covariance structures and are correlated. In most cases, assuming a
parametric covariance function, such as working independence, autoregressive or exchange-
able, would badly misfit the observed functional covariance. Taking mixtures of such families
tends to fail equally badly due to the complex nature of functional data. A secondary chal-
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lenge is that making a-priori parametric assumptions about either the mean functions or the
difference between them would likely be misleading.

To address these issues we propose three strategies. The first strategy uses nonpara-
metric estimators of the mean functions based on penalized splines [29, 30] under the inde-
pendence assumption. The variability of the difference function estimate is then obtained
via a nonparametric bootstrap of pairs. We call this the “Nonparametric estimation using
nonparametric bootstrap” and we describe it in details in Section 2.1. The second strategy
uses the same nonparametric estimators of the mean functions. The procedure then relies on
modeling and smoothing the error processes, ViA(·) and ViC(·), using multilevel functional
techniques [26]. Thus, instead of a nonparametric bootstrap of pairs we simulate data from
the joint distribution of the error processes. We call this the “Nonparametric estimation
using parametric bootstrap” because it uses parametric simulations from the functional dis-
tributions. The method is described in Section 2.2. The third strategy uses parametric
estimation of the mean functions where the number of degrees of freedom is fixed a-priori.
Nonparametric bootstrap of pairs is then used to estimate estimators variability. The method
is described in Section 2.3.

2 Functional bootstrap

Because subjects are matched it is reasonable to assume that the processes ViA(t) and ViC(t)
are correlated. In this section we propose two bootstrap methods that preserve the pair-
specific correlation. The first approach employs a fully nonparametric bootstrap whereas the
second combines elements of nonparametric modeling of covariance operators and parametric
simulations from the induced mixed effects model.

Both methods use estimators of the mean function under the independence assumption.
We start by describing two smooth estimators of µA(t); the estimator for µC(t) is obtained
similarly. The first estimator, denoted µ̃A(t), is obtained by using penalized spline smoothing
of all pairs {t, YiA(t)} under the independence assumption, that is assuming that ViA(t) is a
mean zero, uncorrelated, homoscedastic process. The second estimator, denoted by µ̂A(t), is
obtained by using penalized spline smoothing of {t, Y ·A(t)}, where Y ·A(t) =

∑I
i=1 YiA(t)/I

for all t. Penalized splines are one of the most successful and practical automatic smoothing
techniques; we refer here to the excellent monographs [30, 31]. A penalized spline approach
represents the mean function as µA(t) = BA(t)βA, where BA(t) is a low-rank spline basis
obtained by fixing the number and location of knots and achieves smoothing by imposing
a that the spline coefficients are random with a distribution βA ∼ N(0,DA). The penalty
matrix DA is intrinsically related to the choice of spline basis, BA(t), and typically depends
on one smoothing parameter that is estimated from the data. In this paper we use thin-plate
splines with 20 knots positioned at the empirical quantiles of the observed time points ([30],
Chapter 13.4). We used the function spm implemented in the implemented in R [32] package
SemiPar [33] .

There are some important points to make before we proceed. First, note that Y ·A(t) is
a consistent estimator of µA(t). Second, obtaining µ̃A(t) is more computationally expensive
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than obtaining µ̂A(t) as it requires smoothing of IT pairs compared to only T pairs. This is
especially important when the number of subjects, I, is large and one uses the nonparametric
bootstrap to estimate the variability of mean estimators. However, both estimators can be
used in most applications. We will show that they provide almost identical results in our
application and in simulations. The intuition for this result is quite simple: the mean of
local means is the local mean.

2.1 Nonparametric estimation using nonparametric bootstrap

We applied the bootstrap methods to the 51 matched pairs of controls and sleep apneics.
The top-left panel in Figure 2 displays the average normalized δ-power for the 51 subjects
with severe sleep apnea (red) and 51 matched controls (blue). Raw means are depicted as
dots, while penalized spline smoothers of the raw means are depicted as lines. Similar curves
could be shown using a penalized spline smoother of the entire data set, but the results
are indistinguishable from the ones shown. We used B = 1000 nonparametric bootstrap
samples of matched pairs and we repeated the penalized spline fitting of the raw means
described above; the total computation time was 27 minutes (Dual Core Processor 3GHz,

32Gb RAM PC). This created B bootstrap estimators d̂b(t) = µ̂A,b(t) − µ̂C,b(t) of d(t),
b = 1, . . . , B. The top-right panel in Figure 2 displays the bootstrap estimator of mean
differences d̂B(t) =

∑B
b=1 d̂b(t)/B as a solid black line. The estimator d̂B(t) tends to be

negative during most of the 4-hour interval, which suggests that subjects with severe sleep
apnea tend to have lower normalized δ power. However, d̂B(t) is far from being a flat line
indicating that the difference is more pronounced during certain intervals.

To better visualize where these differences are likely to occur we construct 95% pointwise
confidence intervals based on the bootstrap samples. At time point t a 95% bootstrap
confidence interval for dB(t) is [q̂B,0.025(t), q̂B,0.975(t)], where q̂B,p(t) is the p-quantile of the

bootstrap sample d̂b(t), b = 1, . . . , B. Because the distribution is symmetric we chose instead

to use d̂B(t)±2ŝB(t), where ŝB(t) is the estimated standard deviation of the bootstrap sample

d̂b(t), b = 1, . . . , B. Here we focus on pointwise confidence intervals, but joint confidence
intervals will be discussed in Section 3. The top-right panel in Figure 2 also displays the
95% pointwise confidence intervals as a shaded gray area. Statistically significant differences
between normalized δ power of sleep apneics and controls can be detected between minutes 4
and 23 with the largest difference around minute 18 and between minutes 113 and 129 with
the largest difference around minute 122. These findings seem to agree with the observed
variability in the top-left panel of Figure 2.

We have conducted the same analysis using d̃(t) instead of d̂(t). Recall that d̃(t) is

based on nonparametric smooth estimates of the entire data set, whereas d̂(t) is based on
nonparametric smooth estimates of the empirical means. The bottom-left panel in Figure
2 displays the same information for d̃(t) as the top-right panel in the same figure. This
indicates that results are practically indistinguishable with the two methods. We prefer
using d̂(t) because it is much faster to calculate.

The raw difference between normalized δ power displayed in the top-right panel in Figure

6
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Figure 2: Top-left panel: average normalized δ-power for 51 subjects with severe sleep apnea
(red) and 51 matched controls (blue). Raw means are depicted as dots, while penalized
spline smoothers of the raw means are depicted as lines. Top-right panel: estimated mean
difference between average normalized δ-power apneics and controls. The pointwise 95%
confidence intervals (shaded gray area) are obtained by nonparametric bootstrapping of
pairs of subjects, estimating the mean of the sleep-apneic and control groups using penalized
splines, and taking the difference between the estimated means of the groups. Bottom-left
panel: similar to the top-right panel, obtained using nonparametric bootstrap of pairs but
with a nonparametric smooth estimates of the entire data set for each group. Bottom-
right panel: shows the results in the top-right panel as a percent of the range of the mean
normalized δ power of controls.
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2 provides valuable information, but does not directly quantify the relative size of observed
differences. To provide that, the bottom-right panel in Figure 2 displays the difference
between normalized δ power between the two groups as a percentage of the range of the esti-
mated mean functions of controls. More precisely, we plot 100d̂(t)/{maxt µ̂C(t)−mint µ̂C(t)}
and its associated variability.

An alternative approach would be to bootstrap the pair differences YiA(t) − YiC(t) =
d(t)+ViA(t)−ViC(t). However, calculating the difference YiA(t)−YiC(t) can only be done when
both YiA(t) and YiC(t) are observed. Thus, missing data in either process would compound
the problem and would lead to serious efficiency losses. When data are not missing, this
approach provides similar results to the ones obtained with the method described above.

2.2 Nonparametric estimation using parametric bootstrap

In this section we will continue to use the smooth estimates of the mean functions under the
independence assumption. The main difference is in how we estimate the variability of these
estimators when the distribution of error processes ViA(t) and ViC(t) is unknown. We start
by noting that the pairing of subjects induces within-pair correlation. We account for this
by defining a multilevel functional model for both processes as described by [26]

{
ViA(t) = Xi(t) + UiA(t) + εiA(t);
ViC(t) = Xi(t) + UiC(t) + εiC(t),

(2)

where Xi(t) is a functional process with smooth covariance operator KX(·, ·), UiA(t) and
UiC(t) are functional processes with the same smooth covariance operator K

U(·, ·), εiA(t) and
εiC(t) are independent mean zero variance σ2

ε random variables, and Xi(t), UiA(t), UiC(t),
εiA(t), and εiC(t) are assumed mutually independent within- and between-pairs. The role
of the process Xi(t) is to account for the within-pair correlation, as cov{YiA(t), YiC(s)} =
KX(t, s). The processes UiA(t) and UiA(t) are assumed to share the same covariance operator,
a reasonable assumption in this context. However, this assumption is not necessary and may
be relaxed in other applications. Both KX(·, ·) and KU(·, ·) are left unspecified, are assumed
to be smooth, and are estimated from the data.

Here we proceed in two stages. First, we obtain WiA(t) = YiA(t) − µ̂A(t) = ViA(t) +
{µA(t)−µ̂A(t)} andWiC(t) = YiC(t)−µ̂C(t) = ViC(t)+{µC(t)−µ̂C(t)}, where µ̂A(t) and µ̂C(t)
are the nonparametric smooth estimates of µA(t) and µC(t) described in Section 2.1. Note
that the covariance operators of the W (·) and V (·) are identical and supi |WiA(t)−ViA(t)| ≤
|µA(t) − µ̂A(t)|. Thus, we can use the observed W (·) process to estimate the covariance
operators of V (·).

Second, we use Multilevel Functional Principal Component Analysis (MFPCA) [26] to
obtain the parsimonious bases that capture most of the functional variability of the space
spanned by Xi(t) and Uij(t) j = A,C, respectively. MFPCA is based on the spectral
decomposition of the within- and between-visit functional variability covariance operators.
We summarize here the main components of this methodology. Denote by KW

T (s, t) =
cov{Wij(s),Wij(t) } and KW

B (s, t) = cov{Wij(s),Wik(t) } for j 6= k the total and between
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Figure 3: Mean difference and 95% pointwise confidence intervals via the parametric boot-
strap. Top-left panel: results for K = 36 and L = 26 chosen such that 90% of the variability
described by KX(·, ·) and KU(·, ·) is explained. We also used the standard estimator of
the variability, σε. Top-right panel: explained variability is increased to 95% (K = 49,
L = 40) with the same estimator of σε. Left-bottom panel: explained variability is 95% with
an estimator that is roughly 20% larger than the standard estimator. Right-bottom panel:
explained variability is 99% (K = 76, L = 69) at both levels with the same conservative
estimator of σε.
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covariance operator corresponding to the observed process, Wij(·), respectively. Denote by
KX(t, s) = cov{Xi(t), Xi(s)} the covariance operator of the Xi(·) process and by KU(t, s) =
cov{Uij(s), Uij(t) } the covariance operator of the Uij(·) process. By definition, KU

B (s, t) =
cov{Uij(s), Uik(t) } = 0 for j 6= k. Moreover,KW

B (s, t) = KX(s, t) andKW
T (s, t) = KX(s, t)+

KU(s, t) + σ2
ε δts, where δts is equal to 1 when t = s and 0 otherwise. Thus, KX(s, t)

can be estimated using a method of moments estimator of KW
B (s, t), say K̂W

B (s, t). For

t 6= s a method of moments estimator of KW
T (s, t)−KW

B (s, t), say K̂U(s, t), can be used to

estimate KU(s, t). To estimate K̂U(t, t) one predicts KU(t, t) using a bivariate thin-plate

spline smoother of K̂U(s, t) for s 6= t. This method was proposed by Staniswalis and Lee
[34] for nonparametric longitudinal data analysis and was shown to work well for MFPCA
[24, 26, 35].

Once consistent estimators of KX(s, t) and KU(s, t) are available, the spectral decompo-
sition and functional regression proceed as in the single-level case. More precisely, Mercer’s
theorem (see [36], Chapter 4) provides the following convenient spectral decompositions

KX(t, s) =
∑
∞

k=1 λ
(1)
k ψ

(1)
k (t)ψ

(1)
k (s), where λ

(1)
1 ≥ λ

(1)
2 ≥ . . . are the ordered eigenvalues

and ψ
(1)
k (·) are the associated orthonormal eigenfunctions of KX(·, ·) in the L2 norm. Sim-

ilarly, KU(t, s) =
∑
∞

l=1 λ
(2)
l ψ

(2)
l (t)ψ

(2)
l (s), where λ

(2)
1 ≥ λ

(2)
2 ≥ . . . are the ordered eigenval-

ues and ψ
(2)
l (·) are the associated orthonormal eigenfunctions of KU(·, ·) in the L2 norm.

The Karhunen-Loève (KL) decomposition [37, 38] provides the following infinite decompo-

sitions Xi(t) =
∑
∞

k=1 ξikψ
(1)
k (t) and Uij(t) =

∑
∞

l=1 ζijlψ
(2)
l (t) where ξik =

∫ 1

0
Xi(t)ψ

(1)
k (t)dt,

ζijl =
∫ 1

0
Uij(t)ψ

(2)
l (t)dt are the principal component scores with E(ξik) = E(ζijl) = 0,

Var(ξik) = λ
(1)
k , Var(ζijl) = λ

(2)
l . The zero-correlation assumption between the Xi(·) and

Uij(·) processes is ensured by the assumption that cov(ξi, ζijl) = 0. These properties hold for

every i, j, k, and l. For simplicity we will refer to ψ
(1)
k (·), ψ(2)

l (·) and λ(1)
k , λ

(2)
l as the level 1

and 2 eigenfunctions and eigenvalues, respectively.
Given these developments, we propose to parametrically simulate functional residuals

from the model
{
ViA(t) =

∑K
k=1 ξikψ

(1)
k (t) +

∑L
l=1 ζiAlψ

(2)
l (t) + εiA(t);

ViC(t) =
∑K

k=1 ξikψ
(1)
k (t) +

∑L
l=1 ζiClψ

(2)
l (t) + εiC(t),

(3)

where ξik ∼ N{0, λ(1)
k }, k = 1, . . . , K, ζiAl, ζiCl ∼ N{0, λ(2)

l }, l = 1, . . . , L, and εiA(t), εiC(t) ∼
N(0, σ2

ε ) are mutually independent. A parametric bootstrap is then obtained by calculating

Y
(b)
iA (t) = µ̂A(t)+V

(b)
iA (t) and Y

(b)
iC (t) = µ̂C(t)+V

(b)
iC (t), where V

(b)
iA (t) and V

(b)
iC (t) are obtained

by simulation from model (3) and b = 1, . . . , B. This could replace the nonparametric
bootstrap described in Section 2.1; the methods for obtaining the variability of estimators
remain the same.

Simulating from model 3 is easy once MFPCA is used to estimate the eigenfunctions and
eigenvalues. The only technical point is deciding what values ofK and L to use in practice. In
general the particular choice does not influence the confidence intervals provided that K and
L are large enough. To show that this is, indeed, the case in our application we considered 4
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different choices from reasonable to extreme. Figure 3 displays the 95% confidence intervals
obtained using 4 different choices. The top-left panel displays results for K and L chosen
such that 90% of the variability described by KX(·, ·) and KU(·, ·) is explained. We also
used the standard estimator of the variability, σε. The top-right panel displays results for
the case when the explained variability is increased to 99% with the same estimator of σε.
The left-bottom panel displays results for the case when the explained variability is 99%
with a conservative estimator of σε, that is an estimator that is roughly 20% larger than the
standard estimator. The right bottom panel shows results for the case when the explained
variability is 99.95% at both levels with the same conservative estimator of σε.

We conclude that the choices of K, L and estimator of σε have a minimal impact on the
inference about the mean function. Also, the confidence intervals tend to be shorter than
in the case of the fully nonparametric bootstrap; compare Figures 2 and 3. The fact that
the confidence intervals are shorter does not automatically make them better. It could be
that the longer fully nonparametric bootstrap intervals are necessary to achieve the nominal
coverage level. We investigate this further in Section 4.

2.3 Parametric estimation using nonparametric bootstrap

Both previous methods rely on nonparametric smoothing of the group-specific mean func-
tions. A simple alternative is to parameterize the mean functions, estimate the means under
the independence assumption, and use the nonparametric bootstrap of pairs described in
Section 2.1 to estimate variability. Such a method is especially useful in the case when prior
information about the shape of the mean functions exists before data analysis is conducted.

The top-left panel in Figure 4 displays the estimator of the mean difference based on the
assumption that both means have 1 degree of freedom per hour (or 4 degrees of freedom for
the 4 hour period). The other 3 panels display the estimators based on the assumptions that
both means have 2, 3, and 4 degrees of freedom per hour, which correspond to 8, 12, and
16 total degrees of freedom, respectively. As the number of degrees of freedom increases,
the function becomes wigglier while its variability increases. Indeed, the average pointwise
standard deviation increases from 0.0124 for the 1 degree of freedom per hour fit to 0.0204,
or 64.5%, for the 4 degrees of freedom per hour fit; for more details see Section 3.

The cases shown here are between two extremes. At one extreme is the model with 1/4
degrees of freedoms per hour, which would correspond to fitting a constant mean both to
cases and controls. At the other extreme is the model with 120 degrees of freedoms per
hour, which would fit a different mean to every time point. Both these cases are important
in themselves and their results are provided in Section 3.

3 Pointwise and joint confidence intervals

We now proceed with our application. Single testing for differences in means of two processes
can be stated as

H0,t : µA(t) = µC(t) versus HA,t : µA(t) 6= µC(t) for a fixed t.
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Figure 4: Mean difference estimators between apneics and controls using thin-plate regres-
sion splines with un-penalized coefficients. The number of degrees of freedom is fixed (not
estimated) and is set equal to: 1 degree of freedom per hour (top-left panel); 2 degrees of
freedom per hour (top-right panel); 3 degrees of freedom per hour (bottom-left panel); and
4 degrees of freedom per hour (bottom-right panel).
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Figure 5: Pointwise (light gray) and joint (dark extensions) 95% confidence intervals for the
difference in mean of normalized δ-power between sleep apneics and matched controls as a
function of time from sleep onset. Top-left: t-testing without smoothing the mean functions.
Top-right: nonparametric estimation using nonparametric bootstrap (NE/NB). Bottom-left:
nonparametric estimation using parametric bootstrap (NE/PB). Bottom-right: parametric
estimation with 3 degrees of freedom per hour using nonparametric bootstrap (PE/NB).
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When testing for one t then there are standard methods to preserve the α level of the test; for
example, using normal or bootstrap approximations of the null distribution. These are called
pointwise confidence intervals and are depicted as light gray bands in figures throughout this
paper. Multiple testing for differences at all locations can be stated as

H0,M : µA(t) = µC(t) for all t versus HA,M : µA(t) 6= µC(t) for at least one t.

All three methods described in this paper produce samples from the joint distributions of an
estimator of the difference function d(t) = µA(t)− µC(t).

Given these samples, there is a simple way to produce joint confidence intervals. Assume,
that we have a T ×B dimensional matrix S that stores the samples from the target distribu-
tion. Each row contains one sample of length T and corresponds to a particular estimator of
d(·). The column mean, d̄(t), over all samples is an estimator of the mean function, whereas
the covariance ΣS = cov(S) is a T × T dimensional matrix. With enough samples the sam-
pling variability in d̄(t) and ΣS can be ignored. To obtain the joint confidence intervals we
use the following easy to implement algorithm:

1. Simulate dn(t) from a multivariate N{d̄(t),ΣS}

2. Calculate xn = maxt{|dn(t) − d̄(t)|/σ(t)}, where σ2(t) is the tth diagonal element of
ΣS

3. Repeat for n = 1, . . . , N and obtain q1−α the 1 − α empirical quantile of the sample
{xn : n = 1, . . . , N}

4. Obtain the joint confidence intervals d̄(t)± q1−ασ(t)

To the best of our knowledge, this is the first time such an approach is proposed for functional
data, though the original idea has been around for some time; see, for example, its description
in the context of scatter plot smoothing using penalized splines [30]. Note that the normal
approximation in Step 1 of the algorithm is not necessary, and the bootstrap samples can
be used directly to obtain the joint confidence intervals. More precisely, assume that db(t)
is an estimator of the difference between the mean functions at time point t for bootstrap
number b. Then pointwise estimators for the mean and the standard deviation of the mean

are d(t) =
∑B

b=1 db(t)/B and s(t) =
√∑B

b=1{db(t)− d(t)}2/B, respectively. Then we can

easily construct the random variable realizationsMb = maxt |db(t)−d(t)|/s(t), the maximum
over the entire range of t values of the standardized mean realizations. Then if q1−α is the
1− α quantile of Mb, b = 1, . . . , B then a 1− α% joint confidence interval for the difference
in means will take the form d(t) ± q1−αs(t). A similar discussion would hold in a Bayesian
context for posterior simulations using MCMC from the joint distribution of d(t) given the
data. The only reason for using a normal approximation, as we do, is to reduce computation
time in cases when bootstrap or MCMC are computationally expensive.

This was the algorithm used to obtain the joint confidence intervals in Figure 5; note
the dark gray bands extending the light gray areas. The interpretation for the pointwise
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confidence intervals shown in light gray is that, at each location in repeated samples, the true
mean function will be covered by the shaded light gray interval 100(1−α)% of the time. The
interpretation for the joint confidence intervals is that at all locations in repeated samples,
the true mean function will be covered by the shown as dark or light gray areas 100(1−α)%
of the time. One could think of the dark gray band extensions as the correction for multiple
comparisons that takes into account the observed correlation between test statistics.

Figure 5 displays the estimated mean difference together with the 95% pointwise (light
gray) and joint (dark gray extensions) under various estimation scenarios. The top-left panel
corresponds to the case when no smoothing of the mean function is used. While the method
is wasteful and results are extreme, this is the most popular approach and has been used
extensively in genomics, where it is called “point-wise testing”, and imaging, where it is
termed “voxel-wise testing”. The top-right panel displays the results for “Nonparametric
estimation using nonparametric bootstrap” (NE/NB), the bottom-left panel displays the re-
sults for “Nonparametric estimation using parametric bootstrap” (NE/PB), and the bottom-
right panel displays the results for “Parametric estimation using nonparametric bootstrap”
(PE/NB) with 3 degrees of freedom per hour, or 12 degrees of freedom total.

The four plots display some obvious differences, but they convey the same general mes-
sage: there is no statistically significant difference between the normalized δ-power in the
first 4 hours after sleep onset between apneics and controls in this data set. Moreover, if a
difference exists then it is more pronounced around minutes 20 and 120 after sleep onset.
The distinction between pointwise and joint confidence intervals as well as between pointwise
and joint tests for mean differences is not just academic. Indeed, ignoring this distinction
would lead to fundamentally different conclusions from analyzing the same data set. For
example, using pointwise confidence intervals would lead to the conclusion that there is a
statistically significant difference between sleep apneics and controls.

These findings should not be disappointing. Indeed, this study could be used to generate
simple, plausible and easy to test hypotheses that could be analyzed in other studies. We
hypothesize that there is a difference between average normalized δ power of sleep apneics and
controls and this difference is localized between minutes 5 and 20 and between minutes 110
and 125. In fact, if this information were available a standard t-test for difference in the [5, 20]
minute period would have a p-value of 0.0190, whereas in the [110, 125] minute would have a
p-value of 0.0037 using a two-sided t-test. These tests are invalid after conducting 480 other
tests to identify regions of large differences. However, they provide extremely interesting
findings that could become more focused hypotheses for future studies. Note that a two
sided t-test for the difference in the mean over all time points and subjects between apneics
and controls has a p-value of 0.2, indicating that there is not enough statistical evidence to
reject the null of no difference. We also intend to use the average δ-power between minutes
[5, 20] and [110, 125] as potential health biomarkers in our future studies.

We now quantify more precisely the observed differences between the three procedures
we applied to the SHHS data set. In particular, we report the average estimated standard
deviation across all time periods, σ̄ =

∑T
t=1 σ̂t/T , where σ̂t is an estimator of the variability

of the estimator d̂(t) for a particular method. Visually, σ̄ is a measure of width of the
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pointwise confidence intervals depicted as light gray areas. We also report the 0.95 quantile,
q0.95, of the distribution used for multiple test corrections. This quantile will depend on the
method of estimation of the covariance of test statistics. Note that the average length of the
joint confidence intervals shown as dark gray extensions is 2q0.95σ̄.

Table 1 displays results for the three methods discussed in this paper and compares them
with the results obtained using pointwise t-testing without smoothing the mean function.
This is considered to be the reference procedure and is labeled “PE/NB (120 df/h)” because it
is equivalent to using a parametric estimation with one degree of freedom for every time point.
Rows two and three, labeled NE/NB, NE/PB, are the methods introduced in Sections 2.1
and 2.2, respectively. The last four rows correspond to the PE/NB method described in
Section 2.3 using from 4 to 1 degrees of freedom per hour.

The results now quantify our findings. In particular, they indicate that not smoothing
the mean is wasteful. Indeed, nonparametrically smoothing the mean across time reduces
the average estimated standard deviation of the mean from 0.0286 to 0.0204, or roughly
30%. Moreover, the quantile used for multiple corrections, also decreases from 3.79 to 3.15,
or roughly 17%. This decrease is likely due to the increased correlation after smoothing.
For reference, the Bonferonni correction quantile for 480 two-sided tests with a family wide
error rate (FWER) of 0.05 is 3.88. Thus, the average length of the joint 95% confidence
intervals decreased from 0.108 to 0.064, which is a 100(0.108−0.064)/0.108 = 41% reduction.
Parametric smoothing further reduces the average length of the joint confidence intervals.
Indeed, average length is increasing as a function of degrees of freedom from 0.032, for 4
degrees of freedom per hour, to 0.062, for 4 degrees of freedom per hour. However, one
should not conclude that a smaller number of degrees of freedom is better, as the estimator
of the mean function is shrunk towards zero; see Figure 3 for more details.

We conclude that the reduction in average length of confidence intervals can be quite
dramatic using very simple smoothing methods. In practice, if little information is available
before conducting the analysis it makes sense to use nonparametric smoothing of the mean.
However, if some information is available then it may make sense to use that information
to commit to a particular smoothing method. For example, in future studies of differences
in normalized sleep δ-power one can start by assuming that the functions have 3 degrees of
freedom per hour. If in doubt, it is probably better to allow for more rather than less degrees
of freedom.

4 Simulations

Here we investigate the performance of the observed methods in a simulation study. For all
settings our results are based on simulation of 200 data sets from model (1), where µd(t) is
detailed below and Vid(t) = Xi(t) + Uid(t) + εid(t), for i = 1, . . . , I and d = A,C indicating
whether the ith curve is from the case (A) or control (C) group. We set σ2

ε = 0.10 and
consider curves sampled at T = 100 points. We consider many scenarios that combine
various choices:

1. Number of subjects: (a) I = 30, (b) I = 50, (c) I = 100, (d) I = 200;
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Method σ̄ q0.95 q0.95σ̄ % reduction

PE/NB(120df/h) 0.0286 3.79 0.108 reference

NE/NB 0.0204 3.15 0.064 41%

NE/PB 0.0204 3.17 0.064 41%

PE/NB(4df/h) 0.0204 3.06 0.062 43%

PE/NB(3df/h) 0.0191 3.05 0.058 46%

PE/NB(2df/h) 0.0177 2.96 0.052 51%

PE/NB(1df/h) 0.0124 2.59 0.032 70%

Table 1: Average estimated standard deviation, σ̄ =
∑T

t=1 σ̂t, of the mean estimator,

d̂(t), 95% quantile used to correct for multiple testing, q0.95, average length of joint con-
fidence intervals, 2q0.95σ̄, and percent reduction in average length of confidence intervals
compared to t-testing without smoothing of the mean function, labeled PE/NB (120df/h).
For example, the percent reduction in average length was calculated for method NE/NB
as 100(0.108 − 0.064)/0.108 = 41%. The label NE/NB is short for nonparametric estima-
tion using nonparametric bootstrap described in Section 2.1. The label NE/PB is short for
nonparametric estimation using parametric bootstrap as described in Section 2.2. The la-
bel PE/NB is short for parametric estimation using nonparametric bootstrap as described in
Section 2.3. After the label PE/NB the number of degrees of freedom per hour for parametric
estimation is provided within brackets.

2. Sample design: (a) equally spaced time points in [0, 1], (b) unequally spaced time
points in [0, 1] obtained by deleting at random observations that are equally spaced;

3. Group mean function: (M1) µA(t) = µC(t) = sin(tπ), (M2) µA(t) = 0.5(1 − t)2,
µC(t) = 0.1(t+ 1)2, (M3) µA(t) = 3t2/2 + t3 − 1.5t; µC(t) = −5(t2 − t)/3 + 0.2.

4. Variance processes: (CV1) Xi(t) =
∑K

k=1 ξikψ
(1)
k (t), Uid(t) =

∑L
l=1 ζidlψ

(2)
l (t); (CV2)

Xi(t) =
∑K

k=1 ξikψ
(1)
k (t), UiD ∼ GP{0, σ2

UρU(·)} where GP denotes a Gaussian process
with mean 0, variance σ2

U and Matern auto-correlation function ρU(t). The Matern
auto-correlation function is defined as

ρ(∆;φ, κ) =
1

2κ−1Γ(κ)

(
2κ1/2∆

φ

)κ

Kκ

(
2κ1/2∆

φ

)
(4)

where φ and κ are unknown parameters and Kκ is the modified Bessel function of
order κ. We set σ2

U = 1 and the parameters of the Matern correlation function, ρU(t),

equal to κ = 5 and φ = 0.07. Where appropriately, ξik ∼ N(0, λ
(1)
k ), ζidl ∼ N(0, λ

(2)
l )

for k = 1, . . . , K, l = 1, . . . , L and εid(t) ∼ N(0, σ2
ε ), for d = A,C. We set K = 2

and L = 3, λ
(1)
k = 0.6 × 21−k;λ

(2)
l = 21−l for k = 1, 2 and l = 1, 2, 3. Legendre
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polynomials were used for the process X, in particular ψ
(1)
1 (t) =

√
3(2t2− 1), ψ(1)

2 (t) =√
5(6t2− 6t+1); and Fourier basis functions were used for the process U , in particular

ψ
(2)
1 (t) =

√
2 sin(2πt), ψ

(2)
2 (t) =

√
2 cos(4πt) and ψ

(2)
3 (t) =

√
2 sin(4πt).

We used inferential methods described in Section 2: nonparametric estimation using
nonparametric bootstrap (NE/NB), nonparametric estimation using parametric bootstrap
(NE/PB), and parametric estimation using nonparametric bootstrap (PE/NB) using a dif-
ferent number of degrees of freedom. For PE/NB we used 4 (small), 7 (moderate) and 22
(large) number of degrees of freedom. Pointwise and joint confidence intervals were obtained
and methods were compared in terms of actual coverage and length of the corresponding
confidence intervals.

Integrated actual coverage for pointwise confidence intervals is calculated as IACP =
E[

∫ 1

0
1{d(t) ∈ CIP (t)} dt], where CIP (t) is the pointwise confidence interval at time t,

the expectation is taken with respect to the distribution of the confidence intervals and
1{·} denotes the indicator function. In repeated samples IACP is estimated as ÎACP =∑B

b=1

∑T
t=1 1{d(t) ∈ CI

(b)
P (t)}/BT , where B is the number of samples, T is the number of

grid points and CI
(b)
P (t) are the pointwise confidence intervals obtained in the bth simu-

lation. Similarly, integrated actual coverage for joint confidence intervals is calculated as
IACJ = E[1{d(t) ∈ CIJ(t)} : for every t ∈ [0, 1]], where CIJ(t) is the joint confidence
interval at time t and the expectation is taken with respect to the distribution of the confi-
dence intervals. In repeated samples IACJ is estimated as ÎACJ =

∑B
b=1 1{d(t) ∈ CI

(b)
J (t) :

for every t ∈ [0, 1]}/B, where B is the number of samples and CI
(b)
J (t) are the joint confidence

intervals obtained in the bth simulation.
One can interpret IACP as the average coverage probability of pointwise confidence in-

tervals (light gray areas throughout this paper) across grid points t. In contrast, IACJ is
the probability that the entire function is covered by the joint confidence intervals (dark
gray extensions throughout this paper). The performance of both intervals is important,
though only joint confidence intervals and IACJ are directly related to answering the scien-
tifically important questions: 1) “is there statistical evidence of difference between cases and
controls?”; and 2) “if there is statistical evidence of difference then where is this evidence
localized and how can it be quantified?”

Results are presented for sample sizes ranging from 30 to 200, with and without missing
data. For the missing data scenarios 30% of the complete set of observations per subject
were removed at random. We consider the case when the two group mean functions are equal
and investigate the confidence intervals for different covariance structures. Tables 2 and 3
provide the integrated actual coverage and expected length of the various pointwise 90%
and 95% confidence intervals. Results are compared to the t-test method based on empirical
mean estimates that do not take into account smoothing. Because there are 100 observations
per function this method is a particular case of parametric estimation with nonparametric
bootstrap, where the mean function is estimated using 100 degrees of freedom. Thus, we
denote this method PE/NB (100df).

Tables 3 and 5 indicate that confidence intervals that do not account for the smoothness
of the mean function tend to be unnecessarily wide; compare columns labeled PE/NB (100df)
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with all other columns. The problem is even more serious when data are missing; compare
results shown within brackets. The nonparametric estimation of the mean function with
parametric or nonparametric bootstrap yield relatively similar confidence intervals, with
respect to both coverage and length; compare results in columns labeled NE/NB and NE/PB
in Tables 2-5. Parametric estimation using nonparametric bootstrap (labeled PE/NB) tend
to have good coverage probability especially when the number of degrees of freedom of the
fit is in a neighborhood of the true number of degrees of freedom. Our simulations seem to
indicate that there is a wide range of number of degrees of freedom that provide reasonable
results. This matches our experience that as long as the main features of the mean functions
are captured, the coverage probabilities are remarkably robust to the choice of degrees of
freedom. Thus, in general, it seems reasonable to choose a number of degrees of freedom that
is likely to exceed the complexity of the functions. However, the length of PE/NB confidence
intervals increases slowly with the number of degrees of freedom of the fit and becomes
extreme when the maximum complexity of the model is reached. Thus, PE/NB could be
recommended in situations where previous information about the expected complexity of
the mean function exists or in cases where one expects to have very noisy empirical mean
estimators. When the PE/NB strategy is employed the number of degrees of freedom has to
be chosen a-priori; hunting for a number of degrees of freedom that provides some statistically
significant results should be viewed as scientific cheating. The NE/NB and NE/PB methods
provide a reasonable compromise for those situations when the scientist knows very little
about the expected shape of the mean functions. They tend to trade some of the length of
the confidence interval for the “peace of mind” provided by automatic smoothing.

Tables 4 and 5 provide the integrated actual coverage (IAC) and expected length of
the joint 90% and 95% confidence intervals, respectively. While both NE/NB and NE/PB
performed similarly, NE/PB required careful covariance modeling in the CV2 scenario. In
this case the covariance decays slowly and a large number of eigenfunctions had to be retained
to ensure at least 99% variance explained. While, in practice, more liberal thresholds, such
as 90% or 95%, are use to model functional data, we argue that higher thresholds should
be used for obtaining close to nominal coverage probabilities in most scenarios. As a final
point, missing data is handled well by the three methods, at least when data are missing at
random.

We have also conducted extensive additional simulation studies to investigate the robust-
ness of our results to departures from the assumption of normality of the both the scores
and the errors. We investigated mixture of normal distributions for the scores and double
exponential and t-distributions for the errors. Results are reported in the attached web sup-
plement and indicate the excellent robustness of our approach to these types of departures
from normality.
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Table 2: Estimates of the integrated actual coverage (IAC) of the pointwise (1 − α)100%
confidence intervals obtained with NB/NE, PB/NE and NB/PE with various degrees of
freedom (df) for the fit. Results are presented for the two types of covariance structures for
the case that data are observed completely (incompletely).

1− α I CV NB/PE (100) NB/NE PB/NE NB/PE (4) NB/PE (7) NB/PE (22)

0.90 30 CV1 0.88 (0.89) 0.88 (0.89) 0.87 (0.90) 0.88 (0.89) 0.88 (0.89) 0.88 (0.88)
CV2 0.88 (0.88) 0.87 (0.88) 0.89 (0.89) 0.87 (0.87) 0.87 (0.88) 0.88 (0.88)

50 CV1 0.88 (0.89) 0.88 (0.89) 0.89 (0.90) 0.89 (0.89) 0.88 (0.88) 0.88 (0.88)
CV2 0.88 (0.89) 0.88 (0.90) 0.90 (0.90) 0.86 (0.89) 0.87 (0.89) 0.88 (0.89)

100 CV1 0.88 (0.90) 0.89 (0.92) 0.90 (0.89) 0.88 (0.92) 0.88 (0.91) 0.88 (0.91)
CV2 0.89 (0.89) 0.89 (0.90) 0.89 (0.89) 0.89 (0.87) 0.88 (0.89) 0.89 (0.89)

200 CV1 0.91 (0.90) 0.91 (0.89) 0.91 (0.89) 0.91 (0.89) 0.91 (0.89) 0.91 (0.89)
CV2 0.89 (0.90) 0.89 (0.89) 0.91 (0.89) 0.91 (0.88) 0.90 (0.88) 0.89 (0.89)

0.95 30 CV1 0.93 (0.94) 0.93 (0.94) 0.93 (0.94) 0.93 (0.93) 0.93 (0.94) 0.93 (0.93)
CV2 0.93 (0.94) 0.93 (0.94) 0.94 (0.94) 0.93 (0.94) 0.93 (0.93) 0.93 (0.93)

50 CV1 0.94 (0.94) 0.94 (0.94) 0.94 (0.95) 0.95 (0.94) 0.94 (0.94) 0.94 (0.94)
CV2 0.93 (0.94) 0.93 (0.95) 0.95 (0.95) 0.92 (0.95) 0.92 (0.94) 0.93 (0.94)

100 CV1 0.94 (0.95) 0.95 (0.96) 0.95 (0.94) 0.94 (0.96) 0.95 (0.96) 0.94 (0.96)
CV2 0.94 (0.95) 0.94 (0.95) 0.94 (0.94) 0.94 (0.93) 0.94 (0.94) 0.94 (0.94)

200 CV1 0.95 (0.95) 0.95 (0.95) 0.95 (0.94) 0.96 (0.95) 0.96 (0.95) 0.95 (0.95)
CV2 0.94 (0.95) 0.95 (0.94) 0.95 (0.94) 0.95 (0.93) 0.95 (0.94) 0.94 (0.94)

Table 3: Estimates of the integrated expected length (IEL) of the pointwise (1 − α)100%
confidence intervals obtained with NB/NE, PB/NE and NB/PE with various degrees of
freedom (provided between brackets) for the fit. Results are presented for the two types of
covariance structures for the case that data are observed completely (incompletely).

1− α I CV NB/PE (100) NB/NE PB/NE NB/PE (4) NB/PE (7) NB/PE (22)

0.90 30 CV1 1.11 (1.46) 1.08 (1.07) 1.11 (1.11) 1.00 (1.01) 1.08 (1.11) 1.09 (1.17)
CV2 0.87 (1.18) 0.69 (0.69) 0.70 (0.69) 0.49 (0.51) 0.62 (0.65) 0.80 (0.88)

50 CV1 0.87 (1.13) 0.85 (0.84) 0.85 (0.86) 0.78 (0.78) 0.85 (0.86) 0.85 (0.91)
CV2 0.68 (0.91) 0.53 (0.54) 0.55 (0.54) 0.38 (0.40) 0.48 (0.51) 0.62 (0.69)

100 CV1 0.62 (0.80) 0.60 (0.60) 0.61 (0.60) 0.56 (0.56) 0.61 (0.62) 0.61 (0.65)
CV2 0.48 (0.65) 0.38 (0.39) 0.39 (0.39) 0.27 (0.28) 0.35 (0.36) 0.45 (0.49)

200 CV1 0.44 (0.57) 0.43 (0.43) 0.43 (0.43) 0.40 (0.40) 0.43 (0.44) 0.43 (0.46)
CV2 0.34 (0.46) 0.27 (0.28) 0.27 (0.27) 0.19 (0.20) 0.25 (0.26) 0.32 (0.35)

0.95 30 CV1 1.33(1.74) 1.28 (1.28) 1.32 (1.32) 1.19 (1.20) 1.29 (1.32) 1.30 (1.40)
CV2 1.03 (1.41) 0.82 (0.82) 0.83 (0.82) 0.58 (0.61) 0.74 (0.78) 0.95 (1.05)

50 CV1 1.04 (1.34) 1.01 (1.00) 1.02 (1.03) 0.93 (0.94) 1.01 (1.03) 1.02 (1.09)
CV2 0.81 (1.09) 0.64 (0.65) 0.65 (0.64) 0.45 (0.47) 0.58 (0.61) 0.74 (0.82)

100 CV1 0.74 (0.96) 0.72 (0.72) 0.72 (0.72) 0.67 (0.67) 0.72 (0.74) 0.73 (0.78)
CV2 0.58 (0.77) 0.45 (0.46) 0.46 (0.46) 0.32 (0.34) 0.41 (0.43) 0.53 (0.58)

200 CV1 0.53 (0.68) 0.51 (0.51) 0.51 (0.51) 0.47 (0.47) 0.51 (0.52) 0.51 (0.55)
CV2 0.41 (0.55) 0.32 (0.33) 0.33 (0.33) 0.23 (0.24) 0.29 (0.31) 0.38 (0.41)
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Table 4: Estimates of the integrated actual coverage (IAC) of the joint (1−α)100% confidence
intervals obtained with with NB/NE, PB/NE and NB/PE with various degrees of freedom
(provided between brackets) for the fit. Results are presented for the two types of covariance
structures for the case that data are observed completely (incompletely).

1− α I CV NB/PE (100) NB/NE PB/NE NB/PE (4) NB/PE (7) NB/PE (22)

0.90 30 CV1 0.82 (0.76) 0.86 (0.84) 0.84 (0.83) 0.85 (0.85) 0.84 (0.82) 0.84 (0.82)
CV2 0.68 (0.72) 0.77 (0.82) 0.82 (0.75) 0.84 (0.86) 0.78 (0.80) 0.72 (0.76)

50 CV1 0.84 (0.82) 0.86 (0.88) 0.84 (0.85) 0.86 (0.88) 0.88 (0.88) 0.86 (0.82)
CV2 0.80 (0.79) 0.85 (0.92) 0.86 (0.84) 0.86 (0.87) 0.84 (0.84) 0.85 (0.86)

100 CV1 0.88 (0.88) 0.88 (0.92) 0.89 (0.82) 0.88 (0.92) 0.87 (0.92) 0.88 (0.90)
CV2 0.84 (0.81) 0.86 (0.92) 0.90 (0.86) 0.86 (0.82) 0.88 (0.88) 0.86 (0.88)

200 CV1 0.91 (0.88) 0.90 (0.91) 0.88 (0.84) 0.89 (0.87) 0.92 (0.88) 0.89 (0.88)
CV2 0.88 (0.85) 0.90 (0.91) 0.89 (0.86) 0.90 (0.86) 0.90 (0.84) 0.88 (0.86)

0.95 30 CV1 0.89 (0.84) 0.90 (0.89) 0.86 (0.90) 0.91 (0.90) 0.90 (0.88) 0.90 (0.88)
CV2 0.80 (0.85) 0.84 (0.90) 0.92 (0.88) 0.90 (0.92) 0.86 (0.86) 0.82 (0.88)

50 CV1 0.90 (0.91) 0.92 (0.94) 0.91 (0.90) 0.92 (0.93) 0.92 (0.92) 0.92 (0.92)
CV2 0.88 (0.90) 0.92 (0.95) 0.94 (0.91) 0.92 (0.94) 0.94 (0.91) 0.90 (0.93)

100 CV1 0.92 (0.95) 0.94 (0.98) 0.96 (0.92) 0.95 (0.96) 0.93 (0.98) 0.94 (0.96)
CV2 0.92 (0.88) 0.92 (0.94) 0.94 (0.92) 0.92 (0.92) 0.92 (0.94) 0.91 (0.94)

200 CV1 0.94 (0.90) 0.94 (0.95) 0.94 (0.91) 0.93 (0.96) 0.94 (0.94) 0.94 (0.94)
CV2 0.95 (0.90) 0.95 (0.95) 0.94 (0.92) 0.94 (0.92) 0.95 (0.91) 0.94 (0.92)

Table 5: Estimates of the integrated expected length (IEL) of the joint (1−α)100% confidence
intervals obtained with with NB/NE, PB/NE and NB/PE with various degrees of freedom
(provided between brackets) for the fit. Results are presented for the two types of covariance
structures for the case that data are observed completely (incompletely).

1− α I CV NB/PE (100) NB/NE PB/NE NB/PE (4) NB/PE (7) NB/PE (22)

0.90 30 CV1 1.78 (2.74) 1.53 (1.57) 1.58 (1.59) 1.38 (1.41) 1.54 (1.63) 1.58 (1.90)
CV2 1.63 (2.30) 1.14 (1.14) 1.16 (1.14) 0.72 (0.75) 1.00 (1.04) 1.41 (1.57)

50 CV1 1.40 (2.12) 1.21 (1.23) 1.22 (1.23) 1.09 (1.10) 1.21 (1.27) 1.25 (1.47)
CV2 1.28 (1.79) 0.89 (0.90) 0.91 (0.89) 0.56 (0.59) 0.78 (0.82) 1.11 (1.23)

100 CV1 1.00 (1.52) 0.86 (0.88) 0.87 (0.86) 0.78 (0.79) 0.87 (0.91) 0.89 (1.06)
CV2 0.92 (1.27) 0.63 (0.64) 0.64 (0.64) 0.40 (0.42) 0.56 (0.59) 0.79 (0.88)

200 CV1 0.71 (1.07) 0.61 (0.62) 0.61 (0.61) 0.55 (0.56) 0.61 (0.65) 0.63 (0.75)
CV2 0.65 (0.91) 0.45 (0.46) 0.46 (0.45) 0.28 (0.30) 0.40 (0.42) 0.56 (0.62)

0.95 30 CV1 1.96 (2.95) 1.72 (1.75) 1.77 (1.78) 1.56 (1.59) 1.73 (1.82) 1.77 (2.09)
CV2 1.75 (2.45) 1.24 (1.25) 1.27 (1.24) 0.80 (0.83) 1.09 (1.14) 1.53 (1.70)

50 CV1 1.54 (2.28) 1.35 (1.37) 1.37 (1.38) 1.22 (1.24) 1.36 (1.42) 1.39 (1.63)
CV2 1.38 (1.91) 0.97 (0.98) 0.99 (0.98) 0.62 (0.65) 0.85 (0.90) 1.20 (1.33)

100 CV1 1.10 (1.63) 0.97 (0.98) 0.97 (0.97) 0.87 (0.89) 0.97 (1.02) 0.99 (1.17)
CV2 0.98 (1.36) 0.69 (0.70) 0.70 (0.70) 0.44 (0.47) 0.61 (0.64) 0.86 (0.95)

200 CV1 0.78 (1.15) 0.68 (0.69) 0.69 (0.69) 0.62 (0.63) 0.69 (0.72) 0.70 (0.82)
CV2 0.70 (0.96) 0.49 (0.50) 0.50 (0.50) 0.32 (0.33) 0.43 (0.46) 0.61 (0.68)
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5 Discussion

In this paper we provide simple and fast methods for testing if and where the means of two
correlated functional processes are different. We contend that the importance of multiple
testing is established beyond a reasonable doubt, widely acknowledged, and almost univer-
sally ignored. Here we provide testing methods based on joint pointwise confidence intervals
that take into account: 1) the size and complexity of the data; 2) the sampling mechanisms;
and 3) the large number of hypotheses being tested. We conclude that for formal hypoth-
esis testing, joint bounds should be used; for biomarker discovery followed by validation
point-wise confidence intervals can also be used as an exploratory tool.

We conclude that nonparametric estimation using nonparametric bootstrap that respects
the data correlation structure is a powerful, simple, and practical method for making infer-
ence about the fixed effects of longitudinal functional models. In our case study a bootstrap
of pairs is necessary to account for the sampling mechanism induced by matching. Non-
parametric estimation using parametric bootstrap based on liberal choices of the number of
eigenvectors is a viable alternative. This approach is slightly more computationally intensive
but provides an excellent platform for generalization to more complex models. Parametric es-
timation using nonparametric bootstrap is a simple methodology that is especially appealing
when prior information about the shape of the mean functions is available.

The methods introduced here are described for paired functional data, but can easily be
applied to any type of clustered functional data, as long as one bootstraps the clusters in a
way that respects the design of experiments. In fact, we have already applied these methods
to multilevel and longitudinal functional data and we will continue to expand the scope of
these methods. A potential limitation of the bootstrap approach is that it is conditional,
that is, the estimated eigenfunctions and eigenvalues are fixed after the initial estimation
step. One way around the problem could be to bootstrap the clusters nonparametrically,
apply a parametric bootstrap, and then combine results. While this may sound complicated,
it could actually be done very fast. We will investigate such approaches in the future.
Another limitation is that we do not consider here the theoretical properties of the bootstrap
approaches and rely instead on simulations.

A simple alternative to the bootstrap procedures introduced in this paper is a permutation
test that would permute the “case” and “control” labels within matched pairs. This could
be an excellent avenue of future research.
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