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Statistical Methods for Evaluating and
Comparing Biomarkers for Patient Treatment

Selection

Holly Janes, Marshall D. Brown, Margaret S. Pepe, Ying Huang

Abstract

Despite the heightened interest in developing biomarkers predicting treatment re-
sponse that are used to optimize patient treatment decisions, there has been rel-
atively little development of statistical methodology to evaluate these markers.
There is currently no unified statistical framework for marker evaluation. This
paper proposes a suite of descriptive and inferential methods designed to evaluate
individual markers and to compare candidate markers. An R software package has
been developed which implements these methods. Their utility is illustrated in the
breast cancer treatment context, where candidate markers are evaluated for their
ability to identify a subset of women who do not benefit from adjuvant chemother-
apy and can therefore avoid its toxicity.
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1 Introduction

There is an enormous amount of research effort being devoted to discovering and
evaluating markers that can predict a patient’s chance of responding to treatment.
A November, 2012 PubMed search identified 7,602 papers evaluating such markers
from 2011 and 2012 alone. Treatment selection markers, sometimes called “predic-
tive” (Simon (2008)) or “prescriptive” (Gunter, Zhu, and Murphy (2007)) markers,
have the potential to improve patient outcomes and reduce medical costs by allow-
ing treatment provision to be restricted to those patients most likely to benefit, and
avoiding treatment in those only likely to suffer its side effects and other costs.

Methods for evaluating treatment selection markers are much less well de-
veloped than for markers used to diagnose disease or predict risk under a single
treatment. In the medical literature, the most common approach to marker eval-
uation is to test for a statistical interaction between the marker and treatment in
the context of a randomized and controlled trial (see Coates, Miller, O’Toole, Mol-
loy, Viale, Goldhirsch, Regan, Gelber, Sun, Castiglione-Gertsch, Gusterson, Mus-
grove, and Sutherland (2012), Busch, Ryden, Stal, Jirstrom, and Landberg (2012),
Malmstrom, Gronberg, Marosi, Stupp, Frappaz, Schultz, Abacioglu, Tavelin, Lher-
mitte, Hegi, Rosell, Henriksson, and (NCBTSG) (2012) for some recent examples).
However this approach has limitations in that it does not provide a clinically rel-
evant measure of the benefit of using the marker to select treatment and does not
facilitate comparing candidate markers (Janes, Pepe, Bossuyt, and Barlow (2011)).
Moreover, the scale and magnitude of the interaction coefficient will depend on the
form of the regression model used to test for interaction, and on the other covariates
included in this model (Huang, Gilbert, and Janes (2012)).

There is a growing literature on methods for evaluating treatment selection
markers. A number of papers have focused on modeling the treatment effect as a
function of marker (see Bonetti and Gelberr (2004), Royston and Sauerbrei (2004),
Claggett, Zhao, Tian, Castagno, and Wei (2011), Zhao, Tian, Cai, Claggett, and
Wei (2011)), some have proposed individual measures for evaluating markers (see
Song and Pepe (2004), Vickers, Kattan, and Sargent (2007), Brinkley, Tsiatis, and
Anstrom (2010), Janes et al. (2011), Huang et al. (2012)), and others have focused
on the specific problem of optimizing marker combinations for treatment selection
(Lu, Zhang, and Zeng (2011), Foster, Taylor, and Ruberg (2011), Zhang, Tsiatis,
Laber, and Davidian (2012), McKeague and Qian (2011)). A complete framework
for marker evaluation, on par with those developed for evaluating classification
markers (Pepe (2003), Zhou, McClish, and Obuchowski (2002)) or risk prediction
markers (Pepe and Janes (2012)), is still forthcoming.

In this paper, we lay out a comprehensive approach to evaluating markers
for treatment selection. We propose tools for descriptive analysis and summary
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measures for formal evaluation and comparison of markers. The measures are, in
many cases, extensions of those used to evaluate markers for predicting outcome
under a single treatment, i.e. for risk prediction. Our global measure of preference
is the same as or closely related to that advocated in recent methodological work on
treatment selection markers (Song and Pepe (2004), Vickers et al. (2007), Brinkley
et al. (2010), Janes et al. (2011), Claggett et al. (2011), Huang et al. (2012), Zhang
et al. (2012), McKeague and Qian (2011)). We develop methods for estimation
and inference that apply to data from a randomized controlled trial comparing two
treatment options where the marker is measured at baseline on all or a stratified
case-control sample of trial participants. For illustration, we consider the context
of breast cancer treatment where candidate markers are evaluated for their utility
in identifying a subset of women who do not benefit from adjuvant chemotherapy.
Appendices include the results of a small-scale simulation study that evaluates the
performance of the methods in finite samples and a description of the R package we
have written that implements these methods.

2 Setting and Notation

Suppose that the task is to decide between two treatment options, referred to as
“treatment” (T =1) and “no treatment” (T = 0). The clinical outcome of interest,D,
is a binary indicator of an adverse event within a specific time-frame following treat-
ment provision; we refer to this outcome as “disease”. The outcomeD is thought
to capture all potential impacts of treatment, so that any decrease in the rate of dis-
ease justifies treatment. To achieve this,D may be chosen to represent a composite
outcome such as an indicator of treatment-associated toxicity or death. We assume
that the marginal treatment effectρ0−ρ1 ≡ P(D = 1|T = 0)−P(D = 1|T = 1) is
positive, so that the default approach is to treat all subjects. The question is whether
a marker,Y, if measured prior to treatment provision, is useful for identifying a sub-
set of subjects who can avoid treatment. Note that the scenario where the marginal
treatment effect is negative (or zero) andY identifies a subset who benefit from
treatment can be handled by simply reversing the treatment labels.

We focus on the ideal setting for evaluating treatment efficacy, a randomized
and controlled trial (RCT) comparingT = 1 to T = 0. We assume to begin thatY
is continuous and measured at baseline on all trial participants. We generalize our
methods to case-control sampling from within an RCT in Section 6.2.
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3 Motivating Context

We illustrate our methods in the breast cancer treatment context. Women diagnosed
with estrogen-receptor-positive and node-positive breast cancer are typically treated
with both hormone therapy (e.g. tamoxifen) and adjuvant chemotherapy following
surgery. This is despite the fact that it is generally well-accepted in the clinical
community that only a subset of these women actually benefit from the adjuvant
chemotherapy, and the remaining women suffer its toxic side effects, not to men-
tion the burden and cost of unnecessary treatment (Group (2005)). A high public
health priority is to identify biomarkers that can be used to predict which women
are and are not likely to benefit from the adjuvant chemotherapy (Dowsett, Gold-
hirsch, Hayes, Senn, Wood, and Viale (2007)). The Oncotype DX recurrence score
is an example of a biomarker that is currently being used in clinical practice for
this purpose. This marker is a proprietary combination of 21 genes whose expres-
sion levels are measured in the tumor tissue obtained at surgery (Paik, Shak, Tang,
Kim, Baker, Cronin, Baehner, Walker, Watson, and et al. (2004), Paik, Tang, Shak,
Chungyeul, Baker, Kim, Cronin, Baehner, Watson, Bryant, Constantino, Geyer,
Wickerham, and Wolmark (2006), Albain, Barlow, Shak, Hortobagyi, Livingston,
and Yeh (2010)). The marker has been shown to have value for identifying a sub-
set of women who are unlikely to benefit from chemotherapy (Paik et al. (2006),
Albain et al. (2010)).

To illustrate our methods, we simulated a marker,Y1, with the same per-
formance as Oncotype DX, as seen in the SWOG SS8814 trial which evaluated
adjuvant chemotherapy (cyclophosphamide, doxorubicin, and fluorouracil) given
before tamoxifen for treating post-menopausal women with estrogen-receptor pos-
itive, node-positive breast cancer (Albain, Barlow, Davdin, Farrar, Burton, Ketchel,
and et al. (2009), Albain et al. (2010)). We also simulated another marker,Y2,
which we will demonstrate is a much stronger marker. The markersY1 andY2 are
measured at baseline for 1,000 participants randomized with equal probability to ta-
moxifen alone (T = 0) or tamoxifen plus chemotherapy (T = 1). The outcome,D, is
breast cancer recurrence or death within 5 years of randomization and the marginal
treatment effect isρ0 − ρ1 = 0.24− 0.21= 0.03 as seen in SS8814. MarkerY1

is simulated to mimic the Oncotype DX distribution, being normally distributed
on the square-root scale with mean 4.8 and standard deviation 1.8, and markerY2
is standard normal. Each marker is related to disease via a linear logistic model,
logitP(D = 1|T,Y) = β0+β1T +β2Y+β3YT, where forY1 the model coefficients
are chosen to mimic the performance of the Oncotype DX recurrence score (Albain
et al. (2010)). Methods for simulating the data are described in the appendix.
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4 Methods for Evaluating Individual Markers

4.1 Treatment Rule

Given that the task is to decide between treatment and no treatment for each indi-
vidual patient, it is common to define a binary rule for assigning treatment on the
basis of marker value. Let∆(Y) = P(D = 1|T = 0,Y)−P(D = 1|T = 1,Y) denote
the absolute treatment effect given marker valueY. The rule

do not treat if ∆(Y)< 0

can be shown to be optimal in the sense that it minimizes the population disease rate
(Brinkley et al. (2010), Zhang et al. (2012), Janes, Pepe, and Huang (2012)). Some
of the marker performance measures we consider evaluate the properties of this
rule; other performance measures do not depend on a treatment rule. We refer to
subjects with∆(Y)< 0 as “marker-negatives” and∆(Y)> 0 as “marker-positives”.
More general treatment rules are considered in Section 6.1.

4.2 Descriptives

For descriptive analysis, it is useful to display the distribution of risk of disease as a
function of marker under each treatment. We plot “risk curves”P(D = 1|T = 1,Y)
andP(D = 1|T = 0,Y) versus marker percentileF(Y), whereF is the cumulative
distribution function (CDF) ofY (Janes et al. (2011)). Figure 1 shows the risk
curves for the Oncotype-DX-like marker,Y1, and the much better marker,Y2. One
can visually assess the variability in response on each treatment as a function of
marker value and read off the plot the percent of patients with negative treatment
effects who can avoid chemotherapy, 46% forY1 vs. 38% forY2.

Another informative display is the distribution of treatment effect, as sum-
marized by∆(Y) vs. F∆(∆(Y)) whereF∆ is the CDF of∆(Y) (Huang et al. (2012)).
The example shown in Figure 2 reveals thatY2 has much greater variation in marker-
specific treatment effect than doesY1. ForY2 a greater proportion of marker-specific
treatment effects are extreme whereas forY1 the range is smaller and most treatment
effects are near the average ofρ0−ρ1 = 0.03.

These descriptives are simple extensions ofpredictiveness curves(Huang,
Sullivan Pepe, and Feng (2007), Pepe, Feng, Huang, Longton, Prentice, Thompson,
and Zheng (2008a)), which are used to evaluate the performance of markers for risk
prediction.
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4.3 Summary Measures

The following are useful measures for summarizing marker performance that de-
pend on specification of the treatment rule:

• Decrease in population disease rate under marker-based treatment,

Θ = P(D = 1|T = 1)− [P(D = 1|T = 1,∆(Y)> 0)P(∆(Y)> 0)

+P(D = 1|T = 0,∆(Y)< 0)P(∆(Y)< 0)]

= [P(D = 1|T = 1,∆(Y)< 0)−P(D = 1|T = 0,∆(Y)< 0)] P(∆(Y)< 0)

• Average benefit of no treatment among marker-negatives,
Bneg= P(D = 1|T = 1,∆(Y)< 0)−P(D = 1|T = 0,∆(Y)< 0)

• Average benefit of treatment among marker-positives,
Bpos= P(D = 1|T = 0,∆(Y)> 0)−P(D = 1|T = 1,∆(Y)> 0)

• Proportion marker-negative,Pneg= P(∆(Y)< 0)

where we defineP(D = 1|T,∆(Y) < 0) = 0 if P(∆(Y) < 0) = 0. The measureΘ,
or a variation on it, has been advocated by many as a global measure of marker
performance (Song and Pepe (2004), Brinkley et al. (2010), Janes et al. (2011),
Gunter et al. (2007), Zhang et al. (2012), McKeague and Qian (2011)).Θ varies
between 0 andρ1. The minimum value 0 corresponds to an entirely useless marker
with constant marker-specific treatment effect,∆(Y) = ρ0−ρ1 > 0 for all Y. For
such a marker,Θ = ρ1− [ρ1 ·1+0 ·0] = 0. The maximum value ofΘ is achieved
whenP(D = 1|T = 1,∆(Y) > 0) = P(D = 1|T = 0,∆(Y) < 0) = 0, so thatΘ =
ρ1− [0 ·P(∆(Y)> 0)+0 ·P(∆(Y)< 0)] = ρ1.

The constituents ofΘ, namelyBneg andPneg, are helpful for dissecting the
impact of the marker. The measuresBneg and Bpos describe the average benefit
of the treatment policies recommended to marker-negatives and marker-positives,
respectively.

We also consider two marker performance measures that do not depend on
a treatment rule. Each represents a simple extension of a measure used to evaluate
markers for risk prediction (Pepe, Feng, and W. (2008b), Pencina, D’Agostino,
D’Agostino, and Vasan (2008), Gu and Pepe (2009)):

• Variance in treatment effect,V∆ =Var(∆(Y)) =
∫
(∆(Y)− (ρ0−ρ1))

2 dF∆
• Total gain, the area between the treatment effect curve and the marginal treat-

ment effect,TG=
∫
|∆(Y)− (ρ0−ρ1)| dF∆

TheV∆ andTG measures suffer because of lack of clinical interpretation, but have
the advantage of being independent of treatment rule and potentially form the basis
for more efficient comparisons of markers.
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Table 1 contains estimates of these performance measures formarkersY1

andY2 in the breast cancer example. Focusing onY2, we see that the population
impact ofY2-based-treatment is a 10% reduction in the disease rate; this is a con-
sequence of 38% of patients avoiding adjuvant chemotherapy and a 26% reduction
in the event rate due to avoiding chemotherapy in this subgroup. Among marker-
positives, chemotherapy decreases the disease rate by 21% on average. Less in-
terpretable, but somewhat useful for global marker comparisons, are the values of
V∆ = 0.08 andTG= 0.22.

4.4 Estimation and Inference

Our proposed estimation and inference methods build on methodology developed
for risk prediction (see Huang et al. (2007), Huang and Pepe (2010b,a)). This sec-
tion overviews these approaches which are evaluated in a small-scale simulation
study described in the appendix.

4.4.1 Estimation

Given data consisting of i.i.d copies of(Yi ,Ti ,Di), i = 1, ...,N, the first step in esti-
mation is to fit a model for disease risk as a function ofT andY. We use a general
linear regression risk model with an interaction betweenT andY,

g(P(D = 1|T,Y)) = β0+β1T +β2Y+β3YT. (1)

Typically we letg be the logit function because of its advantages with case-control
data (see Section 6.2) and because we have found logistic regression to be remark-
ably robust to model mis-specification. We note that the general linear model (1)
is flexible in that the markerY can itself be a transformed marker value. The risk
and treatment effect estimates that result from fitting from this model are written
P̂(D = 1|T = 0,Y) = R̂isk0(Y) = g−1(β̂0+ β̂2Y), P̂(D = 1|T = 1,Y) = R̂isk1(Y) =

g−1(β̂0 + β̂1 + β̂2Y + β̂3Y), and ∆̂(Y) = R̂isk0(Y)− R̂isk1(Y). We estimate the
marker and treatment effect distributions empirically and denote these byF̂ and
F̂∆. The estimated risk curves arêRisk0(Y) andR̂isk1(Y) versusF̂(Y). Pointwiseα-
level horizontal confidence intervals inform about the variability in the proportion of
participants at or below a given risk level; we obtain these using the percentile boot-
strap method. The estimated treatment effect curve is∆̂(Y) vs. F̂∆. Here pointwise
horizontal confidence intervals capture the variability in the estimated proportion of
individuals with treatment effects below a certain value.

For the summary measures that depend on the treatment rule, we consider
both “empirical” and “model-based” estimators. An empirical estimator uses the
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risk model (1) to classify individuals as marker-positive ormarker-negative, and
the performance of this rule is estimated empirically. For a model-based estimator,
the risk model is used both to classify each individual and to estimate the perfor-
mance of the classification rule. The estimators are listed below, wheree andm
superscripts indicate empirical and model-based estimators andP̂ denotes an em-
pirical probability estimate:

P̂neg= P̂(∆̂(Y)< 0)

B̂e
neg= P̂(D = 1|T = 1, ∆̂(Y)< 0)− P̂(D = 1|T = 0, ∆̂(Y)< 0)

B̂m
neg=

∫
−∆̂(Y)I [∆̂(Y)< 0] dF̂∆

B̂e
pos= P̂(D = 1|T = 0, ∆̂(Y)> 0)− P̂(D = 1|T = 1, ∆̂(Y)> 0)

B̂m
pos=

∫
∆̂(Y)I [∆̂(Y)> 0] dF̂∆

Θ̂e= B̂e
neg∗ P̂neg

Θ̂m = B̂m
neg∗ P̂neg

The treatment-rule-independent summary measures are estimated by the following
model-based estimators:

V̂∆ =

∫
(∆̂(Y)− (ρ̂0− ρ̂1))

2 dF̂∆

T̂G=
∫

|∆̂(Y)− (ρ̂0− ρ̂1)| dF̂∆,

whereρ̂0 andρ̂1 are empirical estimates ofP(D = 1|T = 0) andP(D = 1|T = 1).
Confidence intervals for each summary measure can be obtained using the per-
centile bootstrap.

4.4.2 Hypothesis Testing

Testing whether a marker hasanyperformance for treatment selection is of interest
for two reasons. First, this is a logical first step in marker evaluation. Second, the
performance measures described above have poor statistical properties at and near
the null of no marker performance. This is similar to problems that have been iden-
tified with measures of risk prediction model performance (see Vickers, Cronin,
and Begg (2011), Kerr, McClelland, Brown, and Lumley (2011), Pepe, Kerr, Long-
ton, and Wang (2011), Seshan, Gonen, and Begg (2012), Demler, Pencina, and
D’Agostino (2012), Kerr, Wang, Janes, McClelland, Psaty, and Pepe (2012)); Sec-
tion 7 includes further discussion of this point. Therefore, we advocate a simple
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pre-testing approach, whereby the marker performance measures are only estimated
if the null hypothesisH0 : Θ = 0 corresponding to null marker performance is re-
jected.

For an unbounded marker, under risk model (1),H0 is equivalent toH1
0 :

β3 = 0 whereβ3 is the coefficient of interaction in the risk model. ThereforeH0

can be tested using a (most-powerful) likelihood ratio (LR) test forβ3. However if
Y is bounded,H1

0 impliesH0 but the reverse does not hold; it is possible thatβ3 6= 0
but Θ = 0. Therefore we perform two hypothesis tests, splitting the type-I error
equally. We testH1

0 : β3 = 0 using a LR test andH2
0 : −β1/β3 /∈ (Ymin,Ymax) using

a Wald or percentile-bootstrap-based test, where−β1/β3 is the marker value where
∆(Y) = 0 under model (1) andYmin andYmax are the known upper and lower limits
for Y. Note that there are other methods that could be employed for testing the null
of no marker performance (e.g. Gail and Simon (1985), Shuster and J. (1983));
optimizing this test is not our focus.

For the unbounded markersY1 andY2 in our breast cancer example,H0 is
rejected withp= 0.005 andp< 0.0001, respectively.

4.5 Calibration Assessment

Assessing model calibration is a basic step in marker evaluation. We rely on stan-
dard methods for visualizing and testing goodness of fit for the risk model (1).
Since patients are provided risk estimates under both treatment options, we assess
the fit of the model separately in the two treatment groups. Specifically, we define
a well-calibrated model to be one for whichP(D = 1|T = 0,Risk0(Y) = r)≈ r and
P(D = 1|T = 1,Risk1(Y) = r)≈ r (Pepe and Janes (2012)). To assess this, we split
each treatment groupt = 0,1 into G equally-sized groups where the observations
in each group have similar̂Riskt(Y). CommonlyG= 10 and the groups are based
on quantiles of̂Riskt(Y). In each group, we calculate the average predicted risks,
Risktg(Y), and the observed risks,̂P(D = 1|T = t,G = g). Following Huang and
Pepe (2010a), we plot the distribution of̂Risk0(Y) andR̂isk1(Y), overlaying theG
observed risk values on the plot, as shown in Figure 3.

To formally assess model calibration, a traditional Hosmer-Lemeshow good-
ness of fit test (Lemeshow and Hosmer (1982)) can be applied separately to the two
treatment groups. Specifically, for groupT = t the test statistic

HLt =
G

∑
g=1

Ntg(P̂(D = 1|T = t,G= g)−Risktg(Y))2

Risktg(Y)(1−Risktg(Y))
,

whereNtg is the number of participants in thegth group forT = t, is compared to a
χ2 distribution withG−2 degrees of freedom.
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Another aspect of calibration is the extent to which the treatment effect
model fits well. We want to ensure thatP(D = 1|T = 0,∆(Y) = δ )−P(D = 1|T =
1,∆(Y) = δ ) ≈ δ . Following the approach above, we split the data intoG evenly-
sized groups based on̂∆(Y) and calculate the average predicted treatment effect,
∆g(Y), and observed treatment effect,P̂(D= 1|T = 0,G= g)−P̂(D= 1|T = 1,G=
g), in each group. We plot the treatment effect curve and overlay theG observed
treatment effect values as shown in Figure 3. Based on Figure 3 we see that the
risk and treatment effect models forY1 andY2 in the breast cancer example are
well-calibrated; the Hosmer-Lemeshow test statistics are 4.5 (p = 0.81) and 8.9
(p = 0.35) givenT = 0 and 5.0 (p = 0.76) and 2.9 (p = 0.94) givenT = 1. The
Risk0(Y2) and∆(Y1) curves suggest some evidence of poor calibration, which in our
setting is attributable to sampling variability in the observed risks that are calculated
using 50 observations each.

5 Comparing Markers

The descriptives and summary measures proposed herein form the basis for com-
paring candidate markers. We assume that the two markers,Y1 andY2, are measured
on the same participants, i.e. that the data are paired. With unpaired data, the anal-
yses described above can be applied to each individual data set and the estimated
summary measures are statistically independent.

For drawing inference about the relative performance of two markers, confi-
dence intervals for the differences in performance measures and hypothesis tests of
whether these difference are different from zero are informative. These can both be
obtained by bootstrapping the differences in test statistics. While global measures
of marker performance such asΘ, V∆, andTG are appropriate as the basis for for-
mal marker comparisons, differences in the other summary measures inform about
the nature of the difference between markers.

The results of the comparative analysis for the breast cancer example are
shown in Table 1. We can see clearly thatY2 has uniformly better performance than
Y1, with an associated 10% vs. 1% reduction in the disease rate. Despite the fact
that there are fewer marker-negative subjects based onY2, there is a much greater
benefit of no chemotherapy amongY2-marker-negatives. In general the variation in
treatment effect is larger forY2.
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6 Extensions

6.1 General Treatment Rules

In some settings there may be additional consequences of treatment that are not
captured in the outcome, for example treatment-associated toxicities. This means
that a treatment effect somewhat above zero may still warrant no treatment because
it is offset by the other consequences of treatment. In these settings the optimal
treatment rule can be shown to be

do not treat if ∆(Y)< δ ,

whereδ > 0 is equal to the burden of treatment relative to that of disease (Vick-
ers et al. (2007), Janes et al. (2012)). The performance methods described above
generalize naturally to this treatment rule, where

Θ(δ ) = P(D = 1|T = 1)− [P(D = 1|T = 1,∆(Y)> δ )P(∆(Y)> δ )
+P(D = 1|T = 0,∆(Y)< δ )P(∆(Y)< δ )]

Bneg(δ ) = P(D = 1|T = 1,∆(Y)< δ )−P(D = 1|T = 0,∆(Y)< δ )
Pneg(δ ) = P(∆(Y)< δ )

Bpos(δ ) = P(D = 1|T = 0,∆(Y)> δ )−P(D = 1|T = 1,∆(Y)> δ ),

and theV∆ andTG measures are independent of treatment rule.

6.2 Case-Control Sampling

The methods described above apply to the setting where the marker is measured
at baseline on all RCT participants. However when the outcomeD is rare, case-
control sampling from within the RCT is a well-known efficient alternative that
recovers much of the information contained in the entire trial population. This
section extends the methods to the setting where the data consist of a case-control
sample from the RCT, or a case-control sample stratified on treatment assignment,
T. We consider case-control designs that sample all or a fixed proportion of the
cases in the RCT, as well as a number of controls (perhaps stratified onT) that is a
fixed multiple of the number of cases sampled.

Consider first unstratified case-control sampling. SupposeND andND̄ cases
and controls occur in the trial “cohort” (N = ND +ND̄). The case-control sample
consists of a sample ofnD = f ·ND cases andnD̄ = k ·nD controls, wheref ∈ (0,1]
and the control:case ratiok is an integer. Commonly all the cases are sampled
( f = 1) and 1-5 controls are sampled per case. Alternativelyf may be set to a value
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less than 1 for a common disease or when budget concerns or sample availability
limit the number of cases that can be sampled; in these instances we assume that
selection into the case-control sample is completely random conditional onD = 1.

Let S= 1 be an indicator of selection into the case-control sample. Given
the case-control data, the task is to correct the estimates ofP(D = 1|T,Y,S= 1)
andP(∆(Y) < δ |S= 1) for the case-control sampling. Suppose that an estimate of
P(D = 1) is available from the cohort. The following identity is used to correct the
estimates ofP(D = 1|T,Y,S= 1) for the case-control sampling:

logitP(D = 1|T,Y) = logitP(D = 1|T,Y,S= 1)

+ logitP(D = 1)− logitP(D = 1|S= 1).

This identity follows from Bayes’ Theorem and was originally cited by Prentice and
Pyke (1979) as the rationale for using logistic regression to model risk with case-
control data. Note that the first term on the right hand side can be estimated using
the logistic regression risk model (1) fit to the case-control data, and an estimate of
the second term is available from the trial cohort. The third term is estimated from
the case-control data.

The distribution of∆(Y), or equivalently ofY itself, can be estimated in the
cases and controls in the case-control data and corrected to the cohort distribution
via

F̂∆(Y) = F̂cc
∆D̄
(Y)P̂(D = 0)+ F̂cc

∆D
(Y)P̂(D = 1),

where superscriptcc denotes estimation in the case-control sample andD and D̄
subscripts denote case and control subsets.

We use a modified bootstrapping procedure for case-control data. To re-
produce the variability in the cohort from which the case-control study is sampled,
we first sampleN∗

D ∼ Bin(N, P̂(D = 1)) and setN∗
D̄ = N−N∗

D. Next we sample
n∗D = f ·N∗

D cases andn∗D̄ = k · n∗D controls from the subjects in the case-control
study. The estimation procedure is then performed in each bootstrap sample and
quantiles of the bootstrap distribution are used to characterize uncertainty.

Case-control sampling stratified on treatment assignment can also be ac-
commodated. Here we assume a cohort with(ND0,ND̄0,ND1,ND̄1) subjects in each
D×T stratum. The case-control sample consists ofnD0= f0 ·ND0 andnD1= f1 ·ND1

cases for fixed proportionsf0 and f1 in the two treatment groups, andnD̄0 = k0 ·nD0
andnD̄1 = k1 ·nD1 controls for fixed control:case ratiosk0 andk1. Assume that es-
timates ofP(D = 1|T = 0), P(D = 1|T = 1), andP(T = 1) are available from the
cohort. A similar identity can be exploited for estimation:

logitP(D = 1|T,Y) = logitP(D = 1|T,Y,S= 1)+ logitP(D = 1|T)

− logitP(D = 1|T,S= 1)
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The first component on the right hand side is estimable using the risk model (1) fit to
the stratified case-control data, the second component is available from the cohort,
and the third component is estimated from the case-control data. The distribution
of ∆(Y) combines empirical CDFs from the fourD×T strata:

F̂∆(Y) = F̂cc
∆D̄0

(Y)P̂(D = 0,T = 0)+ F̂cc
∆D̄1

(Y)P̂(D = 0,T = 1)

+ F̂cc
∆D0

(Y)P̂(D = 1,T = 0)+ F̂cc
∆D1

(Y)P̂(D = 1,T = 1).

Bootstrapping is implemented by first samplingN∗
D0 ∼ Bin(N0, P̂(D = 1|T = 0))

andN∗
D1 ∼ Bin(N1, P̂(D = 1|T = 1)) whereNt = NDt +ND̄t . After settingN∗

D̄0 =
N0−N∗

D0 andN∗
D̄1 = N1−N∗

D1, the stratified case-control sample is then sampled
from the case-control subjects.

For calibration assessment, we implement a variation on the Hosmer-Lemeshow
test applied to case-control data, using methods described by Huang and Pepe
(2010a).

7 Discussion

This paper proposes a unified statistical framework for evaluating a candidate treat-
ment selection marker and for comparing two markers. Estimation and inference
techniques are described for the setting where the marker or markers are measured
on all or a treatment-stratified case-control sample of participants in a randomized,
controlled trial. An R software package was developed which implements these
methods. Developing a solid framework for evaluating and comparing markers is
fundamental for accomplishing more sophisticated tasks such as combining mark-
ers, accounting for covariates, and assessing the improvement in performance asso-
ciated with adding a new marker to a set of established markers.

Our approach to marker evaluation also applies when the marker is discrete.
In addition, it can be applied when there are multiple markers and interest lies in
evaluating their combination;∆(Y) =P(D= 1|T = 0,Y)−P(D= 1|T = 1,Y) is the
combination of interest and the measures described here can be used to summarize
the performance of this combination.

This work builds on existing approaches for evaluating markers for risk pre-
diction (see Pepe and Janes (2012), Huang et al. (2007), Gu and Pepe (2009)). It
also relates to existing methodology for evaluating treatment selection markers in
that our preferred marker performance measure has been advocated in several recent
papers (Song and Pepe (2004), Brinkley et al. (2010), Janes et al. (2011), Gunter
et al. (2007), Zhang et al. (2012), McKeague and Qian (2011)).
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There are some challenges with making inference about the performance
measures we propose, similar to problems that have been identified with mea-
sures of risk prediction model performance including the area under the ROC curve
(Vickers et al. (2011), Pepe et al. (2011), Seshan et al. (2012), Demler et al. (2012)),
the integrated discrimination index (Kerr et al. (2011)), and the net reclassification
index (Kerr et al. (2012)). The problems arise when the sample size is modest and
marker performance is weak. In particular for the Oncotype DX example, given
that the marker is weak and the primary study evaluating its performance by Albain
et al. (2010) included just 367 women, our simulation results suggest that the resul-
tant estimate ofΘ is likely an over-estimate and that the confidence interval may be
conservative. For this reason, we propose testing for non-null marker performance
prior to estimating the magnitude of performance. This approach performed rea-
sonably well in our simulation studies, but improved approaches to inference, for
the treatment selection as well as risk prediction problem, merit investigation.

The methods described here can and should be extended to accommodate
time-to-event outcomes. The conceptual framework applies, with the task being to
predict risk of the outcome by a specified landmark time. The methods may also
be generalized to an observational study setting, or to a setting where data on the
two treatments come from two different studies– perhaps historical data are paired
with a single-arm trial ofT = 1. However the usual concerns about measured and
unmeasured confounding in estimating the treatment effect apply. In this setting an
analyst would be well-advised to stratify on variables that are potentially associated
with treatment provision and outcome.

8 Appendix

8.1 Simulation Studies

This section describes a small-scale simulation study that was performed to evaluate
the statistical performance of our methods. Data were simulated to reflect the breast
cancer RCT example, withT an indicator of chemotherapy in addition to tamox-
ifen, randomly assigned to half of study participants. Rates of 5-year breast cancer
recurrence or death (D) were set to 21% and 24% with and without chemotherapy,
respectively, as in SWOG SS8814 (Albain et al. (2010)). We explored the perfor-
mance of the methods for a weak marker and a strong marker, both of which relate to
D via the linear logistic model (1). The weak marker,Y1, mimics the performance of
the Oncotype-DX recurrence score as seen in (Albain et al. (2010));Y1 is normally
distributed on the square-root scale with mean 4.8 and standard deviation 1.8. The
strong marker,Y2, follows a standard normal distribution. To simulate data, we first
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generated potential outcomesD(1) and D(0) with and without treatment, respec-
tively; marker values were generated from a distributionP(D(0),D(1)|Yj), j = 1,2
that yields marginal linear-logistic models (1); and treatment assignment,T, was
generated independent of potential outcomes and marker values. True values for the
marker performance measures were calculated as the average parameter estimates,
using the true risk function (1), across 10 very large datasets (N = 20,000,000).

We explore the bias of the parameter estimates and false-coverage probabil-
ities of the bootstrap percentile confidence intervals (CIs) for sample sizes ranging
from N = 250 toN = 5,000. A total of 5,000 simulations were performed for each
sample size. To explore the impact of our proposed pre-testing strategy, whereby the
parameters are not estimated ifH0 : Θ = 0 is not rejected, we evaluate the parameter
estimates and confidence intervals marginally and conditionally. Marginal means
of parameter estimates include all estimates regardless ofH0 rejection, and condi-
tional means are computed only among datasets whereH0 is rejected. The follow-
ing probabilities of false coverage of nominal 95% CIs are evaluated: 1. Marginal
probability of false coverage, where CIs are calculated regardless ofH0 rejection;
2. Conditional probability of false coverage, computed only among datasets where
H0 is rejected; and 3. Probability of rejectingH0 and the CI not covering the true
value, termed the “false conclusion probability” (Benjamini and Yekuteili (2005)).

8.1.1 Strong Marker

The results for the strong marker are contained in Tables A.1 and A.2. For this
marker, we see that the estimates and CIs have uniformly good performance. Marginal
bias is small and false coverage is near nominal; the pre-testing has no impact be-
cause of the 100% power to rejectH0 for this marker.

8.1.2 Weak Marker

The results for the weak marker are contained in Tables A.3 and A.4. Withn =
250 or 500, conditional on rejectingH0 the bias in parameter estimates and false-
coverage of CIs can be substantial; however rejectingH0 is unlikely with power
21% or 36%. Marginally, mean parameter estimates are substantially closer to their
true values and false-coverage probabilities are generally near-nominal. False con-
clusion probabilities are less than nominal but sometimes substantially below 0.05
indicating over-conservatism. Withn = 1,000 (5,000), conditional and marginal
bias is generally small and false-coverage probabilities are near or below nomi-
nal. False conclusion probabilities continue to be less than nominal. This example
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demonstrates that, for markers with near-null performance,substantial sample sizes
are required for accurate inference.

8.2 Software

We developed a package in the open-source software R calledTreatmentSelection

that implements our methods for evaluating individual markers and for comparing
markers. The software is available at http://labs.fhcrc.org/janes/index.html. The
following functions are included:

• TrtSel creates a treatment selection object
• evalTrtSel evaluates a treatment selection object, producing estimates and

confidence intervals for the summary measures described in Section 4.3
• plotTrtSel plots a treatment selection object, producing risk curves and the

treatment effect curve described in Section 4.2
• calibrateTrtSel assesses the calibration of a fitted risk model and treat-

ment effect model using methods described in Section 4.5
• compareTrtSel compares two markers using methods described in Section

5

Case-control and treatment-stratified case-control sampling are accommodated.
Here we illustrate use of the code by showing how the results shown in

Figures 1-3 and Table 1 of the main text are produced. First we load the data using
the following commands.

simData <- read.csv("ExampleData.csv",header=T)

> simData[1:10,]

T D Y1 Y2

1 1 1 39.9120 -0.8535

2 1 0 6.6820 0.2905

3 1 0 6.5820 0.0800

4 0 0 1.3581 1.1925

5 0 0 7.6820 -0.2070

6 0 0 41.1720 -0.0880

7 1 0 19.4920 0.1670

8 1 1 20.8220 -1.0485

9 0 0 6.9620 -0.2435

10 0 0 2.5020 0.2030
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D <- simData$D

T <- simData$T

Y1 <- simData$Y1

Y2 <- simData$Y2

Treatment selection objects are created and displayed forY1 andY2 using the com-
mands

trtsel.Y1 <- TrtSel(disease = D, treatment = T, marker = Y1,

study.design="randomized cohort")

> trtsel.Y1

Model Fit:

Link function: logit

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.51814383 0.235642511 -10.686288 1.179991e-26

trt 0.48938620 0.311762857 1.569739 1.164759e-01

marker 0.04760056 0.006453791 7.375597 1.636104e-13

trt:marker -0.02318881 0.008324063 -2.785756 5.340300e-03

Derived Data: (first ten rows)

disease trt marker fittedrisk.t0 fittedrisk.t1 trt.effect marker.neg

1 1 1 39.9120 0.35016583 0.2583742 0.0917916549 0

2 0 1 6.6820 0.09974358 0.1340472 -0.0343036269 1

3 0 1 6.5820 0.09931697 0.1337641 -0.0344471266 1

4 0 0 1.3581 0.07918316 0.1196652 -0.0404820847 1

5 0 0 7.6820 0.10410005 0.1369063 -0.0328062456 1

6 0 0 41.1720 0.36393311 0.2643117 0.0996213622 0

7 0 1 19.4920 0.16933976 0.1746644 -0.0053246137 1

8 1 1 20.8220 0.17843231 0.1793943 -0.0009620341 1

9 0 0 6.9620 0.10094678 0.1348426 -0.0338958439 1

10 0 0 2.5020 0.08324538 0.1226384 -0.0393929781 1

trtsel.Y2 <- TrtSel(disease = D, treatment = T, marker = Y2,

study.design="randomized cohort")
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> trtsel.Y2

Model Fit:

Link function: logit

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.2107912 0.1131642 -10.699416 1.024216e-26

trt -0.5169008 0.1863643 -2.773604 5.543912e-03

marker 0.5779172 0.1148643 5.031305 4.871514e-07

trt:marker -2.0455033 0.2064547 -9.907756 3.851994e-23

Derived Data: (first ten rows)

disease trt marker fittedrisk.t0 fittedrisk.t1 trt.effect marker.neg

1 1 1 -0.8535 0.1539379 0.38340813 -0.229470242 1

2 0 1 0.2905 0.2605896 0.10395563 0.156633982 0

3 0 1 0.0800 0.2378401 0.13644937 0.101390712 0

4 0 0 1.1925 0.3724723 0.02995087 0.342521474 0

5 0 0 -0.2070 0.2090899 0.19405065 0.015039232 0

6 0 0 -0.0880 0.2206903 0.16818515 0.052505186 0

7 0 1 0.1670 0.2470740 0.12209072 0.124983277 0

8 1 1 -1.0485 0.1398258 0.45290799 -0.313082172 1

9 0 0 -0.2435 0.2056229 0.20256576 0.003057187 0

10 0 0 0.2030 0.2509647 0.11653995 0.134424710 0

The descriptives shown in Figure 1 are produced using

plot(trtsel.Y1, main = "Y1: Oncotype-DX-like marker", bootstraps = 500,

trt.names=c("chemo.","no chemo."))

plot(trtsel.Y2, main = "Y2: Strong marker", bootstraps = 500,

trt.names=c("chemo.","no chemo."))

Calibration is assessed and displayed as shown in Figure 3 using

cali.Y1 <- calibrate(trtsel.Y1)

> cali.Y1
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Hosmer - Lemeshow test for model calibration

----------------------------------------------

No Treatment (trt = 0):

Test Statistic = 4.496, DF = 8, p value = 0.8098813

Treated (trt = 1):

Test Statistic = 4.986, DF = 8, p value = 0.7591213

cali.Y2 <- calibrate(trtsel.Y2)

> cali.Y2

Hosmer - Lemeshow test for model calibration

----------------------------------------------

No Treatment (trt = 0):

Test Statistic = 8.896, DF = 8, p value = 0.3511235

Treated (trt = 1):

Test Statistic = 2.868, DF = 8, p value = 0.9423597

calibrate(trtsel.Y1, plot.type = "risk.t0")

calibrate(trtsel.Y2, plot.type = "risk.t0")

calibrate(trtsel.Y1, plot.type = "risk.t1")

calibrate(trtsel.Y2, plot.type = "risk.t1")

calibrate(trtsel.Y1, plot.type = "treatment effect")

calibrate(trtsel.Y2, plot.type = "treatment effect")

The summary measure estimates and confidence intervals shown in Table 1 are
obtained by

eval.Y1 <- evalTrtSel(trtsel.Y1, bootstraps = 500)

eval.Y1

> eval.Y1

Hypothesis test:

------------------
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No marker by treatment interaction: P value = 0.0053403

Z value = -2.785756

Summary Measure Estimates (with 95% confidence intervals)

-----------------------------------------------------------

Decrease in disease rate under marker-based treatment (Theta)

Empirical: 0.013 (-0.009,0.05)

Model Based: 0.01 (0,0.042)

Proportion marker negative:

0.461 (0,0.709)

Average benefit of no treatment among marker-negatives (B.neg)

Empirical: 0.029 (-0.066,0.085)

Model Based: 0.023 (0,0.064)

Average benefit of treatment among marker-positives (B.pos)

Empirical: 0.089 (0.017,0.162)

Model Based: 0.098 (0.039,0.16)

Variance in estimated treatment effect :

0.007 (0.001,0.02)

Total Gain:

0.066 (0.023,0.11)

eval.Y2 <- evalTrtSel(trtsel.Y2, bootstraps = 500)

eval.Y2

> eval.Y2

Hypothesis test:

------------------

No marker by treatment interaction: P value = 3.851994e-23

Z value = -9.907756

Summary Measure Estimates (with 95% confidence intervals)

-----------------------------------------------------------

Decrease in disease rate under marker-based treatment (Theta)
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Empirical: 0.09 (0.063,0.124)

Model Based: 0.099 (0.072,0.128)

Proportion marker negative:

0.377 (0.306,0.474)

Average benefit of no treatment among marker-negatives (B.neg)

Empirical: 0.238 (0.175,0.305)

Model Based: 0.262 (0.213,0.31)

Average benefit of treatment among marker-positives (B.pos)

Empirical: 0.203 (0.153,0.256)

Model Based: 0.211 (0.171,0.251)

Variance in estimated treatment effect :

0.08 (0.058,0.108)

Total Gain:

0.224 (0.188,0.265)

The markers are compared based on summary measures using

mycompare <- compare(trtsel1 = trtsel.Y1, trtsel2 = trtsel.Y2,

bootstraps = 500)

> mycompare

Summary Measure Estimates

(with 95% confidence intervals)

marker 1 | marker 2 | difference (p-value)

------------------------------------------------------------------------

Decrease in disease rate under marker-based treatment (Theta)

Empirical: 0.013 | 0.090 | -0.076 (< 0.002)

(-0.010,0.044) | (0.060,0.122) | (-0.111,-0.042)

Model Based: 0.010 | 0.099 | -0.088 (< 0.002)

(0.000,0.037) | (0.071,0.129) | (-0.115,-0.061)

Proportion marker negative:

0.461 | 0.377 | 0.084 (0.768)

(0.000,0.700) | (0.304,0.470) | (-0.358,0.236)
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Average benefit of no treatment among marker-negatives (B.neg)

Empirical: 0.029 | 0.238 | -0.209 (< 0.002)

(-0.106,0.082) | (0.170,0.309) | (-0.342,-0.129)

Model Based: 0.023 | 0.262 | -0.239 (< 0.002)

(0.000,0.057) | (0.209,0.310) | (-0.294,-0.178)

Average benefit of treatment among marker-positives (B.pos)

Empirical: 0.089 | 0.203 | -0.114 (< 0.002)

(0.020,0.157) | (0.157,0.263) | (-0.193,-0.043)

Model Based: 0.098 | 0.211 | -0.113 (< 0.002)

(0.035,0.162) | (0.176,0.258) | (-0.184,-0.052)

Variance in estimated treatment effect :

0.007 | 0.080 | -0.073 (< 0.002)

(0.001,0.019) | (0.057,0.109) | (-0.103,-0.046)

Total Gain:

0.066 | 0.224 | -0.158 (< 0.002)

(0.024,0.110) | (0.187,0.263) | (-0.221,-0.102)

and visually (as in Figure 2) using

plot(mycompare, bootstraps = 500, main="",marker.names=c("Y1","Y2"))

If instead the dataset withD, Y1, andT measurements consisted of a case-
control sample from within an RCT, given estimates ofP(D = 1) andP(T = 1)
from the trial cohort (call theseRisk.cohortandRand. f rac) and the size of the trial
cohort,N, the only modification would be in creating the treatment selection object:

cctrtsel.Y1 <- TrtSel(disease = D, treatment = T, marker = Y1,

cohort.attributes = c(N, Risk.cohort, Rand.frac),

study.design="nested case control")
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Figure 1: Risk of disease as a function of treatment assignment and marker per-
centile, forY1, the Oncotype-DX-like marker (top), and the strong marker,Y2 (bot-
tom). Horizontal pointwise 95% confidence intervals are shown. Fourty-six percent
of women have negative treatment effects according toY1 vs. 38% withY2; these
women can avoid adjuvant chemotherapy.
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Figure 2: Distribution of the treatment effect, as measured by the difference in
disease rate without vs. with treatment,∆(Y) = P(D = 1|T = 0,Y)−P(D = 1|T =
1,Y), for the Oncotype-DX-like marker (Y1) and the strong marker (Y2). Horizontal
pointwise 95% confidence intervals are shown.
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Table 1: Estimates of various measures of marker performance for the Oncotype-DX-like marker (Y1) and the strong
marker (Y2) in the breast cancer example.

MarkerY1 MarkerY2 MarkerY1 vs.Y2

Measure Estimator Estimate Estimate Estimated Diff. P-value
(95% CI) (95% CI) (95% CI) for diff.

Θ Θ̂e 0.013 (-0.010,0.044) 0.090 (0.060,0.122) -0.076 (-0.111,-0.042) < 0.002
Θ̂m 0.010 (0.000,0.037) 0.099 (0.071,0.129) -0.088 (-0.115,-0.061) < 0.002

Bneg B̂e
neg 0.029 (-0.106,0.082) 0.238 (0.170,0.309) -0.209 (-0.342,-0.129) < 0.002

B̂m
neg 0.023 (0.000,0.057) 0.262 (0.209,0.310) -0.239 (-0.294,-0.178) < 0.002

Bpos B̂e
pos 0.089 (0.020,0.157) 0.203 (0.157,0.263) -0.114 (-0.193,-0.043) < 0.002

B̂m
pos 0.098 (0.035,0.162) 0.211 (0.176,0.258) -0.113 (-0.184,-0.052) < 0.002

Pneg P̂neg 0.461 (0.000,0.700) 0.377 (0.304,0.470) 0.084 (-0.358,0.236) 0.768
V∆ V̂∆ 0.007 (0.001,0.019) 0.080 (0.057,0.109) -0.073 (-0.103,-0.046) < 0.002
TG T̂G 0.066 (0.024,0.110) 0.224 (0.187,0.263) -0.158 (-0.221,-0.102) < 0.002

Hosted by The Berkeley Electronic Press



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Risk curve for non treated individuals

% population below risk

ris
k

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Risk curve for non treated individuals

% population below risk

ris
k

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Risk curve for treated individuals

% population below risk

ris
k

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Risk curve for treated individuals

% population below risk

ris
k

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

1
0.

0
0.

1
0.

2
0.

3

Treatment effect distribution

% population below treatment effect

tr
ea

tm
en

t e
ffe

ct

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

Treatment effect distribution

% population below treatment effect

tr
ea

tm
en

t e
ffe

ct

Figure 3: Plots assessing calibration of the risk and treatment effect models, for the
Oncotype-DX-like marker (left) and the strong marker (right).
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Table A.1: Mean parameter estimates for the strong marker. ForΘ, Bneg, andBpos, results are shown for both empirical
and model-based estimators. The probability of rejectingH0 : Θ = 0 is shown along with marginal and conditional means
of parameter estimates. Marginal means include all parameter estimates, regardless ofH0 rejection. Conditional means
are only computed among trials for whichH0 was rejected. True parameter values are shown in parentheses.

Prob. Θ Pneg Bneg Bpos V∆ TG
Reject (0.110) (0.379) (0.291) (0.228) (0.094) (0.245)

N H0 Mod. Emp. Mod. Emp. Mod. Emp.
Marginal 250 1 0.113 0.112 0.380 0.295 0.293 0.230 0.229 0.097 0.246

500 1 0.112 0.112 0.380 0.293 0.293 0.230 0.230 0.096 0.246
1000 1 0.111 0.111 0.379 0.292 0.292 0.229 0.229 0.095 0.246
5000 1 0.110 0.110 0.379 0.291 0.291 0.228 0.228 0.094 0.246

Conditional 250 1 0.113 0.112 0.380 0.295 0.293 0.230 0.229 0.097 0.246
500 1 0.112 0.112 0.380 0.293 0.293 0.230 0.230 0.096 0.246

1000 1 0.111 0.111 0.379 0.292 0.292 0.229 0.229 0.095 0.246
5000 1 0.110 0.110 0.379 0.291 0.291 0.228 0.228 0.094 0.246
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Table A.2: False coverage results for the strong marker. ForΘ, Bneg, andBpos, results are shown for both empirical and
model-based estimators. Percentile bootstrap confidence intervals (CIs) are evaluated using: Marginal false coverage, the
proportion of CIs that do not cover the true value regardless ofH0 rejection; conditional false coverage, the proportion of
CIs that do not cover the true value among datasets whereH0 is rejected; and false conclusion probability, the proportion
of datasets whereH0 is rejected and the CI does not cover the true value. The probability of rejectingH0 : Θ = 0 is also
shown.

Prob. Θ Pneg Bneg Bpos V∆ TG
N RejectH0 Mod. Emp. Mod. Emp. Mod. Emp.

Marg.
false
cov.

250 1 0.059 0.045 0.052 0.056 0.030 0.051 0.034 0.056 0.056
500 1 0.054 0.043 0.053 0.050 0.031 0.050 0.038 0.054 0.053

1000 1 0.056 0.055 0.051 0.049 0.044 0.047 0.044 0.055 0.055
5000 1 0.055 0.051 0.055 0.056 0.048 0.052 0.049 0.053 0.056

Cond.
false
cov.

250 1 0.059 0.045 0.052 0.056 0.030 0.051 0.034 0.056 0.056
500 1 0.054 0.043 0.053 0.050 0.031 0.050 0.038 0.054 0.053

1000 1 0.056 0.055 0.051 0.049 0.044 0.047 0.044 0.055 0.055
5000 1 0.055 0.051 0.055 0.056 0.048 0.052 0.049 0.053 0.056

False
concl.

250 1 0.059 0.045 0.052 0.056 0.030 0.051 0.034 0.056 0.056
500 1 0.054 0.043 0.053 0.050 0.031 0.050 0.038 0.054 0.053

1000 1 0.056 0.055 0.051 0.049 0.044 0.047 0.044 0.055 0.055
5000 1 0.055 0.051 0.055 0.056 0.048 0.052 0.049 0.053 0.056
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Table A.3: Mean parameter estimates for the weak marker. ForΘ, Bneg, andBpos, results are shown for both empirical
and model-based estimators. The probability of rejectingH0 : Θ = 0 is shown along with marginal and conditional means
of parameter estimates. Marginal means include all parameter estimates, regardless ofH0 rejection. Conditional means
are only computed among trials for whichH0 was rejected. True parameter values are shown in parentheses.

Prob. Θ Pneg Bneg Bpos V∆ TG
Reject (0.0095) (0.439) (0.022) (0.073) (0.005) (0.050)

N H0 Mod. Emp. Mod. Emp. Mod. Emp.
Marginal 250 0.217 0.022 0.022 0.423 0.036 0.036 0.090 0.090 0.009 0.060

500 0.364 0.016 0.015 0.410 0.027 0.026 0.080 0.080 0.007 0.055
1000 0.63 0.013 0.013 0.405 0.024 0.024 0.076 0.076 0.006 0.054
5000 0.999 0.010 0.010 0.426 0.022 0.022 0.073 0.073 0.005 0.053

Conditional 250 0.217 0.042 0.041 0.547 0.071 0.069 0.159 0.154 0.022 0.112
500 0.364 0.026 0.025 0.509 0.046 0.044 0.117 0.117 0.013 0.084

1000 0.630 0.017 0.017 0.473 0.032 0.032 0.091 0.090 0.008 0.066
5000 0.999 0.010 0.010 0.426 0.022 0.022 0.073 0.073 0.005 0.053
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Table A.4: False coverage results for the weak marker. ForΘ, Bneg, andBpos, results are shown for both empirical and
model-based estimators. Percentile bootstrap confidence intervals (CIs) are evaluated using: Marginal false coverage, the
proportion of CIs that do not cover the true value regardless ofH0 rejection; conditional false coverage, the proportion of
CIs that do not cover the true value among datasets whereH0 is rejected; and false conclusion probability, the proportion
of datasets whereH0 is rejected and the CI does not cover the true value. The probability of rejectingH0 : Θ = 0 is also
shown.

Prob. Θ Pneg Bneg Bpos V∆ TG
N RejectH0 Mod. Emp. Mod. Emp. Mod. Emp.

Marg.
false
cov.

250 0.217 0.054 0.030 0.059 0.053 0.023 0.063 0.026 0.034 0.035
500 0.364 0.043 0.021 0.052 0.034 0.014 0.048 0.022 0.029 0.030

1000 0.630 0.050 0.026 0.055 0.034 0.015 0.047 0.018 0.052 0.051
5000 0.999 0.057 0.037 0.058 0.058 0.020 0.058 0.036 0.060 0.058

Cond.
false
cov.

250 0.217 0.162 0.089 0.102 0.190 0.074 0.248 0.088 0.158 0.161
500 0.364 0.083 0.043 0.065 0.086 0.032 0.121 0.057 0.081 0.083

1000 0.630 0.045 0.028 0.043 0.047 0.023 0.061 0.028 0.046 0.044
5000 0.999 0.056 0.037 0.058 0.057 0.020 0.057 0.035 0.058 0.057

Marg.
false
concl.

250 0.217 0.035 0.019 0.022 0.041 0.016 0.054 0.019 0.034 0.035
500 0.364 0.030 0.016 0.024 0.031 0.012 0.044 0.021 0.029 0.030

1000 0.630 0.028 0.018 0.027 0.030 0.014 0.038 0.018 0.029 0.028
5000 0.999 0.056 0.037 0.058 0.057 0.020 0.057 0.035 0.058 0.057
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