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1 Introduction

The US Environmental Protection Agency (EPA) estimated that thousands of premature deaths
and hundred of thousands cases of illness may be avoided by reducing pollution (EPA, 2011). Most
epidemiological studies of air pollution and health have estimated the health effects associated
with ambient exposure to individual pollutants adjusting for exposure to other pollutants and
confounders. However, National Research Council (NRC) has recently questioned whether the
current approach of setting separate National Ambient Air Quality Standards (NAAQS) for each
of the six criteria pollutants adequately protects population health, as this approach may greatly
underestimate risk (NRC, 2004).To meet the challenges of the NRC recommendations, new
statistical methods are needed to account for multiple exposures and their interactions.

Previous multisite time series studies of the health effects of air pollution have estimated risks
associated with exposure to a single pollutant. Dominici et al. (2000) developed a two-stage
Bayesian hierarchical model to combine information across locations on the association between
daily changes of a given pollutant and daily changes in the health outcome, adjusted for other
pollutants and confounders. This approach has been applied to several national US studies for
estimating independent associations of various pollutants of epidemiologic interest with different
health outcomes, including mortality and cardiovascular and respiratory emergency hospital ad-
missions (Dominici et al., 2006; Bell et al., 2004; Peng et al., 2008, 2009).Two-level random-effect
models have also been used to estimate health effects of exposure to individual pollutants and to
identify factors that explain heterogeneity in the health risks across European cities (Katsouyanni
et al., 2001).To address the potential for biased estimates due to measurement error of corre-
lated exposures in multipollutant models, Zeka and Schwartz (2004) have applied methodology
developed by Schwartz and Coull (2003) to estimate independent effects of individual pollutants
that minimizes the impact of measurement error.

To estimate the health effects of simultaneous exposure to multiple pollutants, in this paper
we will allow for flexible specification of the air pollution-health outcome risk surface by incor-
porating interactions among pollutants and allowing for smooth nonlinear functions of pollutant
concentrations. For the full BHM, we define βi to be the random effects describing the association
between the health outcome and the multiple exposure variables included in the regression model
(e.g. nonlinear functions of pollution variables and potential confounders) for the ith location.
The parameter of primary scientific interest (θi) is the increased health risk when ambient levels
of the pollutants considered are simultaneously above their national standards compared to when
levels are below their national standards. Our goals are to obtain more precise estimates of θi by
borrowing strength across locations, estimating overall regional or national risks θ∗ = E(θi), and
identifying site-specific factors (e.g. population demographics, traffic patterns) that modify the
association between simultaneous exposure to multiple pollutants and adverse health outcomes.

More generally, the hierarchical modeling approaches we consider apply to problems where
the parameter of interest θi can be defined as a known function of βi where dim(βi)� dim(θi).
Many difficulties may arise upon implementation of standard Generalized Linear Mixed Models
(GLMM) or full BHM in presence of a high-dimensional vector of random effects (βi). First, one
must specify a multivariate distribution on the full βi, which might not be of primary scientific
interest. There is an extensive literature on the consequences of misspecification of random-effect
distributions in GLMM (Verbeke and Lesaffre, 1997; Heagerty and Kurland, 2001; Litière et al.,
2008; Agresti et al., 2004). Though small to moderate misspecification of the random-effect
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distribution may not have a large impact in the estimation of fixed effects, there are situations
for which misspecification can result in efficiency loss and biased estimates of the random ef-
fects (Neuhaus et al., 1992; Heagerty and Kurland, 2001; Agresti et al., 2004; Litière et al., 2010;
McCulloch and Neuhaus, 2011). Several approaches have been proposed for specifying flexible
semi- or nonparametric distributions for the random effects (Laird, 1978; Magder and Zeger,
1996; Komárek and Lesaffre, 2008; Gallant and Nychka, 1987; Chen et al., 2002). However,
most of these approaches cannot be implemented in the context of a high-dimensional vector of
random effects, and the validity of the assumption on the random-effect distribution is sometimes
difficult to verify (Agresti et al., 2004; Litière et al., 2008). Second, if one is interested in esti-
mating effect modification, then a standard BHM presents the additional challenge of specifying
a high-dimensional multivariate regression model. Third, implementing diagnostic methods for
misspecification of a multivariate random-effect distribution can be very challenging. Fourth, it
may be computationally intensive and/or challenging to implement an MCMC sampler that mixes
well and converges quickly to the stationary distribution as the dimension of the vector of random
effects increases.

In this paper, we introduce reduced Bayesian hierarchical models as a general statistical
approach for eliminating nuisance parameters in hierarchical models with a large number of
random effects. For reduced BHM we combine information across clusters (e.g. locations)
directly on the parameter of interest θi. At the first stage, we calculate an integrated likelihood
for θi, and at the second stage, we specify flexible random-effect distributions directly on the θi.
Reduced BHM overcome many of the practical challenges in the specification and implementation
of full BHM in the context of a high-dimensional vector of nuisance parameters βi. Further, we
conduct simulation studies to determine the circumstances under which reduced BHM may be
more efficient than full BHM. Though developed to study health effects of simultaneous exposure
to multiple pollutants, reduced BHM are widely applicable for other studies of multiple exposures,
and in general to clustered datasets with a large number of nuisance parameters. Accordingly,
the simulation study and much of the methods section are presented in a general context while
maintaining a close connection to the scientific motivation for this work.

In Section 2, we describe the multisite time series data used to estimate the health risks
associated with simultaneous exposure to multiple pollutants. In Section 3, we describe the level-
one model of a BHM aimed at estimating the association between joint exposure to ozone and
fine particulate matter and hospital admissions. In Section 4, we introduce the reduced BHM in a
general setting where an integrated likelihood is estimated for each cluster and a flexible random-
effect distribution is specified directly on the cluster-specific parameter of interest. Section 5
describes our simulation study. In Section 6, we present our results from the data analysis. We
provide discussion and concluding remarks in Section 7.

2 Data

We use data from a national database consisting of parallel time series from 60 counties in the
northeastern United States during the period 1999-2005. Daily counts of emergency cardiovascu-
lar (CVD) hospital admissions (comprising heart failure, heart rhythm disturbances, cerebrovas-
cular events, ischemic heart disease, and peripheral vascular disease), were obtained from billing
claims of US Medicare enrollees. CVD admissions were stratified by two age categories, 65–74
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Figure 1: Map of the 51 northeastern US counties. Right panel shows daily times series of PM2.5

and O3 for the District of Columbia. Horizontal line corresponds to the daily national standard
for each pollutant.

and > 75. Concentrations of fine particulate matter (PM2.5) and ozone (O3), which for many
counties are measured on either a 1-in-3 or 1-in-6 day schedule, were obtained from the US
EPA’s Air Quality System. Daily temperature and dewpoint temperature were obtained from the
National Climatic Data Center. Among the 60 northeastern US counties with available data,
we considered the 51 counties having at least 100 days where PM2.5 and O3 were measured
concurrently, as well as at least one day when both pollutants were above their national standard
(defined below). Figure 1 shows a map of the locations, as well as an example time series of
PM2.5 and O3 for Washington, DC.

3 Poisson regression model for multiple pollutants

In this section we describe the first level of a Bayesian hierarchical model for estimating health
effects associated with simultaneous exposure to multiple pollutants. We assume for county i on
day j for age group k, the number of CVD admissions yijk has a Poisson distribution with mean
model

logE[yijk] = log(nijk) + γi0 + ns(PM2.5ij; 3 df,bi1) · ns(O3ij; 3 df,bi2) (1)

+ γi1agek + γ ′i2dowij + ns(tempij; 6 df,γi3) + ns(dptpij; 3 df,γi4)

+ ns(temp
(3)
ij ; 6 df,γi5) + ns(dptp

(3)
ij ; 3 df,γi6) + ns(j; 8 df/year,γi7),

where nijk is the number of individuals of the kth age group at risk, and ns(·; df,b) denotes natu-
ral cubic splines with the specified degrees of freedom (df). The product of the cubic spline bases
for fine particulate matter and ozone, which includes both main effects and interaction terms, pro-
vides a flexible specification of the unknown joint pollutant-hospital admissions exposure-response
surface. Here PM2.5ij and O3ij correspond to daily trimmed means (over monitors in county i)
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of fine particulate matter and ozone concentrations, respectively; age denotes an indicator for
being in the > 75 age category (versus 65 to 74); dow is a vector of indicator variables for day

of week; tempij (temp
(3)
ij ) is the current day’s (average of the previous three days’) average tem-

perature; and dptpij (dptp
(3)
ij ) is the current day’s (average of the previous three days’) average

dew point temperature. The smooth function of calendar time ns(j; 8 df/year,γi7) accounts for
seasonality and longer-term, time-varying trends in hospital admissions.

To place the within-county model (1) within the more general context of BHM for two-level
clustered data, we introduce some notation. Let bi = (bi1,bi2) be the vector of random effects
for the exposure-response surface characterizing the relation between joint exposure to ozone and
fine particulate matter and the health outcome. Let γi = (γi0,γi1, . . . ,γi7) be the vector of
random effects describing the association between the confounders and the health outcome, and
define βi = (bi,γi). Let xij denote the full vector of covariate data for day j in county i, and
let xb

ij denote the 15-dimensional subvector of xij that is the concatenation of the basis terms
for the main effects and interactions of the spline bases for ozone and fine particulate matter
ns(PM2.5ij; 3 df,bi1) · ns(O3ij; 3 df,bi2).

We next define a daily indicator variable that summarizes whether a county is in attainment
of the national standards jointly for PM2.5 and O3:

NAAQSij =


3 if PM2.5 > 35 µg/m3 and O3 > 0.049 ppm

2 if PM2.5 > 35 µg/m3 and O3 6 0.049 ppm

1 if PM2.5 6 35 µg/m3 and O3 > 0.049 ppm

0 if PM2.5 6 35 µg/m3 and O3 6 0.049 ppm.

The values 35 µg/m3 and 0.049 ppm were derived from the National Ambient Air Quality
Standards (NAAQS), which are defined in Appendix A of the Supplementary Materials.

The parameter of interest θi, defined as the log of the average number of CVD admissions on
days when both ozone and fine particulate matter are above their respective national standards
divided by the average number of CVD admissions on days when both are lower than their
respective daily standard adjusted for the potential confounding variables, is given by

θi := h(βi;xi) = log

1
Ni3

∑
j:NAAQSij=3 exp(b′ix

b
ij)

1
Ni0

∑
j:NAAQSij=0 exp(b′ix

b
ij)
, (2)

where bi is the subvector of βi parameterizing the nonlinear association between O3 and PM2.5

and the health outcome. Here Ni3 (Ni0) are the number of days when both pollutants are above
(below) their national standard in county i during the study period 1999–2005. Derivation of the
formulation for the parameter of interest is in Appendix B of the Supplementary Materials.

4 Reduced Bayesian hierarchical model

Rather than specify a full BHM on the large number of random effects βi, we define a reduced
BHM directly on the parameter of interest θi:

yi | θi ∼ Li(θi); independent, i = 1, . . . , I (3)

θi | α ∼ RE(θi | α); independent, i = 1, . . . , I,

4
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where Li(θi) denotes a likelihood function (detailed below) and RE(θi | α) denotes an arbitrary
random-effect distribution. Note that the likelihood function in general depends on the vector of
outcome data from the ith cluster yi and on the set of covariate data xi, though we suppress
this dependency in our notation. A prior distribution is placed on α.

The reduced BHM may be further generalized by allowing the random-effect distribution
RE(θi | α) to depend on cluster-level covariates zi, in order to study potential effect modification.
In particular, for a scalar effect modifier the second-stage model may be written as θi | α =
α0i + α1zi and the random-effect distribution placed on the α0i.

4.1 Integrated Likelihood

In the general setting where the parameter of interest θi is a complicated function of the level 1
parameters βi as in (2), we propose to use an integrated likelihood for Li(θi), which we denote

by L
∫
i (θ). For notational simplicity the cluster-specific subscript i is suppressed in what follows.

An integrated likelihood for the ith cluster may be expressed as

L
∫
(θ) ∝ fθ|Y(θ | y)/πθ(θ), (4)

where πθ(θ) is the prior distribution for θ and fθ|Y is the corresponding posterior distribution of
θ based on the data from only that cluster. Note that in the special case where the cluster-
specific parameters β can be reparameterized as (θ,λ), this expression can be rewritten as
L
∫
(θ) =

∫
L(θ,λ)π(λ | θ)dλ, where L(θ,λ) is the joint likelihood, and π(λ | θ) is the prior

density of λ given θ (Berger et al., 1999).
When L

∫
(θ) is not available in closed form, we propose a simulation approach to approxi-

mate (4) as follows:

1. Assign a vague prior distribution to the vector β of level 1 parameters, which induces a
prior distribution on θ = h(β;x). Simulate R prior samples from πθ(θ).

2. Fit a within-cluster Bayesian model to generate R samples β(r) from fβ|y(β | y).

3. Obtain the posterior samples θ(r) = h(β(r);x).
4. Apply a kernel density smoother to estimate fθ|y(θ | y) and πθ(θ) on the same grid of

points.

We repeat this process for each cluster i to obtain approximations L̂
∫
i (θi), i = 1, . . . , I. Since

this step is performed a single time prior to fitting the reduced BHM, estimating the parameters
of the reduced BHM remains fast. Further details of our implementation are in Appendix C of
the Supplementary Materials.

4.2 Dirichlet process mixture model for RE(θi | α)

To allow for flexible specification of the random-effect distribution we propose to use a Dirichlet
process mixture model for RE(θi | α). The Dirichlet process mixture model (Ferguson, 1973;

5
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Neal, 2000) can be expressed as the limit as the number of components K goes to infinity of

θi | ci,φ ∼ F (θi | φci
); independent, i = 1, . . . , I

ci | p ∼ Discrete(p1, . . . , pK); independent, i = 1, . . . , I

φc ∼ G0

p ∼ Dirichlet(α/K, . . . , α/K),

where α/K is the concentration parameter written so that it approaches 0 as K goes to infinity.
Here we consider a normal mixture so that F (· | φc) = N(· | µc, τc), and we select the conjugate
prior so that G0 = NormalGamma(λ, γ, a, b), i.e. τc ∼ Gamma(τ | a, b) and µc | τc ∼ N(λ, γτc).

4.3 Computational details

The reduced BHM (3) may be fit using Markov Chain Monte Carlo (MCMC) methods to generate
samples from the posterior distribution of the unknown parameters

P(θ1, . . . , θI ,α | y1, . . . ,yI) ∝ π(α)
I∏
i=1

{RE(θi | α)Li(θi)} ,

where π(α) denotes the prior distribution on the vector of parameters of the random-effect
distribution. At each iteration of the MCMC algorithm, a sample is drawn from the full conditional

fc(θi) ∝ RE(θi | α)Li(θi) (5)

for each cluster i. When using an estimated integrated likelihood, we replace Li(θi) in equation (5)

by L̂
∫
i (θi). Since fc(θi) is not a known distribution, we sample from it by applying a Metropolis-

Hastings step. In the Metropolis-Hastings step, we need to evaluate the likelihood L̂
∫
i at an

arbitrary point x. We do this by selecting the grid point tk that is closest to x and evaluating

the likelihood L̂
∫
i (x) at that grid point.

For generating posterior samples of α when RE(θi | α) is the Dirichlet process mixture model
defined in Section 4.2, we adapt an MCMC sampling algorithm described by Neal (2000). Details
are in Appendix C of the Supplementary Materials.

5 Simulation study

There are instances for which the reduced BHM may be preferred to the full BHM due to practical
considerations such as its simplified implementation and the ease with which prior information may
be incorporated directly on the parameter of interest. However, a more thorough understanding
of situations when the reduced BHM works well is needed. In this section we conduct simulation
studies to compare performance of the reduced BHM to the full BHM across a range of scenarios.

We base our studies on data from a meta-analysis of 41 randomized trials of a treatment
for stomach ulcers, provided by Efron (1996). The data from the ith experiment is {yi =
(yi0, yi1),xi = (ni0, ni1)}, where yi0, yi1 are the number of occurrences of ulcers for the control
and treatment groups, and ni0, ni1 are the number of subjects in the control and treatment

6

http://biostats.bepress.com/jhubiostat/paper230



groups, respectively. Let pi = (pi0, pi1) be the vector of probabilities of the occurrence of ulcers
in the control and treatment groups. The distribution of the data from experiment (cluster) i is
assumed to be Pi(yi | xi;pi) =

(
ni1

yi1

)
pyi1i1 (1−pi1)ni1−yi1

(
ni0

yi0

)
pyi0i0 (1−pi0)ni0−yi0 , and the parameter

of interest is the log odds ratio

θi = h(pi) = log
pi1/(1− pi1)
pi0/(1− pi0)

. (6)

In this example, a full BHM would require the specification of a random-effect distribution for pi =
(pi1, pi0). Alternatively, a commonly used specification first defines a one-to-one transformation
of the pi into R2 through the logit link and assumes a bivariate normal distribution for the random
effects:

yki | pik ∼ Binom(nik, pik) for k = 0, 1 (7)

logit(pik) = βi0 + βi1I(k = 1)

(βi0, βi1)
′ ∼ N((β∗0 , β

∗
1)′,Σ).

For a reduced BHM, one first summarizes the information contained in experiment i about the
log odds ratio θi through a likelihood function, and then specifies a random-effect distribution
directly on the θi. For this problem, a conditional likelihood for θi is available in closed form.
By conditioning on the margins of the two-by-two table for each experiment, the conditional
likelihood may be expressed as

LCi (θi) =

(
ni0

yi0

)(
ni1

yi1

)
exp(θiyi1)∑min(ni1,yi0+yi1)

u=0

(
ni0

u

)(
ni1

yi1+yi0−u

)
exp(θiu)

. (8)

We may then use LCi (θi) for the likelihood function in the reduced BHM (3).
In our simulation study we will simulate data under four data generating mechanisms, and

we will estimate model parameters under four BHM formulations. First we will describe each of
the hierarchical modeling approaches used to fit the data, and then we will detail the four data
generating models.

5.1 Bayesian hierarchical models

Each simulated data set was fit using four approaches: a full BHM assuming the logistic model (7)
with a normal random-effect distribution on the βi (FBHM); a reduced BHM using the conditional
likelihood Lci(θi) from equation (8) with a normal random-effect distribution on the θi (RBHM-L-
N); a reduced BHM using the conditional likelihood Lci(θi) from (8) with a flexible random-effect
distribution on the θi (RBHM-L-DP); and a reduced BHM using a normal approximation to
the likelihood with a normal random-effect distribution on the θi (RBHM-N-N). For the flexible
random-effect distribution, we considered the Dirichelet Process normal mixture model described
in Section 4.2. For the reduced BHM, since a conditional likelihood for θi is available in closed
form, we do not consider an integrated likelihood as the likelihood function for this study. For
each approach, we estimate the cluster-specific log odds ratios θi as well as the overall log odds
ratio θ∗ = E(θi). Additionally we obtain 95% posterior intervals for the overall and cluster-
specific parameters. Details of estimation for each of the four models are in Appendix D of the
Supplementary Materials.

7
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5.2 Data generating models

We consider four data generating models. We always assume yi0 ∼ Binom(ni0, pi0) and yi1 ∼
Binom(ni1, pi1), and we select different models for generating pi0 and pi1 (i = 1, . . . , I). Note that
each model for generating pi0 and pi1 induces a distribution on the log odds ratio θi through (6).
Thus, each time we generate a dataset, we obtain I values of the cluster-specific, true log odds
ratios θi (one for each cluster i). The models were selected in order to distinguish among scenarios
where the full BHM is expected to outperform the reduced BHM and vice versa. Figure 2 shows,

Figure 2: Plots of simulated data under each scenario from the four models. First row displays
data from model 1, scenarios (a)–(b); row 2 shows data from model 2, scenarios (a)–(b); row 3
corresponds to model 3, scenarios (a)–(b); and row 4 to model 4, scenarios (a)–(b). For each
scenario 5000 data points (pi0, pi1) are plotted, as well as the corresponding points (βi0, βi1)
under the transformation logit(pik) = βi0 +βi1I(k = 1), and histograms of the corresponding log
odds ratios θi.

for each of the four data generating models, the distribution of the (pi0, pi1), along with the
corresponding distributions of the (β0i, β1i) = (log pi0

1−pi0 , θi) and the log odds ratios θi.
In each case, we set ni0 = ni1 = n, and we considered n = 100 for both I = 100 and

I = 50. These parameter values were selected to correspond to a large within-cluster sample size
for either a large or moderate number of clusters.

8
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Model 1 - Bivariate Normal
We generate data from

(β0i, β1i)
′ ∼ N((β∗0 , β

∗
1)′,Σ)

logit(pki) = β0i + β1iI(k = 1),

where (β∗0 , β
∗
1) = (−0.2,−1.3), and we consider two different values for Σ,

Σa =

[
0.9 0
0 1.1

]
and Σb =

[
0.9 0.5
0.5 1.1

]
.

These parameter values were selected to be the same order of magnitude of those from the ulcer
data set. Since this model fully specifies a normal random-effect distribution on the βi, partic-
ularly in scenario 1(b) where a moderate correlation between the random effects is assumed, we
expect it to favor the full BHM (7).

Model 2 - Uniform/Beta
We generate pi0 ∼ Uniform(0.1, 0.6) and pi1 | pi0 ∼ Beta(m = pi0 + 0.3, φ). Here we have
parameterized the beta distribution by its mean m and variance φ. We consider two values for
φ, namely φa = 0.001 and φb = 0.01. Since this model is not based on either the full or reduced
BHM a priori we don’t expect it to favor either of these two approaches.

Model 3 - Normal Mixture
We generate (pi0, pi1) by

(β0i, β1i)
′ ∼ αN(β∗ − ν,Σ) + (1− α)N(β∗ + ν,Σ)

logit(pki) = β0i + β1iI(k = 1),

where we fix β∗ = (−0.2, 1.3), α = 0.5, and Σ = diag{(0.01, 0.01)}. We consider two values
for ν, namely ν ′a = (0, 1) and ν ′b = (0.5, 1). This data generating model was selected because
the random-effect distribution will be misspecified for both the full and the reduced BHM (since
θi = βi1), when a normal random-effect distribution is assumed; thus, we expect neither approach
to perform particularly well.

Model 4 - Normal-θi
Finally, we generate data by first simulating values for the log odds ratios θi and for the log

odds λi = log( p0i
1−p0i ), which induces a distribution on the (p0i, p1i) =

(
exp(λi)

1+exp(λi)
, exp(λi+θi)
1+exp(λi+θi)

)
.

In particular, we simulate θi ∼ N(µ, σ2) and λi ∼ 0.5U(−u2,−u1) + 0.5U(u1, u2), where we
fix µ = 0.8, σ2 = 10. We consider two scenarios for u1 and u2, namely (u1a, u2a) = (2, 2.1)
and (u1b, u2b) = (0.2, 1.1). This model was chosen because it is expected to favor the reduced
BHM over the full BHM, since the normal random-effect distribution on the (βi0, βi1)

′ for the full
BHM will be misspecified, while the random-effect distribution for θi in the reduced BHM will be
correctly specified.

5.3 Results

We compare the posterior mean estimates θ̃i of the cluster-specific log odds ratios from the
four modeling approaches (FBHM, RBHM-L-N, RBHM-L-DP, and RBHM-N-N) to their true

9
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generated values θi using as risk criterion the squared error loss
∑I

i=1(θ̃i−θi)2. We also evaluate

the estimators θ̃∗ for the overall θ∗ = E(θi), by comparing the root mean squared error (rMSE),
bias, and variance from each approach. In addition, we evaluate the coverage of 95% posterior
intervals for θ̃i and θ̃∗. Table 1 displays results across the different methods for the case I = 100.
Results for the case I = 50 are in Table 1 of the Supplementary Materials.

Overall, we found that the reduced BHM (RBHM-L-N and RBHM-L-DP) performed compa-
rably to the full BHM across the majority of scenarios and even had superior performance in some
cases. Specifically, except under data generating models 1(b) and 3(b), we found that RBHM-
L-DP performed as well as or better than FBHM for estimating the θi. All of the approaches
(except RBHM-N-N) performed comparably for estimating θ∗.

The main disparity in performance across these methods occurred for estimation of the cluster-
specific parameters θi. Situations for which FBHM is only marginally better or worse than the
reduced BHM are those for which a bivariate normal distribution fails to capture the relationship
between β0i and β1i, as for data generating models 2, 3(a), and 4. The two situations where
FBHM yielded the best cluster-specific estimates were ones where the data generating model
implies considerable correlation in β0i and β1i, which can be captured to varying degrees by the
bivariate normal random-effect distribution on the βi. This occurred for data generating models
1(b) and 3(b), which had correlation of ≈ 0.5 and 0.8, respectively (see Figure 2). Because
nuisance parameters are eliminated before pooling, the reduced BHM do not take advantage of
this correlation structure. Comparing the reduced BHM with different random-effect distributions,
we found that RBHM-L-DP performed just as well or only slightly worse than RBHM-L-N when
the true distribution was normal (models 1(a)–(b) and 4(a)–(b)), but performed moderately
better when the true random-effect distribution was non-normal (models 2(a)–(b) and 3(a)–(b)).

Across simulation scenarios we generally found that the model using the normal approximation
to the likelihood (RBHM-N-N), although most efficient computationally, was not competitive with
the other approaches. For estimating θi, the RBHM-N-N either performed comparably (scenarios
2(a), 3(a) and 4(a)–(b)), or moderately worse (scenarios 1(a)–(b), 2(b), and 3(b)) than the
other approaches. For estimating the overall θ∗, the RBHM-N-N generally had larger rMSE and
coverage markedly lower than the nominal rate (exceptions are scenarios 3(a) and 4(c)). One
reason for the poor performance of RBHM-N-N is that the normal approximation to the likelihood
does not provide a good approximation in this application, particularly when yi1 or yi0 is equal to
zero or n.

6 Application

We applied the reduced BHM defined in Section 4 to our multisite time series study of 51 urban
counties in the northeastern US for the period 1999–2005. Our goal was to estimate the county-
specific and overall log relative risks of emergency cardiovascular hospital admissions associated
with levels of PM2.5 and O3 above their national standards.

We considered three types of reduced BHM. The first uses a normal approximation to the
likelihood at the first stage and a normal distribution on the random effects at the second stage
(RBHM-N-N). The second uses an integrated likelihood at the first stage and a normal random-
effect distribution at the second stage (RBHM-L-N). The third uses an integrated likelihood at
the first stage and a Dirichlet process normal mixture for the random-effect distribution (RBHM-
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L-DP). The parameter of interest θi, defined in (2), is the log relative risk of cardiovascular
admissions when ozone and PM2.5 are both above their national standarda compared to when both
are in attainment. For each reduced BHM we assumed little prior information, by incorporating
diffuse priors on the overall θ∗. We first fit each reduced BHM without including any second-
level covariates. We subsequently considered inclusion, at the second stage, of a county-specific
measure of the average level of NO2 during the study period to demonstrate the identification
of effect modification using reduced BHM. Long-term average NO2 may be an important effect
modifier because it a proxy for traffic exposure. This was done by assuming, at the second level
that θi = α0i + α1zi, where zi is the long-term average NO2 for the ith county, and placing a
random-effect distribution on the α0i. Details of the implementations for each reduced BHM are
in Appendix C of the Supplementary Materials.
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Figure 3: For 51 northeastern US counties, 95% posterior intervals for θi and the overall θ∗

for each reduced BHM. Models considered are the normal approximation to the likelihood with
normal random-effect distribution (RBHM-N-N) and integrated likelihood with normal (RBHM-
L-N) and flexible (RBHM-L-DP) random-effect distributions. Counties ordered from left to right

by increasing values of θ̂i/ŜDi where θ̂i is the MLE and ŜDi is the estimated standard error.
Number of days with both O3 and PM2.5 in exceedence of their national standards listed beside
each city. The parameter of interest θ is the log relative risk of cardiovascular admissions on
days when both O3 and PM2.5 exceed the national standard compared to days when both are in
attainment.
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Figure 3 shows the posterior mean estimates and 95% posterior intervals for the overall θ∗

and for the cluster-specific θi obtained under each reduced BHM. We found that on average,
across all counties, there was an increase in CVD admissions on days when both ozone and fine
particulate matter were above their national standards compared to days when both pollutants
were in attainment. In particular, we estimated that the overall log relative risk of CVD admissions
associated with levels of O3 and PM2.5 both above their national standards (θ∗) was 0.024 (95%
posterior interval -0.004 to 0.053) for RBHM-L-N, 0.027 (-0.007 to 0.061) for RBHM-L-N, and
0.029 (-0.014 to 0.071) for RBHM-L-DP. A log relative risk of 0.024 corresponds (approximately)
to a 2.4% increase in cardiovascular hospital admissions on days when both O3 and PM2.5 are
above their standards compared to when both pollutants are in attainment. We also found
variability across counties in the estimate of the cluster-specific effects θi. For most counties, θi
was estimated to be positive, though for each county the posterior interval covered zero. The
random-effect estimates exhibited the largest shrinkage for RBHM-N-N, followed by RBHM-L-N,
with the RBHM-L-DP estimates remaining furthest from the overall regional estimate.

5 10 15 20 25 30 35

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

Average NO2 (ppb)

P
os

te
rio

r m
ea

n 
of

 θ
=
lo
g(
R
R
)

slope =
 0.0017

slope =
 0.0024

RBHM-L-N
RBHM-L-DP

Figure 4: For the 41 northeastern US counties with NO2 measurements, plot of the posterior
mean of θi from each county estimated from the reduced BHM including the average annual
NO2 at the second level versus the average annual NO2. The parameter of interest θi is the log
relative risk of cardiovascular admissions on days when both O3 and PM2.5 exceed their national
standard compared to days when both are in attainment.

Figure 4 shows the posterior mean estimates of the location-specific θi from the reduced BHM
including average NO2 as a covariate in the second stage, plotted against the location’s long-
term average NO2. The positive slopes (α1) suggest that the risk of cardiovascular admissions
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associated with daily levels of O3 and PM2.5 greater than their national standards is higher
in locations with greater NO2 levels and lower in locations with lower NO2 levels, though the
estimates were not statistically significant. More precisely, we estimated that an interquartile
range increase in long-term average NO2 is associated with a percentage increase in the relative
risk of cardiovascular hospital admissions associated with O3 and PM2.5 both above their national
standards of 1.2% (-3.8% to 6.2%) under RBHM-L-N, and 1.6% (-2.2% to 5.7%) under RBHM-
L-DP.

7 Discussion

While previous studies have estimated health effects of single pollutants, understanding how
complex mixtures of pollutants affect health remains a challenging goal. Quantifying health
risks resulting from exposure to a single pollutant is a useful analytical construct, but it is not
representative of true exposure. It is therefore critical to develop models for estimating health
effects associated with simultaneous exposure to multiple pollutants.

In this paper we estimate county-specific and regional average multipollutant risks by investi-
gating the joint effect of fine particulate matter and ozone in a two-pollutant exposure-response
model. We extend previous single pollutant models by allowing for nonlinear smooth functions of
multiple pollutants and their interactions at the first stage of the model and for effect modification
at the second stage. Because we model flexible associations of several exposures concurrently, the
inclusion of interactions of spline terms leads to a high-dimensional vector of random effects. As
a result, several challenges to the application of the usual full BHM framework are introduced. To
address these challenges, we propose the reduced BHM as a novel approach for combining infor-
mation across locations directly on the parameter of interest. In this approach, information about
the parameter of interest is summarized through a likelihood function (e.g. integrated likelihood)
in the first stage. At the second stage, a flexible random-effect distribution (e.g. Dirichlet process
mixture) is specified directly on the parameter of interest. We conducted simulation studies to
compare performance of the reduced BHM to the full BHM, and we applied the reduced BHM
to a multisite time series study of 51 northeastern US counties during the period 1999–2005.

In comparison with the reduced BHM, on first inspection the full BHM is the seemingly
optimal approach, as it uses all of the available data in a single model to combine information
across clusters. However, many practical difficulties may arise upon implementation. First, for
the full BHM one must specify a random-effect distribution on the βi, which may be difficult
when the βi are high-dimensional or when they do not have meaningful interpretations (e.g.
regression spline coefficients as in equation (1)). A multivariate normal distribution is frequently
used, though it is not a requirement. For example, more flexible parametric distributions have
been proposed for the random-effect distribution, including semiparametric and nonparametric
modeling approaches (Magder and Zeger, 1996; Komárek and Lesaffre, 2008; Chen et al., 2002),
but these may be challenging to implement in a high-dimensional context. Additionally, prior
distributions must be selected for the parameters of the random-effect distribution (e.g. mean
vector β∗ and variance-covariance matrix Σ), which may also be complicated if these parameters
do not have meaningful interpretations. If there does not exist a reparameterization of βi such
that βi = (θi,λi) for λi a (q− 1)-dimensional nuisance parameter, then prior information about
the quantity of interest θi = h(βi;xi) cannot be easily translated into prior information about
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the model parameters βi. In addition, if one is interested in effect modification of cluster-specific
covariates zi at the second level, then a potentially high-dimensional multivariate regression
model for βi | β∗, zi must be specified. Finally, implementation of the MCMC sampler will
become increasingly challenging and computationally intensive as the dimension of βi (number
of random effects) increases.

For the reduced BHM, on the other hand, rather than specify a high-dimensional random-effect
distribution on parameters that are not of primary scientific interest, one only needs to specify a
random-effect distribution for a one-dimensional parameter that has a meaningful interpretation.
Additionally, it is frequently much easier to incorporate prior information about the parameter of
interest θi than about a large vector of nuisance parameters βi that may be hard to interpret
(e.g. spline coefficients). Furthermore, reducing a hierarchical model on a high-dimensional
vector of parameters to a hierarchical model on a much lower dimensional space yields simpler
implementation and greater computational efficiency, and makes model diagnostics and sensitivity
analyses more wieldy.

While the reduced BHM overcomes many of the difficulties in the specification and imple-
mentation of the full BHM, it also introduces new challenges. First, one must deal with the
elimination of nuisance parameters in the first step to obtain Li(θi). While the literature on
likelihood-based methods for eliminating nuisance parameters is vast (Pawitan, 2001; Edwards,
1992), in this paper we restricted our attention to those likelihoods that correspond to true prob-
ability distributions, including the integrated and conditional likelihood functions. In the case of
large within-cluster sample sizes, the choice of which likelihood function to use should make little
difference compared with the impact of the selection of the random-effect distribution. Future
work could further investigate how different choices of the likelihood function may influence in-
ference in fitting the reduced BHM. Second, while one gains simplicity by eliminating nuisance
parameters at the outset, it is possible that some information may be lost before combining
information across clusters. For example, if there is large correlation among the components
of βi within a cluster, then reducing the parameter space to a single parameter and pooling
the θi may not fully capture this underlying correlation and may yield less efficient estimates.
We investigated this possibility in our simulation study, finding that large correlation of random
effects within a cluster generally led to improved estimation of the random effects by the full
BHM compared to the reduced BHM. However, in other scenarios, namely those for which the
random-effect distribution for the full BHM was misspecified, the reduced BHM achieved superior
performance. In addition, for estimating the overall θ∗ we found performance to be very similar
across methods. Overall, in our simulation studies the reduced BHM performed nearly as well as
the full BHM (which uses full information), and even performed better in some cases.

While BHM using likelihoods of a single parameter in the level 1 model have been proposed
previously for specific applications, including the meta analysis of randomized trials of a treatment
for stomach ulcers (Efron, 1996; Liao, 1999), to our knowledge the reduced BHM has not been
described in the very general form we have presented here. In our formulation, the reduced BHM
is applicable when there is no conditional or marginal likelihood available, when an integrated
likelihood is not available in closed form, when the second level model includes cluster-specific
covariates, and when flexible specifications of the random-effect distribution are desired. Further,
we have not seen a direct comparison of the reduced BHM to the full BHM across a range of
potential scenarios.

Development of the reduced BHM was motivated by methodological needs for estimating
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health risks of joint exposure to multiple pollutants. We applied the reduced BHM methodology to
estimate the risk of emergency cardiovascular admissions associated with simultaneous exposure
to fine particulate matter and ozone. For the overall effect θ∗, we found marginal evidence
of increased risk on days when both pollutants exceeded their national standards compared to
when both were in attainment. The reduced BHM with normal random-effect distribution on
the parameter of interest θi (RBHM-L-N) led to more shrinkage of the county-specific random
effects than the reduced BHM with flexible random-effect distribution (RBHM-L-DP). Further,
the RBHM-L-N had narrower credible intervals for the county-specific parameters θi than RBHM-
L-DP. If the normal random-effect distribution is misspecified (e.g. if the analysis is missing an
important county-level effect modifier) then the RBHM-L-N may understate statistical uncertainty
in the θi. We also demonstrated that the reduced BHM can easily accommodate effect modifiers.
Specifically, we examined the inclusion of long-term county-level NO2, a surrogate for traffic
exposure. We found a larger relative risk of cardiovascular admissions associated with levels of
PM2.5 and O3 higher than their national standards in locations with high average NO2 compared to
locations with low average NO2, although the effect modification was not statistically significant.
In the future we will apply this approach to systematically conduct a national epidemiological
investigation of the health effects associated with simultaneous exposure to multiple pollutants.

We have described the reduced BHM methodology within the context of estimating health
risks of exposure to many pollutants. However, this hierarchical modeling strategy is broadly
applicable in situations where the parameter of interest is a known function of stage 1 random
effects. The meta-analysis of peptic ulcer treatment that served as the basis for our simulation
study is one example. Another example is the estimation of heat wave mortality risk in multisite
time series studies (Bobb et al., 2011). One can build a location-specific model similar to (1)
where the exposure-response function of interest is the temperature-mortality relation, adjusted
for time-varying covariates. One can then define a heat wave day indicator variable as a function
of temperature on current and previous days. The parameter of interest θ, defined as the log
relative risk of mortality on heat wave days compared to non-heat wave days, can then be written
as a known function of the temperature-response function (parameterized by β), and the reduced
BHM framework may be applied.

There are several extensions to the reduced BHM methodology we proposed. First, we as-
sumed a within-location model that had the same form across locations. However, this assumption
could be relaxed. To implement the reduced BHM, one can specify different within-cluster mod-
els for each cluster, as long as the interpretation of the parameter of interest remains constant
across models. For example, for the within-cluster model (1) in the multipollutant application,
the full BHM would require a common spline basis (e.g. common knot locations) for the joint O3

and PM2.5 association across locations, while the reduced BHM can allow for locally optimized
spline bases. Thus the reduced BHM approach can readily accommodate heterogeneity in the
appropriate model to use across locations. In this manuscript we focused on two-level clustered
datasets and a scalar parameter of interest. However, the reduced BHM could be generalized to
three-level or higher-level models, and to situations where the parameter of interest θi = h(βi)
is a multivariate parameter with dim(θi) < dim(βi).

While developed to study health risks associated with multiple exposures, the proposed re-
duced BHM methodology is widely applicable to studies with clustered data in which the pa-
rameter of interest is a known function of the parameters βi of the within-cluster model. This
framework is especially useful when βi is high-dimensional, when the components of βi are not
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easily interpretable, or when one wishes to incorporate prior information directly on the parameter
of interest. For such applications, the reduced BHM allows one to specify a random-effect distri-
bution directly on the parameter of interest θi and to study effect modification by specifying an
across-cluster regression model for θi. Further, the reduced parameter space leads to simpler im-
plementation, which facilitates the specification of flexible random-effect distributions that do not
require strong assumptions on the random effects. For problems that are very high-dimensional
in the number of clusters, the number of observations within a cluster, and the number of pa-
rameters in the within-cluster model, it may not be computationally feasible to fit a full BHM.
In such cases, the reduced BHM is a practical alternative.

Supplementary Materials

Appendices and Tables referenced in Sections 3, 4.1, 4.3, 5.1, 5.3, and 6 are available upon
request from the first author.
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Table 1: Summarizes simulation results for the cluster-specific log odds ratios θi, showing the
squared error loss

∑I
i=1(θ̃i−θi)2, along with coverage of 95% posterior intervals; Displays results

for the mean log odds ratio θ∗, showing bias, standard deviation, rMSE, and coverage of 95%
posterior intervals. Methods compared are the full Bayesian hierarchical model (FBHM), reduced
BHM with conditional likelihood and normal random-effect distribution (RBHM-L-N), reduced
BHM with normal approximation to the likelihood and normal random-effect distribution (RBHM-
N-N), and reduced BHM with conditional likelihood and Dirichlet-Process normal mixture for the
random-effect distribution (RBHM-L-DP).

Simulation Cluster θi Overall θ∗

Sq. Error Coverage Bias SD rMSE Coverage
1(a)* θ∗ = −1.3
(i) FBHM 14.4 0.95 0.00 0.11 0.11 0.94
(ii) RBHM-L-N 14.8 0.95 0.02 0.11 0.11 0.95
(iii) RBHM-L-DP 14.8 0.95 0.03 0.11 0.11 0.94

Model 1: (iv) RBHM-N-N 18.0 0.94 0.09 0.10 0.14 0.89
Bivariate 1(b)* θ∗ = −1.3
Normal (i) FBHM 14.9 0.95 −0.01 0.12 0.12 0.94

(ii) RBHM-L-N 18.9 0.94 0.04 0.11 0.12 0.93
(iii) RBHM-L-DP 18.9 0.94 0.06 0.11 0.12 0.92
(iv) RBHM-N-N 27.5 0.92 0.14 0.10 0.17 0.74

2(a) θ∗ = 1.46
(i) FBHM 7.5 0.88 −0.03 0.04 0.05 0.87
(ii) RBHM-L-N 8.0 0.91 −0.03 0.04 0.05 0.90
(iii) RBHM-L-DP 7.5 0.95 −0.04 0.04 0.06 0.90

Model 2: (iv) RBHM-N-N 9.6 0.89 −0.07 0.04 0.08 0.66
Uniform/ 2(b) θ∗ = 1.67
Beta (i) FBHM 99.5 0.90 −0.14 0.08 0.16 0.55

(ii) RBHM-L-N 104.2 0.91 −0.13 0.08 0.16 0.56
(iii) RBHM-L-DP 96.2 0.92 −0.14 0.09 0.17 0.57
(iv) RBHM-N-N 137.6 0.89 −0.23 0.07 0.24 0.11

3(a) θ∗ = −1.3
(i) FBHM 10.6 0.95 −0.01 0.11 0.11 0.97
(ii) RBHM-L-N 11.6 0.95 0.00 0.11 0.11 0.97
(iii) RBHM-L-DP 9.8 0.96 0.02 0.10 0.11 1.00

Model 3: (iv) RBHM-N-N 11.6 0.95 0.06 0.10 0.12 0.94
Normal 3(b) θ∗ = −1.3
Mixture (i) FBHM 10.1 0.95 −0.02 0.12 0.13 0.93

(ii) RBHM-L-N 13.5 0.95 0.02 0.12 0.12 0.94
(iii) RBHM-L-DP 12.1 0.96 0.03 0.12 0.12 0.99
(iv) RBHM-N-N 15.0 0.94 0.12 0.11 0.17 0.80

4(a) θ∗ = 0.8
(i) FBHM 7.9 0.84 0.00 0.06 0.06 0.85
(ii) RBHM-L-N 7.2 0.93 0.01 0.06 0.06 0.94
(iii) RBHM-L-DP 7.3 0.97 −0.01 0.06 0.06 0.96

Model 4: (iv) RBHM-N-N 7.5 0.90 −0.05 0.05 0.07 0.86
Normal-θi 4(b) θ∗ = 0.8

(i) FBHM 5.1 0.93 0.00 0.05 0.05 0.93
(ii) RBHM-L-N 5.2 0.94 0.00 0.05 0.05 0.94
(iii) RBHM-L-DP 5.2 0.96 −0.01 0.04 0.05 0.94
(iv) RBHM-N-N 5.2 0.94 −0.02 0.04 0.05 0.93

*For scenarios 1(a) and 1(b), the summary statistics for RBHM-L-DP are based on 999 and 998 simulation
repetitions, respectively. The other repetitions were excluded because the MCMC didn’t converge within the
maximum number of iterations.
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