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Asymptotic and Finite Sample Behavior

of Net Reclassification Indices

Zheyu Wang

Abstract

The Net Reclassification Index (NRI) introduced by Pencina and colleagues [1,

2] is designed to quantify the prediction increment provided by a new biomarker. It

has become popular for evaluating and selecting novel markers. The published variance

formulae for NRI statistics do not account for the fact that risks are estimated based on

risk models fit to data, and thus are not valid in practice when estimated risks are used

[3]. Kerr and colleagues [4] showed that the confidence intervals constructed based on a

bootstrap estimate of the variance and Normal approximation had the best performance

among various methods they examined, including the one based on bootstrap quantiles.

This paper establishes asymptotic Normality of NRI statistics when true risks are

unknown and are estimated. Our results provide theoretical support for constructing

confidence intervals for NRI statistics based on a Normal approximation. We also derive

explicit variance formulae for NRI statistics that are calculated based on estimated

risks. In addition, we examine finite sample distributional behavior of NRI statistics in

a simulation study. These results provide some guidance on the sample size required

for adopting a Normal approximation for NRI inference in practice.

Keyworks: Net reclassification index; incremental value; asymptotic Normality;

sampling distribution; biomarker; risk models
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1 Introduction

Risk prediction is key in medical decision making as well as in health policy development.

Accurate risk prediction can assist clinicians in recommending the most beneficial treatment

to patients while avoiding unnecessary, invasive, or costly procedures. It is also crucial for

health policy makers to develop well-informed strategies for the whole population. This

has led to continuous efforts to improve prediction models and successive discovery of novel

markers. For example, breast density [5, 6] and genetic polymorphisms [7, 8, 9] are proposed

for predicting breast cancer risk in addition to traditional factors in the Gail model [10, 11].

Numerous studies have been conducted in recent years to evaluate candidate markers for

cardiovascular event upon factors in the standard Framingham risk score [12]. An important

question is how best to assess and quantify the improvement gained from incorporating new

biomarkers into risk prediction models.

Various metrics have been proposed to quantify the prediction increment, or incremental

value, of a biomarker [13]. Change in the area under the receiver operating characteristic

curve (∆AUC) is the most popular single number summary index. However, AUC has been

criticized because it does not measure a clinically meaningful quantity, and because it is a

broad summary of changes in risk models that incorporates irrelevant information [14, 15, 16].

To overcome these limitations, Pencina and colleagues [1] proposed the Net Reclassification

Index (NRI) as a new measure of incremental value. The original definition of NRI is based

on a reclassification table with predefined risk categories. It is conceived from the idea that

a useful biomarker will lead to more diseased subjects in higher risk categories and more

healthy subjects in lower risk categories. Consequently, it contains two parts, the “event”
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NRI, and the “nonevent” NRI, as follows,

NRI(event) = P (up|event)− P (down|event),

NRI(nonevent) = P (down|nonevent)− P (up|nonevent),

NRI = NRI(event) + NRI(nonevent).

Here, “event” denotes subjects with disease or other medical conditions of interest (“cases”)

and “nonevent” denotes controls. “Up” indicates that the risk predication based on the model

with the new biomarker moves an individual into a higher risk category compared to the

old model with baseline predictors. “Down” indicates the reverse, that the risk predication

based on the new model moves an individual into a lower risk category compared to the old

model. Later, a “category-free” or “continuous” NRI was introduced [2] to avoid the need

for subjective and perhaps arbitrary risk thresholds, although this version of NRI shares

many of the same limitations as ∆AUC [4, 17]. Despite their limitations, NRI statistics have

become increasing popular, especially in cardiovascular research [18, 19].

A close examination of the asymptotic behavior of NRI statistics is necessary to correctly

gauge the uncertainty in the estimation and construct valid confidence intervals for inference.

Pencina and colleagues provided formulae [2] for NRI statistics comparing risks calculated

from the baseline risk model and risks calculated from the expanded risk model that includes

the new biomarker. Pepe et al. [3] pointed out that the variance formulae derived based on

fixed risk models, such as the ones in Pencina et al. [2], do not consider the variability in

regression model coefficient estimates, and thus are not valid when estimated risks are used.

Kerr et al. [4] illustrated this issue for NRI statistics with a simulation study. In practice,

the risk model is rarely known and is almost always estimated from the data. Therefore, it

is of interest to derive variance formulae for NRI statistics that account for the variability in

risk estimates and can be used in practical situations. Similarly, it is critical to examine the

asymptotic and finite sample distributional behavior of NRI statistics, since the commonly
3
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used method to construct a 95% confidence interval for a parameter θ, θ̂±1.96·ŜE(θ̂), requires

the distribution of θ̂ to be approximately Normal, regardless of whether the standard error

estimate ŜE(θ̂) is obtained from a formula or by bootstrapping. The latter choice, confidence

interval for NRI statistics constructed based on a bootstrapped standard error and Normal

approximation, exhibited better coverage performance in the simulation study in Kerr et al.

[4] than various other confidence intervals they examined.

In this paper, we derive the asymptotic distribution of NRI statistics when the estimated

risks are used. We also study their finite sample behavior with simulations. Based on

the recommendation in Kerr et al. [4], we focuse on the category-free NRI and the two-

category NRI. This paper is organized as follows. Section 2 describes notation, settings and

assumptions. Section 3 and section 4 provide the derivations of the asymptotic distributions

of the category-free NRI and the two-category NRI, respectively. Section 5 studies the finite

sample behavior of NRI statistics via simulations. Section 6 concludes the paper with a

discussion.

2 Notation and settings

Suppose that we have a set of baseline risk factors X and a new biomarker Y . The task is

to evaluate the prediction increment introduced by this new biomaker. To do this, we want

to compare the classification performance of a new model with both X and Y as predictors

with that of the old model with only baseline predictors X.

Let F0 = FX be the distribution function of X, and F1 = FX,Y be the joint distribution

of X and Y . Let D be a binary variable indicate subject’s disease status, i.e., D equals

1 for cases and D equals 0 for controls. Suppose R0(β,X) = P (D = 1|X), R1(θ,X, Y ) =

P (D = 1|X, Y ) are the old and new risk models, respectively. We further suppose that the
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assumed risk models are the true risk models, i.e., there is no model misspecification. And

F̂0, F̂1, R̂0 = R0(β̂,X) and R̂1 = R1(θ̂,X, Y ) are the corresponding estimated quantities. In

addition, n denotes the total sample size, and nD denotes the number of cases.

Assumptions:

(1)
√

n(β̂ − β) →d N(0, Σ0(β)) and
√

n(θ̂ − θ) →d N(0, Σ1(θ)).

(2) Risk functions R0(r,X) and R1(s,X, Y ) are differentiable at true value r = β and s = θ.

(3) R−1
0 (r, t) and R−1

1 (s, t) exist and are differentiable at r = β and s = θ.

(4) The set Ω = {(X, Y )|R0(r,X) 6= R1(s,X, Y )} has positive measure.

(5) F0 and F1 are continuous with positive density f0 and f1 on [0, 1] except on finite points.

(6) nD/n →p ρ > 0, as n → +∞.

3 Asymptotic Distribution of a Category-Free NRI

A category-free NRI, also called continuous NRI, is the summation of an event NRI and a

nonevent NRI that are calculated based on continuous risks without pre-selected threshold.

Event NRI is defined as the probability that the new risk model provides a higher risk

than the old model among cases, P
(
R1(X, Y ) > R0(X)|D = 1

)
, minus the probability that

the new risk model provides a lower risk than the old model among cases, P
(
R1(X, Y ) <

R0(X)|D = 1
)
. Nonevent NRI is defined as the probability that the new risk model provides

a lower risk than the old model among controls, P
(
R1(X, Y ) < R0(X)|D = 0

)
, minus the

probability that the new risk model provides a higher risk than the old model among controls,

P
(
R1(X, Y ) > R0(X)|D = 0

)
.

In most situations, risks need to be estimated in addition to the four probabilities comparing

5
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them. So the estimated category-free NRI is calculated as follows,

N̂RI>0
e = P̂

(
R̂1(X, Y ) > R̂0(X)|D = 1

)− P̂
(
R̂1(X, Y ) < R̂0(X)|D = 1

)
,

N̂RI>0
ne = P̂

(
R̂1(X, Y ) < R̂0(X)|D = 0

)− P̂
(
R̂1(X, Y ) > R̂0(X)|D = 0

)
,

N̂RI>0 = N̂RI>0
e + N̂RI>0

ne .

NRI>0
e characterizes the reclassification improvement among disease population, and NRI>0

ne

summarizes the improvement among non-diseased population. Most often the costs and

benefits of these improvements will differ greatly for cases and controls. Therefore, it is

recommended to report these two components of the NRI statistic separately [4]. We will

derive the asymptotic results separately for N̂RI>0
e and N̂RI>0

ne .

3.1

We first consider N̂RI>0
e .

N̂RI>0
e = P̂

(
R̂1(X, Y ) > R̂0(X)|D = 1

)− P
(
R̂1(X, Y ) < R̂0(X)|D = 1

)

= P̂
(
R̂1(X, Y ) > R̂0(X)|D = 1

)− (
1− P̂

(
R̂1(X, Y ) > R̂0(X)|D = 1

))

(By assumption 2)

= 2P̂
(
R̂1(X, Y ) > R̂0(X)|D = 1

)− 1.

√
n
[
P̂

(
R̂1(X, Y ) > R̂0(X)|D = 1

)− P
(
R1(X, Y ) > R0(X)|D = 1

)]

=
{√

n
[
P̂

(
R̂1(X, Y ) > R̂0(X)|D = 1

)− P
(
R̂1(X, Y ) > R̂0(X)|D = 1

)]}

+
{√

n
[
P

(
R̂1(X, Y ) > R̂0(X)|D = 1

)− P
(
R1(X, Y ) > R0(X)|D = 1

)]}

=
{
A

}
+

{
B

}
.
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Given
{
B

}
, or equivalently P

(
R̂1(X, Y ) > R̂0(X)|D = 1

)
, the first term

{
A

}
is the empirical

value of B derived from a proportion among the nD events. Therefore, conditioning on B,

A has mean 0 and binomial variance

var(A|B) = nP
(
R̂1(X, Y ) > R̂0(X)|D = 1

)[
1− P

(
R̂1(X, Y ) > R̂0(X)|D = 1

)]
/nD

.
=

1 + NRI>0
e

2ρ
× 1−NRI>0

e

2
=

1− (NRI>0
e )2

4ρ
.

This can also be seen by noting that,

√
n
[
P̂

(
R̂1(X, Y ) > R̂0(X)|D = 1

)− P̂
(
R1(X, Y ) > R0(X)|D = 1

)]

− √
n
[
P

(
R̂1(X, Y ) > R̂0(X)|D = 1

)− P
(
R1(X, Y ) > R0(X)|D = 1

)]
= op(1).

(By equicontinuity of process
√

nD(P̂ − P ) and assumption 1, 2.)

Thus, A =
√

n
[
P̂

(
R1(X, Y ) > R0(X)|D = 1

)− P
(
R1(X, Y ) > R0(X)|D = 1

)]
+ op(1).

Because E(A|B) = 0, we have that var(A) = E
[
var(A|B)

] .
= [1− (NRI>0

e )2]/4ρ. Moreover,

E(A|B) = 0 also implies A and B are uncorrelated. Hence,

var
(√

nN̂RI>0
e

)

= 4var
{√

n
[
P̂

(
R̂1(X, Y ) > R̂0(X)|D = 1

)− P
(
R1(X, Y ) > R0(X)|D = 1

)]}

= 4
{
var(A) + var(B)

}
.

3.2

Now we turn to the variance of B =
√

n
[
P

(
R̂1(X, Y ) > R̂0(X)|D = 1

) − P
(
R1(X, Y ) >

R0(X)|D = 1
)]

. The idea is to write it as a function of β and θ based on the asymptotic

distribution of R̂1(X, Y )− R̂0(X), and then apply the delta method.
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First, we derive asymptotic distribution of R̂1(X, Y ) − R̂0(X) by Taylor expansion and

assumption 1.

√
n
{[

R̂1(X, Y )− R̂0(X)
]− [

R1(X, Y )−R0(X)
]}

=
(∂R1(s,X, Y )

∂s
|s=θ

)T√
n(θ̂ − θ)− (∂R0(r,X)

∂r
|r=β

)T√
n(β̂ − β) + op(1).

Thus,
√

n
{[

R̂1(X, Y )− R̂0(X)
]− [

R1(X, Y )−R0(X)
]} →d N(0, ΣR) by Slutskys theorem,

where

ΣR =
(∂R0(r,X)

∂r
|r=β

)T
Σ0(β)

(∂R0(r,X)

∂r
|r=β

)
+

(∂R1(s,X, Y )

∂s
|s=θ

)T
Σ1(θ)

(∂R1(s,X, Y )

∂s
|s=θ

)

−2
(∂R0(r,X)

∂r
|r=β

)T
cov

(√
n(β̂ − β),

√
n(θ̂ − θ)

)(∂R1(s,X, Y )

∂s
|s=θ

)
.

In the above, the random variable
√

n
{[

R̂1(X, Y )− R̂0(X)
]− [

R1(X, Y )− R0(X)
]}

is not

degenerate due to assumption 4. Nevertheless, when assumption 4 does not hold, that is,

R0(r,X) = R1(s,X, Y ), a.s., we have,

var(A)
.
=

1− (NRI>0
e )2

4ρ
=

1

4ρ
6= 0.

Thus, var
(√

nN̂RI>0
e

)
= 4

{
var(A) + var(B)

}
is dominated by var(A). In fact,

var
(√

nN̂RI>0
e

)
= 4var(A) =

1

ρ
6= 0.

So the derivation can still go through. Thus, assumption 4 is not essential in establishing

asymptotic Normality of N̂RI>0
e , and similarly of N̂RI>0

ne . However, it is required in the

derivations for the two-category NRI as we will see in section 4.
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Let ψ0i and ψ1i be the influence functions of β̂ and θ̂, respectively, such that,

√
n(β̂ − β) =

1√
n

n∑
i=1

ψ0i(X) + op(1),
√

n(θ̂ − θ) =
1√
n

n∑
i=1

ψ1i(X, Y ) + op(1).

Then,

ΣR =
(∂R0(β,X)

∂β

)T
var(ψ0i(X))

(∂R0(β,X)

∂β

)
+

(∂R1(θ,X, Y )

∂θ

)T
var(ψ1i(X, Y ))

(∂R1(θ,X, Y )

∂θ

)

−2
(∂R0(β,X)

∂β

)T
cov

(
ψ0i(X), ψ1i(X, Y )

)(∂R1(θ,X, Y )

∂θ

)
.

Therefore, we have the following result asymptotically:

P
(
R̂1(X, Y ) > R̂0(X)|D = 1

)
= P

(
R̂1(X, Y )− R̂0(X) > 0|D = 1

)

.
=

∫
1− Φ(

0− [
R1(θ,X, Y )−R0(β,X)

]

Σ
1/2
R (β, θ)

)dF1D(X, Y )

=

∫
Φ(

[
R1(θ,X, Y )−R0(β,X)

]

Σ
1/2
R (β, θ)

)dF1D(X, Y ) ≡ H(β, θ),

where Φ(.) is the cdf of a standard Normal variable.

By Taylor expansion we have,

B =
√

n
[
P

(
R̂1(X, Y ) > R̂0(X)|D = 1

)− P
(
R1(X, Y ) > R0(X)|D = 1

)]

=
(∂H(r, s)

∂r
|r=β,s=θ

)T√
n(β̂ − β) +

(∂H(r, s)

∂s
|s=β,t=θ

)T√
n(θ̂ − θ) + op(1).

Thus, B is asymptotically Normal with mean 0 and variance

var(B) =
(∂H(β, θ)

∂β

)T
Σ0(β)

(∂H(β, θ)

∂β

)
+

(∂H(β, θ)

∂θ

)T
Σ1(θ)

(∂H(β, θ)

∂θ

)

+2
(∂H(β, θ)

∂β

)T
cov

(√
n(β̂ − β),

√
n(θ̂ − θ)

)(∂H(β, θ)

∂θ

)
.
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3.3

We have shown that A and B are two uncorrelated and asymptotically Normal random

variables. Thus,

√
n
[
N̂RI>0

e −NRI>0
e

] →d N(0, ΣNRI>0
e

).

The asymptotic zero mean of
√

n
[
N̂RI>0

e −NRI>0
e

]
is because of equicontinuity of process

√
nD(P̂ − P ) and assumptions 1 and 2. Moreover,

ΣNRI>0
e

= var
(√

nN̂RI>0
e

)
= 4

{
var(A) + var(B)

}

=
1− (NRI>0

e )2

ρ
+ 4

(∂H(β, θ)

∂β

)T
Σ0(β)

(∂H(β, θ)

∂β

)
+ 4

(∂H(β, θ)

∂θ

)T
Σ1(θ)

(∂H(β, θ)

∂θ

)

+8
(∂H(β, θ)

∂β

)T
cov

(√
n(β̂ − β),

√
n(θ̂ − θ)

)(∂H(β, θ)

∂θ

)
,

where

H(β, θ) =

∫
Φ(

[
R1(θ,X, Y )−R0(β,X)

]

Σ
1/2
R (β, θ)

)dF1D(X, Y )

ΣR =
(∂R0(r,X)

∂r
|r=β

)T
Σ0(β)

(∂R0(r,X)

∂r
|r=β

)
+

(∂R1(s,X, Y )

∂s
|s=θ

)T
Σ1(θ)

(∂R1(s,X, Y )

∂s
|t=θ

)

−2
(∂R0(r,X)

∂r
|r=β

)T
cov

(√
n(β̂ − β),

√
n(θ̂ − θ)

)(∂R1(s,X, Y )

∂s
|s=θ

)
.

When β̂ and θ̂ have influence function ψ0i and ψ1i,
√

n(β̂−β) = 1√
n

∑n
i=1 ψ0i(X)+op(1),

√
n(θ̂−

θ) = 1√
n

∑n
i=1 ψ1i(X, Y ) + op(1), we have that,

Σ0(β) = var(ψ0i(X)), Σ1(θ) = var(ψ1i(X, Y ))

cov
(√

n(β̂ − β),
√

n(θ̂ − θ)
)

= cov
(
ψ0i(X), ψ1i(X, Y )

)
.
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3.4

Similarly, we can derive the asymptotic result for N̂RI>0
ne .

√
n
[
N̂RI>0

ne −NRI>0
ne

] →d N(0, ΣNRI>0
ne

),

ΣNRI>0
ne

= var
(√

nN̂RI>0
ne

)

=
1− (NRI>0

ne )2

1− ρ
+ 4

(∂G(β, θ)

∂β

)T
Σ0(β)

(∂G(β, θ)

∂β

)
+ 4

(∂G(β, θ)

∂θ

)T
Σ1(θ)

(∂G(β, θ)

∂θ

)

+8
(∂G(β, θ)

∂β

)T
cov

(√
n(β̂ − β),

√
n(θ̂ − θ)

)(∂G(β, θ)

∂θ

)
,

where

G(β, θ) =

∫
Φ(

[
R0(β,X)−R1(θ,X, Y )

]

Σ
1/2
R (β, θ)

)dF0D̄(X, Y )

ΣR =
(∂R0(r,X)

∂r
|r=β

)T
Σ0(β)

(∂R0(r,X)

∂r
|r=β

)
+

(∂R1(s,X, Y )

∂s
|s=θ

)T
Σ1(θ)

(∂R1(s,X, Y )

∂s
|s=θ

)

−2
(∂R0(r,X)

∂r
|r=β

)T
cov

(√
n(β̂ − β),

√
n(θ̂ − θ)

)(∂R1(s,X, Y )

∂s
|s=θ

)
.

4 Asymptotic Distribution of a Two-Category NRI

In this section, we consider the two-category NRI calculated based on a reclassification table

with risk threshold at t. NRI describes the “upward” and “downward” movements among

risk categories comparing the new model to the old model. Let r̂iskt(X, Y ) and r̂iskt(X)

denote the categorized risks with threshold t from the new model and from the old model,

11
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then the two-category NRI t is estimated as follows,

N̂RI t
e = P̂

(
r̂iskt(X, Y ) > r̂iskt(X)|D = 1

)− P̂
(
r̂iskt(X, Y ) < r̂iskt(X)|D = 1

)
,

N̂RI t
ne = P̂

(
r̂iskt(X, Y ) < r̂iskt(X)|D = 0

)− P̂
(
r̂iskt(X, Y ) > r̂iskt(X)|D = 0

)
,

N̂RI t = N̂RI t
e + N̂RI t

ne.

With a single risk threshold at t, it can be shown that,

NRI t
e = TPR(t, R1(θ,X, Y ))− TPR(t, R0(β,X)),

NRI t
ne = FPR(t, R0(β,X))− FPR(t, R1(θ,X, Y )),

where TPR, FPR are the true positive rate and false positive rate.

12
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4.1

We consider N̂RI t
e first.

−√n
(
N̂RI t

e −NRI t
e

)

= −√n
{
T̂PR(r, R1)− T̂PR(r, R0)−

[
TPR(t, R1)− TPR(t, R0)

]}

= −√n
{
TPR(t, R1(θ̂,X, Y ))− TPR(t, R0(β̂,X))− [

TPR(t, R1(θ,X, Y ))− TPR(t, R0(β,X))
]}

= −√n
{[

1− F̂1D(R−1
1 (θ̂, t))

]− [
1− F̂0D(R−1

0 (β̂, t))
]}

+
√

n
{[

1− F1D(R−1
1 (θ, t))

]− [
1− F0D(R−1

0 (β, t))
]}

=
√

n
{[

F̂1D(R−1
1 (θ̂, t))− F̂0D(R−1

0 (β̂, t))
]− [

F1D(R−1
1 (θ, t))− F0D(R−1

0 (β, t))
]}

=
√

n
{[

F̂1D(R−1
1 (θ, t))− F̂0D(R−1

0 (β, t))
]− [

F1D(R−1
1 (θ, t))− F0D(R−1

0 (β, t))
]}

+
√

n
{[

F1D(R−1
1 (θ̂, t))− F0D(R−1

0 (β̂, t))
]− [

F1D(R−1
1 (θ, t))− F0D(R−1

0 (β, t))
]}

+ op(1)

(since
√

n
{[

F̂1D(R−1
1 (θ̂, t))− F̂0D(R−1

0 (β̂, t))
]− [

F̂1D(R−1
1 (θ, t))− F̂0D(R−1

0 (β, t))
]}

−√n
{[

F1D(R−1
1 (θ̂, t))− F0D(R−1

0 (β̂, t))
]− [

F1D(R−1
1 (θ, t))− F0D(R−1

0 (β, t))
]} →p 0,

due to the equicontinuity of the process and assumption 3.)

= C + D

We know that
√

n
[
F̂1D(t1)−F̂0D(t2)−

(
F1D(t1)−F0D(t2)

)]
is a Gaussian process,

√
n
[
F̂1D(t1)−

F̂0D(t2) −
(
F1D(t1) − F0D(t2)

)] →d N(0,
(
F1D(t1) − F0D(t2)

)[
1 − (

F1D(t1) − F0D(t2)
)]

/ρ),

where ρ = nD/n. Thus, the asymptotic variance of C is,

var(C)
.
= −1

ρ

[
F1D(R−1

1 (θ, t))− F0D(R−1
0 (β, t))

]{
1 +

[
F1D(R−1

1 (θ, t))− F0D(R−1
0 (β, t))

]}

=
1

ρ

[
TPR(t, R1(θ,X, Y ))− TPR(t, R0(β,X))

]{
1− [

TPR(t, R1(θ,X, Y ))− TPR(t, R0(β,X))
]}

=
1

ρ
NRI t

e

[
1−NRI t

e

]
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4.2

On the other hand, by Taylor expansion, we have,

D =
√

n
{[

F1D(R−1
1 (θ̂, t))− F0D(R−1

0 (β̂, t))
]− [

F1D(R−1
1 (θ, t))− F0D(R−1

0 (β, t))
]}

= f1D(R−1
1 (θ, t))

(∂R−1
1 (θ, t)

∂θ

)T√
n(θ̂ − θ)− f0D(R−1

0 (β, t))
(∂R−1

0 (β, t)

∂β

)T√
n(β̂ − β) + op(1)

=
(∂TPR(t, R0(β,X))

∂β

)T√
n(β̂ − β)− (∂TPR(t, R1(θ,X, Y ))

∂θ

)T√
n(θ̂ − θ) + op(1).

Thus,

var(D) =
(∂TPR(t, R0(β,X))

∂β

)T
Σ0(β)

(∂TPR(t, R0(β,X))

∂β

)

+
(∂TPR(t, R1(θ,X, Y ))

∂θ

)T
Σ1(θ)

(∂TPR(t, R1(θ,X, Y ))

∂θ

)

−2
(∂TPR(t, R0(β,X))

∂β

)T
cov

(√
n(β̂ − β),

√
n(θ̂ − θ)

)(∂TPR(t, R1(θ,X, Y ))

∂θ

)
.

In the above, assumption 4 guarantees random variable D is not degenerate. In contrast

to the derivation in section 3.2 of NRI>0
e , this assumption is necessary for establishing

asymptotic Normality of the two-category NRI. This is because when assumption 4 fails,

var(C)
.
= 1

ρ
NRI t

e

[
1−NRI t

e

]
= 0.

4.3

Next, we compute cov(C, D). This includes covariances between
√

n(β̂ − β),
√

n(θ̂− θ) and

√
n(F̂0D − F0D),

√
n(F̂1D − F1D). Denote the influence functions of β̂ and θ̂ by ψ0i and ψ1i,

respectively. We have
√

n(β̂−β) = 1√
n

∑n
i=1 ψ0i(X)+op(1),

√
n(θ̂−θ) = 1√

n

∑n
i=1 ψ1i(X, Y )+

14
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op(1). Thus,

cov
(√

n(β̂ − β),
√

n(F̂0D(t)− F0D(t))
)

= cov
( 1√

n

n∑
i=1

ψ0i(X),
1√
n

n∑
i=1

I(XD ≤ t)− F0D(t)
)

= cov
(
ψ0i(XD), I(XD ≤ t)− F0D(t)

)
(since cases and controls are independent.)

= E
(
ψ0i(XD)

[
I(XD ≤ t)− F0D(t)

])

= E
(
ψ0i(XD)I(XD ≤ t)

)− F0D(t)E
(
ψ0i(XD)

) ≡ Cβ,0(XD, t).

Similarly, we can derive that,

cov
(√

n(β̂ − β),
√

n(F̂1D(t)− F1D(t))
)

= E
(
ψ0i(XD)I(ZD ≤ t)

)− F1D(t)E
(
ψ0i(XD)

) ≡ Cβ,1(ZD, t) = Cβ,1(XD, YD, t),

cov
(√

n(θ̂ − θ),
√

n(F̂0D(t)− F0D(t))
)

= E
(
ψ1i(ZD)I(XD ≤ t)

)− F0D(t)E
(
ψ1i(ZD)

) ≡ Cθ,0(ZD, t) = Cθ,0(XD, YD, t),

cov
(√

n(θ̂ − θ),
√

n(F̂1D(t)− F1D(t))
)

= E
(
ψ1i(ZD)I(ZD ≤ t)

)− F1D(t)E
(
ψ1i(ZD)

) ≡ Cθ,1(ZD, t) = Cθ,1(XD, YD, t).

15

Hosted by The Berkeley Electronic Press



Thus,

cov(C, D)

=
(∂TPR(t, R0(β,X))

∂β

)T
cov

(√
n(β̂ − β),

√
n
[
F̂1D(R−1

1 (θ, t))− F1D(R−1
1 (θ, t))

])

−(∂TPR(t, R0(β,X))

∂β

)T
cov

(√
n(β̂ − β),

√
n
[
F̂0D(R−1

0 (β, t))− F0D(R−1
0 (β, t))

])

−(∂TPR(t, R1(θ,X, Y ))

∂θ

)T
cov

(√
n(θ̂ − θ),

√
n
[
F̂1D(R−1

1 (θ, t))− F1D(R−1
1 (θ, t))

])

+
(∂TPR(t, R1(θ,X, Y ))

∂θ

)T
cov

(√
n(θ̂ − θ),

√
n
[
F̂0D(R−1

0 (β, t))− F0D(R−1
0 (β, t))

])

=
(∂TPR(t, R0)

∂β

)T
Cβ,1(XD, YD, R−1

1 (θ, t))− (∂TPR(t, R0)

∂β

)T
Cβ,0(XD, R−1

0 (β, t))

−(∂TPR(t, R1)

∂θ

)T
Cθ,1(XD, YD, R−1

1 (θ, t)) +
(∂TPR(t, R1)

∂θ

)T
Cθ,0(XD, YD, R−1

0 (β, t)).

Since C and D are asymptotically Normal random variables, we have
√

n
(
N̂RI t

e−NRI t
e

)
, or

equivalently
√

n
{
T̂PR(r, R1)− T̂PR(r, R0)−

[
TPR(t, R1)−TPR(t, R0)

]}
is asymptotically

Normal with mean 0 and variance ΣNRIt
e

= var(C) + var(D) + 2cov(C, D).

4.4

Similarly, we can derive asymptotic result for NRI t
ne, or equivalently, FPR(t, R1(θ,X, Y ))−

FPR(t, R0(β,X)):

√
n
(
N̂RI t

ne −NRI t
ne

) →d N(0, ΣNRIt
ne

),

16
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where

ΣNRIt
ne

= var(E) + var(F ) + 2cov(E, F ),

E =
√

n
{[

F̂1D̄(R−1
1 (θ, t))− F̂0D̄(R−1

0 (β, t))
]− [

F1D̄(R−1
1 (θ, t))− F0D̄(R−1

0 (β, t))
]}

,

F =
√

n
{[

F1D̄(R−1
1 (θ̂, t))− F0D̄(R−1

0 (β̂, t))
]− [

F1D̄(R−1
1 (θ, t))− F0D̄(R−1

0 (β, t))
]}

.

var(E) =
1

1− ρ
NRI t

ne

[
1−NRI t

ne

]
,

var(F ) =
(∂FPR(t, R0(β,X))

∂β

)T
Σ0(β)

(∂FPR(t, R0(β,X))

∂β

)

+
(∂FPR(t, R1(θ,X, Y ))

∂θ

)T
Σ1(θ)

(∂FPR(t, R1(θ,X, Y ))

∂θ

)

−2
(∂FPR(t, R0(β,X))

∂β

)T
cov

(√
n(β̂ − β),

√
n(θ̂ − θ)

)(∂FPR(t, R1(θ,X, Y ))

∂θ

)
,

cov(E, F ) =
(∂FPR(t, R0)

∂β

)T
C̄β,1(XD, YD, R−1

1 (θ, t))− (∂FPR(t, R0)

∂β

)T
C̄β,0(XD, R−1

0 (β, t))

−(∂FPR(t, R1)

∂θ

)T
C̄θ,1(XD, YD, R−1

1 (θ, t)) +
(∂FPR(t, R1)

∂θ

)T
C̄θ,0(XD, YD, R−1

0 (β, t)).

C̄β,0(XD̄, t) = E
(
ψ0i(XD̄)I(XD̄ ≤ t)

)− F0D̄(t)E
(
ψ0i(XD̄)

)
,

C̄β,1(XD̄, YD̄, t) = E
(
ψ0i(XD̄)I(ZD̄ ≤ t)

)− F1D̄(t)E
(
ψ0i(XD̄)

)
,

C̄θ,0(XD̄, YD̄, t) = E
(
ψ1i(ZD̄)I(XD̄ ≤ t)

)− F0D̄(t)E
(
ψ1i(ZD̄)

)
,

C̄θ,1(XD̄, YD̄, t) = E
(
ψ1i(ZD̄)I(ZD̄ ≤ t)

)− F1D̄(t)E
(
ψ1i(ZD̄)

)
.

5 Sampling Distributions in Finite Samples

We have established asymptotic Normality for category-free and two-category NRIe and

NRIne. Another important question is how accurate the Normal approximation is in finite

samples. In this section, we perform simulations to examine sampling distributions of NRI
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statistics with quantile-quantile (QQ) plots.

We simulate data with risks following a logistic model since logistic regression is commonly

used in risk modeling. The same family of simulation models have been used by several

researchers to examine methodology related to incremental value [3, 4, 20]. Specifically,

Let ρ denote the disease prevalence and n denote the sample size. We first generate D ∼
Binomial(N, ρ). We then generate the baseline marker X ∼ N(0, 1) and the new marker

Y ∼ N(0, 1), independently in controls, and X ∼ N(µX , 1), Y ∼ N(µY , 1), independently

in cases. This guarantees the logistic model holds when X alone or X and Y are included

as predictors. This can be seen by Bayes rule,

P (D = 1|X = x) =
P (X = x|D = 1)P (D = 1)

P (X = x|D = 1)P (D = 1) + P (X = x|D = 0)P (D = 0)

=
ρe−(x−µX)2/2

ρe−(x−µX)2/2 + (1− ρ)e−x2/2
,

logitP (D = 1|X = x) = log
ρ

1− ρ
ex2/2−(x−µX)2/2

= µXx− µ2
X

2
+ log

ρ

1− ρ
.

Similarly we have,

logitP (D = 1|X = x, Y = y) = µXx + µY y − µ2
X + µ2

Y

2
+ log

ρ

1− ρ
.

Thus the logistic model holds. Moreover, the coefficients in the models are βX = θX = µX

and θY = µY .

For our simulations, we always set ρ = 0.2 and µX = 0.74, while µY = 0, 0.37 or 0.74 to

reflect a new marker with no, modest or relatively large predictive strength. We consider

both the category-free NRI and the two-category NRI. For the two-category NRI, we used

the 20% quantile of R0(β, X) as risk threshold, which means the proportion of subjects

classified as “high risk” by the baseline risk model is about the same as the prevalence. This
18
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Figure 1: QQ plots of NRI>0
e and NRI>0

ne for a new marker with a modest incremental value
under various sample size.
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threshold was obtained empirically by simulating a data set of size 10,000,000.

Figure 1 is QQ plots of NRI>0
e and NRI>0

ne for a new marker with a modest incremental

value under various sample size. Figure 2 is QQ plots of NRI>0
e and NRI>0

ne when the

new marker has a relatively large incremental value. In both figures, the upper panel is for

NRI>0
e and the bottom panel is for NRI>0

ne . Sample size increases from left to right. In

both situations (modest or large incremental value), sampling distributions of NRI>0
e and

NRI>0
ne are quite close to Normal with a relatively small sample size, and the approximation

improves as sample size increases.

Figure 3 and Figure 4 are QQ plots of the two-category NRI with threshold at 20% risk

quantile for a new marker with a modest incremental value or with a relatively large incre-

mental value. Because of the discreteness of the two-category NRI introduced by the risk

threshold, a larger sample size is expected for asymptotic theory to take effect compared to
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Figure 2: QQ plots of NRI>0
e and NRI>0

ne for a new marker with a relatively large incremental
value under various sample size.
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the category-free NRI. In addition, note that the sample sizes of Figure 3 are 1,000, 3,000

and 5,000, larger than the sample sizes of Figure 4, which are 1,000, 2,000 and 3,000. We

chose these sample sizes so that the plots can better characterize the distributional behavior

of NRI0.2
e and NRI0.2

ne as they move towards their limiting distributions. In both figures, we

can see the discreteness in the QQ plots. For the same sample size, sampling distribution

of the two-category NRI is closer to Normal when the new marker has a relatively large in-

cremental value than when it has only a modest incremental value. For example, at sample

size 3,000, the distributions of NRI0.2
e and NRI0.2

ne are relatively close to Normal in Figure

4 when the new marker has a relatively large incremental value, while in Figure 3, when the

incremental value is modest, the distributions of NRI0.2
e and NRI0.2

ne still have visible devi-

ation from Normal. As one expects, the Normal approximation becomes better as sample

size increases. However, compared with the category-free NRI, a much larger sample size is

required for sampling distributions of NRI0.2
e and NRI0.2

ne be to approximately Normal.
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Figure 3: QQ plots of NRI0.2
e and NRI0.2

ne for a new marker with a modest incremental value
under various sample size.
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Figure 4: QQ plots of NRI0.2
e and NRI0.2

ne for a new marker with a relatively large incremental
value under various sample size.
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Figure 5: QQ plots of NRI>0
e and NRI>0

ne for a new marker with no incremental value under
various sample size.
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An unexpected finding suggested by Figure 3 is that, although the number of cases is much

smaller than the number of controls in our simulation settings, sampling distribution of

NRI0.2
ne does not approach Normality faster than that of NRI0.2

e . Their distributional be-

havior appears to depend more on the total sample size than on the numbers of cases or

controls.

As noted in section 3.2, assumption 4 is not essential for the sampling distribution of

category-free NRI to be asymptotic Normal. Here, we also examine the finite sample distri-

butional behavior of NRI>0
e and NRI>0

ne when the new marker has no incremental value at

all. The QQ plots are shown in Figure 5. The results suggest that, when the new marker

has an incremental value on the boundary zero, the category-free NRI statistics still have

asymptotically Normality, but a much larger sample size is needed to reach a good Normal

approximation compared with situations where the incremental value is away from zero.
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6 Discussion

In this paper, we examined the asymptotic and finite sample distributional behavior of

NRI statistics when risks are estimated from risk models fit to a dataset. We established

asymptotic Normality of NRI statistics, which provides some justification for construct-

ing confidence intervals via Normal approximation. For the category-free NRI, asymptotic

Normality can be reached with a rather small sample size when the new marker has an incre-

mental value away from zero. However, a large sample size is required for the two-category

event or nonevent NRI to get close to Normal, especially when the new marker has only a

modest incremental value. Moreover, a nonzero value of the incremental value of the new

marker (assumption 4) is a necessary assumption for establishing asymptotic Normality for

the two-category NRI. When this condition fails, simulation results suggest that the limit-

ing distribution of NRI t
e and NRI t

ne is not Normal (results not shown). This is similar to

some other measures of incremental value, such as the integrated discrimination improve-

ment index [21]. For the category-free NRI, although this assumption is not necessary for

establishing its asymptotic Normality, a much larger sample size is needed for the distribu-

tion to be approximately Normal compared with situations when the incremental value is

away from zero.

However, the behavior of NRI statistics on the boundary zero, i.e., when the new marker has

no incremental value, is not the focus of our paper. This is because quantifying predictive

improvement is more of interests when the new marker is useful. Otherwise, for a marker

with unknown predictive ability, it is advised to first perform a test to determine whether

this marker has nonzero incremental value [3]. Nevertheless, we do not need to construct

such a test based on NRI>0 statistics, because the null hypothesis of zero value of NRI>0 is

equivalent to the null hypothesis that the coefficient of the marker in the risk model is zero,

for which more powerful tests can be constructed [3].
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In the derivation, we assumed the risk models used reflect the truth and did not consider

model misspecification. However, as argued by Pepe et al [3], poorly calibrated models are

not acceptable for risk prediction. The performance characteristics of a risk model should

be examined first. Only adequately calibrated models should advance to further evaluation

and potential adoption.
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