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Resampling-Based Empirical Bayes Multiple
Testing Procedures for Controlling

Generalized Tail Probability and Expected
Value Error Rates:

Sandrine Dudoit, Houston N. Gilbert, and Mark J. van der Laan

Abstract

This article proposes resampling-based empirical Bayes multiple testing proce-
dures for controlling a broad class of Type I error rates, defined as generalized
tail probability (gTP) error rates, gTP(q,g) = Pr(g(Vn,Sn) > q), and generalized
expected value (gEV) error rates, gEV(g) = [g(Vn,Sn)], for arbitrary functions
g(Vn,Sn) of the numbers of false positives Vn and true positives Sn. Of particular
interest are error rates based on the proportion g(Vn,Sn) = Vn/(Vn + Sn) of Type I
errors among the rejected hypotheses, such as the false discovery rate (FDR), FDR
= [Vn/(Vn + Sn)]. The proposed procedures offer several advantages over existing
methods. They provide Type I error control for general data generating distribu-
tions, with arbitrary dependence structures among variables. Gains in power are
achieved by deriving rejection regions based on guessed sets of true null hypothe-
ses and null test statistics randomly sampled from joint distributions that account
for the dependence structure of the data. The Type I error and power properties
of an FDR-controlling version of the resampling-based empirical Bayes approach
are investigated and compared to those of widely-used FDR-controlling linear
step-up procedures in a simulation study. The Type I error and power trade-off
achieved by the empirical Bayes procedures under a variety of testing scenarios
allows this approach to be competitive with or outperform the Storey and Tibshi-
rani [2003] linear step-up procedure, as an alternative to the classical Benjamini
and Hochberg [1995] procedure.



1 Introduction

1.1 Motivation and overview

Current statistical inference problems in areas such as astronomy, genomics, and marketing, routinely involve
the simultaneous test of thousands, or even millions, of null hypotheses. These hypotheses concern a wide
range of parameters, for high-dimensional multivariate distributions, with complex and unknown dependence
structures among variables.

Type I error rates based on the proportion Vn/(Vn +Sn) of false positives among the rejected hypotheses
(e.g., false discovery rate, FDR = E[Vn/(Vn +Sn)]) are especially appealing for large-scale testing problems,
compared to traditional error rates based on the number Vn of false positives (e.g., family-wise error rate,
FWER = Pr(Vn > 0)), as they do not increase exponentially with the number M of tested hypotheses.

However, only a handful of multiple testing procedures (MTP) are currently available for controlling
such Type I error rates. Furthermore, existing methods suffer from a variety of limitations. Firstly, marginal
procedures can lack power by failing to account for the dependence structure of the test statistics [Benjamini
and Hochberg, 1995, Lehmann and Romano, 2005]. Secondly, even for some of the marginal procedures,
Type I error control relies on restrictive and hard to verify assumptions concerning the joint distribution of
the test statistics, e.g., independence, dependence in finite blocks, ergodic dependence, positive regression
dependence, Simes’ Inequality [Benjamini and Hochberg, 1995, 2000, Benjamini and Yekutieli, 2001, Ben-
jamini et al., 2006, Genovese and Wasserman, 2004a,b, Lehmann and Romano, 2005, Storey, 2002, Storey
and Tibshirani, 2003, Storey et al., 2004]. Thirdly, some procedures err conservatively by counting rejected
hypotheses as Type I errors or estimating the proportion h0/M of true null hypotheses by its upper bound
of one [Benjamini and Hochberg, 1995, Dudoit and van der Laan, 2007, Dudoit et al., 2004a, van der Laan
et al., 2004b].

Motivated by these observations, van der Laan et al. [2005] propose a resampling-based empirical Bayes
procedure for controlling the tail probability for the proportion of false positives (TPPFP) among the rejected
hypotheses, TPPFP (q) = Pr(Vn/(Vn + Sn) > q). The approach is extended in Dudoit and van der Laan
[2007, Chapter 7] to control generalized tail probability (gTP) error rates, gTP (q, g) = Pr(g(Vn, Sn) > q),
for arbitrary functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn. Dudoit and
van der Laan [2007, Section 7.8] further remark that empirical Bayes procedures may be used to control
generalized expected value (gEV) error rates, gEV (g) = E[g(Vn, Sn)], such as the false discovery rate,
FDR = E[Vn/(Vn + Sn)], and other parameters of the distribution of functions g(Vn, Sn).

The two main ingredients in a resampling-based empirical Bayes procedure are the following distributions.

• A null distribution Q0 (or estimator thereof, Q0n) for M -vectors of null test statistics T0n.

• A distribution QH0 (or estimator thereof, QH0n) for random guessed sets of true null hypotheses H0n.

By randomly sampling null test statistics T0n and guessed sets of true null hypotheses H0n, one obtains a
distribution for a random variable representing the guessed g-specific function of the numbers of false positives
and true positives (given the empirical distribution Pn), for any given rejection region. Rejection regions can
then be chosen to control tail probabilities and expected values for this distribution at a user-supplied Type
I error level α.

Our proposed empirical Bayes procedures seek to gain power by taking into account the joint distribution
of the test statistics and by “guessing” the set H0 of true null hypotheses instead of conservatively setting
H0 = {1, . . . ,M}. In addition, unlike most MTPs controlling the proportion of false positives, they provide
Type I error control for general data generating distributions, with arbitrary dependence structures among
variables.

Note that the empirical Bayes approach outlined above is very general and modular, in the sense that
it can be applied to any distribution pair (Q0n, Q

H
0n). In particular, the common marginal non-parametric

mixture model of Section 3.3 is only one among many reasonable candidate models for QH0n that does not
assume independence of the test statistics.
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1.2 Outline

This article proposes resampling-based empirical Bayes multiple testing procedures for controlling a broad
class of Type I error rates, defined as generalized tail probability error rates, gTP (q, g) = Pr(g(Vn, Sn) > q),
and generalized expected value error rates, gEV (g) = E[g(Vn, Sn)], for arbitrary functions g(Vn, Sn) of the
numbers of false positives Vn and true positives Sn.

The article is organized as follows. The remainder of this section provides a brief overview of the multiple
hypothesis testing framework developed in Dudoit and van der Laan [2007]. Section 2 focusses on the special
case of the false discovery rate, FDR = E[Vn/(Vn + Sn)], and summarizes widely-used FDR-controlling
linear step-up procedures [Benjamini and Hochberg, 1995, 2000, Benjamini et al., 2006, Storey, 2002, Storey
and Tibshirani, 2003]. Section 3 presents the resampling-based empirical Bayes multiple testing procedures
proposed in Dudoit and van der Laan [2007, Chapter 7] and van der Laan et al. [2005] for controlling
generalized tail probability and expected value error rates. In the simulation study of Sections 4 and 5, the
Type I error and power properties of an FDR-controlling version of the resampling-based empirical Bayes
approach are investigated and compared to those of FDR-controlling linear step-up procedures introduced
in Section 2. Finally, Section 6 summarizes our findings and outlines ongoing work.

1.3 Multiple hypothesis testing framework

This section, based on Dudoit and van der Laan [2007, Chapter 1], introduces a general statistical framework
for multiple hypothesis testing and discusses in turn the main ingredients of a multiple testing problem.

1.3.1 Null and alternative hypotheses

Consider a data generating distribution P ∈M, belonging to a modelM, i.e., a set of possibly non-parametric
distributions.

Suppose one has a learning set Xn ≡ {Xi : i = 1, . . . , n} IID∼ P , of n independent and identically
distributed (IID) random variables (RV) from P . Let Pn denote the empirical distribution of the learning
set Xn, which places probability 1/n on each Xi, i = 1, . . . , n.

Hypothesis testing is concerned with using observed data to make decisions regarding properties of, i.e.,
hypotheses for, the unknown distribution that generated these data.

Define M pairs of null and alternative hypotheses in terms of a collection of M submodels, M(m) ⊆M,
m = 1, . . . ,M , for the data generating distribution P [Dudoit and van der Laan, 2007, Section 1.2.4].
Specifically, the M null hypotheses and corresponding alternative hypotheses are defined, respectively, as

H0(m) ≡ I (P ∈M(m)) and H1(m) ≡ I (P /∈M(m)) . (1)

In many testing problems, the submodels concern parameters, i.e., functions Ψ(P ) = ψ = (ψ(m) : m =
1, . . . ,M) ∈ IRM of the data generating distribution P , and each null hypothesis H0(m) refers to a single
parameter, ψ(m) = Ψ(P )(m) ∈ IR.

The complete null hypothesisHC
0 states that the data generating distribution P belongs to the intersection

∩M
m=1M(m) of the M submodels,

HC
0 ≡

M∏
m=1

H0(m) =
M∏

m=1

I (P ∈M(m)) = I
(
P ∈ ∩M

m=1M(m)
)
. (2)

Let
H0 = H0(P ) ≡ {m : H0(m) = 1} = {m : P ∈M(m)} (3)

denote the set of h0 ≡ |H0| true null hypotheses, where the longer notationH0(P ) emphasizes the dependence
of this set on the data generating distribution P . Likewise, let

H1 = H1(P ) ≡ {m : H1(m) = 1} = {m : P /∈M(m)} = Hc
0(P ) (4)

be the set of h1 ≡ |H1| = M − h0 false null hypotheses.
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1.3.2 Test statistics

A testing procedure is a data-driven, i.e., random, rule for estimating the set of false null hypotheses H1, i.e.,
for deciding which null hypotheses should be rejected.

The decisions to reject or not the null hypotheses are based on an M -vector of test statistics, Tn =
(Tn(m) : m = 1, . . . ,M), that are functions Tn(m) = T (m;Xn) = T (m;Pn) of the data Xn, i.e., of the
empirical distribution Pn [Dudoit and van der Laan, 2007, Section 1.2.5]. Denote the typically unknown
(finite sample) joint distribution of the test statistics Tn by Qn = Qn(P ).

Single-parameter null hypotheses of the form H0(m) = I (ψ(m) ≤ ψ0(m)) or H0(m) = I (ψ(m) = ψ0(m)),
m = 1, . . . ,M , may be tested based on t-statistics (i.e., standardized differences),

Tn(m) ≡ Estimator−Null value
Standard error

=
√
n
ψn(m)− ψ0(m)

σn(m)
. (5)

Here, Ψ̂(Pn) = ψn = (ψn(m) : m = 1, . . . ,M) denotes an estimator of the parameter Ψ(P ) = ψ = (ψ(m) :
m = 1, . . . ,M) and (σn(m)/

√
n : m = 1, . . . ,M) denotes the estimated standard errors for elements ψn(m)

of ψn.
This general representation for the test statistics covers standard one-sample and two-sample t-statistics

for testing hypotheses concerning mean parameters, but also test statistics for correlation coefficients and
regression coefficients in linear and non-linear models. Test statistics for other types of null hypotheses
include F -statistics, χ2-statistics, and likelihood ratio statistics.

1.3.3 Multiple testing procedures

A multiple testing procedure (MTP) provides rejection regions Cn(m), i.e., sets of values for each test statistic
Tn(m) that lead to the decision to reject the corresponding null hypothesis H0(m) and declare that P /∈
M(m), m = 1, . . . ,M [Dudoit and van der Laan, 2007, Sections 1.2.6 and 1.2.7]. In other words, a MTP
produces a random (i.e., data-dependent) set of rejected null hypotheses Rn that estimates the set of false
null hypotheses H1,

Rn = R(Tn, Q0n, α) ≡ {m : Tn(m) ∈ Cn(m)} = {m : H0(m) is rejected} , (6)

where Cn(m) = C(m;Tn, Q0n, α), m = 1, . . . ,M , denote possibly random test statistic rejection regions.
The long notation R(Tn, Q0n, α) and C(m;Tn, Q0n, α) emphasizes that a MTP depends on the following

three ingredients.

1. The data, Xn = {Xi : i = 1, . . . , n}, through the M -vector of test statistics, Tn = (Tn(m) : m =
1, . . . ,M) (Section 1.3.2).

2. An (estimated) M -variate test statistics null distribution, Q0n, which replaces the unknown test statis-
tics distribution Qn = Qn(P ) (Section 1.3.5), for the purpose of deriving rejection regions for the test
statistics, confidence regions for parameters of interest, and adjusted p-values (Section 1.3.6).

3. The nominal Type I error level α, i.e., a user-supplied upper bound for a suitably defined Type I error
rate (Section 1.3.4).

We focus without loss of generality on one-sided rejection regions of the form Cn(m) = (cn(m),+∞),
where cn = (cn(m) : m = 1, . . . ,M) ∈ IRM is an M -vector of critical values or cut-offs.

1.3.4 Type I error rate and power

Errors in multiple hypothesis testing In any testing problem, two types of errors can be committed
[Dudoit and van der Laan, 2007, Section 1.2.8]. A Type I error, or false positive, is committed by rejecting
a true null hypothesis (Rn ∩H0). A Type II error, or false negative, is committed by failing to reject a false
null hypothesis (Rc

n ∩H1). The situation can be summarized as in Table 1.
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Ideally, one would like to simultaneously minimize both the number of Type I errors and the number of
Type II errors. Unfortunately, this is not feasible and one seeks a trade-off between the two types of errors.
A standard approach is to specify an acceptable level α for a suitably defined Type I error rate and derive
testing procedures (i.e., rejection regions) that aim to minimize a Type II error rate (i.e., maximize power)
within the class of tests with Type I error rate at most α.

Type I error rate When testing multiple hypotheses, there are many possible definitions for the Type
I error rate and power of a testing procedure. Accordingly, we define a Type I error rate as a parameter
θn = Θ(FVn,Rn

) of the joint distribution FVn,Rn
of the numbers of Type I errors Vn = |Rn∩H0| and rejected

hypotheses Rn = |Rn| [Dudoit and van der Laan, 2007, Section 1.2.9].
Such a representation covers a broad class of Type I error rates, defined as generalized tail probability

(gTP) error rates,
gTP (q, g) ≡ Pr(g(Vn, Sn) > q), (7)

and generalized expected value (gEV) error rates,

gEV (g) ≡ E[g(Vn, Sn)], (8)

for functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn = Rn − Vn.
Consider functions g that satisfy the following two natural monotonicity assumptions.

Assumption MgV. The function gs : v → g(v, s) is continuous and strictly increasing for any given s.

Assumption MgS. The function gv : s→ g(v, s) is continuous and non-increasing for any given v.

Of particular interest are the following two special cases, corresponding, respectively, to g-functions for the
number and proportion of false positives among the rejected hypotheses. When g(v, s) = v, one recovers the
generalized family-wise error rate (gFWER) and the per-family error rate (PFER). When g(v, s) = v/(v+s),
with the convention that v/(v+ s) ≡ 0 if v+ s = 0, one obtains the tail probability for the proportion of false
positives (TPPFP) and the false discovery rate (FDR). Specifically, the FDR is defined as

FDR ≡ E
[

Vn

max {Rn, 1}

]
= E

[
Vn

Rn

∣∣∣∣Vn > 0
]

Pr(Vn > 0) = E
[
Vn

Rn

∣∣∣∣Rn > 0
]

Pr(Rn > 0), (9)

where Rn = Vn + Sn. Under the complete null hypothesis HC
0 = I

(
P ∈ ∩M

m=1M(m)
)
, all Rn rejected

hypotheses are Type I errors, hence Vn/Rn = 1 and FDR = FWER = Pr(Vn > 0).
Storey and Tibshirani [2003] and related articles [Storey, 2002, Storey et al., 2004] consider a variant of

the FDR, termed the positive false discovery rate (pFDR),

pFDR ≡ E
[
Vn

Rn

∣∣∣∣Rn > 0
]
. (10)

Note that FDR = pFDR × Pr(Rn > 0), so that, in general, FDR ≤ pFDR. An immediate flaw of the
pFDR is that it is equal to one under the complete null hypothesis and therefor cannot be controlled under
this testing scenario. By contrast, the FDR reduces to the family-wise error rate, FWER = Pr(Vn > 0).

The actual Type I error rate Θ(FVn,Rn
) of a multiple testing procedure typically differs from its nominal

Type I error level α, i.e., the level at which it claims to control Type I errors. Discrepancies between
actual and nominal Type I error rates can be attributed to a number of factors, including the choice of a
test statistics null distribution Q0n and the type of rejection regions for a given choice of Q0n. A testing
procedure is said to be conservative if the nominal Type I error level α is greater than the actual Type I
error rate, i.e., Θ(FVn,Rn

) < α, and anti-conservative if the nominal Type I error level α is less than the
actual Type I error rate, i.e., Θ(FVn,Rn

) > α.

4

http://biostats.bepress.com/ucbbiostat/paper228



Power Likewise, we define power as a parameter ϑn = Θ(FUn,Rn
) of the joint distribution FUn,Rn

of the
numbers of Type II errors Un = |Rc

n ∩ H1| and rejected hypotheses Rn = |Rn| [Dudoit and van der Laan,
2007, Section 1.2.10].

The average power, i.e., the expected value of the proportion of rejected hypotheses among the false null
hypotheses, is defined as

AvgPwr ≡ 1
h1

E[Sn] = 1− 1
h1

E[Un]. (11)

1.3.5 Test statistics null distribution

One of the main tasks in specifying a multiple testing procedure is to derive rejection regions for the test
statistics such that Type I errors are probabilistically controlled at a user-supplied level. However, one is
immediately faced with the problem that the distribution of the test statistics is usually unknown.

In practice, the test statistics distribution Qn = Qn(P ) is replaced by a null distribution Q0 (or estimator
thereof, Q0n) in order to derive rejection regions and resulting adjusted p-values. The choice of a proper null
distribution is crucial in order to ensure that (finite sample or asymptotic) control of the Type I error rate
under the assumed null distribution does indeed provide the desired control under the true distribution.

Dudoit and van der Laan [2007, Chapter 2] provide a general characterization for a proper test statistics
null distribution, which leads to the explicit construction of two main types of test statistics null distributions.

The first original proposal of Dudoit et al. [2004b], van der Laan et al. [2004a], and Pollard and van der
Laan [2004], defines the null distribution as the asymptotic distribution of a vector of null shift and scale-
transformed test statistics, based on user-supplied upper bounds for the means and variances of the test
statistics for the true null hypotheses [Dudoit and van der Laan, 2007, Section 2.3].

The second and most recent proposal of van der Laan and Hubbard [2006] defines the null distribution
as the asymptotic distribution of a vector of null quantile-transformed test statistics, based on user-supplied
test statistic marginal null distributions [Dudoit and van der Laan, 2007, Section 2.4].

For a broad class of testing problems, such as the test of single-parameter null hypotheses using t-
statistics, a proper null distribution is the M -variate Gaussian distribution N(0, σ∗), with mean vector zero
and covariance matrix σ∗ = Σ∗(P ) equal to the correlation matrix of the vector influence curve for the
estimator ψn of the parameter of interest ψ [Dudoit and van der Laan, 2007, Section 2.6].

Resampling procedures (e.g., non-parametric or model-based bootstrap) are available to conveniently
obtain consistent estimators of the null distribution and of the corresponding test statistic cut-offs, parameter
confidence regions, and adjusted p-values [Dudoit and van der Laan, 2007, Procedures 2.3 and 2.4].

1.3.6 Adjusted p-values

Adjusted p-values, for the test of multiple hypotheses, are defined as straightforward extensions of unadjusted
p-values, for the test of single hypotheses [Dudoit and van der Laan, 2007, Section 1.2.12]. Consider any mul-
tiple testing procedure Rn(α) = R(Tn, Q0n, α), with rejection regions Cn(m;α) = C(m;Tn, Q0n, α). One can
define an M -vector of adjusted p-values, P̃0n = (P̃0n(m) : m = 1, . . . ,M) = P̃ (Tn, Q0n) = P̃ (R(Tn, Q0n, α) :
α ∈ [0, 1]), as

P̃0n(m) ≡ inf {α ∈ [0, 1] : Reject H0(m) at nominal MTP level α} (12)
= inf {α ∈ [0, 1] : m ∈ Rn(α)}
= inf {α ∈ [0, 1] : Tn(m) ∈ Cn(m;α)} , m = 1, . . . ,M.

That is, the adjusted p-value P̃0n(m), for null hypothesis H0(m), is the smallest nominal Type I error level
(e.g., gFWER, TPPFP, or FDR) of the multiple hypothesis testing procedure at which one would reject
H0(m), given Tn.

As in single hypothesis tests, the smaller the adjusted p-value P̃0n(m), the stronger the evidence against
the corresponding null hypothesis H0(m). Thus, one rejects H0(m) for small adjusted p-values P̃0n(m).
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2 FDR-controlling linear step-up multiple testing procedures

The following commonly-used FDR-controlling linear step-up procedures, such as Benjamini and Hochberg’s
[1995] classical procedure and Storey and Tibshirani’s [2003] so-called q-value procedure, require as their
primary input an M -vector (P0n(m) : m = 1, . . . ,M) of unadjusted p-values, computed under a test statistics
null distribution Q0 (or estimator thereof, Q0n). The procedures are listed in Table 2.

2.1 Benjamini and Hochberg [1995] classical linear step-up procedure

In their seminal article, Benjamini and Hochberg [1995] propose the following FDR-controlling procedure.

Procedure 1 [FDR-controlling linear step-up Benjamini and Hochberg [1995] procedure]
Given an M -vector (P0n(m) : m = 1, . . . ,M) of unadjusted p-values, let On(m) denote the indices for the
ordered unadjusted p-values, so that P0n(On(1)) ≤ · · · ≤ P0n(On(M)). For controlling the FDR at nominal
level α, the linear step-up procedure of Benjamini and Hochberg [1995] yields the following set of rejected
null hypotheses,

Rn(α) =
{
On(m) : ∃ h ≥ m such that P0n(On(h)) ≤ h

M
α

}
. (13)

That is, the mth most significant null hypothesis H0(On(m)), with the mth smallest unadjusted p-value
P0n(On(m)), is rejected if and only if it or at least one of the less significant null hypotheses H0(On(h)),
h ≥ m + 1, has an unadjusted p-value less than or equal to the corresponding cut-off αh/M . Adjusted
p-values can be derived as

P̃0n(On(m)) = min
h=m,...,M

{
min

{
M

h
P0n(On(h)), 1

}}
, m = 1, . . . ,M. (14)

Following the characterization of MTPs in Dudoit and van der Laan [2007, Section 1.2.7], the Benjamini
and Hochberg [1995] procedure is a marginal step-up common-quantile procedure: it is marginal, in the
sense that it is solely based on the marginal distributions of the test statistics and does not account for their
dependence structure; it is a step-up procedure, in the sense that as soon as one null hypothesis is rejected,
all remaining more significant hypotheses are rejected; it is a common-quantile procedure, in the sense that
it is based on a p-value transformation of the test statistics.

Note, however, that although Procedure 1 is a marginal procedure, proofs of FDR control rely on as-
sumptions concerning the joint distribution of the test statistics. Benjamini and Hochberg [1995] prove that
Procedure 1 controls the FDR for independent test statistics. The subsequent article of Benjamini and
Yekutieli [2001] establishes FDR control for test statistics with more general dependence structures, such as
positive regression dependence.

2.2 Adaptive linear step-up procedures

Classical linear step-up Benjamini and Hochberg [1995] Procedure 1 can be conservative, as Type I er-
ror control results show that it satisfies E[Vn/Rn] ≤ αh0/M ≤ α, under certain assumptions on the joint
distribution of the test statistics (e.g., independence, positive regression dependence). To remedy this conser-
vativeness, Benjamini and colleagues have developed various adaptive procedures, involving the estimation
of the number h0 of true null hypotheses. Benjamini et al. [2006, Section 3] provide a nice review of such
methods.

6
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2.2.1 Generic adaptive linear step-up procedure

Procedure 2 [FDR-controlling generic adaptive linear step-up Benjamini et al. [2006, Defini-
tion 2] procedure]
Given an estimator h0n of the number of true null hypotheses h0, the generic adaptive linear step-up

procedure of Benjamini et al. [2006, Definition 2] replaces the nominal Type I error level α in Benjamini
and Hochberg [1995] Procedure 1 by the less conservative level of αM/h0n ≥ α .

Provided h0n does not depend on the nominal Type I error level α, the adjusted p-values of an adaptive
linear step-up procedure are simply the adjusted p-values of Procedure 1 scaled by M/h0n,

P̃0n(On(m)) =
h0n

M
min

h=m,...,M

{
min

{
M

h
P0n(On(h)), 1

}}
, m = 1, . . . ,M. (15)

Since h0n/M ≤ 1, adaptive procedures lead to a larger number of rejected hypotheses than the standard
Benjamini and Hochberg [1995] procedure (with h0n/M = 1) applied with the same nominal FDR level α.

2.2.2 Benjamini and Hochberg [2000] adaptive linear step-up procedure

The adaptive linear step-up procedure of Benjamini and Hochberg [2000], summarized in Benjamini et al.
[2006, Definition 3], derives the following estimator of the number of true null hypotheses based on graphical
considerations.

hABH

0n = dmin {h0n(mn),M}e, (16)

where

h0n(m) =
M + 1−m

1− P0n(On(m))
,

mn = min {m = 2, . . . ,M : h0n(m) > h0n(m− 1)} ,

and the ceiling dxe denotes the least integer greater than or equal to x, i.e., dxe ∈ IZ and dxe− 1 < x ≤ dxe.
Benjamini and Hochberg [2000] prove that this adaptive procedure controls the FDR for independent

test statistics.

2.2.3 Storey and Tibshirani [2003] adaptive linear step-up procedure

Benjamini et al. [2006, Definition 5] show that the so-called q-value procedure of Storey [2002] and Storey
and Tibshirani [2003], further discussed in Section 2.3, below, is a particular type of adaptive linear step-up
procedure, with estimated number of true null hypotheses defined as

hST

0n(λ) =
|{m : P0n(m) > λ}|

1− λ
, (17)

in terms of a to-be-determined tuning parameter λ ∈ [0, 1], as in Procedure 3.

2.2.4 Benjamini et al. [2006] adaptive two-stage linear step-up procedure

Benjamini et al. [2006, Section 4, Definition 6] propose an adaptive two-stage linear step-up procedure (TST),
whereby the estimator of the number of true null hypotheses h0 is obtained from a one-stage application
of standard linear step-up Benjamini and Hochberg [1995] Procedure 1. Specifically, the estimator of h0

7
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is defined in terms of the number R1
n(α/(1 + α)) of rejected hypotheses from a one-stage application of

Procedure 1 with nominal FDR level α/(1 + α),

hT ST

0n (α) = (1 + α)(M −R1
n(α/(1 + α))). (18)

Benjamini et al. [2006, Section 5] prove that the TST procedure controls the FDR for independent test
statistics.

A multi-stage extension of Procedure 1 is also proposed [Benjamini et al., 2006, Definition 7].
Note that the estimated number of true null hypotheses hT ST

0n (α) depends on the nominal Type I error
level α. As a result, one cannot obtain closed form expressions (e.g., as in Equation (15)) for the adjusted
p-values of the two-stage procedure .

A practical question of interest is the nature and strength of the dependence of the estimated number of
true null hypotheses hT ST

0n (α) on the nominal Type I error level α. In general, hT ST
0n (α) is not monotonic in

α, as M − R1
n(α/(1 + α)) decreases with α, while 1 + α increases with α. Extreme cases are hT ST

0n (0) = M
and hT ST

0n (1) = 2(M −R1
n(1/2)).

2.3 Storey and Tibshirani [2003] adaptive linear step-up procedure

As argued in Benjamini et al. [2006, Definition 5] and below, the q-value method proposed in Storey and
Tibshirani [2003] and related articles [Storey, 2002, Storey et al., 2004] can be viewed simply as a special
case of adaptive linear step-up Procedure 2, with a particular type of estimator for the number of true null
hypotheses h0.

The procedure requires as input anM -vector (P0n(m) : m = 1, . . . ,M) of unadjusted p-values and returns
so-called q-values, which correspond in fact to adjusted p-values for the false discovery rate and a variant
thereof, the positive false discovery rate, defined in Equation (10).

2.3.1 Algorithm

The q-value algorithm, provided in Storey and Tibshirani [2003, Remark B] and implemented in the Biocon-
ductor R package qvalue, is summarized below using the notation introduced in Section 1.3.

Procedure 3 [FDR-controlling adaptive linear step-up Storey and Tibshirani [2003] proce-
dure]
For controlling the FDR at nominal level α, the adaptive linear step-up procedure of Storey and Tibshirani
[2003] proceeds as follows.

1. Given an M -vector (P0n(m) : m = 1, . . . ,M) of unadjusted p-values, let On(m) denote the indices
for the ordered unadjusted p-values, so that P0n(On(1)) ≤ · · · ≤ P0n(On(M)).

2. For a range of values for the tuning parameter λ, e.g., λ ∈ {0, 0.01, 0.02, . . . , 0.95}, compute the
following candidate estimators π0n(λ) of the proportion of true null hypotheses π0 = h0/M ,

π0n(λ) =
|{m : P0n(m) > λ}|

M(1− λ)
. (19)

3. Fit a natural cubic spline to (λ, π0n(λ)) and let the estimator π0n be the fitted value at λ = 1.

4. Compute q-values (P̃0n(On(m)) : m = 1, . . . ,M) recursively, from the least significant null hypothesis
H0(On(M)) to the most significant null hypothesis H0(On(1)). That is,

P̃0n(On(M)) = inf
δ≥P0n(On(M))

π0nMδ

|{m : P0n(m) ≤ δ}|
u π0nP0n(On(M))
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and, for m = M − 1, . . . , 1,

P̃0n(On(m)) = inf
δ≥P0n(On(m))

π0nMδ

|{m : P0n(m) ≤ δ}|
(20)

u min
{
π0nMP0n(On(m))

m
, P̃0n(On(m+ 1))

}
.

5. Reject null hypotheses with q-value less than or equal to α, that is,

Rn(α) = {m : P̃0n(m) ≤ α}. (21)

Note that the q-values of Equation (20) may be rewritten as

P̃0n(On(m)) = π0n min
h=m,...,M

{
min

{
M

h
P0n(On(h)), 1

}}
, m = 1, . . . ,M, (22)

and are therefore simply the adjusted p-values for classical linear step-up Benjamini and Hochberg [1995]
Procedure 1, multiplied by the estimated proportion of true null hypotheses π0n. Indeed, Benjamini et al.
[2006, Definition 5] argue that the Storey and Tibshirani [2003] method can be viewed as a special case of
adaptive linear step-up Procedure 2.

Storey and Tibshirani’s [2003] procedure is a joint step-up common-quantile procedure: it is a joint
procedure, only in the sense that the q-values P̃0n(m) are based on all M unadjusted p-values P0n(m), via
the estimator π0n of the proportion of true null hypotheses; it is a step-up procedure, in the sense that
as soon as one null hypothesis is rejected, all remaining more significant hypotheses are rejected; it is a
common-quantile procedure, in the sense that it is based on a p-value transformation of the test statistics.

2.3.2 Motivation

Storey and Tibshirani’s [2003] adaptive linear step-up procedure can be motivated as follows. Consider a
common unadjusted p-value cut-off δ and a set of rejected null hypotheses defined as

Rn(δ) = {m : P0n(m) ≤ δ}. (23)

Estimation of the false discovery rate For a large number of hypotheses M , the false discovery rate
can be approximated as

FDR(δ) = E
[
Vn(δ)
Rn(δ)

]
u

E [Vn(δ)]
E [Rn(δ)]

. (24)

The expected number of rejected hypotheses E [Rn(δ)] can simply be estimated by the observed number
Rn(δ). Under U(0, 1) marginal distributions for the unadjusted p-values (P0n(m) : m ∈ H0) corresponding
to the true null hypotheses H0, the expected number of Type I errors is

E [Vn(δ)] =
∑

m∈H0

Pr(P0n(m) ≤ δ) = h0δ.

Given an estimator π0n of the proportion π0 = h0/M of true null hypotheses, this leads to the following
estimator of the FDR,

F̂DR(δ) =
π0nMδ

Rn(δ)
=

π0nMδ

|{m : P0n(m) ≤ δ}|
. (25)

9
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Estimation of the proportion of true null hypotheses A trivial, conservative estimator of the pro-
portion π0 = h0/M of true null hypotheses is one, π0n = 1.

Storey and Tibshirani [2003] propose a less conservative estimator of π0 by arguing that unadjusted
p-values (P0n(m) : m ∈ H0) for the true null hypotheses have U(0, 1) marginal distributions, whereas
unadjusted p-values (P0n(m) : m ∈ H1) for the false null hypotheses should be close to zero. This leads to
the following Bayesian heuristics.

Pr(P0n(m) > λ) = Pr(P0n(m) > λ|H0(m) = 1) Pr(H0(m) = 1) (26)
+ Pr(P0n(m) > λ|H0(m) = 0) Pr(H0(m) = 0)

u (1− λ)π0 + 0(1− π0),

for λ ∈ [0, 1] above which the unadjusted p-values appear to be uniformly distributed. Thus,

π0 u
Pr(P0n(m) > λ)

1− λ
. (27)

The Storey and Tibshirani [2003] estimator of the proportion of true null hypotheses, based on the empirical
survivor function of the M unadjusted p-values evaluated at λ, is then given by,

π0n(λ) =
|{m : P0n(m) > λ}|

M(1− λ)
, (28)

where λ ∈ [0, 1] is a to-be-determined tuning parameter.
As noted in Storey and Tibshirani [2003, Remark B], there is a bias-variance trade-off in selecting λ.

The larger λ, the smaller the bias but the larger the variance. In particular, one recovers the conservative
estimator π0n(λ) = 1 when λ = 0. By contrast, for large values of λ, the estimator π0n(λ) is based on only
a small fraction of the unadjusted p-values and is therefore variable. Storey and Tibshirani [2003] propose
fitting a natural cubic spline to (λ, π0n(λ)) for a range of values of the tuning parameter λ and estimating
π0 by the fitted value at λ = 1.

q-values The so-called q-values appear to be nothing more than FDR-specific adjusted p-values. Indeed,
the q-value for the mth null hypothesis H0(m) is defined as the smallest nominal FDR level at which this
hypothesis is rejected, that is,

P̃0n(m) = inf
δ≥P0n(m)

F̂DR(δ) = inf
δ≥P0n(m)

π0nMδ

|{m : P0n(m) ≤ δ}|
. (29)

Note that in Procedure 3, the infimum over intervals [P0n(On(m)), 1] is approximated by a minimum
over finite sets of unadjusted p-values {P0n(On(h)) : h = m, . . . ,M}.

The q-values P̃0n(m) lead to the same significance ranking as the unadjusted p-values P0n(m) and the
set of rejected null hypotheses for controlling the FDR at nominal level α is given as usual by

Rn(α) = {m : P̃0n(m) ≤ α}. (30)

Note that technically P̃0n(m) is based on an estimator of the pFDR rather than FDR. However, as
noted in Storey and Tibshirani [2003, Remark A], the approximation is reasonable for large M because
Pr(Rn > 0) u 1 and FDR u pFDR u E[Vn]/E[Rn].

Properties Storey and Tibshirani [2003, Remark D] summarize theoretical properties of adaptive linear
step-up Procedure 3 [Storey et al., 2004]. In particular, it is argued that the method provides control of the
FDR for large numbers of hypotheses M and weak dependence structures.

In summary, the Storey and Tibshirani [2003] procedure for controlling the FDR at nominal level α is
nothing more than the classical linear step-up procedure of Benjamini and Hochberg [1995] for controlling
the FDR at nominal level α/π0n ≥ α, where π0n is an estimated proportion of true null hypotheses as in
Equation (19).
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3 Resampling-based empirical Bayes multiple testing

This section presents the resampling-based empirical Bayes multiple testing approach proposed in Dudoit
and van der Laan [2007, Chapter 7] and van der Laan et al. [2005], for controlling generalized tail probability
and expected value error rates. The interested reader is referred to these earlier publications for further
detail, including a proof of Type I error control, the derivation of adjusted p-values, and connections to the
frequentist FDR-controlling linear step-up procedure of Benjamini and Hochberg [1995].

3.1 Resampling-based empirical Bayes multiple testing procedure

Given random M -vectors of test statistics Z0 = (Z0(m) : m = 1, . . . ,M) and Z = (Z(m) : m = 1, . . . ,M),
a set of null hypotheses H ⊆ {1, . . . ,M}, and an M -vector of cut-offs c = (c(m) : m = 1, . . . ,M) ∈ IRM

that define one-sided rejection regions of the form C(m) = (c(m),+∞), introduce the following notation
for the number of false positives (i.e., Type I errors), the number of true positives, the number of rejected
hypotheses, and a function g of the numbers of false positives and true positives,

V (c;H, Z) ≡
∑

m∈H
I (Z(m) > c(m)) , (31)

S(c;H, Z) ≡
∑

m/∈H

I (Z(m) > c(m)) ,

R(c;H, Z0, Z) ≡ V (c;H, Z0) + S(c;H, Z),
and

G(c;H, Z0, Z) ≡ g(V (c;H, Z0), S(c;H, Z)).

In addition, define the following g-specific function for the generalized tail probability gTP (q, g) = Pr(g(Vn, Sn) >
q) and expected value gEV (g) = E[g(Vn, Sn)] error rates,

G̃(c;H, Z0, Z) ≡

{
I(G(c;H, Z0, Z) > q) for gTP (q, g)
G(c;H, Z0, Z) for gEV (g)

, (32)

so that these error rates can be expressed as

θn(c) ≡ E[G̃(c;H0, Tn, Tn)]. (33)

In order to control gTP (q, g) and gEV (g) at level α, one seeks cut-offs cn = (cn(m) : m = 1, . . . ,M),
for the test statistics Tn = (Tn(m) : m = 1, . . . ,M) ∼ Qn, so that the following Type I error constraint is
satisfied,

θn(cn) = E[G̃(cn;H0, Tn, Tn)] ≤ α [finite sample control]
(34)

lim sup
n→∞

θn(cn) = lim sup
n→∞

E[G̃(cn;H0, Tn, Tn)]) ≤ α [asymptotic control].

However, one is immediately faced with the problem that the distribution of G(cn;H0, Tn, Tn) depends on
the unknown data generating distribution P , via the unknown set of true null hypotheses H0 and joint
distribution Qn of the test statistics Tn.

The resampling-based empirical Bayes approach replaces the unknown g-specific function of the numbers
of false positives and true positives G(c;H0, Tn, Tn) by the corresponding guessed function G(c;H0n, T0n, Tn),
where Tn ∼ Qn is the M -vector of observed test statistics, T0n ∼ Q0n is an M -vector of null test statistics,
and H0n ∼ QH0n is a guessed set of true null hypotheses.

The null test statistics T0n and the guessed sets H0n are sampled independently, given the empiri-
cal distribution Pn, from distributions Q0n and QH0n, chosen conservatively so that the guessed function
G(c;H0n, T0n, Tn) is asymptotically stochastically greater than the corresponding true functionG(c;H0, Tn, Tn).
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Procedure 4 [gTP- and gEV-controlling resampling-based empirical Bayes procedure]
Consider the simultaneous test of M null hypotheses H0(m), m = 1, . . . ,M , based on an M -vector of test
statistics Tn = (Tn(m) : m = 1, . . . ,M), with distribution Qn = Qn(P ). Given a function g, that satisfies
monotonicity Assumptions MgV and MgS, the following resampling-based empirical Bayes procedure may be
used to control the generalized tail probability error rate, gTP (q, g) = Pr(g(Vn, Sn) > q), and the generalized
expected value error rate, gEV (g) = E[g(Vn, Sn)].

1. Generate B pairs {(T b
0n,Hb

0n) : b = 1, . . . , B} of null test statistics T b
0n and random guessed sets Hb

0n

of true null hypotheses as follows.

(a) The M -vectors of null test statistics T b
0n have a null distribution Q0n, such as the bootstrap-

based null-transformed test statistics null distributions described in Section 3.2 and Dudoit and
van der Laan [2007, Chapter 2].

(b) The random guessed sets of true null hypotheses Hb
0n have a distribution QH0n that corresponds

to M independent Bernoulli random variables with parameters π0n(Tn(m)). That is, generate
binary random M -vectors Hb

0n = (Hb
0n(m) : m = 1, . . . ,M) of null hypotheses as

Hb
0n(m) ⊥∼ Bernoulli (π0n(Tn(m))) , m = 1, . . . ,M, (35)

and define sets
Hb

0n ≡
{
m : Hb

0n(m) = 1
}
. (36)

Here, π0n(t) is an estimated true null hypothesis posterior probability function, such as the
estimated local q-value function

π0n(t) = min
{

1,
π0nf0n(t)
fn(t)

}
, (37)

corresponding to the marginal non-parametric mixture model of Section 3.3.

(c) Null test statistics T b
0n and guessed sets Hb

0n are independent, given the empirical distribution
Pn.

2. For any given test statistic cut-off vector c = (c(m) : m = 1, . . . ,M), compute, for each of the B
pairs (T b

0n,Hb
0n), the corresponding guessed g-specific function of the numbers of false positives and

true positives,
G(c;Hb

0n, T
b
0n, Tn) = g(V (c;Hb

0n, T
b
0n), S(c;Hb

0n, Tn)). (38)

An estimator of the (gTP or gEV) Type I error rate θn(c) = E[G̃(c;H0, Tn, Tn)] is then given by

θ̂n(c) =
1
B

B∑
b=1

G̃(c;Hb
0n, T

b
0n, Tn). (39)

3. For user-supplied Type I error level α ∈ (0, 1), derive a cut-off vector cn that satisfies the empirical
Type I error constraint

θ̂n(cn) ≤ α. (40)

Common-cut-off procedure. The common cut-off γn is the smallest (i.e., least conservative) value
γ for which the constraint in Equation (40) is satisfied. That is,

γn ≡ inf
{
γ ∈ IR : θ̂n

(
γ(M)

)
≤ α

}
, (41)
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where γ(M) denotes the M -vector with all elements equal to γ, i.e., γ(M)(m) = γ, ∀ m = 1, . . . ,M .
The adjusted p-values may be approximated as

p̃0n(on(m)) u min
h∈On(m)

θ̂n

(
(tn(h))(M)

)
, (42)

where On(m) denote the indices for the ordered test statistics Tn(On(m)), so that Tn(On(1)) ≥ · · · ≥
Tn(On(M)), and On(m) ≡ {On(m), . . . , On(M)}.
Common-quantile procedure. The common quantile probability δn, corresponding to the test
statistics null distribution Q0n, is the smallest (i.e., least conservative) value δ for which the constraint
in Equation (40) is satisfied. That is,

δn ≡ inf
{
δ ∈ [0, 1] : θ̂n

(
q−1
0n (δ)

)
≤ α

}
, (43)

where q−1
0n (δ) = (Q−1

0n,m(δ) : m = 1, . . . ,M) denotes the M -vector of δ-quantiles for the null distribu-
tion Q0n.
The adjusted p-values may be approximated as

p̃0n(on(m)) u min
h∈On(m)

θ̂n

(
q−1
0n (1− p0n(h))

)
, (44)

where p0n(m) = 1−Q0n,m(tn(m)) is the unadjusted p-value for null hypothesis H0(m), On(m) denote
the indices for the ordered unadjusted p-values P0n(On(m)), so that P0n(On(1)) ≤ · · · ≤ P0n(On(M)),
and On(m) ≡ {On(m), . . . , On(M)}.

Following the characterization of MTPs in Dudoit and van der Laan [2007, Section 1.2.7], Procedure 4 is
a joint single-step common-cut-off or common-quantile procedure.

The two main ingredients of a resampling-based empirical Bayes procedure are discussed next: the null
distribution Q0 (or estimator thereof, Q0n) for the M -vectors of null test statistics T0n (Section 3.2) and
the distribution QH0 (or estimator thereof, QH0n) for the random guessed sets of true null hypotheses H0n

(Section 3.3). Further detail can be found in Dudoit and van der Laan [2007, Chapter 7] and van der Laan
et al. [2005].

3.2 Distribution for the null test statistics

Test statistics null distributions are briefly discussed in Sections 1.3.5 and 4.2.3 of the present article and in
depth in Dudoit and van der Laan [2007, Chapters 2 and 7].

3.3 Distribution for the guessed sets of true null hypotheses

The following is only one among many reasonable candidate distributions QH0n for the guessed sets of true
null hypotheses, that does not assume independence of the test statistics.

3.3.1 Common marginal non-parametric mixture model

Consider M identically distributed pairs of test statistics and null hypotheses ((Tn(m),H0(m)) : m =
1, . . . ,M). Test statistics are assumed to have the following common marginal non-parametric mixture
distribution,

Tn(m) ∼ f ≡ π0f0 + (1− π0)f1, m = 1, . . . ,M, (45)

where π0 denotes the prior probability of a true null hypothesis, f0 the marginal null density of the test statis-
tics, and f1 the marginal alternative density of the test statistics, i.e., π0 ≡ Pr(H0(m) = 1), Tn(m)|{H0(m) =
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1} ∼ f0, and Tn(m)|{H0(m) = 0} ∼ f1.

3.3.2 Local q-values

A parameter of interest, for generating guessed sets of true null hypotheses under the marginal non-parametric
mixture model of Equation (45), is the local q-value function, i.e., the posterior probability function for a
true null hypothesis H0(m), given the corresponding test statistic Tn(m),

π0(t) ≡ Pr(H0(m) = 1|Tn(m) = t) =
π0f0(t)
f(t)

, m = 1, . . . ,M. (46)

Empirical Bayes q-values are similar in some sense to frequentist p-values: the smaller the q-value
π0(Tn(m)), the stronger the evidence against the corresponding null hypothesis H0(m).

In practice, the local q-value function π0(t) is unknown, as it depends on the unknown true null hypothesis
prior probability π0, test statistic marginal null density f0, and test statistic marginal density f . Estimators
of π0(t) may be obtained by the plug-in method, from estimators of the three main parameters, π0, f0, and
f , of the mixture model of Equation (45).

Note that the q-values defined here in Equation (46) are different in nature from the q-values of Equations
(20) and (29) for the linear step-up procedure of Storey and Tibshirani [2003], as the latter are actually
adjusted p-values for FDR control.

3.3.3 Estimation of the true null hypothesis prior probability π0

A trivial estimator π0n of the prior probability π0 of a true null hypothesis is the conservative value of one,
i.e., π0n = 1.

Alternately, π0 may be estimated from prior knowledge or as a by-product of a computationally convenient
procedure, such as the FDR-controlling adaptive linear step-up procedure of Benjamini and Hochberg [2000]
or two-stage linear step-up procedure of Benjamini et al. [2006].

Various approaches are summarized in Section 4.2.5 and Table 2.

3.3.4 Estimation of the test statistic marginal null density f0

For the test of single-parameter null hypotheses using t-statistics, the common marginal null density f0 is
simply a standard Gaussian density, i.e., Tn(m)|{H0(m) = 1} ∼ N(0, 1) (Section 4.2.5).

For other types of test statistics, one may estimate f0 by kernel density smoothing of the M ×B pooled
elements of a matrix ZB

n of null-transformed bootstrap test statistics [Dudoit and van der Laan, 2007,
Procedures 2.3 and 2.4].

3.3.5 Estimation of the test statistic marginal density f

For the test of single-parameter null hypotheses using t-statistics, the common marginal density f may
be estimated based on an estimator of the asymptotic M -variate Gaussian distribution of the M -vector of
t-statistics Tn (Section 4.2.5).

For other types of test statistics, one may estimate f by kernel density smoothing of the M ×B pooled
elements of a matrix TB

n of raw (before null transformation) bootstrap test statistics [Dudoit and van der
Laan, 2007, Procedures 2.3 and 2.4].

3.4 Estimation of the proportion of true null hypotheses

A parameter of interest in multiple hypothesis testing is the number of true null hypotheses h0. The following
two estimators of h0 may be obtained as by-products of the resampling-based empirical Bayes approach.
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3.4.1 q-value-based empirical Bayes estimator

In the Bayesian context of Section 3.3, the local q-value function π0(t), used to generate the random guessed
sets of true null hypotheses in Procedure 4, is a posterior probability function for the true null hypotheses
(Equation (46)).

The prior probability π0 = Pr(H0(m) = 1) of a true null hypothesis yields an a priori, i.e., non data-
driven, estimator of the number h0 of true null hypotheses. Indeed, the a priori expected value of h0 is

E[h0] = E

[
M∑

m=1

I(H0(m) = 1)

]
=

M∑
m=1

Pr(H0(m) = 1) = Mπ0. (47)

The local q-values π0(Tn(m)) = Pr(H0(m) = 1|Tn(m)) are posterior probabilities for the true null
hypotheses and in turn lead to the following a posteriori, i.e., data-driven, estimator of h0. The a posteriori
expected value of h0 is

E[h0|Xn] = E

[
M∑

m=1

I(H0(m) = 1)

∣∣∣∣∣Xn

]
(48)

=
M∑

m=1

Pr(H0(m) = 1|Xn)

=
M∑

m=1

Pr(H0(m) = 1|Tn(m))

=
M∑

m=1

π0(Tn(m)),

under the assumption that the null hypotheses H0(m) are conditionally independent of the data Xn given
the corresponding test statistics Tn(m).

Thus, the number of true null hypotheses h0 may be estimated by the sum of the estimated local q-values,

hQV

0n =
M∑

m=1

π0n(Tn(m)). (49)

3.4.2 Resampling-based empirical Bayes estimator

A resampling-based empirical Bayes estimator of the number of true null hypotheses h0 can also be obtained
as a by-product of Procedure 4, by averaging the cardinality |Hb

0n| of the guessed sets of true null hypotheses,

hREB

0n =
1
B

B∑
b=1

|Hb
0n|. (50)

Keeping track of the B guessed numbers |Hb
0n| of true null hypotheses provides some indication of the

stability of the guessed sets.

The above two estimators should be very similar. Indeed, the q-value-based estimator hQV

0n is the expected
value of the guessed numbers |Hb

0n| of true null hypotheses and, for a large number B of resampled datasets,
the empirical mean hREB

0n should converge to its expected value of hQV

0n .
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4 Simulation study

4.1 Simulation model

Simulated data consist of learning sets Xn = {Xi : i = 1, . . . , n} IID∼ N(ψ, σ), of n independent and identically
distributed random variables from an M -variate Gaussian data generating distribution P , with mean vector
ψ = (ψ(m) : m = 1, . . . ,M) = Ψ(P ) = E[X] and covariance matrix σ = (σ(m,m′) : m, m′ = 1, . . . ,M) =
Σ(P ) = Cov[X]. The shorter notation σ2(m) ≡ σ(m,m) may be used for variances and the correlation
matrix corresponding to σ is denoted by σ∗ = Σ∗(P ) = Cor[X].

Both the mean vector ψ and the covariance matrix σ are treated as unknown parameters; the parameter
of interest is the mean vector ψ.

4.2 Multiple testing procedures

4.2.1 Null and alternative hypotheses

The simulation study concerns the two-sided test of the M null hypotheses H0(m) = I (ψ(m) = ψ0(m)) vs.
the alternative hypotheses H1(m) = I (ψ(m) 6= ψ0(m)), m = 1, . . . ,M . For simplicity, and without loss of
generality, the null values are set equal to zero, i.e., ψ0(m) = 0.

4.2.2 Test statistics

The M null hypotheses are tested based on usual one-sample t-statistics,

Tn(m) ≡
√
n
ψn(m)− ψ0(m)

σn(m)
, (51)

where ψn(m) = X̄n(m) =
∑

iXi(m)/n and σ2
n(m) =

∑
i(Xi(m)− X̄n(m))2/(n− 1) denote, respectively, the

empirical means and variances for the M elements of X.

4.2.3 Test statistics null distribution

The unknown asymptotic joint null distribution Q0 of the t-statistics of Equation (51) is the M -variate Gaus-
sian distribution N(0, σ∗), with mean vector zero and covariance matrix equal to the unknown correlation
matrix σ∗ of X.

A parametric estimator Q0n of Q0 is the Gaussian distribution N(0, σ∗n), where σ∗n is the empirical
correlation matrix of the learning set Xn.

This joint distributionQ0n can be approximated by the empirical distribution of theB columns {ZB
n (·, b) ∼

N(0, σ∗n) : b = 1, . . . , B} of a matrix ZB
n simulated from N(0, σ∗n) (B = 10, 000 in the present simulation

study).

4.2.4 FDR-controlling linear step-up procedures

The simulation study examines the following five linear step-up procedures, summarized in Table 2.

1. LSU.BH: Benjamini and Hochberg [1995] classical linear step-up Procedure 1.

2. LSU.O: Oracle linear step-up procedure, using the unknown number of true null hypotheses h0 in place
of h0n in Procedure 2.

3. LSU.ABH: Benjamini and Hochberg [2000] adaptive linear step-up procedure, using hABH
0n from Equation

(16) in Procedure 2.

4. LSU.TST: Benjamini et al. [2006] adaptive two-stage linear step-up procedure, using hT ST
0n (α), α =

0.05, 0.10, from Equation (18) in Procedure 2.
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5. LSU.ST: Storey and Tibshirani [2003] adaptive linear step-up Procedure 3, using hST
0n(λ) from Equation

(17) in Procedure 2.

Each of the five linear step-up procedures is given as input two-sided unadjusted p-values P0n(m) com-
puted under a standard Gaussian test statistic marginal null distribution. Specifically,

P0n(m) = 2(1− Φ(Tn(m))), (52)

where Φ is the N(0, 1) cumulative distribution function (CDF).
Estimators of the number h0 of true null hypotheses are examined for the last three adaptive procedures.
The first four procedures are implemented using the function mt.rawp2adjp from the Bioconductor R

package multtest. The LSU.ST procedure of Storey and Tibshirani [2003] is implemented using the function
qvalue from the R package qvalue, with default argument values.

4.2.5 FDR-controlling resampling-based empirical Bayes procedures

The above linear step-up procedures are compared to FDR-controlling resampling-based empirical Bayes
Procedure 4, with common cut-offs for the test statistics defined as

γn = inf

{
γ ∈ IR :

1
B

B∑
b=1

V (γ(M);Hb
0n, T

b
0n)

max
{
V (γ(M);Hb

0n, T
b
0n) + S(γ(M);Hb

0n, Tn), 1
} ≤ α

}
. (53)

In the simulation study, the common cut-offs γn are selected based on B = 10, 000 pairs {(T b
0n,Hb

0n) : b =
1, . . . , B} of null test statistics and guessed sets of true null hypotheses, from the discrete set {0, 0.05, 0.10, . . . , 4.50},
i.e., from the interval [0, 4.50], with a resolution of 0.05.

The two main ingredients for Procedure 4 are the null distribution Q0 (or estimator thereof, Q0n) for
the M -vectors of null test statistics T0n (Section 3.2) and the distribution QH0 (or estimator thereof, QH0n)
for the random guessed sets of true null hypotheses H0n (Section 3.3). In the case of the common marginal
non-parametric mixture model of Section 3.3, QH0 is specified by three parameters: the true null hypothesis
prior probability π0, the test statistic marginal null density f0, and the test statistic marginal density f .

The following four versions of empirical Bayes Procedure 4 are considered in terms of the estimator π0n

of the true null hypothesis prior probability π0 (Table 2).

1. EB.C: Conservative prior π0n = 1.

2. EB.O: Oracle prior π0n = h0/M , based on the unknown number h0 of true null hypotheses.

3. EB.ABH: Data-adaptive prior π0n = hABH
0n /M , based on the Benjamini and Hochberg [2000] estimator

hABH
0n of the number of true null hypotheses (Equation (16)).

4. EB.QV: Data-adaptive prior π0n = hQV

0n /M , based on the sum of the local q-values π0n(Tn(m)) com-
puted with an initial conservative prior π0n = 1 (Equation (49)).

For each of these procedures, the estimators remaining to be specified, Q0n, f0n, and fn, are as follows.

• Test statistics joint null distribution, Q0n. M -variate Gaussian distribution N(0, σ∗n), where σ∗n is the
empirical correlation matrix of the learning set Xn, as in Section 4.2.3.

• Test statistic marginal null density, f0n. Standard Gaussian density f0n ∼ N(0, 1).

• Test statistic marginal density, fn. Kernel density smoothed function of the M ×B pooled elements of
a matrix TB

n , with columns TB
n (·, b) ∼ N(Tn, σ

∗
n), b = 1, . . . , B (B = 10, 000 in the present simulation

study).

Estimators of the number of true null hypotheses h0, based on the sum of the local q-values π0n(Tn(m))
(Equation (49)), are examined for each of the four empirical Bayes procedures, namely, EB.C, EB.O, EB.ABH,
and EB.QV.
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4.3 Simulation study design

4.3.1 Simulation parameters

Although a simple Gaussian data generating distribution is used, a broad range of testing scenarios (including
extreme ones) are covered by varying the following model parameters. The simulation results should there-
fore provide a fairly complete assessment of the Type I error and power properties of the FDR-controlling
procedures of Table 2.

• Sample size, n. n = 10, 30, 100, 250, +∞.

• Number of null hypotheses, M . M = 40, 400, 2, 000.

• Proportion of true null hypotheses, h0/M . h0/M = 0.50, 0.75, 0.95, 1.00.

• Shift parameter vector, dn. The elements of the mean vector ψ are expressed as ψ(m) = dn(m)σ(m)/
√
n,

in terms of a shift vector dn. For the true null hypotheses, i.e., for m ∈ H0, dn(m) = 0. For the false
null hypotheses, i.e., for m ∈ H1, dn(m) = 2, 3, 4.

• Correlation matrix, σ∗. The following three correlation structures are considered.

– No correlation, where σ∗ = IM , the M ×M identity matrix.

– Constant correlation, where all off-diagonal elements of σ∗ are set to a common value: σ∗(m,m) =
1, for m = 1, . . . ,M ; σ∗(m,m′) = 0.50, for m 6= m′ = 1, . . . ,M .

– Empirical microarray correlation, where σ∗ corresponds to a random M ×M submatrix of the
probes × probes correlation matrix for the Golub et al. [1999] leukemia microarray dataset. 1

Detailed results for some parameter combinations are reported in Section 5. Results for other parameter
values are only briefly discussed in the present article and are posted on the website companion.

4.3.2 Simulated datasets

For each simulation scenario (i.e., each combination of values for parameters n, M , h0/M , dn, and σ∗,
from Section 4.3.1), generate A = 500 learning sets X a

n = {Xa
i : i = 1, . . . , n} IID∼ N(ψ, σ), a = 1, . . . , A,

where the elements of the M -dimensional mean vector ψ = (ψ(m) : m = 1, . . . ,M) are defined as ψ(m) =
dn(m)σ(m)/

√
n, in terms of a shift vector dn = (dn(m) : m = 1, . . . ,M).

For each simulated dataset X a
n , compute cut-offs (resampling-based empirical Bayes procedures EB)

and adjusted p-values P̃ a
0n(m) (linear step-up procedures LSU) for each of the multiple testing procedures

summarized in Table 2.

4.3.3 Type I error control and power comparison

Estimation of Type I error rate and power For each simulated dataset X a
n and given nominal Type

I error level α, compute, for each MTP, the numbers of false positives V a
n (α) and true positives Sa

n(α).
Specifically, given adjusted p-values P̃ a

0n(m), define

V a
n (α) ≡

∑
m∈H0

I
(
P̃ a

0n(m) ≤ α
)

and Sa
n(α) ≡

∑
m/∈H0

I
(
P̃ a

0n(m) ≤ α
)
. (54)

Likewise for procedures whose results are expressed in terms of rejection regions for the test statistics.
1 The following three pre-processing steps were applied to the 7, 129× 38 probes × patients matrix of expression measures

corresponding to the training set of 38 patients (object Golub Train in the Bioconductor R package golubEsets): (i) thresholding,
floor of 100 and ceiling of 16,000; (ii) filtering, exclusion of probes with max / min ≤ 5 or (max−min) ≤ 500, where max and
min refer, respectively, to the maximum and minimum intensities for a particular probe across the 38 mRNA samples; (iii)
base-2 logarithmic transformation. These pre-processing steps resulted in a 3, 051× 38 probes × patients matrix of expression
measures, from which one can compute a 3, 051× 3, 051 probe correlation matrix and extract a random M ×M submatrix σ∗.

18

http://biostats.bepress.com/ucbbiostat/paper228



The actual Type I error rate is estimated as follows and compared to the nominal Type I error level α,

FDR(α) ≡ 1
A

A∑
a=1

V a
n (α)

max{V a
n (α) + Sa

n(α), 1}
. (55)

The average power of a given MTP is estimated by

AvgPwr(α) ≡ 1
h1

1
A

A∑
a=1

Sa
n(α). (56)

The simulation error for the actual Type I error rate and power is of the order 1/
√
A = 1/

√
500 u 0.045.

Table 3 reports numerical summaries of the actual Type I error rate and average power of FDR-controlling
procedures from Table 2, for a nominal Type I error level α = 0.05.

Type I error control comparison For a given simulation scenario, plot, for each MTP, the difference
between the nominal and actual Type I error rates vs. the nominal Type I error level, that is, plot

α− FDR(α) vs. α,

for α ∈ {0.01, 0.02, . . . , 0.50}. Positive (negative) differences correspond to (anti-) conservative MTPs; the
higher the curve, the more conservative the procedure.

Power comparison For a given simulation scenario, receiver operator characteristic (ROC) curves may
be used for a fair comparison of different MTPs in terms of power. ROC curves are obtained by plotting, for
each MTP, power vs. actual Type I error rate, i.e., AvgPwr(α) vs. FDR(α), for a range of nominal Type I
error levels α.

However, due to possibly large variations in power between simulation scenarios, we consider instead the
following modified display, which facilitates comparisons across scenarios. For a given scenario and MTP,
a linear interpolation of the power AvgPwr(α) as a function of the actual Type I error rate FDR(α) is
obtained using the R function approxfun (with default argument values). The difference in power between
each procedure of interest and a baseline procedure (without loss of generality, procedure LSU.BH) is then
taken and plotted against the actual Type I error rate.

4.3.4 Estimation of the proportion of true null hypotheses

A parameter of interest in multiple hypothesis testing is the proportion of true null hypotheses h0/M .
Accordingly, the properties of the following six estimators of h0/M are investigated and compared, using
boxplots of the corresponding estimates over the A = 500 simulated datasets: estimator of Equation (16) for
the adaptive linear step-up LSU.ABH procedure of Benjamini and Hochberg [2000] (Section 2.2); estimator
of Equation (17) for the adaptive linear step-up LSU.ST procedure of Storey and Tibshirani [2003] (Sections
2.2 and 2.3); and q-value-based estimator of Equation (49) for resampling-based empirical Bayes procedures
EB.C, EB.O, EB.ABH, and EB.QV, each corresponding to a particular estimator π0n of the true null hypothesis
prior probability π0, as summarized in Table 2 (Section 3.4).

5 Results

5.1 Type I error control and power comparison

5.1.1 Actual Type I error rate and power at a given nominal FDR level

Table 3 reports numerical summaries of the actual Type I error rate FDR(α) and average power AvgPwr(α)
of FDR-controlling procedures from Table 2, for a nominal Type I error level α = 0.05.
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The original linear step-up procedure of Benjamini and Hochberg [1995] and adaptive versions thereof
[Benjamini and Hochberg, 2000, Benjamini et al., 2006] consistently offer conservative Type I error control
across combinations of simulation parameters, with the adaptive procedures being, as expected, less conser-
vative and more powerful (Table 3, LSU.BH, LSU.ABH, and LSU.TST). Two-stage linear step-up procedure
LSU.TST appears to be more conservative than adaptive procedure LSU.ABH.

The adaptive linear step-up procedure of Storey and Tibshirani [2003], as implemented in the R package
qvalue, is typically anti-conservative, particularly for smaller numbers of hypotheses M and more complex
correlation structures σ∗ (Table 3, LSU.ST). When assumptions underlying the method are met (i.e., inde-
pendent test statistics and a large number of hypotheses M), the LSU.ST procedure outpowers all but the
oracle procedures at a given nominal Type I error level α = 0.05.

The performance of the resampling-based empirical Bayes procedures varies with the correlation structure
σ∗ and proportion of true null hypotheses h0/M (Table 3, EB.C, EB.ABH, and EB.QV). For the empirical
microarray correlation structure, the empirical Bayes procedures and Storey and Tibshirani’s [2003] linear
step-up procedure LSU.ST offer significant gains in power over the procedures of Benjamini and colleagues
(LSU.BH, LSU.ABH, and LSU.TST). The empirical Bayes procedure EB.C, with the most conservative true
null hypothesis prior probability π0n = 1, demonstrates this increase in power while maintaining equal or
better Type I error control than the LSU.ST procedure. Using a data-adaptive prior π0n for the empirical
Bayes method (EB.ABH and EB.QV) further increases power (equal to or over that of LSU.ST), without
sacrificing much with respect to Type I error control. Under constant, heavy correlation, the empirical
Bayes procedures yield the highest average power when testing at nominal Type I error level α = 0.05. This
increase in power comes, however, at the expense of Type I error control. It is therefore not advisable to
relax the prior under conditions of heavy correlation, as doing so may lead to anti-conservative behavior.

Oracle procedures, given the unknown proportion of/prior for the true null hypotheses, tend to be more
powerful than their empirical counterparts, possibly at the detriment of Type I error control (LSU.O vs.
LSU.BH, LSU.ABH, LSU.TST, and LSU.ST; EB.O vs. EB.C, EB.ABH, and EB.QV). This is of course to be
expected when comparing oracle procedures to conservative procedures with π0n = h0n/M = 1 (LSU.O
vs. LSU.BH; EB.O vs. EB.C). However, as discussed below and illustrated in Figure 3, estimators of the
proportion of true null hypotheses also tend to be conservatively biased, i.e., h0n ≥ h0.

5.1.2 Type I error control comparison

The Type I error properties of five non-oracle FDR-controlling procedures are illustrated in Figure 1, for a
range of nominal FDR levels α ∈ [0, 0.20].

Overall, procedures tend to be more conservative for weaker correlation structures σ∗ and smaller pro-
portions of true null hypotheses h0/M , with the resampling-based empirical Bayes procedures (EB.C and
EB.QV) and Storey and Tibshirani’s [2003] linear step-up procedure LSU.ST remaining closer (in absolute
value) to the target nominal Type I error level α (horizontal line) than the linear step-up procedures of Ben-
jamini and colleagues (LSU.BH and LSU.ABH). The LSU.BH and LSU.ABH procedures are conservative over
the range of simulation parameters, while the empirical Bayes EB.C and EB.QV procedures and the Storey
and Tibshirani [2003] LSU.ST procedure become anti-conservative with stronger correlation structures and
higher proportions of true null hypotheses.

As expected, under no correlation, the classical linear step-up procedure LSU.BH of Benjamini and
Hochberg [1995] becomes conservative at a rate commensurate with the proportion of true null hypotheses
h0/M (Figure 1, Panels A and D). The adaptive procedures relax this conservatism, with the LSU.ST
procedure hovering closest to the target nominal Type I error level α.

The results for the empirical microarray correlation structure are similar to those for no correlation,
although the empirical Bayes procedures are somewhat less conservative when compared to the linear step-
up procedures (Figure 1, Panels B and E).

Under constant, heavy correlation, the procedures of Benjamini and colleagues remain conservative, while
the LSU.ST procedure is anti-conservative for small nominal FDR levels α and conservative for less stringent
levels. The empirical Bayes procedures display anti-conservative behavior, particularly with a relaxed prior
and as the proportion of true null hypotheses increases (Figure 1, Panels C and F).
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5.1.3 Power comparison

As argued in Section 4.3.3, fair power comparisons between multiple testing procedures are best performed
by benchmarking power against actual, rather than nominal, Type I error rate (Figure 2).

For the no correlation structure, no method is more powerful outright than the original linear step-up
procedure LSU.BH of Benjamini and Hochberg [1995] (Figure 2, Panels A and D). In this case, all gains in
power observed in Table 3 for the adaptive linear step-up procedures or resampling-based empirical Bayes
procedures (when benchmarking against the nominal FDR, α = 0.05) are due to these procedures selecting
less conservative cut-offs, with higher actual FDR, rather than being more powerful per se.

Under empirical microarray correlation, the empirical Bayes procedures (EB.C and EB.QV) are as powerful
as standard linear step-up procedure LSU.BH, whereas the Storey and Tibshirani [2003] linear step-up LSU.ST
procedure is slightly less powerful (Figure 2, Panels B and E).

In the constant, heavy correlation scenario, all procedures loose power relative to the Benjamini and
Hochberg [1995] LSU.BH procedure, the largest loss occurring for the Storey and Tibshirani [2003] LSU.ST
procedure (Figure 2, Panels C and F).

5.2 Estimation of the proportion of true null hypotheses

The properties of six estimators of the proportion h0/M of true null hypotheses are illustrated in Figure 3,
using boxplots over A = 500 simulated datasets (Section 4.3.4).

Overall, the estimators tend to be conservatively biased, with decreasing bias for higher proportions of
true null hypotheses. Variability tends to increase with increasing correlation levels.

The LSU.ABH estimator, used in the adaptive linear step-up procedure of Benjamini and Hochberg
[2000], is consistently the most conservative. The LSU.TST estimator (α = 0.05, 0.10), from the two-stage
linear step-up procedure of Benjamini et al. [2006], is similar to the LSU.ABH estimator, with a slightly less
conservative bias for the higher nominal Type I error level α = 0.10 (results not shown). These observations
reinforce earlier findings that the procedures of Benjamini and colleagues are capable of maintaining desired
levels of Type I error control across a variety of conditions (Figure 1 and Table 3).

As expected, the q-value-based empirical Bayes estimators of h0/M become less conservative as the
estimated prior π0n is relaxed. These estimators are still conservatively biased, although the lower tails of
their distributions dip below the true value h0/M more frequently as the correlation and/or proportion of
true null hypotheses increase.

Although least biased among non-oracle estimators of h0/M , the LSU.ST estimator, from the adaptive
linear step-up procedure of Storey and Tibshirani [2003], is by far the most variable. In particular, for a
small number of hypotheses M = 40 and/or constant, heavy correlation structure σ∗, the qvalue software
returns errors for roughly 1 to 5 percent of simulated datasets, indicating that a negative estimate of the
proportion h0/M is produced. Moreover, as noted by Benjamini et al. [2006], the LSU.ST method can yield
estimates that exceed one. Specifically, for M = 400 hypotheses and h0/M = 0.75, estimates of h0/M had
to be bounded by one in ten (2.0%) simulated datasets with no correlation among variables, 54 (10.8%)
datasets with empirical microarray correlation structure, and 161 (32.2%) datasets with constant, heavy
correlation structure.

Estimators of h0/M are slightly less conservative for a smaller number of hypotheses M = 40, but vary
between the M = 40 and M = 400 scenarios by only ca. 1% for empirical Bayes EB.C, EB.O, EB.ABH,
and EB.QV estimators, ca. 2–3% for Benjamini and Hochberg [2000] LSU.ABH estimator, and ca. 4–6% for
Storey and Tibshirani [2003] LSU.ST estimator (results not shown).

5.3 Additional simulation results

Additional simulations were performed to investigate and compare the FDR-controlling procedures of Table
2. The results are summarized below and posted on the website companion.

21

Hosted by The Berkeley Electronic Press



5.3.1 Simulation scenarios

For some combinations of simulation parameters, the Gaussian approximation to the test statistics null
distribution seems appropriate for a sample size as low as n = 30. However, when n = 30, all procedures
tend to be anti-conservative for most simulation scenarios. When increasing the sample size to n = 100,
Central Limit Theorem convergence is observed for all simulation scenarios, except those with constant,
heavy correlation. For the latter, Storey and Tibshirani [2003] linear step-up Procedure 3 and resampling-
based empirical Bayes Procedure 4 tend to be anti-conservative. Results for the asymptotic or “infinite
sample” scenario closely resemble those reported above for a sample size of n = 250.

Simulation results for high proportions of true null hypotheses (h0/M = 0.95) are similar to those
for h0/M = 0.75, with slightly more anti-conservative behavior for h0/M = 0.95. The empirical Bayes
procedures tend to be anti-conservative for the complete null hypothesis (h0/M = 1).

5.3.2 Resampling-based empirical Bayes procedures: Test statistic marginal distribution

For the resampling-based empirical Bayes procedures considered in the present article, the guessed sets of
true null hypotheses Hb

0n are generated from a distribution QH0n which is based on a common marginal
non-parametric mixture model for the test statistics (Section 3.3).

Pilot simulations used an oracle estimator fn of the common marginal mixture density f , obtained by
smoothing pooled random vectors from the unknown test statistics joint distribution N(dn, σ

∗) (results not
shown and van der Laan et al. [2005]). Only minimal anti-conservative behavior is observed for these oracle
procedures, under any correlation structure σ∗ or proportion of true null hypotheses h0/M , including the
complete null hypothesis (h0/M = 1).

In the more realistic simulation setting presented here, where a N(Tn, σ
∗
n) estimator of the test statistics

joint distribution is used to estimate f , we witness anti-conservative bias under heavy correlation structures
and high proportions of true null hypotheses.

We observe, however, that this anti-conservative bias decreases as the alternative shift parameters
(dn(m) : m ∈ H1) increase (e.g., dn(m) = 3, 4, for m ∈ H1). Furthermore, for h0/M = 0.95 and the
complete null hypothesis, the anti-conservative behavior does not appear to depend on either the number
of hypotheses M (e.g., M = 2, 000) or the number B of resampled pairs (T b

0n,Hb
0n) (e.g., B = 20, 000 or

30, 000).
Comparing previous simulation results with those presented here suggests that the anti-conservative

behavior of the non-oracle empirical Bayes procedures stems from the increased variability of the estimators
of the common marginal density f . This variability results in smaller local q-values π0n(Tn(m)) and hence
less conservative guessed sets of true null hypotheses Hb

0n, which do not as consistently contain the true set
of true null hypotheses H0.

6 Discussion

We have proposed resampling-based empirical Bayes procedures for controlling generalized tail probability er-
ror rates, gTP (q, g) = Pr(g(Vn, Sn) > q), and generalized expected value error rates, gEV (g) = E[g(Vn, Sn)],
for arbitrary functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn.

The simulation study of Sections 4 and 5 illustrates the competitive Type I error and power properties
of the resampling-based empirical Bayes procedures when compared to widely-used FDR-controlling linear
step-up procedures. These results for FDR control are consistent with previous results for TPPFP control
in the original article of van der Laan et al. [2005].

For a variety of testing scenarios, the resampling-based empirical Bayes approach exhibits Type I error
and power properties intermediate between those of the linear step-up procedures of Benjamini and colleagues
and Storey and colleagues (Figures 1 and 2, Table 3). Specifically, empirical Bayes procedures control the
false discovery rate less conservatively than the classical Benjamini and Hochberg [1995] procedure and
adaptive versions thereof [Benjamini and Hochberg, 2000, Benjamini et al., 2006], with, as for the Storey
and Tibshirani [2003] procedure, the risk of anti-conservative behavior for heavy correlation structures. The
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empirical Bayes procedures tend to be more powerful than the so-called q-value procedure of Storey and
Tibshirani [2003], particularly for microarray-like correlation structures, which have been viewed in the
literature as exhibiting potentially weak dependence or dependence in finite blocks [Storey, 2002, Storey and
Tibshirani, 2003, Storey et al., 2004].

The simulation study indicates that gains in power can be achieved by the empirical Bayes procedures
when using a data-adaptive prior π0n to estimate the local q-values π0n(Tn(m)). The decision to deviate from
the most conservative prior (π0n = 1), however, should be guided by prior knowledge regarding the proportion
of true null hypotheses as well as the level of correlation between test statistics. In many applications, the
anti-conservative bias occurring in extreme simulation conditions will either not be present or may be of
minor practical significance. Diagnostic tests suggest that the density ratio f0/f is a critical quantity to
further investigate regarding proper Type I error control.

The local q-values, used to generate the random guessed sets of true null hypotheses in the empirical Bayes
procedures, provide estimators of the proportion of true null hypotheses that tend to be less conservatively
biased than the Benjamini and Hochberg [2000] estimator and less variable than the Storey and Tibshirani
[2003] estimator.

Of course an issue in presenting any resampling-based procedure is the trade-off between gains in accuracy
and extra computational cost. As shown in this study, for testing scenarios with no correlation and a
large proportion of true null hypotheses, the empirical Bayes procedures do not improve upon the linear
step-up methods of Benjamini and colleagues. If Type I error control is the primary concern, then these
simpler procedures are probably the better choice. However, when the goal is to reject a larger number of
hypotheses, while still maintaining adequate Type I error control, then the empirical Bayes procedures are
strong contenders under various levels of correlation.

We wish to stress the benefits and generality of the proposed resampling-based empirical Bayes method-
ology.

• It can be used to control a broad class of Type I error rates, defined as tail probabilities and expected
values of arbitrary functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn. As
discussed in Dudoit and van der Laan [2007, Section 7.8], the approach can be further extended to con-
trol other parameters of the distribution of functions g(Vn, Sn). Researchers can therefore select from
a wide library of Type I error rates for subject-matter-relevant measures of false positives and control
these error rates at little additional computational cost, using the same resampled pairs (T b

0n,Hb
0n).

• Unlike most MTPs controlling the proportion of false positives, it is based on a test statistics joint null
distribution and provides Type I error control in testing problems involving general data generating
distributions, with arbitrary dependence structures among variables.

• Gains in power are achieved by deriving rejection regions based on guessed sets of true null hypotheses
and null test statistics randomly sampled from joint distributions that account for the dependence
structure of the data.

• It is modular and can be applied to any distribution pair (Q0n, Q
H
0n) for the null test statistics and

guessed sets of true null hypotheses, i.e., the common marginal non-parametric mixture model of
Section 3.3 is only one among many reasonable working models that does not assume independence of
the test statistics.

In summary, the Type I error and power trade-off achieved by the resampling-based empirical Bayes
procedures under a variety of testing scenarios (with varying degrees of correlation) allows this approach
to be competitive with or outperform the Storey and Tibshirani [2003] linear step-up procedure, as an
alternative to the classical Benjamini and Hochberg [1995] procedure.

Ongoing efforts include further investigating the distribution QH0n for the guessed sets of true null hy-
potheses, in order to guarantee proper Type I error control by the empirical Bayes procedures for a wider
range of testing scenarios. In particular, we are interested in developing less biased estimators of the density
ratio f0/f in the local q-value function.
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We are also considering improvements to the estimator of the gTP and gEV error rates in Equation (39),
which is used to select test statistic cut-offs that satisfy the Type I error constraint of Equation (40). In
the common-cut-off case and for testing scenarios with a large proportion of true null hypotheses h0/M , we
have noted that the current estimator

θ̂n(γ(M)) =
1
B

B∑
b=1

G̃(γ(M);Hb
0n, T

b
0n, Tn),

of the Type I error function θn(γ(M)) = E[G̃(γ(M);H0, Tn, Tn)], can be anti-conservatively biased and vari-
able, i.e., non-monotonic in the common cut-off γ. This is especially problematic for the complete null
hypothesis (h0/M = 1), where the false discovery rate coincides with the family-wise error rate and one
would therefore like estimators of these two error rates to be nearly equal and monotonic in the common
cut-off γ. Smoothing or enforcing monotonicity constraints on the estimator θ̂n(γ(M)) may alleviate the
anti-conservative bias.

Finally, we are implementing the proposed multiple testing procedures in the R package multtest, released
as part of the Bioconductor Project.

Software and website companion

The multiple testing procedures proposed in Dudoit and van der Laan [2007] and related articles [Birkner
et al., 2005, Dudoit et al., 2004a,b, van der Laan et al., 2004a,b, 2005, van der Laan and Hubbard, 2006,
Pollard et al., 2005a,b, Pollard and van der Laan, 2004] are implemented in the R package multtest, released as
part of the Bioconductor Project, an open-source software project for the analysis of biomedical and genomic
data (Dudoit and van der Laan [2007, Section 13.1]; Pollard et al. [2005b]; www.bioconductor.org).

The simulation study was performed in R (Release 2.5.1), using the following packages: multtest (Version
1.16.0), qvalue (Version 1.1), and golubEsets (Version 1.4.3).

The website companion for this article provides additional tables, figures, references, and software:
www.stat.berkeley.edu/~sandrine.
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Table 1: Type I and Type II errors in multiple hypothesis testing. This table summarizes the different types
of decisions and errors in multiple hypothesis testing. The number of rejected null hypotheses is Rn = |Rn|,
the number of Type I errors or false positives is Vn = |Rn ∩ H0|, the number of Type II errors or false
negatives is Un = |Rc

n ∩ H1|, the number of true negatives is Wn = |Rc
n ∩ H0|, and the number of true

positives is Sn = |Rn ∩H1|. Cells corresponding to errors are enclosed in boxes.

Null hypotheses
Non-rejected, Rc

n Rejected, Rn

True, H0 Wn = |Rc
n ∩H0| Vn = |Rn ∩H0| h0

Null hypotheses
False, H1 Un = |Rc

n ∩H1| Sn = |Rn ∩H1| h1

M −Rn Rn M

Table 2: Simulation study: Multiple testing procedures. This table summarizes the FDR-controlling proce-
dures examined in the simulation study of Sections 4 and 5. The adaptive linear step-up procedures are based
on generic Procedure 2, with specified estimators h0n of the number of true null hypotheses h0 (Sections
2 and 4.2.4). The resampling-based empirical Bayes procedures are based on Procedure 4, with specified
estimators π0n of the true null hypothesis prior probability π0 (Sections 3 and 4.2.5).

LSU: Linear step-up procedures
h0n

LSU.BH M Conservative: Benjamini and Hochberg [1995]; Procedure 1
LSU.O h0 Oracle
LSU.ABH hABH

0n Adaptive: Benjamini and Hochberg [2000]; Equation (16)
LSU.TST hT ST

0n (α) Adaptive two-stage: Benjamini et al. [2006]; Equation (18), α = 0.05, 0.10
LSU.ST hST

0n(λ) Adaptive: Storey and Tibshirani [2003]; Procedure 3, Equation (17)
EB: Resampling-based empirical Bayes procedures

π0n

EB.C 1 Conservative
EB.O h0/M Oracle
EB.ABH hABH

0n /M Adaptive: Benjamini and Hochberg [2000]; Equation (16)
EB.QV hQV

0n /M Adaptive q-value-based: Equation (49)
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Table 3: Simulation study: Type I error control and power comparison. This table reports the actual
Type I error rate FDR(α) and the average power AvgPwr(α) for FDR-controlling procedures summarized
in Table 2, applied with nominal FDR level α = 0.05. Results correspond to the following simulation
parameters: sample size n = 250; number of null hypotheses M = 40, 400; proportion of true null hy-
potheses h0/M = 0.50, 0.75; common alternative shift parameter dn(m) = 2, m ∈ H1; correlation struc-
ture σ∗=“No correlation”, “Empirical microarray correlation”, “Constant correlation”. Increasingly anti-
conservative behavior, i.e., increasingly negative differences α− FDR(α) between the target nominal Type
I error level α = 0.05 and the actual Type I error rate FDR(α), is indicated by the following colors: yellow
for FDR(α) ∈ (0.050, 0.060], orange for FDR(α) ∈ (0.060, 0.070], and red for FDR(α) ∈ (0.070, 1.000].
Increasingly conservative behavior is indicated by the following colors: green for FDR(α) ∈ [0.040, 0.050),
blue for FDR(α) ∈ [0.030, 0.040), and purple for FDR(α) ∈ [0, 0.030).

M = 40 M = 400

h0/M = 0.50 h0/M = 0.75 h0/M = 0.50 h0/M = 0.75

FDR AvgPwr FDR AvgPwr FDR AvgPwr FDR AvgPwr
σ∗: No correlation

LSU.BH 0.022 0.257 0.041 0.185 0.028 0.229 0.042 0.135
LSU.O 0.048 0.393 0.057 0.227 0.052 0.371 0.055 0.173
LSU.ABH 0.034 0.330 0.050 0.208 0.035 0.278 0.046 0.146
LSU.TST 0.024 0.278 0.042 0.192 0.031 0.250 0.043 0.139
LSU.ST 0.077 0.429 0.077 0.256 0.048 0.349 0.054 0.167
EB.C 0.038 0.344 0.064 0.242 0.038 0.300 0.052 0.162
EB.O 0.049 0.402 0.068 0.254 0.049 0.358 0.056 0.174
EB.ABH 0.046 0.374 0.064 0.248 0.041 0.317 0.053 0.166
EB.QV 0.046 0.375 0.068 0.251 0.043 0.326 0.055 0.170

σ∗: Empirical microarray correlation
LSU.BH 0.022 0.243 0.035 0.198 0.023 0.228 0.032 0.159
LSU.O 0.043 0.375 0.043 0.237 0.047 0.366 0.046 0.193
LSU.ABH 0.039 0.318 0.044 0.225 0.031 0.283 0.038 0.175
LSU.TST 0.027 0.268 0.039 0.207 0.027 0.254 0.035 0.166
LSU.ST 0.070 0.396 0.070 0.275 0.048 0.348 0.054 0.197
EB.C 0.038 0.341 0.058 0.266 0.038 0.323 0.055 0.211
EB.O 0.048 0.397 0.063 0.277 0.050 0.379 0.060 0.222
EB.ABH 0.045 0.371 0.062 0.275 0.042 0.343 0.057 0.216
EB.QV 0.043 0.374 0.064 0.276 0.044 0.353 0.059 0.221

σ∗: Constant correlation
LSU.BH 0.021 0.267 0.031 0.182 0.027 0.241 0.029 0.175
LSU.O 0.046 0.378 0.038 0.216 0.052 0.344 0.037 0.204
LSU.ABH 0.035 0.332 0.045 0.201 0.038 0.297 0.040 0.190
LSU.TST 0.029 0.295 0.034 0.188 0.035 0.271 0.034 0.184
LSU.ST 0.062 0.348 0.073 0.225 0.057 0.316 0.072 0.202
EB.C 0.052 0.382 0.081 0.269 0.070 0.346 0.070 0.251
EB.O 0.078 0.428 0.086 0.281 0.087 0.384 0.076 0.261
EB.ABH 0.067 0.404 0.089 0.276 0.078 0.363 0.078 0.256
EB.QV 0.064 0.408 0.091 0.379 0.081 0.370 0.082 0.263
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Figure 1: Simulation study: Type I error control comparison. Plots of differences α − FDR(α) between
nominal and actual Type I error rates vs. nominal Type I error level α ∈ [0, 0.20], for FDR-controlling
procedures EB.C, EB.QV, LSU.BH, LSU.ABH, and LSU.ST, summarized in Table 2. Results correspond to
the following simulation parameters: sample size n = 250; number of null hypotheses M = 400; common
alternative shift parameter dn(m) = 2, m ∈ H1; proportion of true null hypotheses (h0/M = 0.50, 0.75)
and correlation structure (σ∗ = “No correlation”, “Microarray”, “Constant”) indicated in the panel titles.
Positive (negative) differences indicate (anti-)conservative behavior.
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Figure 2: Simulation study: Power comparison. Plots of differences in power vs. actual Type I error rate,
for FDR-controlling procedures EB.C, EB.QV, LSU.BH, LSU.ABH, and LSU.ST, summarized in Table 2,
using LSU.BH as baseline. Results correspond to the following simulation parameters: sample size n = 250;
number of null hypotheses M = 400; common alternative shift parameter dn(m) = 2, m ∈ H1; proportion of
true null hypotheses (h0/M = 0.50, 0.75) and correlation structure (σ∗ = “No correlation”, “Microarray”,
“Constant”) indicated in the panel titles. Positive (negative) differences indicate greater (lower) power than
the baseline LSU.BH procedure.

30

http://biostats.bepress.com/ucbbiostat/paper228



●

●

●

●

●●

●●

●

●

●●
●
●

●

●

●●●

●●

●

●

●

LS
U

.A
B

H

LS
U

.S
T

E
B

.C

E
B

.A
B

H

E
B

.Q
V

E
B

.O

0.0

0.2

0.4

0.6

0.8

1.0

h0 M=0.50, No correlation

A

●

●

●●

●

●

●

●
●
●●

●

●
●
●

●●
●● ●

●

●

●
●

●

●

●●●
●
●

LS
U

.A
B

H

LS
U

.S
T

E
B

.C

E
B

.A
B

H

E
B

.Q
V

E
B

.O

0.0

0.2

0.4

0.6

0.8

1.0

h0 M=0.50, Microarray

B

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●
●

●●

●●
●

●

●

●●

●

●

●

●

●●

LS
U

.A
B

H

LS
U

.S
T

E
B

.C

E
B

.A
B

H

E
B

.Q
V

E
B

.O

0.0

0.2

0.4

0.6

0.8

1.0

h0 M=0.50, Constant

C

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●●

●

● ●●●

LS
U

.A
B

H

LS
U

.S
T

E
B

.C

E
B

.A
B

H

E
B

.Q
V

E
B

.O

0.0

0.2

0.4

0.6

0.8

1.0

h0 M=0.75, No correlation

D
●

●

●●
●
●
●

●

●

●

●

●

●

●●●

●
●

●●●●●

●

●

●
● ●

●●●●●

●

●
●

LS
U

.A
B

H

LS
U

.S
T

E
B

.C

E
B

.A
B

H

E
B

.Q
V

E
B

.O

0.0

0.2

0.4

0.6

0.8

1.0

h0 M=0.75, Microarray

E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●

●●●

●
●

●

●●

●

●

●
●
●

LS
U

.A
B

H

LS
U

.S
T

E
B

.C

E
B

.A
B

H

E
B

.Q
V

E
B

.O

0.0

0.2

0.4

0.6

0.8

1.0

h0 M=0.75, Constant

F

Figure 3: Simulation study: Estimation of the proportion of true null hypotheses. Boxplots of estimates
h0n/M of the proportion of true null hypotheses h0/M (over A = 500 simulated datasets), from FDR-
controlling procedures LSU.ABH, LSU.ST, EB.C, EB.ABH, EB.QV, and EB.O, as summarized in Section 4.3.4.
Results correspond to the following simulation parameters: sample size n = 250; number of null hypotheses
M = 400; common alternative shift parameter dn(m) = 2, m ∈ H1; proportion of true null hypotheses
(h0/M = 0.50, 0.75) and correlation structure (σ∗ = “No correlation”, “Microarray”, “Constant”) indicated
in the panel titles. The horizontal line indicates the true, unknown proportion of true null hypotheses, h0/M .
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