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1. Introduction 

 Modern epidemiological studies focusing on the association between long-term exposure 

to fine particulate matter (PM2.5) and health rely on predictions of PM2.5, because long-term and 

representative PM2.5 measurements at each individual’s actual location are infeasible. Common 

prediction approaches include assigning average PM2.5 concentrations to an administrative unit 

such as county or city based on agency monitor(s) within that area, assigning measurements 

based on the agency monitor nearest that participant’s home, or applying weighted averages of 

monitors to participants’ locations with weights based on distances (Dockery et al., 1993; Lipsett 

et al., 2011; Miller et al., 2007). These approaches, however, do not represent well all the spatial 

variability in the underlying exposure surface; this in turn results in exposure measurement error 

in the health effect analysis. Recent advances in prediction models have led to better 

representation of variability in PM2.5 concentrations across cohort locations than relatively 

simple and commonly used approaches. For instance, land use regression models represent 

variability using geographic variables that affect long-term average PM2.5 concentrations 

(Eeftens et al., 2012; Hoek et al., 2008). More sophisticated spatio-temporal models, based on 

shorter-term average concentrations over two weeks or a month, characterize spatial and 

temporal variability using regression and smoothing techniques (Paciorek et al., 2009; Sampson 

et al., 2011; Szpiro et al., 2011; Yanosky et al., 2009). 

Unlike other criteria air pollutants, PM2.5 is not a single compound or chemical, but 

instead is a complex mixture of numerous components, including acids, organic chemicals, 

metals and soil or dust particles. Study of the health effects of long-term concentrations of PM2.5 

chemical components has been limited and few prediction models for these components have 

been developed. While most studies of PM2.5 components have investigated associations of 
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short-term concentrations (Bell et al., 2007; Ostro et al., 2007; Peng et al., 2007), a few cohort 

studies have focused on the effects of long-term PM2.5 component exposures. Ostro et al (2010) 

investigated long-term associations of eight PM2.5 components and mortality in the California 

Teachers Study based on the nearest-monitor prediction approach. Sun et al (2013) adopted area-

averaging, nearest-monitor, and inverse-distance-weighting methods to predict four PM2.5 

components to examine the associations with subclinical atherosclerosis outcomes in the Multi-

Ethnic Study of Atherosclerosis (MESA). Because some PM2.5 components such as EC and OC 

are affected largely by local sources such as traffic, it is likely that these simple prediction 

approaches provide poor predictions at residential locations, particularly when distant monitors 

were used. A recent study of eight trace elements from PM2.5 in twenty European cities for the 

European Study of Cohorts for Air Pollution Effects (ESCAPE) demonstrated good capacity to 

represent local-scale spatial variability based on land use regression (De Hoogh et al., 2013).  

The National Particle Component and Toxicity (NPACT) study at the University of 

Washington focused on PM2.5 components and investigated the association with cardiovascular 

outcomes in the MESA cohort (Vedal et al., 2013). This study developed two distinct exposure 

models to predict PM2.5 component concentrations at MESA participant homes. The spatio-

temporal model used 2-week average samples of PM2.5 component concentrations collected by a 

cohort-dedicated monitoring campaign. The national spatial model used annual average PM2.5 

component concentrations from the nation-wide agency monitoring networks sponsored by the 

U.S. Environmental Protection Agency (EPA) and other agencies. The spatio-temporal model 

was fit separately in each city, whereas the national spatial model was constructed as a single 

model over the continental U.S. The national spatial model has been described within the context 

of measurement error correction in health effect analysis (Bergen et al., 2013).   
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This paper describes the spatio-temporal modeling approach to predict long-term 

concentrations of PM2.5 components for NPACT and compares its characteristics to results from 

the national spatial model for the same cohort. We focused on four PM2.5 components: elemental 

and organic carbon (EC and OC), sulfur, and silicon. These are considered to be markers for 

combustion-related traffic, secondary process of inorganic aerosol, and airborne crustal matter, 

respectively. 

2. Material and methods 

2.1. Data 

2.1.1. NPACT/MESA Air monitoring data 

The NPACT study obtained PM2.5 chemical component measurements from the MESA 

and Air Pollution (MESA Air) study monitoring campaign (Cohen et al., 2009; Kaufman et al., 

2012). This campaign lasted for four years, concentrated on the geographic areas covered by the 

MESA subject residences, and consisted of both fixed and home outdoor monitoring sites in each 

of the six MESA city regions: Los Angeles, Chicago, Minneapolis-St. Paul, Baltimore, New 

York, and Winston-Salem (Figure 1). Three to seven fixed sites operated for the entire study 

period, whereas approximately 50 rotating home-outdoor sites were sampled in each of two 

seasons. While the NPACT/MESA Air monitoring sites are located where most MESA 

participants live, there were very few regulatory monitoring sites near these subjects (Figure 1). 

Although NPACT sampled for trace elements, including sulfur and silicon, between August 2005 

and August 2009, sampling for EC and OC was limited to March 2007 through August 2008. 

Figure 2 shows the sampling design of fixed and home-outdoor sites in Los Angeles; similar 

patterns hold for all MESA cities.  
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We summarize the sampling and analysis methods here; details can be found in Vedal et 

al. (2013). The NPACT/MESA Air monitoring campaign collected 2 week samples of PM2.5 

components using the Harvard Personal Environmental Monitors with a 2.5 um cut size when 

operated with pump flow rate of 1.8 L/min. Sulfur and silicon were quantified by the X-Ray 

Fluorescence analysis of Teflon filters. EC and OC were determined by the IMPROVE_A 

thermal optical reflectance method from quartz filters. All data used in this analysis passed strict 

data cleaning and quality assurance criteria. In addition, we excluded a few measurements 

flagged in the quality assurance review to have equipment problems and two unreasonably high 

silicon measurements possibly contaminated during filter handling. To fit the spatio-temporal 

model, we additionally excluded a limited number of outlying measurements because those 

measurements dramatically affected model fitting and evaluation in our preliminary analysis. 

These exceeded a 2.5 times inter-quartile range distance from temporally and spatially defined 

quartiles in each city (Vedal et al., 2013). For statistical modeling we added 1 and log-

transformed the 2-week average measurements. Silicon was modeled in nanograms per cubic 

meter whereas other components were in micrograms per cubic meter.  

2.1.2. Regulatory monitoring data 

There are two nation-wide regulatory monitoring programs for PM2.5 components: the 

U.S. EPA Chemical Speciation Network (CSN) and the Interagency Monitoring of Protected 

Visual Environments (IMPROVE). The objective of the CSN program is to monitor temporal 

and spatial distribution of PM2.5 components to identify and control potential sources (U.S. EPA, 

2004). CSN monitoring sites are located mostly in urban areas and have collected PM2.5 

components on an every 3
rd

 or 6
th

 day schedule since 1999. The IMPROVE program was 

established in 1987 to assess and regulate visibility; most monitoring sites, sampling every 3
rd
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day, are deployed in national parks and rural areas (Hand et al., 2011). The sampling and 

analysis protocols of these two networks were described elsewhere (U.S. EPA, 2004; Hand et al., 

2011). We initially planned to combine the CSN and IMPROVE data with the NPACT/MESA 

Air monitoring data to develop our spatio-temporal models. However, we found that there were 

important differences between the two networks in their sampling and analysis protocols. These 

led to inconsistencies in the data that we judged to be too severe to permit combining the data 

into one unified model (Kim et al., 2013). Instead, we used the NPACT/MESA Air monitoring 

data for the spatio-temporal model and the CSN and IMPROVE monitoring data for the national-

spatial model. For the national spatial model, data was downloaded from the EPA Air Quality 

System data base for both CSN and IMPROVE for 2009 and 2010. We computed annual 

averages and square-root transformed these to reduce skewness. 

2.1.3. Geocoding and geographic variables 

Residential addresses of 7014 MESA and MESA Air participants who consented to use 

of their addresses were geocoded using TeleAtlas 2000 according to standardized procedures. 

Geocoded locations of NPACT/MESA Air and agency monitoring sites were obtained from 

geocoding and hand-held GPS devices, and EPA sources, respectively. 

We created more than 800 candidate geographic variables at monitoring and cohort 

locations (Supplemental Table 1). These variables included population density from the U.S. 

census, normalized difference vegetative index (NDVI) and impervious surface measurement 

based on satellite imagery, land cover and elevation from the U.S. Geological Survey, emissions 

of primary pollutants from the National Emission Inventory, and road variables based on the 

TeleAtlas road network. We preprocessed these covariates, eliminating those that did not vary 

across locations, log transforming distance variables, and recoding variables by truncating to 
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avoid implausible extreme values. After this area-specific data processing, the number of 

candidate geographic variables in each area ranged between 52 and 116. 

2.2. Exposure prediction model 

2.2.1. Spatio-temporal model framework 

We developed separate models for 2-week average log concentration measurements in 

each region and for each component. Our spatio-temporal modeling approach was based on the 

MESA Air study framework, previously described for PM2.5 and NOx (Lindstrom et al., 2013; 

Sampson et al., 2011; Szpiro et al., 2010). The component models relied on much less 

monitoring data as they were based only on the NPACT/MESA Air monitoring campaign and 

not supplemented with additional data from the regulatory monitoring network. Thus we used a 

simplified version of the spatio-temporal model with a single temporal trend characterized by a 

single geographic covariate and no spatial correlation structure.  

The spatio-temporal model represents the log 2-week average component concentration 

(C�s, t�) in terms of of a long-term mean (β��s�), a temporal trend (β	�s�
�t�), and spatio-

temporal residuals (ε�s, t�), shown in the equation below.  

C�s, t� � β��s� 
 β	�s�
�t� 
 ε�s, t� 

β��s�~ ���� 
 �  ������������
��	 , Σ���, ���, ����� 

β	�s�~���	 
 �		�		���,  �	�� 

ε�s, t�~�0, Σ�� , � �, � ��! 

The long-term mean and temporal trend vary spatially with a trend coefficient (β	�s�) scaling the 

spatially-constant temporal basis function (
�t�). The temporal basis function was estimated by 

smoothing the first temporal component of a singular value decomposition (SVD) of the space-
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time monitoring data matrix. The long-term mean was characterized by a universal kriging 

model with a land use regression mean model and spatial correlation modeled with an 

exponential covariance function (Banerjee et al. 2004). The covariance function had parameters 

for the range (�), partial sill (��), and nugget (��) which represent the spatial correlation 

distance, spatial variability, and non-spatial variability, respectively. Geographic covariates (�) 

were selected from a subset identified by the least absolute shrinkage and selection operator 

(lasso) (Tibshirani 1996) followed by an exhaustive search. The spatially varying trend 

coefficient was modeled by the one geographic variable most associated with the trend 

coefficient; its variance model had no spatial structure (i.e. zero range and partial sill). The 

spatio-temporal residual field was assumed to be temporally independent with mean zero and 

spatially correlated with an exponential covariance model.  

2.2.2. Spatio-temporal model fitting and prediction procedure 

Estimation of the temporal basis function was restricted to the PM2.5 component data at 

fixed sites. To determine the set of geographic variables to be included in the long-term mean, 

we performed the variable selection using data from home outdoor sites for provisionally-

computed long-term averages after removing a temporal trend. The geographic variables were 

rescaled to have common mean and unit variance. We selected twelve candidate variables from 

the lasso and then chose the final set of up to five (for sulfur and silicon) or four (for EC and OC) 

based on 5-fold cross-validated R
2
 in an exhaustive search. Given the estimated temporal basis 

function, selected geographic variables and monitoring data, we estimated regression and 

covariance parameters. For the model evaluation, we performed 10-fold cross-validation for 2 

week average measurements across home-outdoor sites and computed summary statistics such as 

mean square error (MSE) and R
2
.  To focus on the spatial prediction ability of our spatio-
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temporal models, we computed temporally-adjusted R
2
 statistic adjusting for temporal variability 

in addition to the usual (unadjusted) R
2
. The temporally-adjusted R

2
 accounted for temporal 

variability using either an estimated trend based on fixed sites or spatial averages of fixed sites at 

each time (Vedal et al., 2013).  

We predicted log 2-week average concentrations at participant addresses conditional on 

the estimated spatio-temporal model parameters and geographic covariates. These were 

exponentiated and 1 was subtracted to obtain 2-week predictions on the native scale. In addition 

we computed the unit of silicon back to the original microgram per cubic meter units. We 

restricted the prediction area to participants living within 10 kilometers of any NPACT/MESA 

Air monitors to avoid extrapolation. In addition, we excluded a few extremely high or low 

predictions at addresses where covariate values for a particular geographic variable were far 

outside the range of covariate values across monitoring locations. Finally, we averaged the 2-

week average predicted concentrations for one year from May 2007 to April 2008 when all four 

component data are available. Our spatio-temporal models were implemented in the R package 

SpatioTemporal on the Comprehensive R Archive Network (CRAN) (Lindstrom et al., 

2013).   

2.2.2. National Spatial model 

We briefly summarize the national spatial modeling approach based on annual averages 

of PM2.5 component concentrations from the CSN and IMPROVE monitoring network; for more 

detail see Bergen et al. (2013). Instead of variable selection, this model adopted partial least 

squares (PLS) to handle the large amount of collinear geographic variables. The PLS method 

finds the linear combinations of geographic variables, called PLS scores, that are most correlated 

with the long-term concentrations of PM2.5 components (Abdi, 2003; Sampson et al., 2011; 
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Sampson et al., 2013). The first few PLS scores were used to characterize the mean structure in a 

universal kriging model. A 10-fold cross-validation procedure was implemented to determine the 

number of PLS scores. Two PLS scores were selected for all components except for EC with 

three. Given selected PLS scores, we estimated regression coefficients and covariance 

parameters. While the national spatial model was developed over the entire U.S. in NPACT, we 

evaluated it in the MESA areas by restricting the comparison between observations and cross-

validated predictions to CSN and IMPROVE monitoring sites within 200 kilometers of the 

centers of the six MESA cities. Finally, we predicted annual average concentrations for the PM2.5 

components at MESA participant addresses in the same prediction area (i.e. within 10 kilometers 

of any NPACT/MESA Air monitors) and back transformed these to the original microgram per 

cubic meter units. 

3. Results  

3.1. NPACT/MESA Air monitoring data 

Table 1 shows the summary statistics of 2 week concentrations for four PM2.5 

components in each of the six MESA regions from the NPACT/MESA Air monitoring network. 

Sulfur concentrations were high in the cities on the East Coast, while those of EC were high in 

highly-populated cities such as Los Angeles and New York. Silicon concentrations were high in 

Los Angeles as expected given the dry climate contributing to kicking up dust.  

3.2. Spatio-temporal model fitting 

3.2.1. Trend estimation  

Figure 3 shows the computed SVD and trend function for log-transformed PM2.5 

components in Los Angeles. The results for the other five cities are shown in Supplemental 

Figure 1. Sulfur generally showed a clear seasonal pattern in all six cities. In Los Angeles, 2-
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week average sulfur concentrations were higher in summer and lower concentrations in winter. 

There were reverse patterns in Baltimore, New York, and Winston-Salem on the East Coast. 

(Supplemental Figure 1). EC was higher in summer whereas OC was higher in winter in Los 

Angeles.  

3.2.2. Variable selection 

Table 2 and Supplemental Table 2 gives the classes of geographic variables included in 

the final selected models for each component and area from the potential variables described in 

Supplemental Table 1. For most pollutants and areas, the final models included traffic variables 

and urban and rural land use characteristics; inclusion of geographic coordinates, distances to 

sources, emission variables, vegetation, imperviousness, and elevation varied across PM2.5 

components and areas. Vegetation index was selected only in St. Paul, and Baltimore, and 

impervious surface measurement was chosen only in St. Paul. The variable selection R
2
s from 

our cross-validation approach using selected variables for the regression of “long-term average” 

PM2.5 component concentrations are also shown in Table 2. They were generally higher in all 

areas for EC and OC than for sulfur and silicon. Sulfur and silicon in St. Paul as well as New 

York and sulfur in Baltimore showed cross-validated variable selection R
2
 lower than 0.2, 

possibly due to our conservative approach computing R
2
 statistics, less spatial variability of 

sulfur and silicon, or absence of important geographic variables.  

3.2.3. Parameter estimation 

The parameter estimates for the regression coefficients and variance model parameters in 

Los Angeles and other five cities are shown in Figure 4 and Supplemental Figure 3, respectively. 

Los Angles and Chicago tended to show larger range and partial sill representing stronger spatial 
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correlation structure than other areas. In general, the estimated regression parameters for EC and 

OC were significantly different from zero, whereas those for silicon and sulfur were not. 

3.3. Features of spatio-temporal and national spatial models 

3.3.1. Model evaluation 

Table 3, Figure 5, and Supplemental Figure 4 show statistics and scatter plots for cross-

validated predictions of 2-week concentrations from the city-specific spatio-temporal model 

across MESA home-outdoor sites and cross-validated predictions of annual averages from the 

national spatial model across the CSN/IMPROVE sites in the MESA areas. Not surprisingly, in 

the spatio-temporal predictions many of the temporally-adjusted R
2
s, with adjustment based on 

either the estimated trend or spatial means of fixed sites, were much lower than the unadjusted 

R
2
s. Across all areas, the temporally-adjusted R

2
s, particularly when spatial averages were used, 

were generally higher for EC and OC—for which variation is primarily spatial rather than 

temporal—than for sulfur and silicon. Los Angeles and Baltimore gave higher temporally-

adjusted R
2
 than other cities. Temporally-adjusted R

2
s for sulfur, silicon, EC and OC across all 

six cities combined were 0.84, 0.38, 0.79, and 0.59, respectively. These MESA-wide statistics 

were generally higher than the city-specific temporally-adjusted R
2
s, because the contribution of 

between-city variability to this estimate is larger than that of within-city variability. R
2
s for 

sulfur, silicon, EC and OC in the national spatial model were 0.94, 0.45, 0.70, and 0.79, 

respectively.  

3.3.2. Predicted long-term PM2.5 component concentrations 

The city-specific summaries and spatial distributions of predicted long-term PM2.5 

component concentrations at MESA Air participant homes varied by component and city (Table 

4, Figure 6). Figure 7 and Supplemental Figure 5 display predicted long-term average 
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concentrations of sulfur, silicon, EC, and OC in each city. Predicted concentrations were 

generally higher from the spatio-temporal model than from the national spatial model. In 

addition, predictions generally varied more between cities than within each city (Figure 6). 

Whereas the degree of correlation between the two kinds of predictions differed by city, 

predictions from one model were positively correlated with those from the other across cities for 

all components with much lower correlation for OC than other components (correlation 

coefficient=0.91, 0.55, 0.82, and 0.19 for sulfur, silicon, EC, and OC, respectively). Correlations 

of PM2.5 component predictions from the two models across cities were higher than those within 

cities (Figure 6). 

4. Discussion 

 This study developed two exposure prediction modeling approaches to obtain long-term 

average residential concentrations of four PM2.5 chemical components at participant addresses, 

specifically for epidemiological study application. Spatio-temporal and national spatial models 

were developed based on different monitoring data and modeling approaches. We, however, 

found generally consistent model performance across the six MESA cities driven by the large 

between-city variability of PM2.5 components; predicted long-term concentrations of PM2.5 

components from the two models were fairly or highly correlated across cities. In contrast, the 

predictions are less highly correlated within each city. 

 We developed rich exposure prediction models in order to reduce measurement error in 

predicted individual-level concentrations in order to provide more valid and precise health effect 

estimates. To our knowledge, this study is the one of a few studies focusing on the development 

of exposure prediction approaches for PM2.5 components. Previous cohort studies assessed health 

effects of long-term PM2.5 component concentrations using relatively simple prediction 
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approaches in representing spatial distribution. Early cohort studies based on the Harvard Six 

City cohort and the American Cancer Society (ACS) cohort predicted sulfate, as a component of 

PM2.5, using an area-averaging approach (Dockery et al., 1993; Pope et al., 1995). Ostro et al 

(2010) used the nearest-monitor method for eight PM2.5 components in the California Teaches 

study cohort. These approaches, however, could have high exposure measurement error over 

space given spatially-limited regulatory monitoring networks which do not represent fine-scale 

spatial heterogeneity of PM2.5 components, particularly for those strongly affected by local 

sources. This measurement error could then affect inference in the health effect analysis. Jerrett 

et al. (2005) found that estimated relative risk of mortality was about three times higher in the 

ACS cohort in California when long-term PM2.5 concentrations were predicted using kriging in 

comparison to the area-averaging approach. We have shown by simulation that nearest-monitor 

predictions give more biased health effect estimates than kriging when the underlying pollution 

field has spatial structure (Kim et al., 2009). Sun et al. (2013) investigated the association of 

PM2.5 components and subclinical atherosclerotic outcomes using area-averaging, nearest-

monitor, and inverse-distance-weighting approaches based on the same NPACT/MESA Air 

monitoring data used in our spatio-temporal model. Supplemental Figure 6 showed that these 

predictions were highly correlated with predictions from the sptaio-temporal model across cities 

but present little or no within-city variability. The correlations with the predictions from the 

spatio-temporal model were higher than those from the national spatial model, most likely due to 

their reliance on the same monitoring data. Recently, De Hoogh et al. (2013) adopted land use 

regression on long-term concentrations of eight trace elements of PM2.5 in the ESCAPE study. 

This study deployed 20 monitoring sites in each of 20 European cities and collected three 2-week 

samples over one year period to represent within-city spatial variability. They additionally 
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located one reference site for continuous 2-week sampling for the year to represent a temporal 

trend in each city. Using long-term averages, estimated by adjusting for a temporal trend, they 

fitted the land use regression using covariates chosen by a supervised stepwise selection across 

20 monitoring sites in each city. Their approach is similar to our provisional approach for 

variable selection in the spatio-temporal modeling procedure. However, their city-specific cross-

validated R
2
s for sulfur and silicon were generally higher than our cross-validated R

2
s. This 

difference may be their approach to compute R
2
 statistic. Their R

2
 was computed based on the 

leave-one-out cross-validation which can overestimate model performance particularly given a 

small number of training sites (Wang et al., 2012).  

We chose highly conservative approaches in evaluating our two exposure prediction 

models to avoid overestimating model performance. One of the common evaluation approaches 

in land use regression studies is the leave-one-out cross-validation which fits a model for the data 

leaving out one site and predicts at the left-out site in sequence, and then compares predictions to 

observations (Hoek et al., 2008). However, this approach was overly optimistic for model 

performance when the number of sites was limited (Wang et al., 2012; Wang et al., 2013). Given 

about a hundred home-outdoor sites, our cross-validation was based on the 5 or 10 group cross-

validation. In addition, we computed MSE-based R
2
 by subtracting mean square prediction error 

relative to data variability from 1 as opposed to model-based R
2
 calculated by the squared 

correlation coefficient. The model-based R
2
 tended to overestimate prediction ability because 

observations are compared  to predictions based on the regression line instead of the identity line 

as in MSE-based R
2
 (Wang et al., 2012). Our evaluation approach using MSE-based R

2
 in the 5- 

or 10-fold cross-validation was likely to provide more reasonable but lower R
2
s than those 

reported in other studies. 
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Within-city predicted concentrations of PM2.5 components were generally higher from the 

spatio-temporal model than those from the national spatial model. Features contributing to this 

within-city difference between the two exposure prediction models include the data sources, 

modeling approaches, and evaluation methods. Whereas the spatio-temporal model was 

developed based on the NAPCT monitoring data, the national spatial model relied on the 

CSN/IMPROVE monitoring data. These two data sources had distinct sampling schedules, used 

different sampling equipment, and were mostly sampled at non-overlapping locations (Kim et al., 

2013). Higher predictions for sulfur, silicon, and EC in the spatio-temporal model compared to 

those in the national spatial model correspond to higher measurements of sulfur, silicon, and EC 

at NPACT/MESA Air monitoring sites relative to those at CSN/IMPROVE sites (Supplemental 

Figure 6). In addition, operationally the land use information was incorporated differently in the 

two models. The spatio-temporal model relied on variable selection techniques to choose a 

subset of geographic variables. In the national spatial model we reduced the dimension of the 

covariate data with PLS and included only a few of the resulting scores. We note that the spatio-

temporal model variable selection was based on detrended provisional “long-term averages”; 

these were quite uncertain and thus limited our confidence in applying the PLS approach. Lastly, 

we devised a temporally-adjusted R
2
 to evaluate spatial prediction ability for the spatio-temporal 

model. In the national spatial model our use of long-term averages removed all temporal 

variability so the traditional R
2
 only represents spatial performance. All these fundamental 

differences between the two prediction models make it difficult to directly compare their 

performance statistics and conclude that one model is preferable to the other. 

Despite different data sources and modeling characteristics, the two exposure models also 

showed consistent features across pollutants and similar ordering of predicted concentrations in 

Hosted by The Berkeley Electronic Press



16 

 

all cities. The two prediction models presented relatively strong mean structures for EC and OC 

and prominent spatial dependence structure for sulfur and silicon. The proportion of the 

variability represented by the long-term mean model was larger for EC and OC than for sulfur 

and silicon in the spatio-temporal model (Supplemental Table 2). Similarly, the regression part 

of the national spatial model explained most of the variability for EC and OC while the 

covariance structure characterized in the kriging part of the model was important only for sulfur 

and silicon (Bergen et al., 2013). Predicted concentrations from the spatio-temporal model were 

higher in some cities than others; similar patterns applied for predictions from the national spatial 

models for all components except for OC. 

This study includes some limitations and implications for future studies. In the NPACT 

study, while we originally intended to characterize within-city distribution of PM2.5 components 

based on the dedicated monitoring campaign for the target cohort combined with additional 

regulatory data, our preliminary exploratory analysis led us to limit our analysis to only the 

NPACT data given its incompatibility with CSN/IMPROVE data (Kim et al., 2013). The 

simplified spatio-temporal model and limited monitoring data did not allow us to represent all 

the spatial variation within each city and may affect the ensuing health effect analyses. In 

addition, we focused on the four PM2.5 components which are considered as least ambiguous 

markers for pollution sources of our interest. We plan to expand our modeling approaches to 

other components which are also treated as being strongly related to specific pollution sources. 

5. Conclusions 

We described two modeling approaches for predicting long-term concentrations of PM2.5 

components. Both performed reasonably well across cities. Predictions were generally consistent 

across the six study areas except for organic carbon; consistency was relatively weak within each 
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city. These predictions of PM2.5 components allow us to assess associations of long-term 

exposure to PM2.5 components and health.  

 

 

  

Hosted by The Berkeley Electronic Press



18 

 

References 

Abdi H., 2003. Partial Least Squares (PLS) regression. Encyclopedia of Social Sciences 

Research Methods (ed. M. Lewis{Beck, A. Bryman and T. Futing). 1-7 

 

Banerjee S., Carlin B.P., Gelfand A.E., 2004. Hierarchical Modeling and Analysis for Spatial 

Data. Boca Raton, FL: Chapman & Hall/CRC Press. 21-68. 

 

Bell M.L., Dominici F., Ebisu K., Zeger S.L., Samet J.M., 2007. Spatial and temporal variation 

in PM2.5 chemical composition in the United States for health effects studies. Environ Health 

Perspect. 115, 989-995. 

 

Bergen S., Sheppard L., Sampson P.D., Kim S.Y., Richards M., Vedal S., Kaufman J.D., Szpiro 

A.A., 2013. A national prediction model for components of PM2:5 and measurement error 

corrected health effect inference. [published online ahead of print June 11, 2013]. Environ Health 

Perspect (doi:10.1289/ehp.1206010). 

 

Bild D.E., Bluemke D.A., Burke G.L., Detrano R., Diez Roux A.V., Folsom A.R., Greenland P., 

Jacob D.R. Jr, Kronmal R., Liu K., Nelson J.C., O'Leary D., Saad M.F., Shea S., Szklo M., Tracy 

R.P., 2002. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 156, 

871-881. 

 

Cohen M.A., Adar S.D., Allen R.W., Avol E., Curl C.L., Gould T, Hardie D., Ho A., Kinney P., 

Larson T.V., Sampson P., Sheppard L., Stukovsky K.D., Swan S.S., Liu L.J., Kaufman J.D., 

2009. Approach to estimating participant pollutant exposures in the Multi-Ethnic Study of 

Atherosclerosis and Air Pollution (MESA Air). Environ Sci Technol 43, 4687-4693. 

 

de Hoogh K., Wang M., Adam M., Badaloni C., Beelen R., Birk M., Cesaroni G., Cirach M., 

Declercq C., D÷del÷ A., Dons E., de Nazelle A., Eeftens M., Eriksen K., Eriksson C., Fischer P., 

Gražulevičien÷ R., Gryparis A., Hoffmann B., Jerrett M., Katsouyanni K., Iakovides M., Lanki 

T., Lindley S., Madsen C., Mölter A., Mosler G., Nádor G., Nieuwenhuijsen M., Pershagen G., 

Peters A., Phuleria H., Probst-Hensch N., Raaschou-Nielsen O., Quass U., Ranzi A., Stephanou 

E., Sugiri D., Schwarze P., Tsai M.Y., Yli-Tuomi T., Varró M.J., Vienneau D., Weinmayr G., 

Brunekreef B., Hoek G., 2013. Development of land use regression models for particle 

composition in twenty study areas in Europe. Environ Sci Technol. 47, 5778-5786.  

 

Dockery D.W., Pope 3
rd

 C.A., Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris B.G.,Speizer 

F.E., 1993. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 

329, 1753-1759. 

 

Hand JL, Copeland SA, Day DE, Dillner AM, Indresand H, Malm WC, McDade CE, Moore CT, 

Pitchford  ML, Schichte BA, Watson JG. Spatial and Seasonal Patterns and Temporal Variability 

of Haze and its Constituents in the United States:  Report V. 2011. June 

(http://vista.cira.colostate.edu/improve/publications/Reports/2011/PDF/Cover_TOC.pdf). 

 

http://biostats.bepress.com/uwbiostat/paper398



19 

 

Hoek G., Beelen R., de Hoogh K., Vienneau D., Gulliver J., Fischer P., Briggs D., 2008. A 

review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos 

Environ. 42, 7561-7578.   

 

Jerrett M., Burnett R.T., Ma R., Pope 3
rd

 C.A., Krewski D., Newbold K.B., Thurston G., Shi Y., 

Finkelstein N., Calle E.E., Thun M.J., 2005. Spatial analysis of air pollution and mortality in Los 

Angeles. Epidemiology. 16, 727-36. 

 

Kaufman J.D., Adar S.D., Allen R.W., Barr R.G., Budoff M.J., Burke G.L., Casillas A.M., 

Cohen M.A., Curl C.L., Daviglus M.L., Diez Roux A.V., Jacobs D.R. Jr, Kronmal R.A., Larson 

T.V., Liu S.L., Lumley T., Navas-Acien A., O'Leary D.H., Rotter J.I., Sampson P.D., Sheppard 

L., Siscovick D.S., Stein J.H., Szpiro A.A., Tracy R.P., 2012. Prospective Study of Particulate 

Air Pollution Exposures, Subclinical Atherosclerosis, and Clinical Cardiovascular Disease: The 

Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Am J Epidemiol. 176, 

825-837. 

 

Kim S.Y., Sheppard L., Kim H., 2009. Health effects of long-term air pollution: influence of 

exposure prediction methods. Epidemiology. 20, 442-450. 

 

Kim S.Y., Sheppard L., Larson T., Vedal S., 2013. Issues related to combining multiple 

speciated PM2.5 data sources in spatio-temporal exposure models for epidemiology: The NPACT 

case study. UW Biostatistics Working Paper Series. XXX. 

 

Lindstrom J., Szpiro A.A., Sampson P.D., Bergen S., Oron A., 2013a. SpatioTemporal: An R 

package for spatio-temporal modelling of air-pollution. J stat softw (in press). (http://cran.r-

project.org/web/packages/SpatioTemporal/index.html). 

 

Lindstrom J., Szpiro A.A., Sampson P.D., Oron A.P., Richards M., Larson T.V., Sheppard L., 

2013b. A flexible spatio-temporal model for air pollution with spatial and spatio-temporal 

covariates. Environ Ecol Stat (in press). 

 

Lipsett M.J., Ostro B.D., Reynolds P., Goldberg D., Hertz A., Jerrett M., Smith D.F., Garcia C., 

Chang E.T., Bernstein L., 2011. Long-term exposure to air pollution and cardiorespiratory 

disease in the California teachers study cohort. Am J Respir Crit Care Med. 184, 828-835. 

 

Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, Kaufman JD. 

Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J 

Med. 2007. 356(5):447-58. 

 

Ostro B., Lipsett M., Reynolds P., Goldberg D., Hertz A., Garcia C., Henderson K.D., Bernstein 

L., 2010. Assessing Long-Term Exposure in the California Teachers Study. Environ Health 

Perspect. 118, 363-369. 

 

Ostro B., Burnett R.T., Shin H., Hughes E., Garcia C., Henderson K.D., Bernstein L., Lipsett M., 

2011. Assessing Long-Term Exposure in the California Teachers Study. Environ Health Perspect. 

119, A242–A243 Erratum. 

Hosted by The Berkeley Electronic Press



20 

 

 

Paciorek C.J., Yanosky J.D., Puett R.C., Laden F., Suh H.H., 2009. Practical large-scale spatio-

temporal modeling of particulate matter concentrations. Ann Appl Stat. 3, 370–397. 

 

Peng R.D., Bell M.L., Geyh A.S., McDermott A., Zeger S.L., Samet J.M., Dominici F., 2009. 

Emergency admissions of cardiovascular and respiratory diseases and the chemical composition 

of fine particle air pollution. Environ Health Perspect 117:957-963. 

 

Pope 3
rd

 C.A., Thun M.J., Namboodiri M.M., Dockery D.W., Evans J.S., Speizer F.E., Heath Jr 

C.W., 1995. Particulate air pollution as a predictor of mortality in a prospective study of U.S. 

adults. Am J Respir Crit Car Med 151, 669-674. 

 

Sampson P.D., Szpiro A.A., Sheppard L., Lindström J., Kaufman J.D., 2011. Pragmatic 

Estimation of a Spatio-Temporal Air Quality Model with Irregular Monitoring Data.  Atmos 

Environ. 45, 6593-6606. 

 

Sampson P.D., Richards M., Szpiro, A.A., Bergen S., Sheppard L., Larson T.V., Kaufman J.D., 

2013. A regionalized national universal kriging model using partial least squares regression for 

estimating annual PM2.5 concentrations in epidemiology. [published online ahead of print April 

25, 2013]. Atmos environ. (doi: 10.1016/j.atmosenv.2013.04.015).  

 

Sun M., Kaufman J.D., Kim S.Y., Larson T.V., Gould T.R., Polak J.F., Budoff M.J., Diez Roux 

A.V., Vedal S., 2013. Particulate matter components and subclinical atherosclerosis: common 

approaches to estimating exposure in a Multi-Ethnic Study of Atherosclerosis cross-sectional 

study. [published online ahead of print May 3, 2013]. Environ res. (doi: 10.1186/1476-069X-12-

39). 

 

Szpiro A.A., Sampson P.D., Sheppard L., Lumley T., Adar S.D., Kaufman J.D., 2010. Predicting 

intraurban variation in air pollution concentrations with complex spatio-temporal interactions.  

Environmetrics. 21, 606-631. 

 

Tibshirani R., 1996. Regression shrinkage and selection via the Lasso. J Royal Stat Soc Series B.  

58, 267-288. 

 

U.S. EPA. 2004. Air quality criteria for particulate matter (Report No. EPA 600/P-99/002aF-bF): 

Volume 1. U.S. Environmental Protection Agency. Washington, DC. 1-9, 2-93-2-94. 

 

Vedal S., Kim S-Y., Miller K.A., Fox J.R., Bergen S., Gould T., Kaufman J.D., Larson T.V., 

Sampson P.D., Sheppard E.A., Simpson C.D., Szpiro A.A., 2013. NPACT epidemiologic study 

of components of fine particulate matter and cardiovascular disease in the MESA and WHI-OS 

cohorts. Research Report 178. Health Effects Institute, Boston, MA (in press). 

 

Yanosky J.D., Paciorek C.J., Suh H.H., 2009. Predicting chronic fine and coarse particulate 

exposures using spatiotemporal models for the Northeastern and Midwestern United States. 

Environ Health Perspect. 117, 522-529. 

 

http://biostats.bepress.com/uwbiostat/paper398



21 

 

Wang M., Beelen R., Eeftens M., Meliefste K., Hoek G., Brunekreef B., 2012. Systematic 

evaluation of land use regression models for NO2. Environ Sci and Technol. 46, 4481-4489. 

 

Wang M, Beelen R, Basagana X, Becker T, Cesaroni G, de Hoogh K, Dedele A, Declercq C, 

Dimakopoulou K, Eeftens M, Forastiere F, Galassi C, Gražulevičien÷ R, Hoffmann B, Heinrich J, 

Iakovides M, Künzli N, Korek M, Lindley S, Mölter A, Mosler G, Madsen C, Nieuwenhuijsen M, 

Phuleria H, Pedeli X, Raaschou-Nielsen O, Ranzi A, Stephanou E, Sugiri D, Stempfelet M, Tsai 

MY, Lanki T, Udvardy O, Varró MJ, Wolf K, Weinmayr G, Yli-Tuomi T, Hoek G, Brunekreef 

B. 2013. Evaluation of land use regression models for NO2 and particulate matter in 20 

European study areas: the ESCAPE project. Environ Sci Technol. 47:4357-4364.

Hosted by The Berkeley Electronic Press



22 

 

Table 1. Summary statistics of 2 week concentrations of four PM2.5 components in the NPACT/MESA Air monitoring network 

City Type Sulfur Silicon EC OC 

  

N of 

sites 

N of 

samples 
Mean (SD) 

N of 

sites 

N of 

samples 
Mean (SD) 

N of 

sites 

N of 

samples 
Mean (SD) 

N of 

sites 

N of 

samples 
Mean (SD) 

Los Fixed 7 535 1.15 (0.59) 7 536 0.16 (0.08) 7 200 1.81 (0.79) 7 200 2.15 (1.06) 

Angeles Home 89 153 1.08 (0.62) 108 172 0.15 (0.08) 70 88 1.79 (0.87) 70 87 2.24 (1.03) 

Chicago Fixed 5 375 1.12 (0.44) 5 374 0.11 (0.04) 5 138 1.38 (0.39) 5 138 1.81 (0.63) 

 
Home 104 187 1.09 (0.36) 89 152 0.10 (0.06) 50 80 1.27 (0.32) 50 82 1.88 (0.62) 

St. Paul Fixed 3 257 0.73 (0.23) 3 256 0.11 (0.05) 3 93 0.87 (0.23) 3 95 1.71 (0.37) 

 
Home 104 187 0.70 (0.23) 104 187 0.11 (0.04) 54 89 0.79 (0.21) 54 90 1.70 (0.40) 

Baltimore Fixed 4 331 1.53 (0.62) 4 329 0.09 (0.04) 4 133 1.45 (0.52) 4 133 2.18 (0.71) 

 
Home 85 156 1.73 (0.67) 85 156 0.09 (0.05) 61 99 1.23 (0.35) 61 99 2.19 (0.89) 

New York Fixed 3 191 1.34 (0.56) 3 191 0.11 (0.05) 3 80 2.22 (0.93) 3 81 1.84 (0.74) 

 
Home 107 190 1.38 (0.57) 105 186 0.10 (0.05) 49 78 1.83 (0.77) 49 81 2.09 (0.71) 

Winston- Fixed 4 352 1.51 (0.75) 4 352 0.09 (0.05) 4 105 1.07 (0.24) 4 105 2.55 (0.69) 

Salem Home 92 177 1.71 (0.72) 92 177 0.11 (0.05) 47 84 1.05 (0.27) 48 86 2.75 (0.79) 
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Table 2. Provisional cross-validation statistics and selected variables from trend-adjusted “long-term average” concentrations at 

home-outdoor sites  

    

Cross-

validation 

statistics
 a
 

Geographic variables
 b

 

 

City Pollutant MSE R
2
 Traffic 

Land use 

(urban) 

Land use 

(rural) Position Source Emission Vegetation Imperviousness Elevation 

Residual 

oil
 c
 

LA Sulfur 0.030 0.21                 

Silicon 0.001 0.47     

EC 0.060 0.80         

  OC 0.456 0.18                 

Chicago Sulfur 0.025 0.35                     

Silicon 0.001 0.19       

EC 0.031 0.48       

  OC 0.123 0.47                     

St. Paul Sulfur 0.007 0.17                   

Silicon 0.001 0.10       

EC 0.014 0.39       

  OC 0.016 0.60               

Baltimore Sulfur 0.023 0.12                     

Silicon 0.000 0.59         

EC 0.030 0.58       

  OC 0.041 0.70                     

NY Sulfur 0.070 0.13                 

Silicon 0.002 0.04     

EC 0.356 0.55     

  OC 0.163 0.44               

Winston Sulfur 0.033 0.25                     

-Salem Silicon 0.000 0.21       

EC 0.018 0.43       
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  OC 0.128 0.19                     

a. Provisional cross-validation approach based on lasso variable selection followed by all subset universal kriging 

b. List of geographic variables for each category is shown in Supplemental Table 1 

c. Considered only for New York 
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Table 3. Cross-validation statistics of predicted concentrations of four PM2.5 components between spatio-temporal and national 

spatial models in six MESA Air areas 

City Pollutant Spatio-temporal model
 a
 National spatial model

 b
 

MSE R
2
 Temporally-adjusted R

2 c
 MSE R

2
 

        Estimated trend Average     

LA Sulfur 0.013 0.97 0.77 0.35 

Silicon 0.001 0.68 0.66 0.49 

EC 0.246 0.73 0.54 0.51 

  OC 0.354 0.67 0.49 0.37 

Chicago Sulfur 0.035 0.74 0.54 0.15 

Silicon 0.002 0.35 0.07 0.00 

EC 0.031 0.69 0.51 0.49 

OC 0.198 0.48 0.20 0.20 

Minneapolis-St. Paul Sulfur 0.003 0.94 0.78 0.59 

Silicon 0.001 0.65 0.39 0.19 

EC 0.019 0.57 0.33 0.32 

  OC 0.023 0.85 0.47 0.46 

Baltimore Sulfur 0.016 0.96 0.77 0.48 

Silicon 0.000 0.82 0.58 0.35 

EC 0.047 0.62 0.56 0.59 

OC 0.111 0.86 0.36 0.35 

NY# Sulfur 0.093 0.71 0.12 0.00 

Silicon 0.001 0.33 0.27 0.36 

EC 0.422 0.15 0.58 0.52 

  OC 0.229 0.46 0.63 0.57 

Winston-Salem Sulfur 0.056 0.89 0.41 0.09 

Silicon 0.001 0.77 0.14 0.04 

EC 0.038 0.48 0.19 0.18 

  OC 0.179 0.72 0.13 0.12 

Overall
 d

 Sulfur 0.035 0.92 0.84 0.82 0.003 0.94 

Silicon 0.001 0.61 0.38 0.28 0.002 0.45 
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EC 0.099 0.75 0.79 0.79 0.044 0.70 

  OC 0.176 0.75 0.59 0.55 0.078 0.79 

a. City-specific model using 2 week concentrations on log scale 

b. Nation-wide model using annual average concentrations on square root scale 

c. Adjusted temporal trend was defined by two approaches which are unsmoothed temporal trend estimated using measurements 

across NAPCT fixed sites and average of measurements across fixed sites at each time 

d. Evaluation of the national spatial model was restricted to EPA monitors within 200 kilometers from the centers of six MESA 

cities; city-specific evaluation was not carried out given limited numbers of EPA monitors in each city area 

  

http://biostats.bepress.com/uwbiostat/paper398



27 

 

Table 4. Area-specific summary statistics for the spatio-temporal and national spatial models of predicted long-term average 

concentrations of four PM2.5 components for 5,493 MESA Air participants residing within 10 kilometers of any MESA Air monitor 

based on addresses for 2000-2002  

      Spatio-temporal model National spatial model 

Pollutant City N Mean SD Mean SD 

Sulfur LA 1,073 1.13 0.04 0.53 0.02 

Chicago 999 1.24 0.06 0.75 0.03 

Minneapolis-St. Paul 898 0.81 0.01 0.53 0.01 

Baltimore 775 1.67 0.06 1.00 0.03 

NY 856 1.46 0.13 0.78 0.02 

Winston-Salem 892 1.69 0.08 0.94 0.02 

Silicon LA 1,073 0.14 0.02 0.14 0.00 

Chicago 999 0.11 0.01 0.06 0.00 

Minneapolis-St. Paul 898 0.10 0.01 0.08 0.00 

Baltimore 775 0.09 0.01 0.08 0.00 

NY 856 0.12 0.01 0.07 0.00 

  Winston-Salem 892 0.10 0.01 0.11 0.00 

EC LA 1,073 1.98 0.34 0.83 0.14 

Chicago 999 1.40 0.20 0.74 0.13 

Minneapolis-St. Paul 898 0.85 0.08 0.58 0.07 

Baltimore 775 1.35 0.21 0.68 0.15 

NY 856 2.38 0.44 1.13 0.13 

Winston-Salem 892 1.10 0.08 0.57 0.07 

OC LA 1,073 2.33 0.29 2.43 0.20 

Chicago 999 1.92 0.28 1.71 0.23 

Minneapolis-St. Paul 898 1.73 0.13 2.09 0.19 

Baltimore 775 2.19 0.38 2.12 0.24 

NY 856 2.18 0.39 1.64 0.20 

  Winston-Salem 892 2.63 0.16 1.95 0.29 
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Figure Captions 

 

Figure 1. Administrative and MESA Air/ NPACT monitoring sites for PM2.5 components located within 200 km from city centers 

in 6 city areas 

Figure 2. Temporal and spatial sampling design for silicon and EC for administrative and NPACT/MESA Air monitors in Los 

Angeles 

Figure 3. Estimated smooth temporal trend for four log-transformed PM2.5 components in Los Angeles 

Figure 4. Estimated parameters for the selected geographical variables (scaled) and covariance structure in the spatio-temporal 

model for the four log-transformed PM2.5 components in Los Angeles 

Figure 5. Component-specific scatter plots of observations and cross-validated predictions from the spatio-temporal model for 2-

week average concentrations (top) and for 2-week average concentrations after accounting for temporal variability (bottom) across 

home-outdoor sites in Los Angeles 

Figure 6. Component-specific scatter plots and box plots for spatio-temporal and national spatial model predictions of long-term 

average concentrations across six MESA city areas 

Figure 7. Predicted long-term average concentrations from the spatio-temporal and national spatial models of four PM2.5 

components at participant locations in Los Angeles (different colors represent quintiles of the range of concentrations)  
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Figure 1. Administrative and MESA Air/ NPACT monitoring sites for PM2.5 components located within 200 km from city centers 

in 6 city areas 
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Figure 2. Temporal and spatial sampling design for silicon and EC for administrative and NPACT/MESA Air monitors in Los 

Angeles 
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Figure 3. Estimated smooth temporal trend for four log-transformed PM2.5 components in Los Angeles 
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Figure 4. Estimated parameters for the selected geographical variables (scaled) and covariance structure in the spatio-temporal 

model for the four log-transformed PM2.5 components in Los Angeles. Descriptions for the names of the geographical variables are 

shown in Supplemental Table 2.   
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Figure 5. Component-specific scatter plots of observations and cross-validated predictions from the spatio-temporal model for 2-

week average concentrations (top) and for 2-week average concentrations after accounting for temporal variability (bottom) across 

home-outdoor sites in Los Angeles 

 

  

Hosted by The Berkeley Electronic Press



34 

 

 
Figure 6. Component-specific scatter plots and box plots for spatio-temporal and national spatial model predictions of long-term 

average concentrations across six MESA city areas 
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Figure 7. Predicted long-term average concentrations from the spatio-temporal and national spatial models of four PM2.5 

components at participant locations in Los Angeles (different colors represent quintiles of the range of concentrations)  
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SUPPLEMENTAL MATERIALS 

 

 

Supplemental Table 1. List of geographic variables 

Category Measure Variable description 

Traffic Distance to the nearest road Any road, A1, intersection 

Sum within buffers of 0.05-15 km  A1, A2+A3, truck route, intersections 

Population Sum within buffers of 0.5-3 km  Population in block groups  

Land use (Urban) Percent within buffers of 0.05-15 km  Urban or Built-Up land 

  (residential, commercial, industrial, transportation, 

urban) 

Developed low, medium, and high density 

Developed open space 

Land use (Rural) Percent within buffers of 0.05-15 km  Agricultural land (cropland, groves, feeding) 

Rangeland (herbaceous, shrub) 

Forest land (deciduous, evergreen, mixed) 

Water (streams, lakes, reservoirs, bays) 

Wetland 

Barren land (beaches, dry salt flats, sand, mines, rock) 

Tundra 

Perennial snow or Ice 

Position Coordinates Longitude, latitude 

Source Distance to the nearest source Coastline, Coastline (rough) 

Commercial area 

Railroad 

Railyard 

Airport 

Major airport 

Large port 

City hall 
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Emission Sum within buffers of 3-30 km  PM2.5  

PM10  

  CO 

SO2 

NOx 

Vegetation Quantiles within buffers of 0.5-10 km Normalized Difference Vegetation Index (NDVI) 

Imperviousness Percent within buffers of 0.05-5 km Impervious surface value 

Elevation Elevation above sea levels Elevation value 

  

Counts of points above or below  

  a threshold within buffers of 1-5 km   

Residual oil Distance to the nearest boiler Residual oil grade 4 or 6 

  Sum within buffers of 0.1-3 km Total residual oil active heating capacity 
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Supplemental Table 2. List of selected geographical variables for four PM2.5 components 

Category Variable name Variable description 

Traffic ll.a1.s<radius> Sum of CFCC (Census Feature Class Code) A1 roads within a <radius> meter buffer in meters 

 
ll.a23.s<radius> Sum of CFCC A2 and A3 roads within a <radius> meter buffer in meters 

 
tl.s<radius> Sum of truck rout lengths within a <radius> meter buffer in meters 

 
interchange12.s<radius> Sum of intersections of A1 and A2 roads within a <radius> meter buffer 

 
interchange3.s<radius> Sum of intersections of A3 and any roads within a <radius> meter buffer 

 
intersect.s<radius> Sum of intersections of any roads within a <radius> meter buffer 

 
log10.m.to.a1 Log-transformed meters to nearest CFCC A1 road 

 
log10.m.to.interchange3 Log-transformed meters to nearest intersection of A3 roads 

 
log10.m.to.truck Log-transformed meters to nearest truck route 

 
log2.interchange12.s<radius> Log-transformed sum of intersections of A1 and A2 roads within a <radius> meter buffer 

 
log2.interchange3.s<radius> Log-transformed sum of intersections of A3 and any roads within a <radius> meter buffer 

 
log2.intersect.s<radius> Log-transformed sum of intersections of any roads within a <radius> meter buffer 

Land use lu.bays.p<radius> Percentage of 1980 land use type of bays and estuaries within a <radius> meter buffer 

 
lu.comm.p<radius> Percentage of 1980 land use type of commercial and service areas within a <radius> meter buffer 

 
lu.crop.p<radius> Percentage of 1980 land use type of cropland and pasture within a <radius> meter buffer 

 
lu.forest.p<radius> Percentage of 1980 land use type of deciduous forest land within a <radius> meter buffer 

 
lu.green.p<radius> Percentage of 1980 land use type of evergreen forest land within a <radius> meter buffer 

 
lu.grove.p<radius> Percentage of 1980 land use type of orchards, groves, vineyards, nurseries within a <radius> meter buffer 

 
lu.industrial.p<radius> Percentage of 1980 land use type of industrial areas within a <radius> meter buffer 

 
lu.oth.urban.p<radius> Percentage of 1980 land use type of other urban or built-up land within a <radius> meter buffer 

 
lu.transition.p<radius> Percentage of 1980 land use type of transitional areas within a <radius> meter buffer 

 
lu.transport.p<radius> Percentage of 1980 land use type of transportation, communications and utilities within a <radius> meter buffer 

 
lc.anyforest.p<radius> Percentage of 1980 land use type of woody wetland or forest area within a <radius> meter buffer 

 
lc.openbasic.p<radius> 

Percentage of 1980 land use type of any forest, water, crop, shrub, pasture, herb, grass, and barren areas within a 

<radius> meter buffer 

 
lc.openplus.p<radius> 

Percentage of 1980 land use type of any forest, water, crop, shrub, pasture, herb, grass, barren, and developed 

open spance within a <radius> meter buffer 

 
lc.water.p<radius> Percentage of 1980 land use type of open water within a <radius> meter buffer 
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rlu.grass.p<radius> Percentage of 2006 land use type of grasslands and herbaceous vegatation within a <radius> meter buffer 

 
rlu.water.p<radius> Percentage of 2006 land use type of open water within a <radius> meter buffer 

 
rlu.dev.hi.p<radius> Percentage of 2006 land use type of developed high intensity within a <radius> meter buffer 

 
rlu.dev.med.p<radius> Percentage of 2006 land use type of developed medium intensity within a <radius> meter buffer 

 
rlu.dev.open.p<radius> Percentage of 2006 land use type of developed open space within a <radius> meter buffer 

 
rlc.dev.medhi.p<radius> Percentage of 2006 land use type of developed high and medium intensity within a <radius> meter buffer 

 
rlc.openbasic.p<radius> 

Percentage of 2006 land use type of any forest, water, crop, shrub, pasture, herb, grass, and barren areas within a 

<radius> meter buffer 

 
rlc.anyforest.p<radius> Percentage of 2006 land use type of woody wetland or forest area within a <radius> meter buffer 

Position long GPS longitude coordinate in decimal degrees 

Source m.to.rr Meters to the nearest railroad 

 
log10.m.to.comm Log-transformed meters to nearest commercial zone 

 
log10.m.to.l.airp Log-transformed meters to nearest large airport 

 
log10.m.to.rr Log-transformed meters to nearest railroad 

Emission em.CO.s30000 
Sum of CO emissions in tons per year from tall stacks within 30 kilometer, minus the emissions from tall stacks 

within 3 kilometers 

Vegetation ndvi.q25.a<radius> Average 2006 NDVI value at the first quantile within a <radius> meter buffer 

 
ndvi.q75.a<radius> Average 2006 NDVI value at the third quantile within a <radius> meter buffer 

Imperviousness imp.a<radius> Average impervious surface value (percent imperviousness) within a <radius> meter buffer 

Elevation elev.1k.above Count of points (out of 24) more than 20 meter uphill of the location within 1 kilometer buffer 

 
elev.1k.below Count of points (out of 24) more than 20 meter downhill of the location within 1 kilometer buffer 

 
elev.1k.rabove 

Squre root-transformed count of points (out of 24) more than 20 meter uphill of the location within 1 kilometer 

buffer 

 
elev.1k.rbelow 

Squre root-transformed count of points (out of 24) more than 20 meter downhill of the location within 1 

kilometer buffer 

 
elev.1k.below Count of points (out of 24) more than 50 meter downhill of the location within 5 kilometer buffer 

Residual oil oil.edf4.s<radius> Sum of potential mega BTU (British Thermal Unit) from oil number 4 per hour within a <radius> meter buffer 

 
log10.m.to.6oil Log-transformed meters to nearest Number 6 oil boiler 
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Supplemental Table 3. Proportion of total variance of the predictions captured by the long-term mean, temporal trend, and spatio-

temporal residuals across MESA Air monitoring home-outdoor sites 

City Pollutant Long-term mean
 a
 Temporal trend

 a
 Spatio-temporal residual

 a
 

    Regression
 b
 Regression+kriging+Error     

LA Sulfur 0.00 0.01 0.82 0.17 

Silicon 0.10 0.20 0.32 0.48 

EC 0.04 0.35 0.50 0.15 

  OC 0.04 0.28 0.36 0.36 

Chicago Sulfur 0.02 0.04 0.52 0.43 

Silicon 0.07 0.08 0.76 0.15 

EC 0.26 0.31 0.54 0.16 

  OC 0.19 0.19 0.60 0.22 

St. Paul Sulfur 0.00 0.00 0.56 0.44 

Silicon 0.02 0.02 0.60 0.38 

EC 0.39 0.41 0.41 0.18 

  OC 0.12 0.13 0.71 0.15 

Baltimore Sulfur 0.01 0.01 0.79 0.20 

Silicon 0.11 0.11 0.69 0.19 

EC 0.48 0.48 0.35 0.17 

  OC 0.10 0.10 0.72 0.18 

NY Sulfur 0.09 0.09 0.54 0.37 

Silicon 0.11 0.11 0.39 0.51 

EC 0.66 0.64 0.36 0.00 

  OC 0.46 0.46 0.43 0.11 

Winston-Salem Sulfur 0.01 0.01 0.84 0.15 

Silicon 0.02 0.02 0.74 0.24 

EC 0.17 0.21 0.57 0.22 

  OC 0.06 0.06 0.43 0.51 

a. Sum of ratios of long-term mean including regression, kriging, and error, temporal trend, and spatio-temporal residual is equal to 

1; Total variance used as denominator for calculating ratios was sum of variances of long-term mean, temporal trend, and spatio-

temporal residual instead of variance of predictions given correlation structure between three parts 
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b. Ratio of regression part for long-term mean is separately presented to show its contribution to total variability 
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Supplemental Table 4. Cross-validation statistics of predicted concentrations of PM2.5 between the NPACT sptaio-temporal model 

and the MESA Air likelihood model in six MESA Air areas 

City Spatio-temporal model 

NPACT MESA Air
 b
 

  MSE R
2
 Temporally-adjusted R

2 a
 MSE R

2
 Temporally-adjusted R

2 a
 

Los Angeles 4.51 0.84 0.37 8.58 0.77 0.41 

Chicago 3.57 0.67 0.13 2.04 0.80 0.23 

St. Paul 0.77 0.94 0.34 3.17 0.78 0.23 

Baltimore 1.15 0.93 0.60 1.54 0.84 0.46 

New York 15.32 0.36 0.00 15.76 0.35 0.39 

Winston-Salem 2.18 0.89 0.22 1.00 0.85 0.29 

a. Temporal variability was adjusted by spatial averages of fixed site measurements in NPACT and fixed sites as well as EPA sites 

in MESA Air 

b. Keller J, Kim SY, Sheppard L, Sampson PD, Szpiro AA, Vedal S, Kaufman JD (2013). A unified spatiotemporal modeling 

approach for prediction of multiple air pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (in preparation). 
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Supplemental Figure 1. Estimated temporal trend for four log-transformed PM2.5 components in the five cities 
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Supplemental Figure 2. Estimated parameters for the selected geographical variables (scaled) and covariance structure in the spatio-

temporal model for the four log-transformed PM2.5 components in the five cities 
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Supplemental Figure 3. Scatter plots of observations and cross-validated predictions from the spatio-temporal model for 2-week 

concentrations (left) and for 2-week concentrations accounting for temporal variability (right) for each component across home-

outdoor sites in the five cities 
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Supplemental Figure 4. Predicted long-term concentrations of four PM2.5 components from the spatio-temporal and the national 

spatial models at participant locations in five cities (different colors represent quintiles of the range of concentrations)  

 

http://biostats.bepress.com/uwbiostat/paper398



61 

 

Hosted by The Berkeley Electronic Press



62 

 

Supplemental Figure 5. Scatter plots and correlation coefficients of predicted long-term concentrations of four PM2.5 components 

between the five different prediction models (city-wide, nearest monitor, IDW (inverse distance weighting), NS (national spatial 

model), and ST (spatio-temporal model)) for MESA participant addresses within 10 kilometers of any NPACT/MESA Air monitors 

in six MESA Air cities (color code: black = Winston-Salem, red = NY, green = Baltimore, blue = St. Paul, light blue = Chicago, 

and pink = LA). 
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Supplemental Figure 6. Box plots of measurements for four PM2.5 components by NPACT/MESA Air and CSN/IMPROVE 

monitoring campaign by six MESA city areas defined by 200 kilometers within the centers of six MESA cities (2 week samples for 

NPACT/MESA Air and daily samples on every 3
rd

 and 6 day schedule for EPA) 
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