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FDR Controlling Procedure for Multi-stage
Analyses

Catherine Tuglus and Mark J. van der Laan

Abstract

Multiple testing has become an integral component in genomic analyses involving
microarray experiments where large number of hypotheses are tested simultane-
ously. However before applying more computationally intensive methods, it is
often desirable to complete an initial truncation of the variable set using a simpler
and faster supervised method such as univariate regression. Once such a trun-
cation is completed, multiple testing methods applied to any subsequent analysis
no longer control the appropriate Type I error rates. Here we propose a modified
marginal Benjamini \& Hochberg step-up FDR controlling procedure for multi-
stage analyses (FDR-MSA), which correctly controls Type I error in terms of the
entire variable set when only a subset of the initial set of variables is tested. The
method is presented with respect to a variable importance application. As the
initial subset size increases, we observe convergence to the standard Benjamini
\& Hochberg step-up FDR controlling multiple testing procedure. We demon-
strate the power and Type I error control through simulation and application to the
Golub Leukemia data from 1999.



1 Introduction
Statistical analysis in genomics research often requires testing a large number of hypotheses simul-
taneously. This is especially true in microarray experiments where there are thousands of variables
and often less than 100 observations. A common approach to determine which genes are significant
is to apply univariate regression to all variables and test the significance of the coefficient β using a
standard t-statistic with the null hypothesis H0 : β = 0.

When there are many tests, multiple testing procedures are used to determine the rejection region
of the null distribution corresponding to a specific Type I error rate, and, given this constraint,
maximize power. One of the most common Type I error rates is the False Discovery Rate (FDR),
which controls the expected proportion of Type I errors (False Positives) to total rejections.

When applying a more computationally intensive method, the researcher may want to initially
reduce the dimensions of the data using a simple method, restricting it to a conservative set of po-
tentially relevant genes. Often researchers will apply unsupervised methods, for instance restricting
the set to genes that have a variance higher than a specified limit. When using these methods the
potential of discounting relevant genes can be quite large since the truncation level is decided inde-
pendent of the outcome. A supervised method which chooses genes based on their relationship to
the outcome such as univariate regression or randomForest (Breiman et al., 1984; Breiman, 2001)
would be preferred. However, once the initial variable set is restricted with respect to the outcome,
multiple testing procedures on the results of secondary analyses are biased and no longer control the
Type I and Type II error appropriately.

This is relevant for the newly developed targeted Maximum Likelihood based variable importance
methodology (Bembom et al., 2007; Tuglus and van der Laan, 2008). Targeted Maximum Likeli-
hood Estimation (tMLE) requires the estimation of an initial density p(Y |W ), with the observed data
O = (Y,W ), where Y=outcome, Wj =variable of interest (i.e. a single gene), W ∗ = W− j =additional
covariates (i.e. other genes). In practice this estimation procedure should be data-adaptive and must
be completed for each variable of interest, Wj, since the appropriate covariate set, W ∗, may vary
from gene to gene. Data-adaptive methods can be very computationally intensive, and reduction of
the initial gene set from 50,000 to 1,000 is very attractive.

In this paper we propose a modified marginal Benjamini & Hochberg step-up FDR controlling
procedure for multi-stage analyses (FDR-MSA) which appropriately controls the FDR when applied
to a reduced and data adaptively selected set of null hypotheses. We also show that if the restricted set
contains all relevant variables, this procedure has equivalent control of Type I error and equivalent
power to applying the standard Benjamini & Hochberg step-up FDR controlling procedure (BH-
FDR) to the entire variable set.

This method is presented with respect to tMLE variable importance methodology, which we
introduce in section two. In section three we summarize the FDR-MSA method, specifically as
applied to tMLE variable importance methodology. In section four we provide simulation results
demonstrating the Type I and Type II error control. In section five we present an application of the
procedure to the commonly used Golub et al (1999) Leukemia data(Golub et al., 1999) , and we
conclude with a discussion.

2 Variable importance application
As an example of the general application of FDR-MSA, we apply the proposed method in the context
of variable importance analysis. The variable importance methodology is described thoroughly in
van der Laan and Rubin (2006) and van der Laan (2005), previously applied in Bembom et al. (2007)
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and Tuglus and van der Laan (2008), and is outlined here.
We observe n i.i.d. Oi = (Wi,Yi)∼ P making no assumptions on the data generating distribution

P. Here W is a M dimensional vector of variables.
The objective is to identify variables in W, which are significantly associated with outcome Y,

therefore in this case the parameter of interest will be a measure of the effect of variable Wj on Y.
For this analysis, the marginal variable importance of a particular Wj on outcome Y controlling

for covariates W ∗ = W− j can be defined generally as

µ(w j) = EW ∗ [m(w j,W− j|β( j))]

for a user supplied model m

m(Wj,W− j|β) = EP[Y |Wj,W− j]−EP[Y |Wj = 0,W− j]

and satisfying m(0,W− j | β( j)) = 0 for all β( j) and W− j.
Given an estimator βn( j) of β( j), an estimate of this parameter of interest at a particular Wj = w j

is defined as

µn(w j) =
1
n

n

∑
i=1

[m(w j,Wi,− j|βn( j))]

This working model based approach allows A to be continuous and include effect modifiers (i.e.
m(Wj,W1|β( j)) = β0Wj + β1WjW1). We note however that we define the parameter β( j) and thus
µ(w j) non-parametrically.

In a typical application we define m(Wj,W− j|β) as m(Wj,W− j|β) = Wjβ( j), so that the marginal
importance of each Wj is represented by single coefficient value βn( j).

The benefit of this measure of importance is that under randomization assumptions, the impor-
tance level can be interpreted as a causal effect or, if the working model (i.e. a semi-parametric
regression model) is misspecified, then it can be interpreted as a projection of the causal effect on a
working model.

We estimate the parameter β( j) with tMLE variable importance methodology for each Wj using
the following algorithm.

1. Estimate initial density Q0
n(Wj,W− j) = E[Y |Wj,W− j] = m(Wj,W− j|β0

n( j))+g(W− j) using any
software allowing specification of m(Wj,W− j|β0

n( j)) = Wjβ
0
n( j). We recommend polymars

(Kooperberg et al., 1997; O’Connor), lars (Efron et al., 2004), or DSA (Sinisi and van der
Laan, March 2004).

2. Estimate nuisance parameter E[Wj|W− j] (a.k.a. ”treatment mechanism”) using any data-
adaptive software package

3. Create clever covariate

r(Wj,W− j) =
d

dβ( j)
m(Wj,W− j|β( j))−E

[
d

dβ( j)
m(Wj,W− j|β( j))|W− j

]
which for this case can be simplified to r(Wj,W− j) = Wj−E[Wj|W− j]

4. Project Y onto r(Wj,W− j) with o f f set = Q0
n(Wj,W− j), define the resulting coefficient as ε

5. update initial estimate β0
n = β0

n +ε and overall density Q1
n(Wj,W− j)= Q0

n(Wj,W− j)+εr(Wj,W− j)
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6. Obtain standard error and inference for βn( j) using the influence curve as defined in Yu and
van der Laan (2003), which corresponds to the double robust estimating function. This is
possible because the tMLE solution also corresponds to the solution of the double robust
estimating function (van der Laan, 2005; van der Laan and Rubin, 2006). Given scale factor
c = E

[
d

dβ( j)D(O|β0( j),Q1
0)
]
, the empirical influence curve for a given Wj in W.

IC j(O) = c−1D(O|β0( j),Q1
0)

where,
D(p0)(O)≡ r(Wj,W− j)(Y −m(Wj,W− j|β0( j))−Q0(0,W− j))

The covariance of β0( j) is asymptotically equivalent to the covariance of IC j(O).

Σn( j) =
1
n ∑ ˆIC j(O) ˆIC j(O)

T

where √
n(βn( j)−β0( j))∼ N(0,Σn( j))

Covariance can also be estimated by bootstrap estimates of β( j), but this would requiring
extra computational time. If E(Wj |W− j) is estimated consistently, then the variance estimates
based on the influence curve are consistent or asymptotically conservative.

3 Modified Marginal Benjamini & Hochberg Step-up FDR Con-
trolling Procedure for Multi-stage Analyses

Given a multivariate parameter Ψ(P) = (ψ(m) : m = 1, ...M), we can define the null hypotheses
and alternative hypotheses in terms of the parameter null value ψ0 which typically equals 0. For
the two-sided hypothesis test, the null hypothesis is H0(m) = I(ψ(m) = ψ0(m)) and the alternative
hypothesis is H1(m) = I(ψ(m) 6= ψ0(m)).

Whether or not we reject the null hypothesis is determined by the value of the test statistic Tn =
(Tn(m) : m = 1, ...,M). The parameter of interest is tested using a standard t-statistic defined as

Tn(m) =
√

(n)
ψn(m)−ψ0(m)

σn(m)

where ψn(m) is an asymptotically linear estimator of ψ(m) with specified influence curve ICm(P)(O),
and σ2

n(m) is an estimate of the variance σ2(m) = E[ICm(P)(O)2] of the influence curve.
Specifically for variable importance measures, testing H0 : βn( j) = 0, p-values can be determined

using test statistic

Tn( j) =
√

nβn( j)√
Σn( j, j)

∼n→∞ N(0,1)

where Σn is the covariance matrix of the vector influence curve IC = (ICm : m = 1 . . . ,M).
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3.1 FDR-MSA Method
According to the standard Marginal Benjamini & Hochberg Step-up FDR controlling procedure
(Benjamini and Hochberg, 1995) we define

FDR = E
[

V
R

]
= E

(
V
R
|R > 0

)
P(R > 0)

where V = number of false positives and R = number of total rejections of the null.
For a set of variables W = {Wm,m = 1, ...M} Given a set of M test statistics Tn = (Tn(m) : m =

1, ...,M) and their associated p-values pn = (pn(m) : m = 1, ...,M), define the ordered set of p-values
as pn(1) ≤ pn(2)...≤ pn(M). According to Benjamini & Hochberg (Benjamini and Hochberg, 1995),
to control FDR at level α find k̂ such that

k̂ = max
{

k : p(k) ≤
k
M

α

}
and reject pn(1) ≤ ...≤ pn(k̂). We define the set of rejected null hypotheses as R .
This multiple testing has the following monotonicity property in the p-values which we will

exploit in our proposed two stage FDR procedure: If we replace pk by a qk for all k and pk ≤ qk,
then the set of rejections of FDR applied to qk is included in the set of rejections of FDR applied
to the original pk. That is, the validity of our two stage proposal is simply based on applying this
monotonicity property to qk equal to pk for a supervised/data adaptively selected subset of the null
hypotheses and setting qk = 1 for all other null hypotheses.

For example, the supervised subset of the null hypotheses can be selected to be all variables for
which their univariate regression p-value is smaller than 0.1. In the special case that our supervised
subset does include the FDR selected set R when applied to the p-values pk, then the two stage FDR
procedure applied to qk is equivalent with FDR applied to pk.

Thus, in this case the two stage FDR is equivalent to applying BH FDR to all variables. To
conclude, loss of Power will only occur if the initial restriction excludes variables which would have
been rejected by the BH-FDR procedure when applied to the original pk. As a consequence, the
initial restriction should be generous to avoid loss of power.

We call this procedure the Modified Marginal Benjamini & Hochberg Step-up FDR controlling
procedure for multi-stage analyses or simply FDR-MSA. This procedure is outlined below.

1. Given set of M variables, select a subset of U variables based on an initial supervised analysis.

2. Complete the wished test statistics for the null hypotheses of interest for these U variables
only, and calculate their raw p-values.

3. Assign the p-value 1 to all M-U not selected variables.

Thus, with regard to construction of the ordered list of p-values as needed for BH-FDR, to the
end of the list of these U p-values add K=(M-U) 1’s

4. Apply standard Marginal Benjamini & Hochberg Step-up FDR controlling procedure (Ben-
jamini and Hochberg, 1995)
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4 Simulations
We compare the performance of FDR-MSA under different levels of initial data screening. In this
case the initial screen is determined by ranked p-values from univariate linear regression results.
The different levels of screening correspond to different (increased) p-value cut-off values. The
comparison is completed in terms of Type I error and Power.

4.1 Simulated Data
Covariate matrix W consists of 100 independent variables simulated from a multivariate normal
distribution with variance 1 and mean vector created by randomly sampling mean values from
{0.1,0.2, ...,9.9,10.0,10.1, ......,50}.

Outcome Y is simulated from a main effect linear model using ten variables each with coefficient
4. These ten variables are designated as ”true effects.” A normal error with mean zero and variance
σY = 10 is added as noise. We use σY = 10 to simulate a realistic noise scenario and provide enough
variation to motivate false positive findings.

4.2 Analysis
Univariate linear regressions are applied to all 100 independent variables. Of these 100 variables we
define subsets according to their ranked raw p-values from the univariate tests. We compare five dif-
ferent levels of screening corresponding to p-value cut-off values of ks = {0.05,0.1,0.2,0.3, and 1},
where a subset is defined as all variables with raw univariate p-value less than or equal to a specific
cut-off. A p-value cut-off of 1 corresponds to no initial screening of the data at which point FDR-
MSA is equivalent to standard BH-FDR.

For each subset, we apply tMLE variable importance methodology and obtain measures (β) and
associated inference under a null hypothesis H0 : β = 0. Initial density estimate for E[Y |A,W ] and
E[A|W ] are estimated using lasso regression (Tibshirani, 1996), applied by the lars() R package
(Efron and Hastie). FDR-MSA is applied to each set of variable importance p-values.

We compare the performance of FDR-MSA under different levels of screening in terms of Type
I error and Power. Type I error (or 1-Specificity) is defined as the probability of rejecting the null
hypothesis (β = 0) when the null hypothesis is true and power (or Sensitivity) is defined as the
probability of rejecting the null hypothesis (β = 0) when the alternative hypothesis (β 6= 0) is true.

Results are compared using plots representing levels of Power and Type I error with respect to
p-value rank and p-value cut-off. We select the top k ranked p-values or all variables with p-value
less than the specified cut-off (α) and assess the Power and Type I error among the variables in that
group. Results are shown using the following four plots.

1. Sensitivity (Power) versus p-value rank (k)

2. Type I error (1-Specificity) versus p-value rank (k)

3. Sensitivity (Power) versus p-value cut-off (α)

4. Type I error (1-Specificity) versus p-value cut-off (α)

5

Hosted by The Berkeley Electronic Press



4.3 Results
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Figure 1: (a) Sensitivity (Power) and (b) Type I error (1-Specificity) versus p-value rank (k)
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Figure 2: (a) Sensitivity (Power) and (b) Type I error (1-Specificity) versus p-value cut-off α

Overall, as the size of the initial subset of variables increases (ks increases), the performance of FDR-
MSA in terms of both power and type I error converge to standard BH-FDR (under no truncation).

From the slight loss of power in Figure 1a and 2a it is evident that initially truncating the set of
variables according to ks = 0.05 was too harsh and did not allow all truly significant variables into
the subset. As ks is increased we see power converging to the power of BH-FDR applied to the full
data (under no truncation).

In terms of ranked p-value, at ks values of 0.1 and above the control of Type I error is equivalent
to BH-FDR under no truncation. (Figure 1b). When Type I error is compared with respect to p-value
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cut-off (Figure 2b) when controlling at a level of α = 0.05 or below, the methods are equivalent for
ks values as high as 0.2. Above α = 0.05, the FDR-MSA method slowly converges to the Type I
error of BH-FDR on the entire data as the raw p-value cut-off is increased, becoming equivalent at
higher α values.

5 Application - Leukemia
To illustrate its application in practice, the FDR-MSA method is applied to the Golub et al (1999)
Leukemia data in conjunction with targeted variable importance (Tuglus and van der Laan, 2008).
Targeted variable importance is applied to the full data and subsets of the data defined by an initial
univariate raw p-value cut-off. The resulting p-values from each case will be adjusted with FDR-
MSA. The resulting ranked lists will be compared.

5.1 Data
Variable importance methods (Bembom et al., 2007; Tuglus and van der Laan, 2008) are used to
identify genes which distinguish patients with acute lymphoblastic leukemia (ALL) from patients
with acute myeloid leukemia (AML). For the study presented in Golub et al (1999), the gene ex-
pression levels were measured using Affymetric oligonucleotide arrays with 6,817 human genes for
n=38 patients (27 ALL, 11 AML). The gene expression set was pre-processed using unsupervised
methods and reduced to 3,051 genes according to methods described in Dudoit et al. (2002). This
dataset was obtained from the R package multtest, dataset golub (Pollard et al., 2005).

5.2 Analysis
Univariate logistic regressions are applied to all 3,051 variables. Of these variables we defined
subsets according to their raw p-values from the univariate regressions. We restrict the data to all
variables with raw p-values less than 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, and 1. We obtain tMLE variable
importance measures and associated p-values for all subsets. The initial density estimate for E[A|W ]
is estimated using polymars regression, applied by the polspline() R package (O’Connor). To es-
timate Q(A,W ) = E[Y |A,W ], we use lasso regression using the lars R package(Efron and Hastie).
There are more powerful methods to data-adaptively select Q(A.W ), such as DSA(Sinisi and van der
Laan, March 2004), and super Learner (van der Laan et al., 2007). Using a less powerful method
does cost us consistency and efficiency with respect to our variable importance estimate. However
lars provides a quick implementation of lasso regression making it convenient for this particular
demonstration. Future work on the variable importance method will use more data-adaptive esti-
mates for Q(A,W ) estimates.

We apply FDR-MSA to the resulting sets of variable importance p-values. Results are compared
plotting the rank of the p-value versus its value.
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5.3 Results
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Figure 3: (a) FDR adjusted p-value versus p-value rank for FDR-MSA for raw p-value cut-offs ks =
{0.01,0.025,0.05,0.1,0.2,0.3,and1}

As we weaken the restriction on the initial cut and become more generous, we find that the results
for FDR-MSA converge to the results when BH-FDR is applied to all the data.

The apparent loss in power from truncating the data is due to the initial screening process dis-
counting important and significant variables. Ideally screening the data would result in an initial
subset of variables that contain all true variables. The fact that univariate regression does not ac-
complish this suggests that more sophisticated screens are necessary.
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6 Discussion
The FDR-MSA multiple testing procedure applied to a restricted subset of variables has equivalent
power and type I error control to FDR applied to all variables when all BH-FDR-significant variables
are present in the restricted set. Thus it conservatively controls FDR while only requiring calculation
of the test statistics for the restricted and data adaptively selected set of null hypotheses among the
complete set of null hypotheses.

Both in simulation and in practice we see that restricting solely based on raw p-values from
univariate regression may not provide the desired subset of variables for subsequent analysis. We
recommend to be thoroughly generous, to apply multiple supervised learning methods and take
the union of the selected variables as the restricted set. For instance applying randomForest to
the full dataset and taking all variables with non-zero importance or univariate regression p-values
less than a particular cut-off (0.1 for instance). Alternatively, one can apply the tMLE-variable
importance analysis with a simple and less computationally intensive initial regression estimator as
a first stage analysis, selecting the restricted set based on a p-value cut-off. Approaches like this one
will be investigated in more detail in order to improve the power of the FDR-MSA method while
still maintaining the reduction in computation time.

Finally, we remark that the two stage method for multiple testing applies to any multiple testing
procedure based on marginal p values which has the monotonicity property in the p-values. In
particular, one could carry out a MSA modified method for controlling the generalized family-wise
error (FWER-MSA) based on the appropriate multiple testing procedure controlling this type I error.
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