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1 Introduction

Finite mixture models include a set of models that describe a heterogeneous population as a mix-
ture of some homogenous but potentially unknown components. These models provide a flexible
approach to modeling unobserved constructs and to explaining population heterogeneity, therefore
are gaining popularity in many disciplines. For example, in diagnostic medicine, the evaluation of
a diagnostic test can be difficult when the true disease status, also called the gold standard, is un-
known due to time or cost constraints, ethics issues or the lack of necessary biotechnology. In such
situation, latent class models (finite mixture models with discrete manifest variables), have been
adopted to study the relation between the test results and the unobserved disease statue [1, 2, 3].
Recent years, the advance in biomarker discovery promoted another family of finite mixture mod-
els, latent profile models (finite mixture models with continuous manifest variables), in biomarker
evaluation without a gold standard. Numerous applications can also be found in psychometrics,
social sciences, economics and other fields whose respective research problems involve entities that
are hard to measure directly.

The popularity of finite mixture models is partially due to their flexible structure, which can be
easily modified to meet the specific need of a research question. This flexibility makes finite mixture
models a powerful tool, but it also renders them vulnerable to problems associated with identifia-
bility. However, this fundamental problem of model identifiability is often ignored in practice while
researchers tailoring complicated model structures. Loosely speaking, a non-identifiable model can
have multiple parameter values that all correspond to the same likelihood, which means that one
cannot identify the true parameter values among these choices based only on the observed data.
Although identifiability is not the same as consistency, estimates from a model lacking identifia-
bility will not be consistent. Thus, establishing identifiability is a crucial issue for establishing the
validity of the study when using a finite mixture approach, and for the interpretation of its results.

1.1 “Label Switching” and Local Maxima

Theoretically, finite mixture models are not strictly identifiable, as they suffer from a “label switch-
ing” problem–that is, the distribution remains identical if the labels of the mixture components
are switched. In a sense, finite mixture models only help researchers to “group” together subjects
that are similar; they cannot further “label” the groups. For this reason, applications in diagnostic
testing often assume that higher test results correspond to more severe conditions [4]. Practically
speaking, this “label switching” problem of the finite mixture models is not an issue of great im-
portance, because it is usually easy to correctly associate each mixture component with its label.
For example, when a finite mixture approach is used in diagnostic medicine to model the diagnostic
test results from subjects with or without a certain medical condition, it is usually apparent in the
results which group is the diseased group and which is the healthy one.

In addition to the “label switching” problem, another difficulty in proving the identifiability of the
finite mixture model is that the likelihood functions of such models usually have multiple local
maxima. In other words, one cannot show that the likelihood is a bijection–a common approach to
establish model identification.
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1.2 Previous Results

Due to the difficulties caused by “label switching” and multiple local maxima, research on the
identifiability issue of finite mixture models has mainly focused on local identifiability [5, 6, 7].
It is important to recognize that the commonly used criterion that the degrees of freedom in the
data must meet or exceed the number of parameters in the model is not enough to guarantee model
identifiability [6, 8]. McHugh [5] proposed sufficient conditions for local identifiability of models with
dichotomous observed variables. Goodman [6] extended these conditions to polytomous variables,
and other work has focused on finding sufficient conditions to guarantee that the Jacobian matrix of
the mixture distribution has full column rank [9, 10]. However, conditions for ensuring identifiability
for more general models, such as models that allow for covariate effects or continuous test results
have not been established.

Moreover, although local identifiability is necessary for the implementation of the model and for
establishing the validity of the asymptotic approximation, it only addresses the problem at an
infinitely small neighborhood in the entire parameter space. No conclusion can be made about the
same model with a different set of parameters. The identifiability of the model for one researcher
cannot be carried on to another researcher who wants to repeat the experiment. Local identifiability
looks at model identification at a given point of parameters. In a sense, it is more specific to a
given problem in which the true parameters are fixed (even though they are unknown) than to an
unrestricted model itself. Additionally, since the true parameters are unknown, current methods
evaluate local identifiability using the estimated parameter values. This means that identifiability
cannot be assessed until after data collection has occurred. However, in many cases the ability to
establish the identifiability before collecting the data is necessary or desirable, as the study may
only be meaningful when the model is identifiable.

In the special application of finite mixture models to diagnostic tests, more work on the iden-
tifiability issue has been accomplished. For the L-component mixture of independent binomial
distributions, B(K, pl), it has been shown that K ≥ 2L − 1 is both necessary and sufficient for
model identification [11, 12]. Based on this result, with an additional assumption of identically
distributed ordinal or continuous tests, several researchers [13, 14] dichotomized the test results
and concluded that K ≥ 2L − 1 is sufficient for the identification of such models. Hall and his
colleagues [15, 16] studied the nonparametric identifiability of models of K tests with conditional
independence assumptions within each of the M subpopulations, and provided sufficient conditions
for model identification of K ≥ (1 + o(1))6L logL. Jones et al. [17] discussed identifiability issue
for multiple binary but possibly conditional dependent tests. However, conditions for more general
models have not yet been established.

1.3 Outlines

In this paper, we provide conditions for both local identifiability and global identifiability of a finite
mixture model. We consider general structures of finite mixture models, which allow for 1) ordinal
or nominal latent groups to accommodate disease severity and subtypes; 2) continuous, discrete
or mix-typed manifest variables which can combine information from continuous biomarkers and
discrete test readings; 3) inclusion of covariates in both the structure part (model about the latent
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groups) and the measurement part (model about the manifest variables within a latent group) of
the model; 4) general link functions when including covariate effects. The paper is presented as
follows: Section 2 provides a general description of a finite mixture model that we considered here.
Section 3 and 4 establish conditions for local and global identifiability of the model, respectively.
For a clear presentation, the results are first provided for models without covariates and then for
models with covariates. Section 5 concludes the paper with a discussion.

2 Description of a Finite Mixture model

A finite mixture model is characterized by its component distributions, its number of components
and its mixing proportion. Consider a model with L components with label d = 0, . . . , L−1 (such as
disease severity), and K manifest variables ~T = (T1, . . . , TK) (such as diagnostic tests). Assuming
conditional independence among manifest variables Tk within a given component, we can write the
model as:

P (~T ) =
L−1∑

d=0

P (~T ,D) =
L−1∑

d=0

[
P (D = d)

K∏

k=1

P (Tk|D = d)
]
,

where P (.) is the marginal distribution function of manifest variable ~T , P (D = d) is the mixture
proportion of the dth subpopulation, and P (Tk|D = d) is the conditional probability of Tk in
the dth subpopulation, either as a conditional density function fTk|D(.) for continuous Tk, or as a
probability mass function for categorical Tk. For example, when all of the manifest variables are
categorical and take on the values {1, . . . , Jk}, k = 1, . . . ,K, the model is a latent class model as
follows,

P (T1 = t1, . . . , TK = tK) =

L−1∑

d=0

{
P (D = d)

K∏

k=1

Jk∏

j=1

[
P (Tk = j|D = d)

]I[tk=j]}
, (1)

where I[tk = j] is an indicator, which equals 1 if tk = j and 0 otherwise.

Model (1) is a finite mixture model without covariates. When covariates are involved, the extended
model can be expressed as

P (~T | ~X, ~Z) =
L−1∑

d=0

P (~T ,D| ~X, ~Z) =
L−1∑

d=0

[
P (D = d|~Z)

K∏

k=1

P (Tk|D = d, ~X)
]
,

where ~Z is the set of covariates associated with mixture membership and ~Z is the set of covariates
associated with manifest variables within each group. The two sets of covariates may be mutually
exclusive or overlapping, and they can include continuous and categorical variables.

Similarly as before, P (Tk|D = d, ~X) can be the conditional density function or probability mass
function. In the latter case, the model is,

P (T1 = t1, . . . , TK = tK | ~X, ~Z) =
L−1∑

d=0

{
P (D = d|~Z)

K∏

k=1

Jk∏

j=1

[
P (Tk = j|D = d, ~X)

]I[tk=j]}
. (2)
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3 Local Identifiability

Local identifiability is important for the implementation of the model and the validity of its asymp-
totic approximation. Although, as mentioned earlier, it only address the identifiability of the model
at a given point and thus may not be adequate in some situations; we nevertheless discuss local
identifiability here.

We argue here that for local identifiability, it is sufficient to only consider models with discrete
manifest variables, as is the case in model (1) and model (2). This is because local identifiability
essentially considers the mapping between fixed parameter values in the parameter space and their
induced data sets in the data space. When some or all of the manifest variables are continuous,
their distributions can be modeled empirically on the observed data points, which are discrete. In
other words, the same techniques used to establish the local identifiability of a latent class model
can also be used to establish the nonparametric local identifiability of a finite mixture model with
some or all of its manifest variables being continuous. The parametric assumptions about the
conditional distribution of a manifest variable P (Tk|D = d) or P (Tk = j|D = d, ~X), if any, can be
viewed as additional constraints in the estimation procedure.

3.1 Definition

By definition, a function F is locally identifiable at parameter θ0 ∈ Θ if there exists some neigh-
borhood Uθ0 of θ, such that

F (θ) 6= F (θ0) ∀ θ ∈ Uθ0 \ {θ0}.
This suggests that F is a one-to-one map, or locally invertable in Uθ0 .

As argued before, without loss of generality, we consider a situation in which all of the manifest
variables are categorical. Let ~th = (th1, . . . , thK) be the hth possible in lexicographic order among
(
∏K

k=1 Jk) − 1 distinct response patterns of the manifest variables, excluding a reference pattern.

We stacked the probability P (~T = ~th) into a vector p of length (
∏K

k=1 Jk) − 1. A given model
specifies a function F , which determines how p is calculated from parameters θ,

p = F (θ).

The model is locally identifiable at θ0 if F is invertible in a neighborhood of θ0. When the number
of parameters is less than (

∏K
k=1 Jk) − 1, F is potentially invertible, and local invertibility at θ0

can be evaluated by examining the Jacobian matrix of F at θ0, J(θ0) =
∂F

∂θ

∣
∣
∣
θ=θ0

. By the weak

inversion theorem, if J(θ0) has full column rank, F is locally invertible at θ0, and thus the model
was locally identifiable at θ0.

3.2 Models without Covariates

In this section we consider local identifiability for models without covariates, using model (1). The
basic idea is to find sufficient conditions that guarantee the local invertibility of the Jacobian matrix
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of the model.

Conditions for Local Identifiability
Let πd = P (D = d), gkjd = P (Tk = j|D = d), Ψd be a vector of length (

∏K
k=1 Jk) − 1,

d = 0, . . . , L− 1, with the hth element

ψdh = P (~T = ~th|D = d) =

K∏

k=1

gkthkd.

Further, let ηd = Ψd − Ψ0, d = 1, . . . , L − 1, and Γkjd be a vector of length (
∏K

k=1 Jk) − 1,
d = 0, . . . , L− 1, k = 1, . . .K and j = 1, . . . , Jk − 1, with the hth element

γkjdh = πdψhd

[I(thk = j)

gkjd
−
I(thk = Jk)(gkjd −

∑Jk−1
j=1 gkjd)

gkJkd

]
,

where I(thk = j) is an indicator function that equals 1 if thk = j and 0 if otherwise. Then, we have
the following theorem:

Theorem 1:
The finite mixture model (1) is locally identifiable at parameter θ = {πd, gkjd | d = 0, . . . , L−1; k =
1, . . .K; j = 1, . . . , Jk} if the following conditions hold.
(i) (

∏K
k=1 Jk)− 1 ≥ L×

∑K
k=1(Jk − 1) + L− 1;

(ii) P (~T = ~th) =
∑L−1

d=0 πdψdh > 0 ∀h, and πd > 0 ∀d;
(iii) vectors {ηd|d = 1, . . . , L − 1}, {Γkjd|d = 0, . . . , L − 1; k = 1, . . .K; j = 1, . . . , Jk} are linearly
independent.

Proof:
Condition (i) requires that the degrees of freedom in the data are greater than the number of pa-
rameters. Moreover, (

∏K
k=1 Jk)− 1 is the number of rows of the Jacobian matrix of model (1), and

L×∑K
k=1(Jk − 1) +L− 1 is the number of columns of the Jacobian matrix. When condition (i) is

satisfied, the Jacobian matrix can potentially have full column rank. Condition (ii) is included to
ensure that the probability of observing every response pattern is positive. It is the third condition
in Theorem 1 of McHugh (1956) [5] that pertains to the local identifiability of latent class models
with binary manifest variables. Here, we only need to prove that Condition (iii) is equivalent to
requiring that the Jacobian matrix of model (1) has full column rank.

Based on model (1), the function between parameter θ and all possible response patterns of the
manifest variables ~th (excluding a reference pattern) can be expressed as

F (~th; θ) = Pθ(~T = ~th) =

L−1∑

d=0

πd

K∏

k=1

gkthkd, h = 1, . . . , H,

where H = (
∏K

k=1 Jk) − 1. Since the component probabilities sum up to 1, π0 = 1 − ∑L−1
d=1 πd.

Therefore

F (~th; θ) =

L−1∑

d=1

πd

K∏

k=1

gkthkd + (1−
L−1∑

d=1

πd)

K∏

k=1

gkthk0, h = 1, . . . , H.
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Taking the derivative of F with respect to free component probability parameters πd, d = 1, . . . , L−
1, we have that

∂F (~th; θ)

∂πd
=

K∏

k=1

gkthkd −
K∏

k=1

gkthk0 = ψdh − ψ0h.

Therefore, the first L− 1 columns of the Jacobian matrix of model (1) are,

∂F

∂πd
= Ψd −Ψ0 = ηd, d = 1, . . . , L− 1.

Meanwhile, since
∑Jk

j=1 gkjd = 1, the function F can be rewritten as follows,

F (~th; θ) =

L−1∑

d=0

πd

K∏

k=1

gkthkd

=

L−1∑

d=0

πd

K∏

k=1

[

I(thk 6= Jk)gkthkd + I(thk = Jk)
(
1−

Jk−1
∑

j=1

gkjd
)]

, h = 1, . . . , H.

Taking the derivative of F with respect to the free parameter gkjd, d = 0, . . . , L − 1, k = 1, . . .K
and j = 1, . . . , Jk − 1, we have

∂F (~th; θ)

∂gkjd
= πdψhd

[I(thk = j)

gkjd
−
I(thk = Jk)(1−

∑Jk−1
j=1 gkjd + gkjd − 1)

gkJkd

]

= πdψhd

[I(thk = j)

gkjd
−
I(thk = Jk)(gkjd −

∑Jk−1
j=1 gkjd)

gkJkd

]
.

Thus, the last L×
∑K

k=1(Jk − 1) columns of the Jacobian matrix of model (1) are,

∂F

∂gkjd
= Γkjd, d = 0, . . . , L− 1, k = 1, . . .K, j = 1, . . . , Jk − 1.

Therefore, the Jacobian matrix of model (1) is a (
∏K

k=1 Jk)−1 by L×∑K
k=1(Jk−1)+L−1 matrix

J(θ) with columns
(
η1, . . . , ηL−1,Γ111, . . . ,ΓKJK−1L−1

)
. As a result, condition (iii) is equivalent to

requiring that the Jacobian matrix of model (1) has full column rank, which in turn guarantees that
the finite mixture model (1) is locally identifiable at parameter θ = {πd, gkjd | d = 0, . . . , L− 1; k =
1, . . .K; j = 1, . . . , Jk}. �

More on Condition (iii)
Conditions (i) and (ii) in Theorem 1 are relatively straight forward to examine, condition (iii)
requires more attention. Some efforts have been made to provide equivalent but simplified condi-
tions to condition (iii) with additional model specifications, such as constraining all of the manifest
variables to be binary.

It is worth noting that having Ψ0, . . . ,ΨD being linearly independent is not sufficient for the Ja-
cobian matrix of model (1) to have full rank, in contrary to some previous believes. For example,
consider the situation where all but one of the manifest variables are totally non-informative about
the latent subgroup membership.
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Without loss of generality, we assumed that the last manifest variable is the only informative one.
Let gKd be the vector of probability mass of this last manifest variable in subgroup d,

gKd =
(
P (TK = 1|D = d), . . . , P (TK = JK |D = d)

)T
=

(
gK1d, . . . , gKJKd

)T
, d = 0, . . . , L− 1.

Suppose that JK ≥ L and vectors gK0, . . . ,gK(L−1) are linearly independent. Additionally, suppose
that all other manifest variables are uniformly distributed among the subgroups, and are thus non-
informative about subgroup membership:

P (Tk = j|d = 0) = . . . = P (Tk = j|d = D), ∀ k = 1, . . . ,K − 1; j = 1, . . . , Jk,

or equivalently, gkj0 = . . . = gkj(L−1) ≡ ḡkj 6= 0, ∀ k = 1, . . . ,K − 1; j = 1, . . . , Jk.

Then the first JK elements of Ψd is








P (~T = (1, 1, . . . , 1) | D = d)

P (~T = (1, 1, . . . , 2) | D = d)
...

P (~T = (1, 1, . . . , JK) | D = d)








=








(
∏K−1

k=1 ḡk1)gK1d

(
∏K−1

k=1 ḡk1)gK2d
...

(
∏K−1

k=1 ḡk1)gKJKd








= (

K−1∏

k=1

ḡk1)gKd.

Because
∏K−1

k=1 ḡk1 6= 0 and gK0, . . . ,gK(L−1) are linearly independent, we have that

vectors (

K−1∏

k=1

ḡk1)gK0 , . . . , (

K−1∏

k=1

ḡk1)gK(L−1) are linearly independent. (3)

With more elements appended below each vector in 3, the extension groups Ψ0, . . . ,Ψ(L−1) are
linearly independent.

Consequently, if having Ψ0, . . . ,Ψ(L−1) being linearly independent is sufficient for the Jacobian
matrix of model (1) to have full rank, the above example suggests that having only one “good”
manifest variable with several non-informative manifest variables is sufficient to achieve local i-
dentifiability. This is certainly not the case. Otherwise, in diagnostic testing settings with binary
disease groups, for example, this would mean that one informative binary test with two random
guesses is sufficient for model identifiability. However, the only informative test needs to provide
estimates for disease prevalence as well as for its own sensitivity and specificity. There are three
parameters but only two degrees of freedom for the results of the first binary test. Therefore, the
model is not identifiable.

In fact, let π be the disease prevalence and Sek and Spk be the sensitivity and specificity of the
kth binary test, respectively. The Jacobian for model (1) with a binary disease group and 3 binary
tests is a 7 by 7 matrix with determinant:

|J | = π3(π − 1)3(Se1 + Sp1 − 1)2(Se2 + Sp2 − 1)2(Se3 + Sp3 − 1)2. (4)

When a test is non-informative, we have that

Se = P (T + |D+) = P (T + |D−) = 1− Sp.

Consequently, it is easy to see that when one or more of the tests are non-informative, Jacobian 4
is singular. However, by the same construction described above, we still have that Ψ0 and Ψ1 are

7
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linearly independent as long as one test is informative.

An Algebraic Geometry Point of View
It is interesting to revisit this problem from an algebraic geometry point of view. Model (1) can be
expressed as follows,

p = F (θ) =

L−1∑

d=0

πdΨd. (5)

Therefore, p is a linear combination of vectors Ψ0, . . . ,ΨL−1. It may be natural to consider that
if Ψ0, . . . ,ΨL−1 are linearly independent, it becomes a basis of its span over the real field. Thus,
the decomposition is unique and the model is identifiable. In fact, this is the essential idea of
Yakowitz and Spragins [18], when they studied the identifiability of finite mixture models. However,
they required that the component distributions belonged to a pre-specified family F , and that all
elements in F were linearly independent over the field of real numbers. For example, as they
showed, the exponential family and the Gaussian family are such families.

However, their results do not apply when considering the identifiability of model (1), where all
manifest variables are categorical and are not constrained as reasoned below. In this case, com-
ponent distributions belong to a multinomial family. For any m variate multinomial family, the
probability mass function can be expressed as a factor with m− 1 elements. Therefore, at most m
such vectors will be linearly dependent. Meanwhile, there is an infinite number of such m element
probability vectors in the m variate multinomial family, so the multinomial family does not satisfy
the conditions set forth in [18].

Another way to understand this problem is by directly examining equation 5. In this model,
Ψ0, . . . ,ΨL−1 may only expand a subspace in F , and therefore is not its basis, and even if it
were, this is not the only basis of the vector space of F (θ). In fact, any simultaneous rotation
of Ψ0, . . . ,ΨL−1 along vector p can lead to a different decomposition of p while maintaining the
necessary property for probability mass that the sum of all of the elements is equal to1.

For example, one can consider the problem in a 3-dimensional space for simplicity. Define the length
of a vector ~a = (a1, a2, a3) as |~a| = a1+a2+a3. Then, as vectors of probability mass, Ψ1,Ψ2,Ψ3 are
all unit vectors with nonnegative elements, suppose that they are linearly independent and that,

p = F (θ) = π1Ψ1 + π2Ψ2 + π3Ψ3.

A rotation of angle φ along vector p = (p1, p2, p3) has a rotation matrix as follows:

R(φ) =




[cosφ+ p1(1− cosφ)]2 [
√
p1p2(1− cosφ)−√

p3 sinφ]
2 [

√
p1p3(1− cosφ) +

√
p2 sinφ]

2

[
√
p1p2(1− cosφ) +

√
p3 sinφ]

2 [cosφ+ p2(1− cosφ)]2 [
√
p2p3(1− cosφ)−√

p1 sinφ]
2

[
√
p1p3(1− cosφ)−√

p2 sinφ]
2 [

√
p2p3(1− cosφ) +

√
p1 sinφ]

2 [cosφ+ p3(1− cosφ)]2



 .

Note that R is different from the rotation matrix of angle φ along vector a = (a1, a2, a3) in Euclidean
space





cosφ+ a21(1− cosφ) a1a2(1− cosφ)− a3 sinφ a1a3(1− cosφ) + a2 sinφ
a1a2(1− cosφ) + a3 sinφ cosφ+ a22(1− cosφ) a2a3(1− cosφ)− a1 sinφ
a1a3(1− cosφ)− a2 sinφ a2a3(1− cosφ) + a1 sinφ cosφ+ a23(1− cosφ)
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because of the different definition of length .

Then, for any angle φ ∈ [0, 2π), we have that,

p = F (θ) = π1Ψ
∗
1(φ) + π2Ψ

∗
2(φ) + π3Ψ

∗
3(φ),

where Ψ∗
k(φ) = R(φ)Ψk, k = 1, 2, 3, remain unit vectors with nonnegative elements, and thus are

vectors of probability mass.

This example further illustrates that having Ψ0, . . . ,ΨL−1 being linearly independent is not in itself
a sufficient condition to guarantee the identifiability of finite mixture model (1).

3.3 Models with Covariates

Now we will consider local identifiability for latent class models with covariates, model (2), as
follows:

P (T1 = t1, . . . , TK = tK | ~X, ~Z) =
L−1∑

d=0

{
P (D = d|~Z)

K∏

k=1

Jk∏

j=1

[
P (Tk = j|D = d, ~X)

]I[tk=j]}
.

we further assume that the covariate effects are linear under certain pre-specified transformations,
such as under a logit transformation. For example, one may use polytomous regression models for
both the latent group membership and the manifest variables, as both are categorical,

πd(~z
Tαd) = P (Di = d|~Zi = ~z), log

πd(~z
T
i αd)

π0(~zTi α0)
= ~zTi αd d = 1, ..., L− 1

gkjd(~x
Tβkjd) = P (Tik = j|Di = d, ~Xi = ~x), log

gkjd(~x
T
i βkjd)

gkJkd(~x
T
i βkJkd)

= ~xTi βkd

d = 0, ..., L− 1; k = 1, . . . ,K; j = 1, . . . , Jk − 1.

Under the linear covariate effect assumption, model (2) can be rewritten in the following form:

P (~T = ~t | ~X, ~Z) =
L−1∑

d=0

πd(~Z
Tαd)

K∏

k=1

Jk∏

j=1

gkjd( ~X
Tβkjd)

I[tk=j], (6)

where πd(~Z
Tαd) = P (D = d|~Z), gkjd( ~X

Tβkjd) = P (Tik = j|Di = d, ~X).

We can see that the function above has a similar form to the model without covariates, except
that πd and gkjd are predefined functions while the parameters to be estimated are αd and βkdj ,
d = 0, . . . , L − 1; k = 1, . . .K; j = 1, . . . , Jk. In fact, a similar procedure can be used when
examining the local invertibility of this function.

Let N by q matrix X and N by p matrix Z be the design matrix in model (6), with the ith row Xi

and Zi, respectively. Let ηd(Xi) = Ψd(Xi)−Ψ0(Xi), d = 1, . . . , L− 1, where Ψd(Xi) is a vector
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of length (
∏K

k=1 Jk)− 1, with the hth element

ψdh(Xi) = P (~T = ~th|D = d,Xi) =

K∏

k=1

gkthkd(Xiβkthkd).

Additionally, let Γkjd(Xi,Zi) be a vector of length (
∏K

k=1 Jk) − 1, d = 0, . . . , L − 1, k = 1, . . .K
and j = 1, . . . , Jk − 1, with the hth element

γkjdh(Xi,Zi) = πd(Ziαd)ψhd(Xi)
[ I(thk = j)

gkjd(Xiβkjd)
−
I(thk = Jk)

(
gkjd(Xiβkjd)−

∑Jk−1
j=1 gkjd(Xiβkjd)

)

gkJkd(XiβkJkd)

]

where I(thk = j) is an indicator function, which equals 1 if thk = j and 0 otherwise.

Further, define N
[
(
∏K

k=1 Jk)− 1
]
by p matrix Ad, d = 1, . . . , L− 1, and N × ((

∏K
k=1 Jk)− 1) by q

matrix Bkjd, d = 0, . . . , L− 1, k = 1, . . .K, j = 1, . . . , Jk, as follows,

Ad =






ηd(X1)π
′
d(Z1αd)Z1
...

ηd(XN )π′d(ZNαd)ZN




 , Bkjd =






Γkjd(X1,Z1)g
′
kjd(X1βkjd)X1

...
Γkjd(XN ,ZN )g′kjd(XNβkjd)XN




 ,

where π′d(·) and g′kjd(·) are the derivative of πd(·) and gkjd(·).

Theorem 2:
Finite mixture model (6) is locally identifiable at parameter θ = {αd, βkjd | d = 0, . . . , L − 1; k =
1, . . .K; j = 1, . . . , Jk} if the following conditions hold.
(i) N

[
(
∏K

k=1 Jk)− 1
]
≥ q × L[

∑K
k=1(Jk − 1)] + p(L− 1);

(ii) P (~T = ~th|Xi,Zi) =
∑L−1

d=0 πdψdh(Xi) > 0 ∀h, and πd > 0 ∀d;
(iii) column vectors in matrices {Ad|d = 1, . . . , L − 1}, {Bkjd|d = 0, . . . , L − 1; k = 1, . . .K; j =
1, . . . , Jk} all together are linearly independent.

To prove Theorem 2, we will first prove the following lemma.

Lemma 1:
Suppose that A is a matrix, and that A∗ is a matrix obtained by stacking some of the rows in A
vertically l times,

A∗ =

(
A1

A∗
2

)

, A∗
2 =






A2
...
A2












l times

where A1, A2 are sub-matrices of A, such that A = (AT
1 , A

T
2 )

T , l is a given positive integer. Then
the column vectors of A being linearly independent is equivalent to the column vectors of A∗, lin-
early independent.

Proof of Lemma 1:
Denote the set of column vectors of A by Acol, and the set of column vectors of A∗ by A∗

col. Because
each of the vectors in A∗

col append more elements to each of the vectors in Acol, A
∗
col is an extension

group of Acol. Therefore, if the vectors in Acol are linearly independent, we have that the vectors
in A∗

col are linearly independent.
10
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Now we prove that the reverse is also true by contradiction. Suppose that the vectors in A∗
col are

linearly independent, but that the vectors in Acol are linearly dependent. Then there exists a vector
α, such that Aα = 0. Thus, A1α = 0 and A2α = 0. It follows that,

A∗α =








A1

A2
...
A2







α =








A1α
A2α
...

A2α








= 0.

However, this contradicts our supposition that the vectors in Acol are linearly independent. �

Proof of Theorem 2:
Conditions (i) and (ii) are similar as before. We only need to prove condition (iii) here.

Based on model (6), the function between parameter θ and all possible response patterns of the
manifest variables ~th (excluding a reference pattern) is,

p = F (~th; θ| ~X, ~Z) = Pθ(~T = ~t | ~X, ~Z)

=

L−1∑

d=0

πd(~Z
Tαd)

K∏

k=1

gkjd( ~X
Tβkthkd),

where h = 1, . . . , H with H = (
∏K

k=1 Jk)− 1.

First, we consider the situation where all of the covariate vectors ( ~XT
i ,
~ZT
i )

T are different for
i = 1, . . . , N . In this case, F defines a mapping between all H possible response patterns of ~t for
each of the covariate vectors ( ~XT

i ,
~ZT
i )

T . Therefore, the Jacobian matrix has N×H rows. It can be
divided into N blocks, each containing H contiguous rows. Then the ith block is the derivative of F
with respect to each of the parameters when the covariate vectors are ( ~XT

i ,
~ZT
i )

T . In other words,

it is the Jacobian matrix of F when there is only a single observation with covariates ( ~XT
i ,
~ZT
i )

T .
Since each block can compute each block separately, we only compute the ith block with covariates
( ~XT

i ,
~ZT
i )

T .

Take the derivative of F with respect to free parameters αd, d = 1, . . . , L − 1, and by the chain
rule, we have

∂F (~th; θ|Xi,Zi)

∂αd

=
∂F (~th; θ|Xi,Zi)

∂πd(Ziαd)
· ∂πd(Ziαd)

∂(Ziαd)
· ∂(Ziαd)

∂αd

=
[ K∏

k=1

gkthkd(Xiβkthkd)−
K∏

k=1

gkthk0(Xiβkthk0)
]

π′d(Ziαd)Zi

=
[

ψdh(Xi)− ψ0h(Xi)
]

π′d(Ziαd)Zi.

Therefore, the first p× (L− 1) columns of the ith block of the Jacobian matrix of model (6) is,

∂F

∂αd

=
[

Ψd(Xi)−Ψ0(Xi)
]

Zi = ηd(Xi)π
′
d(Ziαd)Zi, d = 1, . . . , L− 1.

11
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Then, taking the derivative of F with respect to free parameter βkjd, d = 0, . . . , L− 1, k = 1, . . .K
and j = 1, . . . , Jk − 1, we have

∂F (~th; θ|Xi,Zi)

∂βkjd
=
∂F (~th; θ|Xi,Zi)

∂gkjd(X
T
i βkjd)

· ∂gkjd(X
T
i βkjd)

∂(XT
i βkjd)

· ∂(X
T
i βkjd)

∂βkjd

=
{

πd(Ziαd)ψdh(Xi)
[ I(thk = j)

gkjd(X
T
i βkjd)

−
I(thk = Jk)(gkjd(X

T
i βkjd)−

∑Jk−1
j=1 gkjd(X

T
i βkjd))

gkJkd(X
T
i βkJkd)

]}

g′kjd(X
T
i βkjd)Xi

= γkjdh(Xi,Zi)g
′
kjd(X

T
i βkjd)Xi

Thus, the last q × L[
∑K

k=1(Jk − 1)] columns of the ith block of the Jacobian matrix of model (6)
are,

∂F

∂βkjd
= Γkjd(Xi,Zi)g

′
kjd(X

T
i βkjd)Xi, d = 0, . . . , L− 1, k = 1, . . .K, j = 1, . . . , Jk − 1.

Therefore, the Jacobian matrix of model (6) is a N×
[
(
∏K

k=1 Jk)−1
]
by q×L[

∑K
k=1(Jk−1)]+p(L−1)

matrix
J∗(θ) = (A1, . . . , AL−1, B111, . . . , BKJK−1L−1) .

As a result, condition (iii) is equivalent to requiring that the Jacobian matrix of model (6) has full
column rank, which in turn guarantees that the finite mixture model (6) is locally identifiable at
parameter θ = {αd, βkjd | d = 0, . . . , L− 1; k = 1, . . .K; j = 1, . . . , Jk}.

Now suppose that some of the covariate vectors ( ~XT
i ,
~ZT
i )

T are the same. Then the Jacobian matrix
of model (6) is a sub-matrix of J(θ), obtained by excluding the repeated blocks. By Lemma 1,
column vectors linearly independent are equivalent for these two matrices. �

Note that, in the above proof,,the number of rows in the Jacobian matrix J∗(θ) for a finite mixture
model with covariates is N -fold of that in the Jacobian matrix J(θ) for a finite mixture model
without covariates, where N is the total sample size. If J∗(θ) is divided vertically into N blocks
with equal sizes, each block is essentially J(θ) for subjects with the same covariate Xi, Zi and then
multiplied by the corresponding design matrix. As a result, if one of these N blocks has full column
rank, the longer matrix J∗(θ) will have full column rank. Moreover, even if J(θ) does not have full
column rank for any of the covariate patterns, when the design matrices Xi and Zi have full column
rank, they may help restore full column rank of J∗(θ). This result is very interesting since it suggests
that finite mixture models with covariates may be easier to identify than models without covariates.
The difficulty with including covariates in finite mixture models is that it increases the number of
parameters to be estimated, especially when the covariates are categorical, and especially when it is
of interest to consider their interactions with each manifest variable and each latent group. Because
of this, researchers adopted various constraints to ensure model identification, such as assuming
that either the latent structure model or the measurement model is indexed with covariates, or
assuming that covariate effects are constant across latent groups to remove some interaction terms,
etc. In contrast to previous beliefs, these results suggest that for models considered here, a model
with covariates is more likely to be identifiable than a model without covariates. This result is
not surprising when considering that the additional degrees of freedom in the data introduced
by covariates are much higher than the increase in the number of parameters – although having
sufficient degrees of freedom does not guarantee model identification, it is a necessary condition.
As a simple example, consider that a model with two independent binary tests for binary disease
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status is not identifiable, but Hui and Walter [19] showed that with two populations, this model
can be identifiable. The population here can be viewed as a covariate that they included in their
latent structure model.

Specially, we have the following corollary.

Corollary 1:
Finite mixture model (6) is locally identifiable at parameter θ = {αd, βkjd | d = 0, . . . , L − 1; k =
1, . . .K; j = 1, . . . , Jk} if the following conditions hold.
(i) N

[
(
∏K

k=1 Jk)− 1
]
≥ q × L[

∑K
k=1(Jk − 1)] + p(L− 1);

(ii) P (~T = ~th|Xi,Zi) =
∑L−1

d=0 πdψdh(Xi) > 0, ∀h;
(iii) column vectors in matrices {ηd(X0)|d = 1, . . . , L − 1}, {Γkjd(X0,Z0)|d = 0, . . . , L − 1; k =
1, . . .K; j = 1, . . . , Jk} all together are linearly independent for some X0 ∈ {X1, . . . ,XN} and
Z0 ∈ {Z1, . . . ,ZN};and
(iv) design matrix X and Z both have full rank.

Proof:
We only need to show that conditions (iii) and (iv) in Corollary 1 ⇒ condition (iii) in Theorem 2.
Let

Θ =






η1(X1) . . . ηL−1(X1) Γ111(X1,Z1) . . . ΓKJK−1L−1(X1,Z1)
... · · · ...

... · · · ...
η1(XN ) . . . ηL−1(XN ) Γ111(XN ,ZN ) . . . ΓKJK−1L−1(XN ,ZN )




 ,

and X be a block diagonal matrix,

X = diag{ Z, . . . , Z
︸ ︷︷ ︸

L−1 times

, X, . . . , Z
︸ ︷︷ ︸

L[
∑

K

k=1(Jk−1)] times

}.

Then the Jacobian matrix of model (6) can be rewritten as follows,

J(θ) = (A1, . . . , AL−1, B111, . . . , BKJK−1L−1) = ΘX.

Condition (iii) guarantees that Θ has full column rank, since the column vectors in Θ are an
extension group of the vectors in condition (iii). Meanwhile, condition (iv) guarantees that X has
full rank. Therefore, J(θ) = ΘX has full column rank. �

4 Global Identifiability

Global identifiability considers the identifiability of a model in its entire parameter space. It does
not just focus on a single parameter value that may result from a particular sample, but instead
considers all possible parameter choices for a given model structure, and is thus more fundamental
than local identifiablity. However, proving the global identifiability of a function is generally very
hard; with the additional difficulty introduced by “label switching” in a finite mixture model, this
problem has not been well addressed in the literature.
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4.1 Definition

The global identifiability of a model is defined equivalently as the global invertibility of the model
induced function p = F (θ). In the classic definition, a function F is globally invertible for all
parameter θ ∈ Θ, if

F (θ) = F (θ∗) ⇒ θ = θ∗

or equivalently, F (θ) 6= F (θ∗) ∀ θ 6= θ∗, θ ∈ Θ, θ∗ ∈ Θ.

This suggests that F is a one-to-one map on its domain Θ.

Due to the “label switching” problem mentioned in the introduction, finite mixture models are not
strictly identifiable. However, since group labels are usually not difficult to determine in practice, it
is still worthwhile to consider whether the model induced function p = F (θ) can uniquely determine
a parameter value, up to permutations of group labels.

To express this idea clearly, we first define an equivalent class and an equivalent relationship. Let
θ = {θ1, . . . , θL−1}, where θd, d = 1, . . . , L − 1, contain the parameters related to the dth group.
We define an equivalent class of θ, denoted by [θ], as

[θ] = {θσ(1), . . . , θσ(L−1) | σ(1), . . . , σ(L− 1) is a permutation of 1, . . . , L− 1.}.

Moreover, define an equivalent relationship on Θ, denoted by ∼, as

θ ∼ θ∗ if θ ∈ [θ∗], or equivalently [θ] = [θ∗].

The global identifiability of a finite mixture model can then be defined as follows. A finite mixture
model is globally identifiable if its induced function p = F (θ) satisfies that,

F (θ) = F (θ∗) ⇒ θ ∼ θ∗

or equivalently, F (θ) 6= F (θ∗) ∀ θ /∈ [θ∗], θ ∈ Θ, θ∗ ∈ Θ.

In other words, if a finite mixture model is globally identifiable, its parameter θ can be uniquely
determined by the model induced function p = F (θ), regardless the value of θ, which is in contrast
to local identifiability. Clearly, if a model is globally identifiable on Θ, then it is locally identifiable
at each θ ∈ Θ. Consequently, the Jacobian matrix F (θ) has full column rank for all θ ∈ Θ. However,
the reverse is not true. This is because having a Jacobian of full column rank in a region does not
guarantee F is invertible in that region. As an example, we can consider the following function on
the unit circle D = {(x, y) | 0 < x2 + y2 < 1},

F (x, y) =

{
x2 − y2 = u
2xy = v

The Jacobian is
∂(u, v)

∂x, y
=

∣
∣
∣
∣

2x −2y
2y 2x

∣
∣
∣
∣
= 4(x2 + y2) > 0.
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However, F (0,
1

2
) = F (0,−1

2
), so F is not globally invertible. Therefore, examining the Jacobian

in the entire parameter space does not lead to global identifiability of the model. Consequently,
methods in the previous section cannot be extended to show global identifiability of a finite mixture
model.

Because of the difficulty in establishing global identifiability, an alternative concept that some
researchers have considered, is generic identifiability, which requires that the set of parameter
values on which the model is not identifiable has measure zero. More formally, a model is called
generically identifiable if its induced function p = F (θ) satisfies that,

θ ∈ Θ \ U, θ∗ ∈ Θ \ U, F (θ) = F (θ∗) ⇒ θ = θ∗

or equivalently, F (θ) 6= F (θ∗) ∀ θ 6= θ∗, θ ∈ Θ \ U, θ∗ ∈ Θ \ U,

where U is a set of measure zero.

Due to the “label switching” problem, the definition for generic identifiability of a finite mixture
model is in fact as follows: a finite mixture model is called generically identifiable if its induced
function p = F (θ) satisfies that,

θ ∈ Θ \ U, θ∗ ∈ Θ \ U, F (θ) = F (θ∗) ⇒ θ ∼ θ∗

or equivalently, F (θ) 6= F (θ∗) ∀ θ /∈ [θ∗], θ ∈ Θ \ U, θ∗ ∈ Θ \ U,

where U is a set of measure zero.

This concept is useful because, with generic identifiability, one has probability one to reach an
identifiable model. Thus, the parameter values can be uniquely determined up to label switching.
However, this conclusion is weaker than the global identifiability considered in our work.

4.2 Models without Covariates

In this section we consider global identifiability for a finite mixture model without covariates. An
important result that our proof based on is the uniqueness of trilinear decomposition given by
Kruskal [20]. We summarize Kruskal’s work on this subject below. We then proceed with our
proof, which follows the idea of Allman, et al. [21], except that we will focus on global identifiabil-
ity instead of generic identifiability of mixture models.

Kruskal’s Result

Kruskal’s result originated from the decomposition of a three-way contingency table. To sum-
marize the result, we first introduce some notation and definitions.

LetMk be a L by Jk matrix, k = 1, 2, 3, with the dth row mk

d
= (mk

d1, . . . ,m
k
dJk

). Let
[
M1,M2,M3

]

denote a three-dimensional array with the (u, v, w) element

[
M1,M2,M3

]
(u, v, w) =

L−1∑

d=0

m1
dum

2
dvm

3
dw.
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Additionally, define the Kruskal rank of a matrix M , denoted by rankKM , as the largest integer
I such that every set of I rows of M are linearly independent. Consequently, rankKM is less than
or equal to the row rank of M , with equality if and only if M has full row rank. Kruskal showed
the following result.

Lemma 2
If rankKM1 + rankKM2 + rankKM3 ≥ 2L+ 2, then array

[
M1,M2,M3

]
uniquely determines Mk,

up to simultaneous permutation and re-scaling of the rows.

we first consider the identifiability of model (1), where all the manifest variables are discrete. If
K = 3, the following theorem holds.

Theorem 3
Let Mk be a L by Jk matrix, with the (d+ 1, j) element

Mk(d+ 1, j) = P (Tk = j|D = d), k = 1, 2, 3, d = 0, . . . , L− 1, j = 1, . . . , Jk.

Then finite mixture model (1) with K = 3 is globally identifiable if

rankKM1 + rankKM2 + rankKM3 ≥ 2L+ 2.

Proof:
Let L be a diagonal matrix, L = diag{P (D = 0), . . . , P (D = L − 1)}. Let M̃1 = LM1, then the
(u, v, w) element of array

[
M̃1,M2,M3

]
is

[
M1,M2,M3

]
(u, v, w) =

L−1∑

d=0

P (D = d)M1(d, u)M2(d, v)M3(d,w)

= P (T1 = u, T2 = v, T3 = w).

According to Lemma 2, the finite mixture model (1) uniquely determines M̃1, M2 and M3 up
to a simultaneous permutation and re-scaling of the rows. Meanwhile, since

∑L−1
D=0 P (D = d) =

1,
∑Jk

j=1 P (Tk = j|D = d) = 1 for all d = 0, . . . , L − 1, it follows that:
∑L−1

d=0

∑J1
j=1 M̃1 = 1,

∑L−1
d=0

∑J2
j=1M2 = L and

∑L−1
d=0

∑J3
j=1M3 = L. Thus, the scaling of the rows is uniquely determined.

Moreover, suppose that M̃1 is properly scaled, then P (D = d) =
∑J1

j=1 M̃1(d, j), d = 0, . . . , L − 1,

and M1 = L−1M̃1. Therefore, M1, M2 and M3 are uniquely determined up to simultaneous
permutation of the rows, and thus finite mixture model (1) is globally identifiable. �

When K ≥ 3 in model (1), several univariate tests can be viewed as a single multivariate test and
Theorem 3 can be used to examine the global identifiability of the model. Specifically, we have the
following theorem,

Theorem 4
Suppose K ≥ 3. Let A, B, C be a partition of {1, . . . ,K}, where A = {a(1), . . . , a(p)}, B =
{b(1), . . . , b(q)} and C = {c(1), . . . , c(r)}, with p ≥ 1, q ≥ 1,r ≥ 1, and p+ q + r = K. Let MA be
a L by

∏p
i=1 Ja(i) matrix with the (d+ 1, j) element

MA(d+ 1, j) = P
(
(Ta(1), . . . , Ta(p)) = ~tAj |D = d

)
,
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where ~tAj is the jth possible pattern in lexicographic order among
∏p

i=1 Ja(i) distinct response
patterns of (Ta(1), . . . , Ta(p)). Similarly, define MB as a L by

∏q
i=1 Jb(i) matrix with the (d + 1, j)

elementMB(d+1, j) = P
(
(Tb(1), . . . , Tb(q)) = ~tBj |D = d

)
, andMC as a L by

∏r
i=1 Jc(i) matrix with

the (d + 1, j) element MC(d + 1, j) = P
(
(Tc(1), . . . , Tc(r)) = ~tBj |D = d

)
. Then the finite mixture

model (1) is globally identifiable if rankKMA+rankKMB+rankKMC ≥ 2L+ 2.

Proof:
Applying Theorem 3, parameters P (D = d), P ((Ta(1), . . . , Ta(p))|D = d), P ((Tb(1), . . . , Tb(q))|D = d)
and P ((Tc(1), . . . , Tc(r))|D = d), D = 0, . . . , L− 1, can be uniquely identified up to label switching.
Moreover, the marginal distributions P (Tk = j|D = d), k = 1, . . . ,K, d = 0, . . . , L−1, j = 1, . . . , Jk
can be obtained from these joint distributions, thus the theorem holds. �

Theorem 4 also illustrates why information from additional tests is helpful for model identification,
since the matrix for multiple manifest variables has a larger Kruskal rank than the one for a
single manifest variable. To see this more clearly, let M1 be a L by J1 matrix, with the (d + 1, j)
element M1(d + 1, j) = P (T1 = j|D = d), and M2 be a L by J2 matrix, with the (d + 1, j)
element M2(d + 1, j) = P (T2 = j|D = d). Additionally, let Lj be a diagonal matrix Lj =
diag{M2(0, j), . . . ,M2(L− 1, j)}, j = 1 . . . , J2. Then the matrix according to the joint distribution
of T1 and T2 is a L by J1J2 matrix as follows,

M = (L1M1, . . . , LJ2M1) .

Because Lj is a diagonal matrix with all diagonal elements positive, if any of the row vectors in
M1 are linearly independent, the same rows of the vectors in L1M1 are also linearly independent,
and vice versa. Additionally, the row vectors in M are an extension group of the row vectors in
L1M1, thus rankKM ≥ rankKM1. This argument can be generalized to several manifest variables.
Consequently, we have the following corollary.

Corollary 2
Let Mk be a L by Jk matrix, with the (d+ 1, j) element

Mk(d+ 1, j) = P (Tk = j|D = d), k = 1, . . . ,K, d = 0, . . . , L− 1, j = 1, . . . , Jk.

If there exist k1, k2, k3 ∈ {1, . . . ,K} such that

rankKMk1 + rankKMk2 + rankKMk3 ≥ 2L+ 2,

finite mixture model (1) is globally identifiable.

Moreover, if a L by Jk matrixM has full row rank, rankKM = L, this gives the following corollary.

Corollary 3
Let Mk be a L by Jk matrix, with the (d+ 1, j) element

Mk(d+ 1, j) = P (Tk = j|D = d), k = 1, . . . ,K, d = 0, . . . , L− 1, j = 1, . . . , Jk.

If there exist k1, k2, k3 ∈ {1, . . . ,K} such that Mk1 , Mk2 , Mk3 have full row rank, then the finite
mixture model (1) is globally identifiable.
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Now we consider the identifiability of a finite mixture model with continuous manifest variables.
Let fkd(·) = P (Tk|D = d) be the conditional density function of the kth manifest variable in
group d, and Fkd(·) be the corresponding cumulative distribution function (CDF), k = 1, . . . ,K,
D = 0, . . . , L− 1. The model can be expressed as follows,

P (T1 = t1, . . . , TK = tk) =

L−1∑

d=0

P (~T ,D) =

L−1∑

d=0

[
P (D = d)

K∏

k=1

fkd(tk)
]
. (7)

When K = 3, we show that the following theorem holds.

Theorem 5
If there exists integer J1, J2, J3 ≥ L and points t11, . . . , t1(J1−1), t21, . . . , t2(J2−1) and t31, . . . , t3(J3−1),
such that matrix M1, M2 and M3 satisfy that

rankKM1 + rankKM2 + rankKM3 ≥ 2L+ 2,

where the (d + 1, j) element in Mk is Fkd(tkj), j = 1, . . . , Jk − 1 , and Fkd(tJk) = 1, k = 1, 2, 3,
d = 0, . . . , L− 1, then the finite mixture model (7) is globally identifiable.

To prove Theorem 5, we first show that the following lemma holds.

Lemma 3
Let A and A∗ be two P by Q matrices, defined below,

A =






a11 a12 . . . a1Q
...

...
...

aP1 aP2 . . . aPQ




 A∗ =






a11 a12 − a11 . . . a1Q − a1Q−1
...

...
...

aP1 aP2 − aP1 . . . aPQ − aPQ−1




 ,

then rankKA = rankKA
∗.

Proof of Lemma 3
We only need to show that if any rows in A are linearly independent, the corresponding rows in
A∗ are also linearly independent, and vice versa. Equivalently, we can show that if any rows in A
are linearly dependent, the corresponding rows in A∗ are also linearly dependent, and vice versa.
Without loss of generality, we assume the first p ≤ P rows, denoted by Ap, are linearly dependent.
Then there exist k1, . . . , kp, such that (k1, . . . , kp)Ap = 0, in other words, the following equations
hold 





k1a11 + . . .+ kpap1 = 0
k1a12 + . . .+ kpap2 = 0
. . .
k1a1Q + . . .+ kpapQ = 0

.

These are equivalent to the following equations






k1a11 + . . .+ kpap1 = 0
k1(a12 − a11) + . . .+ kp(ap2 − ap1) = 0
. . .
k1(a1Q − a1Q−1) + . . .+ kp(a1Q − a1Q−1) = 0

.

Thus (k1, . . . , kp)A
∗
p = 0, where A∗

p are the first p rows of A∗. As a result, if any rows in A are
linearly independent, the corresponding rows in A∗ are also linearly independent, and vice versa.
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Therefore, rankKA = rankKA
∗. �

Proof of Theorem 5
Matrix Mk, k = 1, 2, 3, in theorem 5 is

Mk =






Fk0(tk1) Fk0(tk2) . . . Fk0(tkJk−1) 1
...

...
...

...
FkL−1(tk1) FkL−1(tk2) . . . FkL−1(tkJk−1) 1




 .

Create new matrices M∗
k ,k = 1, 2, 3, as follows:

M∗
k =






Fk0(tk1) Fk0(tk2)− Fk0(tk1) . . . 1− Fk0(tkJk−1)
...

...
...

FkL−1(tk1) FkL−1(tk2)− FkL−1(tk1) . . . 1− FkL−1(tkJk−1)




 .

Then according to Lemma 3,

rankKM
∗
1 + rankKM

∗
2 + rankKM

∗
3 = rankKM1 + rankKM2 + rankKM3 ≥ 2L+ 2.

Meanwhile, create categorical variables T ∗
k ,k = 1, 2, 3, such that T ∗

k = j if tkj−1 ≤ Tk ≤ tkj , where
j = 1, . . . , Jk and a0 = −∞. Then according to Theorem 3, the finite mixture model (1) with
T ∗
1 , T

∗
2 and T ∗

3 as manifest variables is globally identifiable. Specially, parameters P (D = d),
Fkd(tk1), Fkd(tk2) − Fkd(tk1), . . . , 1 − Fkd(tkJk−1) are globally identifiable, which in turn leads to
parameters P (D = d), Fkd(tk1), Fkd(tk2), . . . , Fkd(tkJk−1) being globally identifiable, d = 0 . . . , D
and k = 1, 2, 3.

Let t∗k be any number in the domain of Fkd(·). Without loss of generality, we assume t∗k < tk1, and
create matrices M̃k, k = 1, 2, 3 as follows:

M̃k =






Fk0(t
∗
k) Fk0(tk1) . . . Fk0(tkJk−1) 1

...
...

...
...

FkL−1(t
∗
k) FkL−1(tk1) . . . FkL−1(tkJk−1) 1




 .

The row vectors in M̃k are extension groups of the row vectors in Mk, k = 1, 2, 3. Therefore,

rankKM̃1 + rankKM̃2 + rankKM̃3 ≥ rankKM1 + rankKM2 + rankKM3 ≥ 2L+ 2.

Constructing the corresponding finite mixture model and following the same argument above, we
can show that parameters P (D = d), Fkd(t

∗
k), Fkd(tk1), . . . , Fkd(tkJk−1) are globally identifiable,

d = 0 . . . , D and k = 1, 2, 3. Since t∗k is any number in the domain of Fkd(·), the function Fkd(·) is
globally identifiable. As a result, the finite mixture model (7) is globally identifiable. �

Similarly as in Theorem 4, several univariate tests as a multivariate test to obtain global identifia-
bility of model (7) when K ≥ 3. Specifically, we have the following theorem.

Theorem 6
Suppose K ≥ 3. Let A, B, C be a partition of {1, . . . ,K}, where A = {a(1), . . . , a(p)}, B =
{b(1), . . . , b(q)} and C = {c(1), . . . , c(r)}, with p ≥ 1, q ≥ 1,r ≥ 1, and p + q + r = K. Let G1d

be the joint CDF for manifest variables (Ta(1), . . . , Ta(p)) in group d, G2d be the joint CDF for
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manifest variables (Tb(1), . . . , Tb(q)) in group d and G3d be the joint CDF for manifest variables
(Tc(1), . . . , Tc(r)) in group d, d = 0, . . . , L− 1.

If there exists integers J1, J2, J3 ≥ L and points t11, . . . , t1(J1−1), t21, . . . , t2(J2−1) and t31, . . . , t3(J3−1),
such that matrices M1, M2 and M3 satisfy

rankKM1 + rankKM2 + rankKM3 ≥ 2L+ 2,

where the (d + 1, j) element in Mk is Gkd(tkj), j = 1, . . . , Jk − 1 , and Gkd(tJk) = 1, k = 1, 2, 3,
d = 0, . . . , L− 1, then the finite mixture model (7) is globally identifiable. �

Moreover, with the same argument for proving Corollary 2 and 3, we know that if at least three
of the manifest variables satisfy the condition in Theorem 5, then the finite mixture model (7) is
globally identifiable. Therefore, we have the following corollaries.

Corollary 4
If there exist s1, s2, s3 ∈ {1, . . . ,K}, integers J1, J2, J3 ≥ L and points t11, . . . , t1(J1−1), t21, . . . , t2(J2−1)

and t31, . . . , t3(J3−1), such that matrices M1, M2 and M3 satisfy that,

rankKM1 + rankKM2 + rankKM3 ≥ 2L+ 2,

where the (d + 1, j) element in Mk is Fskd(tkj), j = 1, . . . , Jk − 1 , and Fskd(tJk) = 1, k = 1, 2, 3,
d = 0, . . . , L− 1, then the finite mixture model (7) is globally identifiable. �

Corollary 5
If there exists s1, s2, s3 ∈ {1, . . . ,K}, integers J1, J2, J3 ≥ L and points t11, . . . , t1(J1−1), t21, . . . , t2(J2−1)

and t31, . . . , t3(J3−1), such that matrices M1, M2 and M3 have full row rank, where the (d + 1, j)
element in Mk is Fskd(tkj), j = 1, . . . , Jk − 1 , and Fskd(tJk) = 1, k = 1, 2, 3, d = 0, . . . , L− 1, then
the finite mixture model (7) is globally identifiable. �

From the theorem above, we can see that one important condition to guarantee global identifiability
of a finite mixture model is about the row ranks of a matrix whose (d + 1, j) element is P (T =
j|D = d). We give an intuitive explanation here before moving to be next section. Each row of this
matrix is about the conditional distribution of manifest variable T in a certain group. If the rows
are linearly independent, it means the manifest variable T can reveal some nontrivial differences
among the latent groups that can then be used to distinguish between them. Identifying latent
groups is more fundamental, as once the group labels are determined, other parameters can be
obtained by, in some sense, regular regression. Another explanation can be obtained by observing
that the marginal distribution of T is a linear combination of its conditional distributions in each of
the latent groups. The factorization is unique only when the conditional distributions are linearly
independent. However, since we have multiple manifest variables, we may not need to require that
every one of them be informative for all latent groups – for example, if some manifest variables
are informative for all groups except groups 1 and 2, the model may still be identifiable if there is
a manifest variable that can distinguish between these two groups. Clearly, the task is harder if
the number of latent groups is bigger. The theorems here show a balance between the information
needed from the manifest variables and the number of latent groups needed for the model to be
identifiable.
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4.3 Models with Covariates

In this section we examine the global identifiability of a finite mixture model with covariates. Again,
we assume that covariate effects are linear on a certain transformed scale. First we consider model
(6) – a model in which all manifest variables are categorical. The model is given as follows,

P (~T = ~t | ~X, ~Z) =
L−1∑

d=0

πd(~Z
Tαd)

K∏

k=1

Jk∏

j=1

gkjd( ~X
Tβkjd)

I[tk=j],

where πd(~Z
Tαd) = P (D = d|~Z), gkjd( ~X

Tβkjd) = P (Tik = j|Di = d, ~X).

When K = 3 we obtain the following theorem.

Theorem 7
In model (6), suppose αd has u ≤ N elements and βkd has v ≤ N elements. Letmax{u, v} ≤W ≤ N
and {i(1), . . . , i(W )} be a subset of {1, . . . , N}. Let Mk[w] be a L by Jk matrix with the (d+ 1, j)
element gkjd(Xi(w)βkd), where Xi(w) is the i(w)th row of the design matrix X, d = 0, . . . , L − 1,
k = 1, 2, 3, j = 1, . . . , Jk, w = 1, . . . ,W . Let Mk be a block diagonal matrix defined as follows,

Mk =








Mk[1] 0 . . . 0

0 Mk[2] . . . 0
...

...
. . .

...
0 0 . . . Mk[W ]







, k = 1, 2, 3.

Let Xw = (Xi(1), . . . ,Xi(W ))
T and Zw = (Zi(1), . . . ,Zi(W ))

T . Then, the finite mixture model (6),
with K = 3, is globally identifiable if the following conditions hold.
(i) rankKM1 + rankKM2 + rankKM3 ≥ 2WL+ 2;
(ii) rank Xw ≥ u and rank Zw ≥ v.

Proof:
The idea is to “absorb” the observed covariate pattern into manifest variables, and then use the
results about models without covariates to complete the proof.

Create a new categorical variable D∗ based on pairs (D,xk) such that D∗ = L(w− 1) + d if D = d
and xk = Xi(w), d = 0, . . . , L − 1, w = 1, . . . ,W . Additionally, create new categorical variables
T ∗
k based on pairs (Tk,xk) such that, T ∗

k = Jk(w − 1) + j if Ti = j and xk = Xi(w), k = 1, 2, 3,
j = 1, . . . , Jk, w = 1, . . . ,W . Then the marginal probability of triplet (T ∗

1 , T
∗
2 , T

∗
3 ) is

P (T ∗
1 , T

∗
2 , T

∗
3 ) =

{
P (T1, T2, T3 | Xi(w)) if x1 = x2 = x3 = Xi(w)

0 Otherwise
.

Construct a finite mixture model of form (2) with manifest variables T ∗
1 , T

∗
2 , T

∗
3 and latent variable

D∗. Then, based on Theorem 3, condition (i) guarantees that this new model is globally identifiable.
It follows that quantities πd(Z

T
i(w)αd), gkjd(X

T
i(w)βkjd) in the original model are globally identifiable,

where d = 0, . . . , L − 1, k = 1, 2, 3, j = 1, . . . , Jk, w = 1, . . . ,W . Moreover, since πd(·) and gkjd(·)
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are pre-specified monotone link functions, the following equations hold:







ZT
i(1)αd = π−1

d (ad1)
...

ZT
i(W )αd = π−1

d (adW )

and







XT
i(1)βkd = g−1

kjd(bkjd1)
...

XT
i(W )βkd = g−1

kjd(bkjdW )

,

where adw is the value of πd(Z
T
i(w)αd) and bkjdw is the value of gkjd(X

T
i(w)βkjd), d = 0, . . . , L − 1,

k = 1, 2, 3, j = 1, . . . , Jk, w = 1, . . . ,W . Then, condition (ii) guarantees that at least u equations
on the left hand side are linearly independent, and at least v equations on the right hand side are
linearly independent. As a result, αd, βkjd have unique solutions. Therefore, the finite mixture
model (6) with K = 3 is globally identifiable. �

Since multiple univariate manifest variables can be combined into a single multivariate manifest
variable, we have the following theorem.

Theorem 8
Suppose K ≥ 3, αd has u ≤ N elements and βkd has v ≤ N elements. Let max{u, v} ≤ W ≤ N ,
and {i(1), . . . , i(W )} be a subset of {1, . . . , N}. Let A, B, C be a partition of {1, . . . ,K}, where
A = {a(1), . . . , a(p)}, B = {b(1), . . . , b(q)} and C = {c(1), . . . , c(r)}, with p ≥ 1, q ≥ 1,r ≥ 1, and
p+ q + r = K. Let MA[w] be a L by

∏p
i=1 Ja(i) matrix with the (d+ 1, j) element

MA[w](d+ 1, j) = P
(
(Ta(1), . . . , Ta(p)) = ~tAj |D = d,x = Xi(w)

)
,

where ~tAj is the jth possible in lexicographic order among
∏p

i=1 Ja(i) distinct response patterns of
(Ta(1), . . . , Ta(p)). Let Mk be a block diagonal matrix defined as follows,

MA =








MA[1] 0 . . . 0

0 MA[2] . . . 0
...

...
. . .

...
0 0 . . . MA[W ]







.

Define MB and MC similarly; then, the finite mixture model (6) is globally identifiable if the
following conditions hold.
(i) rankKMA + rankKMB + rankKMC ≥ 2WL+ 2.
(ii) rank Xw ≥ u and rank Zw ≥ v. �

Observing that the row vectors in the “M” matrix generated by multiple manifest variables is an
extension group of the row vectors in the “M” matrix generated by any one of these manifest vari-
ables, we have the following corollary.

Corollary 6
When K ≥ 3, if there are at least three manifest variables that satisfy the conditions in Theorem
7, then the finite mixture model (6) is globally identifiable. �

Moreover, for a block diagonal matrix, the row vectors that intersect with different blocks are
clearly linearly independent. Therefore, the Kruskal rank of a block diagonal matrix equals the
summation of the Kruskal rank of each of the block. The following corollary results.
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Corollary 7
Suppose K ≥ 3. In the same set up as in Theorem 7, if there exist k1, k2, k3 ∈ {1, . . . ,K} such that
(i) rankKMk1[w] + rankKMk2[w] + rankKMk3[w] ≥ 2L+ 2, for all w = 1, . . . ,W ;
(ii) rank Xw ≥ u and rank Zw ≥ v,
then the finite mixture model (6) is globally identifiable. �

Now we consider the identifiability of a finite mixture model with continuous manifest variables.
Again, we assumed that the covariate effects are linear on a certain transformed scale. Let
fkd(t|Xiβkd) = P (Tk = t|D = d,Xi) be the conditional density function of the kth manifest
variable in group d and Fkd(t|Xiβkd) be the corresponding CDF, k = 1, . . . ,K, D = 0, . . . , L − 1.
we further assumed that after an unknown transformation Hkd, manifest variable Tk satisfied

(
Hkd(Tk) | Xi

)
= Xiβkd + εikd, εikd ∼ Gkd(·),

where Gkd(·) is a pre-specified distribution function with corresponding density function gkd(·),
k = 1, . . . ,K, D = 0, . . . , L− 1. The model can be expressed as follows,

P (T1 = t1, . . . , TK = tk|Xi,Zi) =

L−1∑

d=0

πd(Z
T
i αd)

K∏

k=1

fkd(tk|Xiβkd). (8)

When K = 3 we claim the following theorem holds.

Theorem 9
Suppose αd has u ≤ N elements and βkd has v ≤ N elements. Let max{u, v + 1} ≤ W ≤ N and
{i(1), . . . , i(W )} be a subset of {1, . . . , N}. Let J1, J2, J3 be some positive integers. Let Mk[w] be a
L by Jk matrix with the (d+1, j) element Fkd(tkj |Xiβkd), where tk1, . . . , tkJk are a set of points in
the domain of Fkd(t|Xiβkd), and Xi(w) is the i(w)th row of the design matrix X, d = 0, . . . , L− 1,
k = 1, 2, 3, j = 1, . . . , Jk, w = 1, . . . ,W . Let Mk be a block diagonal matrix defined as follows,

Mk =








Mk[1] 0 . . . 0

0 Mk[2] . . . 0
...

...
. . .

...
0 0 . . . Mk[W ]







, k = 1, 2, 3.

Let Xw = (Xi(1), . . . ,Xi(W ))
T and Zw = (Zi(1), . . . ,Zi(W ))

T . Then, finite mixture model (8) with
K = 3 is globally identifiable if the following conditions hold.
(i) rankKM1 + rankKM2 + rankKM3 ≥ 2WL+ 2;
(ii) rank Xw ≥ u and rank Zw ≥ v + 1.

Proof:
Using Lemma 3 and following the same logic as in the proof of Theorem 5, we can show that for
any t∗k in the domain of Fkd(t|Xiβkd), quantities πd(Z

T
i(w)αd) and Fkd(t

∗
k|Xiβkd), Fkd(tkj |Xiβkd) are

identifiable, d = 0, . . . , L− 1, k = 1, 2, 3, j = 1, . . . , Jk, w = 1, . . . ,W . Moreover, since

Fkd(t
∗
k|Xiβkd) = P (Tk ≤ t∗k|Xiβkd)

= P (Hkd(Tk) ≤ Hkd(t
∗
k)|Xiβkd) = Gkd

(
Hkd(t

∗
k)−Xiβkd

)
,
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we have







ZT
i(1)αd = π−1

d (ad1)
...

ZT
i(W )αd = π−1

d (adW )

and







Hkd(t
∗
k)−XT

i(1)βkd = G−1
kd (bkjd1)

...

Hkd(t
∗
k)−XT

i(W )βkd = G−1
kd (bkjdW )

,

where adw is the value of πd(Z
T
i(w)αd) and bkjdw is the value of Fkd(t

∗
k|Xiβkd), d = 0, . . . , L − 1,

k = 1, 2, 3, j = 1, . . . , Jk, w = 1, . . . ,W . Note that the equations on the right hand side are still
linear equations of Xi, so condition (ii) guarantees that αd, βkjd and Hkd(t

∗
k) have unique solutions.

Since t∗k is arbitrary, the finite mixture model (8) with K = 3 is globally identifiable. �

Comparing Theorem 9 to Theorem 7, the additional rank of Zw was used for identification of Hkd(·).
Applying the same techniques as before, it was straightforward to obtain the following theorem and
corollaries.

Theorem 10
Suppose that K ≥ 3, αd has u ≤ N elements and βkd has v ≤ N elements. Let max{u, v + 1} ≤
W ≤ N , and {i(1), . . . , i(W )} be a subset of {1, . . . , N}. Let J1, J2, J3 be some positive integers
and tk1, . . . , tkJk be a set of points in the domain of Fkd(t|Xiβkd), k = 1, . . . ,K. Let A, B, C be a
partition of {1, . . . ,K}, where A = {a(1), . . . , a(p)}, B = {b(1), . . . , b(q)} and C = {c(1), . . . , c(r)},
with p ≥ 1, q ≥ 1,r ≥ 1, and p + q + r = K. Let MA[w] be a L by

∏p
i=1 Ja(i) matrix with the

(d+1, j) element Fkd(~tAj |Xiβkd), where Fkd(·|Xiβkd) is the CDF of (Ta(1), . . . , Ta(p)) conditional on

Xi, and ~tAj is the jth possible in lexicographic order among
∏p

i=1 Ja(i) distinct response patterns of
(Ta(1), . . . , Ta(p)), generated by point ta(s)1, . . . , ta(s)Ja(s) , s = 1, . . . , p. Let Mk be a block diagonal
matrix defined as follows,

MA =








MA[1] 0 . . . 0

0 MA[2] . . . 0
...

...
. . .

...
0 0 . . . MA[W ]







.

Define MB and MC similarly; then the finite mixture model (8) is globally identifiable if the fol-
lowing conditions hold.
(i) rankKMA + rankKMB + rankKMC ≥ 2WL+ 2.
(ii) rank Xw ≥ u and rank Zw ≥ v + 1. �

Corollary 8
When K ≥ 3, if there are at least three manifest variables that satisfy the conditions in Theorem
9, then the finite mixture model (8) is globally identifiable. �

Corollary 9
Suppose K ≥ 3. In the same set-up as used in Theorem 9, if there exist k1, k2, k3 ∈ {1, . . . ,K},
such that
(i) rankKMk1[w] + rankKMk2[w] + rankKMk3[w] ≥ 2L+ 2, for all w = 1, . . . ,W ;
(ii) rank Xw ≥ u and rank Zw ≥ v + 1,
then the finite mixture model (8) is globally identifiable. �
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5 Summary

In this paper we provided conditions under which a finite mixture model is locally identifiable
or globally identifiable. The derivation was considered under general structures of finite mixture
models, including models with categorical manifest variables, models with continuous manifest
variables, and both types of models when covariates are included. One of the assumptions that we
made here is that the covariate effects are linear on some transformed scales. This assumption is
common in the literature on finite mixture models. Moreover, these transformations do not neces-
sarily need to be pre-specified, because we established conditions for nonparametric identifiability
of these models. Therefore, the results can be applied to a wide range of models. Additionally, we
did not impose any constraints about the covariate effects among different groups or on different
manifest variables. Therefore, the models considered here represent many general situations.

For local identifiability, a key idea in the proofs was to show that the Jacobian matrix of the
model induced function had full column rank. The results suggest that, contrary to common
belief, including covariates in the model may in fact help model identification. Additionally, by
considering a continuous distribution in its empirical form for a given data set, we unified the proofs
for models with categorical manifest variables or with continuous manifest variables, and showed
nonparametric identifiability of the models. Consequently, the results can also be applied to cases
when manifest variables have mixed types.

For global identifiability, the proof is established on a previous result about the uniqueness of
trilinear decomposition [20]. We only discussed the situation where the number of manifest variables
K is greater than or equal to 3. When K = 2, Hall and Zhou [15] showed that the model is not
nonparametrically identifiable. The proof for models with continuous manifest variables used the
results about models with categorical variables, and was accomplished by showing that the CDF
was globally identifiable at every point in its domain. The results easily extend to models with
mixed types of manifest variables.

In addition to allowing for flexible covariate structure, another useful direction in which finite mix-
ture models has been developing is to include random effects to describe correlations introduced
by unobserved covariates other than the latent components. We did not discuss the identifiability
issue for this kind of models. Although the local identifiability of these models can be examined
the same way using Jacobian matrics, it is usually critical to utilize background information and
evaluate random effects in a case by case base to ensure model validity and interpretation. Aside
from the potential computational burden, it is relatively easy and perhaps tempting to include more
complicated and perhaps hierarchical random effects further account for possible residual depen-
dence among the manifest variables within a latent group. These models should be adopted with
caution, because when dealing with an unobserved latent structure, many modeling assumptions
can hardly be verified. The possible danger of model misspecification or over-fitting results from
building a complicated model may compromise its potential gains relative to using a simpler model.
If a more complicated model were to be used, careful examination of the identifiability issue would
be necessary.
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