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Confidence Intervals for Negative Binomial
Random Variables of High Dispersion

David Shilane, Alan E. Hubbard, and S N. Evans

Abstract

This paper considers the problem of constructing confidence intervals for the
mean of a Negative Binomial random variable based upon sampled data. When the
sample size is large, we traditionally rely upon a Normal distribution approxima-
tion to construct these intervals. However, we demonstrate that the sample mean
of highly dispersed Negative Binomials exhibits a slow convergence to the Normal
in distribution as a function of the sample size. As a result, standard techniques
(such as the Normal approximation and bootstrap) that construct confidence inter-
vals for the mean will typically be too narrow and significantly undercover in the
case of high dispersion. To address this problem, we rely upon confidence inter-
vals constructed from Bernstein’s inequality as an alternative to standard methods
when the sample size is small and the dispersion is high. We also propose and
provide empirical evidence for a Chi Square model as an approximate distribution
for the sample mean of Negative Binomial random variables of high dispersion
when the mean and sample size are small. This Chi Square model leads directly
to an alternative method for constructing confidence intervals in this setting. We
subsequently prove a limit theorem demonstrating that the sample mean converges
in distribution to a Gamma random variable, of which the Chi Square distribution
is a special case. We then undertake a variety of simulation experiments to com-
pare the proposed methods to standard techniques in terms of empirical coverage
and provide concrete recommendations for the settings in which particular inter-
vals are preferred. We subsequently conduct a sensitivity analysis of the choice
of the upper bound in Bernstein confidence intervals that may serve as an avenue
for improving the coverage of this method at extreme degrees of dispersion and
very small sample sizes. We also apply the proposed methods to examples aris-
ing in the serial analysis of gene expression and traffic flow in a communications
network to illustrate both the strengths and weaknesses of these procedures along
with those of standard techniques.
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Abstract

We consider the problem of constructing confidence intervals for the mean of a Negative Binomial random
variable based upon sampled data. When the sample size is large, it is a common practice to rely upon a
Normal distribution approximation to construct these intervals. However, we demonstrate that the sample
mean of highly dispersed Negative Binomials exhibits a slow convergence in distribution to the Normal as
a function of the sample size. As a result, standard techniques (such as the Normal approximation and
bootstrap) will construct confidence intervals for the mean that are typically too narrow and significantly
undercover at small sample sizes or high dispersions. To address this problem, we propose techniques based
upon Bernstein’s inequality or the Gamma and Chi Square distributions as alternatives to the standard
methods. We investigate the impact of imposing a heuristic assumption of boundedness on the data as a
means of improving the Bernstein method. Furthermore, we propose a ratio statistic relating the Negative
Binomial’s parameters that can be used to ascertain the applicability of the Chi Square method and to
provide guidelines on evaluating the length of all proposed methods. We compare the proposed methods to
the standard techniques in a variety of simulation experiments and consider data arising in the serial analysis
of gene expression and traffic flow in a communications network.

Keywords: Bernstein’s Inequality, Chi Square Distribution, Confidence Intervals, Gamma Distribution, Neg-
ative Binomial Distribution, Serial Analysis of Gene Expression (SAGE).

1 Introduction

Given a sample of n independent, identically distributed (i.i.d.) random variables with finite variance, the
Central Limit Theorem (CLT) states that the distribution of the sample mean X̄ is approximately Normal
when the sample size n is large. As discussed in Rosenblum and van der Laan [2008], the Normal approxima-
tion and a bootstrap method are standard techniques used in the construction of confidence intervals for the
mean µ even for moderately small sample sizes (e.g. n = 30). However, any application of Normal theory
in these settings relies upon an assumption that n is large enough to render the differences between the
distributions of X̄ and the Normal inconsequential. At moderate sample sizes, this CLT assumption cannot
be assured in the case of random variables with highly skewed distributions [Wilcox, 2005]. In particular,
we will demonstrate that a sample mean constructed from i.i.d. Negative Binomial random variables of high
dispersion exhibits a probability mass function with an extremely heavy right tail. Moreover, the variability
of estimates of the standard error of X̄ provides an additional degree of uncertainty. In practice, researchers
who rely on a relatively small number of independent samples (such as the investigation of [Lloyd-Smith
et al., 2005] on the secondary transmission of infectious disease) should exercise caution to ensure that
their conclusions are not greatly impacted by biased estimates of variability. Because X̄ exhibits a skewed
distribution, the Normal approximation may result in poor coverage and correspondingly poor inferences.
Similarly, the bootstrap Bias Corrected and Accelerated (BCA) method [Efron and Tibshirani, 1994] also
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relies upon imbedded Normal theory that is impacted by skewness. This paper investigates the performance
of these methods through simulation studies and proposes a variety of improvements based upon Bernstein’s
Inequality, a Gamma model, and the Chi Square (χ2) distribution for the construction of confidence intervals
for the mean of Negative Binomial random variables of high dispersion.

For any significance level α ∈ (0, 1), standard techniques for constructing 1 − α confidence intervals of-
ten rely upon inverting hypothesis testing procedures under specific parametric assumptions [Casella and
Berger, 1990, Clopper and Pearson, 1934, Crow and Gardner, 1959, Sterne, 1954]. When these assumptions
are satisfied, the resulting 1−α confidence intervals are exact in that the infimum coverage probability over
all sample sizes is at least 1 − α [Blyth and Still, 1963]. Rosenblum and van der Laan [2008] investigate
the use of exact methods in constructing confidence intervals when the assumptions underlying standard
techniques are not valid. In particular, they employ tail probability bounds such as Bernstein’s Inequality
[Bernstein, 1934], Bennett’s Inequality [Bennett, 1962], and methods based on the work of Hoeffding [1963]
and Berry-Esseen [Berry, 1941, Esseen, 1942]. These bounds all require much weaker hypotheses that do not
involve distributional assumptions on the data. As a result, Rosenblum and van der Laan [2008] are able
to construct confidence intervals for a wide variety of parameters based upon the corresponding estimators’
empirical influence curves. Such intervals will in general be more conservative than those based upon the
Normal distribution but are not necessarily exact due to the influence curve approximation.

However, determining confidence intervals for the mean of i.i.d. Negative Binomial random variables of
high dispersion is not so straightforward, particularly for small sample sizes. Even the relatively weak as-
sumptions underlying methods such as the variant of Bernstein’s Inequality employed by Rosenblum and
van der Laan [2008] are not necessarily valid for Negative Binomials because the maximum deviation from
the mean is not bounded. Since this assumption is violated in our setting, the resulting confidence intervals
are not guaranteed to cover well. Therefore, we also investigate the Chi Square and Gamma distributions as
practical alternatives to standard techniques and refinements to Bernstein confidence intervals that can lead
to improved coverage of 1−α confidence intervals. We use simulation studies to compare the performance of
these proposed techniques to those of standard methods for constructing confidence intervals for the mean
of i.i.d. Negative Binomial random variables when the dispersion is high and the sample size n is small. We
subsequently consider examples arising in the serial analysis of gene expression (SAGE) and network traffic
flow data.

Section 2 reviews the Negative Binomial distribution. Section 3 describes Bernstein’s Inequality’s role in
constructing 1 − α confidence intervals for the mean, proves a limit theorem on the convergence of X̄ to a
Gamma distribution at large sample sizes and high dispersions, and also proposes the Chi Square distribution
as an alternative approximation under suitable conditions. Section 4 summarizes a variety of simulation
experiments that compare the coverage probabilities of the proposed methods, investigates the quality of
approximations to the Negative Binomial’s dispersion parameter, and examines potential refinements of the
Bernstein method. Section 5 applies these techniques to data from the serial analysis of gene expression
(SAGE) and network traffic flow studies. Finally, we will conclude the paper with a discussion in Section 6.

2 The Negative Binomial Distribution

A Negative Binomial distribution is conventionally used to compute the probability that a total of k failures
will result before the rth success is observed when each trial is independent of all others and results in success
with a fixed probability p. As described in Hilbe [2007], a Negative Binomial distribution may instead be
parameterized in terms of a mean parameter µ = r

(
1
p − 1

)
and a dispersion parameter θ = r. (We will

adopt this alternative parameterization for the remainder of this paper.) Then, for any µ ∈ R+ and θ ∈ R+,
the resulting probability mass function for the Negative Binomial random variable X ∼ NB(µ, θ) is
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P (X = k) =
µk

k!
Γ(θ + k)

Γ(θ)[µ+ θ]k
1(

1 + µ
θ

)θ , k ∈ Z+. (1)

Equation (1) can be shown to converge to the probability mass function of a Poisson random variable with
mean parameter µ as θ →∞ [Hilbe, 2007]. For this reason, the Negative Binomial may be considered as an
over-dispersed Poisson random variable with the dispersion controlled by the value of θ. Negative Binomial
models are useful as robust alternatives to the Poisson that allow the variance parameter to exceed the mean.
For instance, smaller values of θ result in a higher dispersion by adding more weight to the right tail of the
probability mass function, which necessarily results in a higher variance. When the value of θ is very small,
the Negative Binomial distribution exhibits a high degree of skewness. As a result of the extreme dispersion
of the Negative Binomial from the Poisson in this case, the sample mean X̄ of n i.i.d. NB(µ, θ) observations
may not be reasonably close to the Normal in distribution for small values of n. Wilcox [2005] warns that
standard confidence intervals based upon a Normal approximation may result in poor coverage in scenarios
such as this.

3 Gamma, Chi Square, and Bernstein Confidence Intervals

3.1 The Gamma Model

We propose the Gamma distribution as an approximate distribution for the sample mean X̄ of Negative
Binomial random variables. The Gamma approximation may be established in a limit theorem using Laplace
transforms. A Negative Binomial random variable Xi with parameters µ and θ and PMF (1) has a Laplace
transform given by:

FXi(λ) ≡ E [exp (−λXi)] =
(

1 + (1− e−λ)
µ

θ

)−θ
. (2)

Similarly, the sample mean X̄ of n i.i.d. Negative Binomial random variables with parameters µ and θ has
the Laplace transform

FX̄(λ) =
(

1 + (1− e−λ/n)
µ

θ

)−θn
. (3)

If θn converges to a positive constant γ as n→∞ and θ → 0, then the Laplace transform (3) converges to

FX̄(λ) =
(

1 +
λµ

γ

)−γ
. (4)

Meanwhile, a Gamma random variable Y with a probability density function given by

fa,b(x) =
baxa−1e−bx

Γ(a)
(5)

has a Laplace transform of

FY (λ) =
(

1 +
λ

b

)−a
. (6)

The Laplace transforms (4) and (6) are identical when a = γ and b = γ
µ . Therefore, the sample mean

of Negative Binomial random variables converges to a Gamma distribution with shape parameter a and
rate parameter b as n → ∞ and θ → 0. Stated another way, the Gamma assumption requires that θn is
sufficiently close to the limiting constant γ to ensure that the distribution of X̄ is approximated well by the
Gamma distribution. When this condition is satisfied, a Gamma confidence interval is expected to cover well.
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Constructing a 1− α confidence interval using the Gamma distribution requires estimating the parameters
a = γ = θn and b = γ

µ = θn
µ in terms of the estimates of µ and θ that are obtained from the data. Maximum

likelihood estimates for these parameters may be obtained using numeric techniques, or the Method of
Moments estimates µ̂ = X̄ and θ̂ = X̄/((s2/X̄) − 1) may be employed. We will rely upon the latter choice
as a default and provide a discussion of alternatives in Section 4.2. Once a and b are estimated, a 1 − α
confidence interval for µ is given by the (α/2)nd and (1− α/2)th quantiles of the Gamma distribution.

3.2 The Chi Square Approximation

We also propose the Chi Square (χ2) distribution as an approximate distribution for X̄. Under the assump-
tions of Section 3.1, X̄ approximately follows a Gamma distribution with parameters a = θn and b = θn

µ .
The Chi Square family of distributions is a special case of the more general Gamma. The corresponding case
occurs for the sample mean of Negative Binomial random variables when µ = 2nθ. If we consider the ratio
quantity

ratio =
µ

2nθ
, (7)

then, when ratio = 1, the Gamma parameters are a = θn = µ
2 and b = θn

µ = 1
2 , which collectively specify a

Chi Square distribution with µ degrees of freedom.

In general, using a one–parameter Chi Square model to approximate a function of two–parameter Negative
Binomial random variables lacks the two–parameter Gamma model’s flexibility. This necessarily limits the
use of Chi Square confidence intervals to situations in which the ratio quantity is reasonably close to 1.
With this in mind, we emphasize that the Chi Square model’s applicability should be carefully investigated
before it is utilized in a particular context. However, when the Chi Square model is reasonable, it allows for
the construction of a confidence interval based only upon the estimator X̄ of µ. Other techniques such as
the Gamma and Normal approximation also require an estimate s2 of σ2 that is considerably more variable
than X̄ at small sample sizes. We will propose some guidelines in Section 4.3 for the use of the Chi Square
approximation based upon a study of the ratio quantity (7)’s relationship to the method’s coverage proba-
bility. When applicable, Chi Square confidence intervals for µ may be constructed by estimating the degrees
of freedom with the sample mean X̄ and then computing the (α/2)nd and (1 − α/2)th percentiles of the
corresponding Chi Square distribution.

The Chi Square distribution may also be used to construct confidence intervals for the success probability
p under the traditional parametrization of the Negative Binomial distribution. On page 504, Casella and
Berger [1990] demonstrate that the quantity 2pY converges in distribution to a Chi Square random variable
with 2nr degrees of freedom, where Y is the sum of n i.i.d. Negative Binomial(r, p) random variables. When
the number of successes r is known, a 1− α confidence interval for p may be written in terms of Y and the
quantiles of the Chi Square distribution.

3.3 Bernstein’s Inequality

Bernstein’s Inequality [Bernstein, 1934] provides tail probability bounds on sums of independent random
variables. Selecting an appropriate variant requires an examination of the assumptions underlying a par-
ticular study. More classical versions of Bernstein’s Inequality were derived for uniformly bounded random
variables, but Negative Binomial random variables are not bounded above. We will first address this problem
through a version of Bernstein’s Inequality that does not rely upon an assumption of boundedness. We will
then provide an alternative methodology based upon this assumption. Although it does not directly apply to
Negative Binomial random variables, this Bounded Bernstein method may be appropriate when a Negative
Binomial model is considered as an approximate distribution for bounded data.
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3.3.1 The Unbounded Bernstein Method

We will begin by deriving a confidence limit using a variant of Bernstein’s Inequality that does not require an
assumption of boundedness. As part of Lemma 8 on pages 366 and 367, Birge and Massart [1998] show that
a knowledge of a random variable’s moment generating function is sufficient to apply the classical version of
Bernstein’s Inequality given by Uspensky [1937]. Suppose that Zi, 1 ≤ i ≤ n, are i.i.d. negative binomial
with parameters µ and θ, and let Yi = Zi − µ. Then,

logE [exp(yYi)] = −θ log
(

(1− ey)µ
θ

+ 1
)
− yµ. (8)

From [Uspensky, 1937],

P

[
n∑
i=1

Yi ≥ nε

]
≤ exp

[
inf
y≥0

(
−nyε+

n∑
i=1

logE[eyYi ]

)]
. (9)

Substituting (8) into (9), we obtain the following probability bounds:

P

(
n∑
i=1

Yi > nε

)
≤
(

θ + µ

nε+ θ + µ

)−θ ( (θ + µ)(nε+ µ)
µ(nε+ θ + µ)

)−nε−µ
, (10)

and

P

(
n∑
i=1

Yi < −nε

)
≤
(

θ + µ

nε+ θ + µ

)−θ (
µ(nε+ θ + µ)

(θ + µ)(nε+ µ)

)nε+µ
. (11)

Equation (11) comes from using the classical inequality with Yi replaced by −Yi. With X̄ serving as the
empirical mean of Zi, 1 ≤ i ≤ n, the symmetry of Equations (10) and (11) imply that we can construct a 1−α
confidence interval by setting the right side of either equation equal to α/2. This amounts to constructing
an interval of the form X̄ ± ε, where ε is the solution to the equation(

θ + µ

nε+ θ + µ

)−θ ( (θ + µ)(nε+ µ)
µ(nε+ θ + µ)

)−nε−µ
= α/2. (12)

However, solving Equation (12) is not easily amenable to analytic methods. For the purposes of implemen-
tation, we instead rely upon a simple numeric root–finding procedure that selects the best among candidate
values of ε at evenly spaced intervals over a range (e.g. searching in increments of 0.1 from 0 to 100) and then
searches within a small neighborhood of this candidate for an improved solution. Although this procedure is
not guaranteed to provide a good approximation of the true value of ε that solves Equation (12), in practice
it often performs reasonably well without requiring significant computation. However, further investigation
of the solution to Equation (12) may lead to improved performance of the confidence interval.

3.3.2 The Bounded Bernstein Method

We will also construct a Bernstein confidence interval under a heuristic assumption of uniformly bounded
data. For notational purposes, we will refer to the interval constructed for unbounded data as the Unbounded
Bernstein method and that proposed for bounded data as the Bounded Bernstein procedure. As stated
in van der Laan and Rubin [2005], suppose that Z1, . . . , Zn are independent random variables such that

Zi ∈ [a, b] ∈ R with probability one and 0 <
n∑
i=1

V ar(Zi)/n ≤ σ2. Then, for all ε > 0,

P

(
1
n

n∑
i=1

(Zi − E[Zi]) > ε

)
≤ exp

[
−1
2

(
nε2

σ2 + ε(b− a)/3

)]
, (13)

which in turn implies that
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P

(
1
n
|
n∑
i=1

(Zi − E[Zi])| > ε

)
≤ 2 exp

[
−1
2

(
nε2

σ2 + ε(b− a)/3

)]
. (14)

We seek a 1− α confidence interval (CI) of the form X̄ ± ε so that the distance ε extends sufficiently far to
ensure with a probability of at least 1−α that the experiment will result in a confidence interval containing
the true mean µ. The appropriate value of ε may be selected by setting the right hand side of Equation (14)
equal to α. Then, by applying the Quadratic Formula, the value of ε is given by

ε =
−2
3 (b− a) log(α/2)±

√
4
9 (b− a)2[log(α/2)]2 − 8nσ2 log(α/2)

2n
. (15)

We will select the value of ε that adds the square root in Equation (15). The appeal of using the Bounded
Bernstein method in the construction of 1−α confidence intervals is that it only requires three assumptions
[Rosenblum and van der Laan, 2008]: (i) all observations are independent, (ii) the maximum deviation from
the mean is bounded by a known constant, and (iii) the variance is bounded by a known constant. By
contrast, the CLT assumption underlying the Wald method’s Normal approximation and the Gamma as-
sumption underlying the Gamma and Chi Square methods are considerably stronger requirements. Therefore,
Bounded Bernstein confidence intervals may be applied more widely than parametric methods. Similarly,
confidence intervals may also be constructed from other tail bounds such as Bennett’s Inequality [Bennett,
1962, 1963]. Hoeffding’s Inequality [Hoeffding, 1963] may in fact be applied under only assumptions (i) and
(ii). The Berry-Esseen Inequality [Berry, 1941, Esseen, 1942, 1956, van Beek, 1972] also requires just the
three above assumptions but only results in non-vacuous confidence intervals for n ≥ 1024 [Rosenblum and
van der Laan, 2008], which necessarily limits its application as an alternative to the Normal approximation.

The formulation for ε in Equation (15) depends upon the data’s bounding range [a, b] and the variance
σ2. In the case of i.i.d. observations of Negative Binomial random variables, the lower bound is a = 0
because these variables draw from a non-negative sample space. However, Negative Binomial variables
are unbounded, which violates assumption (ii) underlying Bernstein’s Inequality in the Bounded Bernstein
method. Therefore, the Bounded Bernstein confidence interval is only appropriate if the Negative Binomial
distribution is considered as an approximate distribution for bounded data. Furthermore, in small sample
sizes, the data-based unbiased estimate s2 of the variance σ2 exhibits a high degree of variability and
therefore may greatly underestimate the value of σ2. Without accurate upper bounds for b and σ2, Bounded
Bernstein 1 − α confidence intervals for µ are not necessarily exact. Rosenblum and van der Laan [2008]
provide some practical recommendations to address these concerns by relying upon known information
about b and σ2 collected in previous studies. Other possibilities include selecting b via a heuristic such as
the 99.99th percentile of the Negative Binomial distribution with µ and θ estimated from the data. The only
strict requirement for the Bounded Bernstein method is that we select a value of b at least as large as the
maximum observed value. By default, we will rely upon the following data–based heuristic:

b =
n+ 1
n

max (X1, . . . , Xn) . (16)

This heuristic was selected to provide an estimated upper bound in terms of the data and the sample size
n. This choice of b will be considered in the simulation studies of Section 4, and Section 4.4 will examine b’s
impact on the coverage probability of corresponding Bounded Bernstein 1− α confidence intervals.

Although the Bounded Bernstein method is not justified for unbounded data, the Negative Binomial model
is often nonetheless considered as an approximate distribution for bounded data. The case studies of Section
5 provide examples in the serial analysis of gene expression and an examination of traffic flow in a commu-
nications network in which the underlying data are bounded but are reasonably approximated by Negative
Binomial models.
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4 Simulation Studies: Comparing the Wald, Bootstrap, Chi Square,
Gamma, and Bernstein Confidence Intervals for µ

4.1 Coverage Probabilities and Lengths of the Proposed Methods

We designed two simulation studies to compare the proposed methods for efficacy. The first simulation
compared the Wald (Normal Approximation), bootstrap, Chi Square, Gamma, and both the Bounded and
Unbounded Bernstein methods of constructing 1 − α confidence intervals for µ. We selected the computa-
tional parameter sets µ = {5, 10}, θ = {0.1, 1, 10, 10000}, and n = {10, 20, . . . , 100}, which are summarized in
Table 1. Each combination of values for µ, θ, and n led to a unique and independent simulation experiment.
We selected these values of θ to allow for both high dispersion (when θ is low) and low dispersion (when θ is
high), and we considered both small and moderate values of n to determine cut-off points at which standard
methods like the Wald and bootstrap would overtake the proposed methods in terms of coverage. Each
experiment consisted of 10,000 independent trials, and on each trial we generated n i.i.d. NB(µ, θ) random
variables in the R statistical programming language. With α = 0.05, we then computed 95% confidence
intervals for µ based upon the data collected in the trial. The Wald method constructed confidence inter-
vals by adding and subtracting 1.96 estimated standard errors to the sample mean. Bootstrap confidence
intervals were computed according to the BCA method [Efron and Tibshirani, 1994] based upon B = 10, 000
resamplings from the data collected in each trial. We estimated the coverage probability of each method
at each choice of parameters by computing the empirical proportion of trials within the experiment that
resulted in a confidence interval containing the true value of µ.

We then undertook a second independent simulation to examine a greater variety of small θ values and
sample sizes. As summarized in Table 1, we considered values of θ ∈ {0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5}
at sample sizes n ∈ {5, 10, . . . , 100} while maintaining the µ values and number of trials as in the first
simulation. In this second simulation, the bootstrap method was not employed because of its heavy com-
putational requirements and its observed similarity in coverage to the Wald method in the first simulation.
Computing a single coverage probability with the bootstrap with 10, 000 resamplings in each of 10, 000 size
n data sets requires generating n ∗ 108 random numbers. In total, Simulations 1 and 2 required nearly a
week of continuous computation, of which all but a few hours were spent on the bootstrap.

Figures 1–6 provide summaries of each method’s coverage and length across the simulation experiments.
In judging the quality of a method’s performance, we adopt the view that its coverage probability is of
primary concern and that length is a secondary characteristic that can be used to choose among methods
that produce similar results. Because a confidence interval is interpreted as a plausible range of values for µ
in inferential settings, a shorter interval is typically preferred, but this is only the case so long as the method
can be shown to cover reliably. Therefore, in comparing the simulation results obtained by the proposed and
standard methods, we primarily seek methods that can produce coverages that are reasonably close to the
desired level of 1− α.

As expected, the bootstrap (Figure 1) and Wald (Figure 2) methods appear to cover well at large sample
sizes. When θ ≥ 1, the coverage probability begins to exceed 0.9 even for sample sizes as small as 20.
However, these standard techniques perform considerably worse at higher dispersions. For instance, when
µ = 5 and θ = 0.05 or smaller, even a sample size of 100 is insufficient for the Wald method to exhibit a
coverage probability of at least 0.85. Likewise, at the more moderate case of µ = 5 and θ = 0.2, a sample
size of 30 also leads to a coverage of less than 0.85.

Meanwhile, the Bounded Bernstein (Figure 3) and Chi Square (Figure 4) confidence intervals appear to
improve considerably on the standard techniques in terms of coverage at small sample sizes and high disper-
sions. When µ = 5 and θ = 0.05, the Bounded Bernstein confidence interval crosses a coverage threshold
of 0.9 and the Chi Square that of 0.95, both as early as n = 60. These methods appear to exhibit greater
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coverages uniformly across the small values of θ considered in Simulation 2. Furthermore, when µ = 5 and
θ = 0.2, the Bounded Bernstein and Chi Square methods both cover above 0.95 at n = 30.

However, the proposed Gamma (Figure 5) and Unbounded Bernstein (Figure 6) methods appear to perform
erratically. The Unbounded Bernstein’s coverages do not necessarily improve as the sample size increases.
The Gamma method covers similarly to the Wald method in some regions (though it generally lags in cov-
erage by a few percent), but its performance drops considerably at larger values of θ. While both techniques
are grounded in theory, we can postulate a number of reasons why these methods may not cover well. The
tail probability bound used in the variant of Bernstein’s Inequality considered for the Unbounded version is
not necessarily tight, and the numeric root–finding method used to approximate the value of ε that solves
Equation (12) may introduce additional error. By contrast, the Gamma method only applies if n is suf-
ficiently large and θ sufficiently small to ensure that θn is close to a limiting constant γ. This Gamma
assumption appears to be violated at the larger values of θ considered in the simulations. Moreover, both
the Unbounded Bernstein and Gamma methods rely upon accurate estimates of the dispersion parameter θ,
which are typically unreliable in many of the situations encountered in the simulation studies. Section 4.2
will examine this issue in greater detail. With this said, it does appear that the Gamma method covers rea-
sonably well when both θ is small and n is large, which correspond to the lower right corner of the coverage
plots in Figure 5. Section 4.5 will investigate the Gamma’s performance in large n and small θ settings in
greater detail.

The candidate methods’ coverages in the simulation experiments may be compared directly by examining
Figures 1–6. In comparing any two estimated coverage probabilities at a specific value of n, µ, and θ, the
difference in proportions has a margin of error of no more than 1.39% for a two-sided test based upon the
simulation experiment’s 10,000 trials. This worst-case error margin is obtained under the extreme assump-
tion that the true coverage of each method is actually 50%. If the coverage of each method is actually 95%,
then this margin of error drops to 0.6%. Any observed difference that is larger than the margin of error may
be considered significant at the 5% level.

Meanwhile, each method’s coverage summaries are accompanied by corresponding plots depicting the av-
erage length of the confidence intervals in the simulation experiments. As expected, the Chi Square and
Bounded Bernstein methods generally produce wider intervals than the Wald and bootstrap under high
dispersion, and this increase in length corresponds to greater coverages. However, the Chi Square interval
does not decrease in length as the sample size increases because its degrees of freedom is only specified by
the sample mean. For fixed values of µ and θ, the ratio quantity of Equation (7) decreases for larger sample
sizes. Taken together, these facts imply that ratios below one will result in a Chi Square confidence interval
that over–covers the mean. We will further substantiate this claim in Section 4.3.

Figure 7 provides concrete recommendations on which confidence intervals perform best across all values of
µ, θ, and n considered in the two simulation experiments. These recommendations are based upon which
method exhibited a coverage closest to 95% in the simulation experiments. It is important to note that these
recommendations allow for under-coverage; in the case of µ = 5, θ = 0.5, and n = 100, the Wald Method
covers with an estimated probability of 93.53% and the Gamma at 92.34% whereas the Bounded Bernstein
and Chi Square methods cover at 99.39% and 100%, respectively. Also, it is important to remember that
none of the proposed methods perform particularly well when both n and θ are extremely small. We also
provide corresponding recommendation plots for length that indicate approximate cut-offs at which the Wald
confidence interval shrinks to a smaller length than that of the Chi Square method. Because of their erratic
coverages, the recommendation plot for length does not incorporate results obtained from the Gamma or
Unbounded Bernstein methods.

One caveat to the simulation results presented here is the special case of a data set containing all zeros.
Figure 8 shows the percentage of all–zero data sets generated in the simulation experiments. When such
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data arose, we adopted the convention that all methods should produce a condence interval containing only
the point zero, and therefore the interval would not cover the mean in this circumstance. This only affected
the results at small values of both n and θ; for instance, in the experiment with µ = 10, θ = 0.025, and n = 5,
51.44% of all data sets produced contained only zeros. However, most scientic studies would not produce a
condence interval for µ based upon a data set of all zeros. If one is willing to condition on observing non–zero
data, then the coverage probabilities at these small values of n and θ may be adjusted by computing the
proportion of intervals that covered µ among the non–zero data set. For instance, the Bounded Bernsteins
total coverage was 33.66% when µ = 10, θ = 0.025, and n = 5, and so its coverage among the non–zero data
sets is actually 100% ∗ 3366/(10000− 5144) = 69.316%.

Sim. µ θ n trials
1 {5, 10} {0.1, 1, 10, 10000} {10, 20, . . . , 100} 10000
2 {5, 10} {0.025, 0.05, 0.075, 0.1, 0.2, . . . , 0.5} {5, 10, . . . , 100} 10000

Table 1: Parameter values for µ, θ, n, and the number of trials in the two simulation experiments of Section
4. The first simulation compared the Unbounded and Bounded Bernstein, Chi Square, Gamma, Wald, and
bootstrap confidence interval methods at each combination of the first set of parameter values. The second
simulation compared the Wald, Unbounded and Bounded Bernstein, Gamma, and Chi Square methods at
each combination of the second set of parameter values.

4.2 The Accuracy of θ Estimates

Both the Gamma model and the Unbounded Bernstein method rely upon an estimate of θ to produce a
1 − α confidence interval for µ. In addition to the Method of Moments estimator θ̂ = X̄/((s2/X̄) − 1),
Piegorsch [1990] and Clark and Perry [1989] have proposed iterative maximum likelihood estimation (MLE)
procedures. Ara and Ferreri [1997] provide conditions for the existence and uniqueness of the MLE. Mean-
while, Pieters et al. [1977] compares an MLE procedure to the Method of Moments at small sample sizes.
The general consensus of these previous studies is that estimating θ is a difficult problem; MLE methods
appear to break down when the estimate s2 of σ2 is less than or equal to the estimate X̄ of µ. Although
the MLE estimator was preferred, implementations such as that in the glm.nb function of the R statistical
programming language tend to produce computational errors that prevented its application in the simula-
tion experiments of the previous section. Similarly, the Method of Moments estimator frequently results in
a non–positive approximation of the strictly positive parameter θ in this situation. For the purposes of the
simulations, we chose to handle this issue by truncating all non–positive estimates of θ to the value of 0.001
before applying the confidence interval procedures.

Figure 9 provides summary information about the Method of Moments estimates (without truncation) of θ
over the range of experiments conducted in Simulations 1 and 2. For each combination of µ, θ, and n in the
simulations, we provide the average estimation error across the 10,000 simulated data sets. For small values
of θ, the median estimate is reasonably reliable even at small sample sizes, but the average and standard
deviation can be greatly affected by extreme data sets. In general, we observed that a sample size of at least
30 or 40 is required to ensure that the Method of Moments estimator is not highly vulnerable to extreme
data sets and may need to be as large as 85 to ensure reliability in the smallest values of θ studied in the
simulations.

While MLE or other improved estimators of θ may lead to stronger performance of the Gamma and Un-
bounded Bernstein confidence intervals, it appears that their simulation results were not greatly impacted by
the selection of the Method of Moments estimator. At moderate sample sizes, the Method of Moments typi-
cally produced estimates that were reasonably close to the true value of θ, and its more erratic performance
at smaller sample sizes corresponds to cases in which the MLE is also expected to have problems.

9

Hosted by The Berkeley Electronic Press



0 20 40 60 80 100

−4

−2

0

2

4

6

8

Sample Size n

lo
g(

th
et

a)

Coverage of Bootstrap Method for mu =  5

●

●

●

coverage >= 0.95
0.9 <= coverage < 0.95
0.85 <= coverage < 0.9
0.75 <= coverage < 0.85
0.5 <= coverage < 0.75
coverage < 0.5

0 20 40 60 80 100

−4

−2

0

2

4

6

8

Sample Size n
lo

g(
th

et
a)

Coverage of Bootstrap Method for mu =  10

●

●

●

coverage >= 0.95
0.9 <= coverage < 0.95
0.85 <= coverage < 0.9
0.75 <= coverage < 0.85
0.5 <= coverage < 0.75
coverage < 0.5

0 20 40 60 80 100

−4

−2

0

2

4

6

8

Sample Size n

lo
g(

th
et

a)

Length of Bootstrap Method for mu =  5

●

mean length < 5
5 <= mean length < 10
10 <= mean length < 25
25 <= mean length < 50
mean length >= 50

0 20 40 60 80 100

−4

−2

0

2

4

6

8

Sample Size n

lo
g(

th
et

a)

Length of Bootstrap Method for mu =  10

●

mean length < 5
5 <= mean length < 10
10 <= mean length < 25
25 <= mean length < 50
mean length >= 50

Figure 1: Simulation results for the Bootstrap method. The plots include summaries of coverage and length
for each value of µ. The Bootstrap method was only considered for the first simulation experiment due to
its computational requirements.
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Figure 2: Simulation results for the Wald method. The plots include summaries of coverage and length for
each value of µ. Results from the two simulation experiments are concatenated onto a single plot.
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Figure 3: Simulation results for the Bounded Bernstein method. The plots include summaries of coverage
and length for each value of µ. Results from the two simulation experiments are concatenated onto a single
plot.
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Figure 4: Simulation results for the Chi Square method. The plots include summaries of coverage and length
for each value of µ. Results from the two simulation experiments are concatenated onto a single plot.
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Figure 5: Simulation results for the Gamma method. The plots include summaries of coverage and length
for each value of µ. Results from the two simulation experiments are concatenated onto a single plot.
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Figure 6: Simulation results for the Unbounded Bernstein method. The plots include summaries of coverage
and length for each value of µ. Results from the two simulation experiments are concatenated onto a single
plot.
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Figure 7: Recommendation plots based upon coverage and length in the simulation experiments. Selections
were made according to the method whose coverage was closest to 95%. Length recommendations were only
chosen among the Wald, Bootstrap, Chi Square, and Bounded Bernstein methods.
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Figure 8: The proportion of all–zero data sets in the simulation experiments.
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Figure 9: Quality measurements for the Method of Moments estimates of θ obtained in the simulation
experiments. We present the average absolute estimation error along with the percentage of θ estimates that
fell below zero in each experiment.
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4.3 The Applicability of the Chi Square Method

Section 3.2 introduced the Chi Square approximation to the Gamma model of Section 3.1. This special case
occurs when the ratio quantity of Equation (7) is equal to one. The principle advantage of the Chi Square
method is that it allows for the construction of 1−α confidence intervals without relying upon the extremely
variable estimator s2 of the variance σ2, which is especially useful at small sample sizes. However, this
implies that the length of the interval is only dependent upon the sample mean, so the Chi Square interval’s
length will be approximately the same regardless of the value of θ. Furthermore, for fixed values of µ and
θ, the ratio quantity decreases as a function of sample size. Therefore, we expect the Chi Square method
to undercover for ratios above 1 and over–cover for ratios below one. We are interested in determining how
robust the Chi Square approximation is to deviations of this ratio.

We conducted a third simulation to gain insight on the Chi Square’s coverage at a variety of ratio quantities.
Each experiment consisted of selecting µ uniformly on (1, 50), θ uniformly on (0, 1), and the sample size n
uniformly on the integers in {5, 6, . . . , 150}. For each combination of n, µ, and θ, we randomly generated
10, 000 data sets of n i.i.d. NB(µ, θ) random variables, applied the Chi Square method to each data set,
and estimated the method’s coverage probability by the empirical proportion of Chi Square 95% intervals
that contained the selected value of µ. We conducted a total of 100, 000 such experiments to collect data at
a wide range of ratio quantities.

Figure 10 displays boxplots of the ratio distribution for the simulation data partitioned into coverage groups.
For magnification purposes, the plot restricts attention to the cases that resulted in a coverage of at least
50%. The 4% of the simulations not pictured generated extremely large ratio quantities: approximately 1%
of all simulations resulted in a ratio larger than 30, and the maximum observed value was 75, 170. Among the
simulations with ratios less than 8, the correlation between the ratio quantity and the Chi Square method’s
coverage probability was -0.98. As expected, Figure 10 suggests that ratio values less than 1 typically over–
cover the mean while ratios below 1 tend to undercover. It also appears that the Chi Square method will
cover at a rate of at least 80% when the ratio quantity is below 2.

With these observations in mind, it appears that an empirical estimate of the ratio quantity of Equation (7)
can provide some insight into the applicability of the Chi Square method. Ratios less than 1 will typically
result in a confidence interval that over–covers because it is too wide, whereas ratios greater than 1 indicate
intervals that are too narrow and will undercover µ. Because of its strong relationship with coverage, the
ratio quantity can be used as a guide in selecting among candidate confidence intervals even when the Chi
Square procedure is not applicable. For instance, if the ratio quantity is 3, the Chi Square method might
only produce an interval with a coverage of 75%, but the length of this interval can be used as a reference in
the comparison of other candidate procedures so that a wider interval is ultimately selected. Furthermore,
when the ratio quantity is less than 1, the Chi Square interval’s length can be viewed as a maximum range
so that any wider interval may be immediately excluded.

4.4 The Upper Bound b in Bounded Bernstein Confidence Intervals

Although it is intended to be an exact method, the simulation results of Section 4 show multiple examples in
which the Bounded Bernstein confidence intervals as implemented result in estimated coverage probabilities
well below 95%. These results were based upon the unbiased estimate s2 of the variance σ2 and an upper
bound b given by Equation (16). Because s2 is highly variable at small sample sizes, it may result in values
much smaller than σ2. Likewise, it is unclear how to optimally select the value of b because the Negative
Binomial random variables in question are unbounded and highly skewed. If we are primarily concerned with
producing exact confidence intervals through the Bounded Bernstein method, there is no harm in greatly
overestimating σ2 and b. However, in practice we would prefer to construct intervals that are as narrow
as possible while maintaining the minimum desired coverage. In this section we will examine the impact
of selecting various choices of b given an estimate s2 of σ2 in the context of the two simulation studies of
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Section 4.1.

A fourth simulation was conducted to repeat the simulations of Section 4.1 for only the Bounded Bernstein
method. In this case, a variety of b values ranging up to 106 were substituted in place of the heuristic of
Equation (16) used previously. Figure 11 depicts the best available value of b and the resulting coverage
for each combination of µ, θ, and n for each simulation experiment. In general, larger values of the upper
bound b increase the length and coverage of the Bounded Bernstein confidence interval, and sufficiently
large values of b can be found to produce an exact method. Especially at high dispersions and low sample
sizes, it appears that the heuristic (16) choice of b is considerably smaller than would be required to cover
appropriately. Based upon our observation of the simulation results, it appears to be reasonable to roughly
double the value of b given by the heuristic (16). For instance, when µ = 5, θ = 0.05, and n = 60, the
Bounded Bernstein method resulted in a coverage of 90.85%, which roughly corresponds to a b value of 40.
Meanwhile, a b value of 80 results in a coverage of 96.74%.

While refinements of the selection of b can lead to improvements over the heuristic of Equation (16), it
is unclear how this selection should be adjusted as a function of sample size and the Negative Binomial
parameters. However, such adjustments are considerably more straightforward than revising the estimate of
variability. For a given estimate s2 of the variance σ2, a sufficiently large selection of the upper bound b will
result in a coverage at or above the desired level. Therefore, we recommend that the researcher fine-tune
the Bounded Bernstein confidence interval in a situation-dependent manner.

4.5 Large Sample Performance of the Gamma Method at High Dispersions

Although the Gamma method is grounded in the limit theorem of Section 3.1, its performance in the sim-
ulation studies of Section 4.1 was quite erratic. In most of these experiments, the Gamma method either
lagged the Wald in coverage or produced unreliable confidence intervals. We previously speculated that this
poor performance was due in part to the difficulty of accurately estimating the dispersion parameter θ at
small values. However, at many combinations of µ and n, the Gamma method’s coverage actually grew
worse for larger values of θ. This phenomenon is easily explained by returning to the underlying Gamma
assumption upon which the method is based. In particular, the Gamma approximation to the distribution of
the sample mean X̄ relies upon n growing sufficiently large and θ sufficiently small to ensure that θn is rea-
sonably close to its limiting constant γ. Therefore, as θ grows larger, this Gamma assumption becomes less
reasonable. Moreover, the Gamma method appeared to perform best in the simulation experiments corre-
sponding to the largest values of n and smallest values of θ considered (e.g. the lower right corner of Figure 5).

With this in mind, we designed a fifth simulation to compare the performance of the Gamma and Wald
methods at a variety of small values of θ and large values of n. In this setting, the Gamma assumption
should be met, and it is a reasonable question as to what sample sizes are sufficient to overcome extremely
small values of θ to ensure that the CLT assumption underlying the Wald method is also reasonable. The
simulation was modeled after those undertaken in Section 4.1. The combinations of n, µ, and θ are displayed
in Table 2. Coverages were estimated based upon the empirical proportion of confidence intervals across
10, 000 trials. The Method of Moments estimator of θ was employed with a minimum value of 10−6 imposed
to ensure non–negativity. All coverages were left unadjusted in the case of data sets consisting of all zeros.
However, because of the large sample sizes, only the combination of µ = 10, θ = 10−4, and n = 500 resulted
in a sizable proportion of data sets consisting only of zeros.

Figure 12 displays a comparison of the Wald and Gamma methods across the simulation parameters. In
general, it appears that the Gamma Assumption is validated in these large sample sizes and high dispersions,
and the coverage of the Gamma method improves as n grows larger and θ smaller. Moreover, the Gamma
method appears to improve upon the Wald method in nearly all of the examples considered. There are
many cases in which the Gamma method both covers better and produces a shorter average interval length
than the Wald method. Therefore, it appears to be the case that the Gamma approximation converges
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Figure 11: Refinements to the Bounded Bernstein method that can arise as a result of the proper selection
of the data’s upper bound b. For each value of µ in the first simulation experiment, the optimal value of b
and the corresponding coverage are depicted above.
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more quickly than Normal theory in terms of sample size when the dispersion is high. This may be in part
due to the fact that the Gamma method is guaranteed to produce a non–negative interval and also lacks
the Normal method’s symmetry requirement to approximate a skewed distribution. Therefore, the Gamma
method appears to be a more suitable method than the Wald for large–sample inference when the dispersion
is high.

Methods Wald, Gamma
µ 10

log10(θ) {−4,−3.75,−3.5,−3.25,−3,−2.75,−2,−1}
n {500, 1000, 1500, . . . , 4500, 5000, 10000}

Trials 10000
min θ̂ 10−6

Table 2: Parameter values for the simulation experiment of Section 4.5.

5 Data Analysis

The Negative Binomial model is particularly applicable as a generalization of the Poisson random variable
that allows for the variance parameter to differ from the mean. In this section we will consider examples
from the serial analysis of gene expression (SAGE) and network traffic flow data and explore the utility of
the proposed methods as alternatives to the Wald and bootstrap confidence intervals. In doing so, we seek
to better elucidate the strengths and weaknesses of the candidate procedures.

5.1 SAGE Data

A serial analysis of gene expression (SAGE) is used in molecular biology to estimate the relative abundance
of messenger ribonucleic acid (mRNA) molecules based upon the frequency of corresponding 14 base pair
tag sequences that are extracted from a cell [Velculescu et al., 1995]. Because the cost of sequencing can
be prohibitive, the sample size is often limited to a small quantity. Robinson and Smyth [2008] propose a
Negative Binomial model for the tag counts of SAGE data and consider the problem of small sample esti-
mation of the dispersion parameter. In this model, the tag counts are assumed to be independent Negative
Binomial random variables with common dispersion for the purposes of estimation in spite of the possibility
of related biological functions and expression co-regulation [Robinson and Smyth, 2008]. We consider this
Negative Binomial model in the context of Sample GSM15034 of SAGE data stored at the National Center
for Biotechnology Information website for the United States’ National Institutes of Health:

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM15034).

The data, which are shown in Table 3, depict the n = 20 most frequent tags and their corresponding counts
in a sample taken from the cells of mus musculus. The sample mean and standard deviation are X̄ = 306.1
and s = 786.15, respectively. We estimated the value of θ to be 0.6269 with a standard error of 0.1676.
These estimates were obtained by applying an iterative maximum likelihood estimation (MLE) procedure
within the glm.nb method of the R statistical programming language to the data. It should also be noted
that MLE procedures typically underestimate variance parameters (and therefore the dispersion) [Robinson
and Smyth, 2008], so θ may in fact be smaller than 0.6269.

However, even if the tag counts in the SAGE data may be assumed to be independent with a common
dispersion, it is not at all clear that they are identically distributed. Robinson and Smyth [2008] consider a
model in which each tag count has its own mean parameter, and so the data are only i.i.d. if each tag has
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Figure 12: Simulation results comparing the Gamma and Wald method for coverage and length at large
sample sizes and high dispersions.
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the same mean. The Chi Square, Gamma, Wald, and bootstrap confidence intervals may not necessarily be
applicable when the data are not i.i.d., but both Bernstein methods only require independent data. Further-
more, the Bounded Bernstein method only applies if the data are uniformly bounded. Such an assumption
seems reasonable in this context because the tag counts cannot exceed the length of the mRNA sequence.
Therefore, the Negative Binomial model may be seen as merely an approximation to the true distribution
of the tag counts, and the Bounded Bernstein method seems reasonable in this context. Based upon the
underlying assumptions of each technique, Table 4 displays 95% confidence intervals for the mean µ tag
count computed according to the Unbounded and Bounded Bernstein, Chi Square, Wald, bootstrap, and
Gamma methods based upon the SAGE tag count data of Table 3.

The 95% confidence intervals of Table 4 simultaneously illustrate many of the strengths and weaknesses
of each method. Both the Bounded Bernstein and Wald intervals include a range of negative numbers as
possible values for the mean µ, which is unreasonable for Negative Binomial random variables because they
draw from a non-negative sample space. By contrast, the Chi Square, Gamma, and bootstrap results are
assured to be non-negative. One advantage of using the Gamma approximation over the Wald method
when its Gamma assumption is reasonable is that it produces a confidence interval of similar width that
is also guaranteed to be positive. The simulation results of Section 4 suggest that the Wald, Gamma, and
bootstrap confidence intervals will under-cover µ at small values of n and θ, and so it is not surprising that
the Bounded Bernstein interval is much wider. However, the Chi Square confidence interval is considerably
more narrow than those of the Wald and bootstrap. This is not surprising because the ratio quantity (7) has
an estimated value of 12.21. Because this ratio is much larger than 1, we expect the Chi Square method to
significantly undercover µ. The findings of Section 4.3 suggest that a ratio of 12.21 will result in a coverage
well below 50%. Although the Chi Square method performs poorly in this circumstance, this interpretation
of the ratio quantity provides a strong indication that the wider intervals produced by other methods are
more reasonable for this context.

In selecting among the candidate confidence intervals of Table 4, we recommend choosing the Bounded
Bernstein result for two reasons: first, the simulation studies suggest that this method improves upon the
coverage of the Wald, Gamma, and bootstrap procedures at small values of n and θ. Second, the assumption
of independent data is more reasonable than that of i.i.d. data, and only the Unbounded and Bounded Bern-
stein methods remain robust in this setting. Although its negative left endpoint limits the interpretation of
the confidence interval, the Bounded Bernstein method at least suggests that a wider range of values for µ
should be considered than those reported by the Wald, Gamma, and bootstrap results. In selecting among
the remaining confidence intervals, the bootstrap and Gamma results are expected to exhibit similar cover-
age to that of the Wald while maintaining a positive left endpoint. By contrast, the Chi Square confidence
interval does not appear to be a good fit for this combination of n, µ, and θ.

5.2 Traffic Flow Data

We now consider an example arising from the analysis of traffic flow data in an internet communications net-
work. Sanchez and He [2005] seek to estimate the mean packets per second (PPS) flowing through the network
and propose a Negative Binomial model for the packet counts. The data, which are available at the Lawrence
Berkeley National Laboratory’s website (http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html), consist
of packet counts at each of n = 102 consecutive seconds. It is presumed that packets arrive according to
a Poisson process with dispersion, so a Negative Binomial model is suitable for this analysis. This again
raises the question of whether the data are actually bounded. Communications networks typically operate
under a capacity constraint that suggests bounded data; therefore, it seems reasonable to assume that the
Bounded Bernstein method is also appropriate in this scenario. The sample mean and standard deviation of
the data are X̄ = 310.31 and s = 94.54, respectively. We again used the glm.nb method in R to estimate
the dispersion as θ̂ = 10.59 with a standard error of 1.52. Although this example has a similar sample mean
to that of the SAGE data above, the values of n and θ are considerably larger in this case.
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Tag Count
TGAGCAAAGCCACC 3581
CATGTCGACCAGCC 657
TGAGCGCATGGGTC 428
CAGGCAGTGACAGC 170
CAGGTCGCGAAGGG 143
CTGGAGGACCCATG 138
CCACCAGGCAGCTC 122
CGAGCAAATGCCAG 116
CCATGCCAGGCAAT 98
CCCAGCCATCCCAT 78
CCAAAGGAGAGGGC 74
CACCTGGCGTCATG 74
TTAAACGGCGGCTG 66
TGGCCTGAAGAGCA 65
CTAACGGCCGAGAT 62
TGACCTTGCATGTA 54
CTACCGATGGCTGT 53
CAGGACACCACATC 50
CTGGGAGGTCAGGC 48
CTGCCCAATTTGCC 45

Table 3: SAGE Sample GSM15034 taken from mus musculus displaying the 20 most frequent tags and their
corresponding counts in the SAGE sample.

In the simulation studies of Section 4, the most similar case to the current example is that of n = 100 and
θ = 10. At larger values of n and θ, the simulation results generally suggest that the Wald and bootstrap
methods perform well in terms of coverage, whereas the Bounded Bernstein and Chi Square techniques gen-
erally over–cover the mean µ. Meanwhile, it is unclear whether the Gamma assumption is reasonable at
this combination of n and θ. Table 5 displays 95% confidence intervals for the mean PPS. The Wald and
bootstrap methods result in very similar confidence intervals. Here the Bounded Bernstein and Chi Square
intervals are considerably wider than those of the Wald, Gamma, and bootstrap, which all offer similar
results. The Unbounded Bernstein method actually produces the most narrow interval. While its selected
value of ε appears to almost exactly solve Equation (12), the simulation results suggest that this Unbounded
Bernstein method tends to undercover while the Wald and bootstrap results are reasonably accurate. With
a ratio quantity of 0.14, the Chi Square method is expected to severely overcover because its approxima-
tion is not sufficiently close to the Gamma model, which suggests that shorter intervals are more appropriate.

The simulation results of Section 4 suggest that the Wald and bootstrap methods cover µ with a probability
very close to the desired 95% for larger values of n and θ while the Bounded Bernstein and Chi Square
methods tend to over–cover the mean. Because the Wald and bootstrap results are similar, we recommend
selecting either as the preferred confidence interval in this setting. Therefore, it seems reasonable to believe
that the mean traffic flow of the network is somewhere between approximately 292 and 329 packets per
second. The question remains as to why the Gamma method also produced a similar interval but exhibited
poor coverage in the simulations. It is possible that the Gamma approximation is sensitive to the estimated
value of θ and performs poorly in some circumstances on account of this estimator’s variability.
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Lower Limit Upper Limit Other Quantities
Unbounded Bernstein 182.14 430.06 ε quality = 6.90e-07

Bounded Bernstein -455.02 1067.22 –
Chi Square 259.53 356.46 µ̂/(2nθ̂) = 12.21

Gamma 160.82 497.35 –
Wald -38.00 650.20 –

Bootstrap 111.95 1015.75 –

Table 4: 95% confidence intervals for the mean tag count based upon the SAGE data of Table 3. The Chi
Square, Wald, bootstrap, and Gamma confidence intervals were computed under the assumption of i.i.d.
data, whereas the Unbounded and Bounded Bernstein intervals only assume that the data are independent.
The estimated ratio quantity of 12.21 indicates that the Chi Square method is likely to significantly under-
cover µ. The ε quality metric shows that the selected value of ε in the Unbounded Bernstein method solves
Equation (12) to within 6.90e-07.

Lower Limit Upper Limit Other Quantities
Unbounded Bernstein 306.97 313.66 ε quality = 2.29e-08

Bounded Bernstein 276.02 344.60 –
Chi Square 263.41 361.01 µ̂/(2nθ̂) = 0.14

Gamma 292.08 329.09 –
Wald 291.97 328.66 –

Bootstrap 292.91 329.49 –

Table 5: 95% confidence intervals for the mean packets per second (PPS) flowing through a communications
network. The data were collected from n = 102 seconds of traffic flow. The ε quality metric shows that the
selected value of ε in the Unbounded Bernstein method solves Equation (12) to within 2.29e-08. Similarly,
the estimated ratio value of 0.14 suggests that the Chi Square method is likely to significantly overcover the
mean µ.

6 Discussion

The two data analysis examples presented in the previous section are an important reminder that the ques-
tion of which confidence interval to select should be addressed in the context of the problem at hand. In
constructing confidence intervals for the mean of Negative Binomial random variables, a careful investigation
of the dispersion and sample size must be considered. The simulation studies of Section 4 identify a variety of
scenarios in which the proposed methods improve upon the standard techniques. Interestingly, the methods
largely prove to be complementary. Table 6 provide general guidelines for selecting a method based upon the
dispersion and sample size. When both n and θ are small, the Bounded Bernstein method generally improves
upon the standard techniques, and Section 4.4 shows that a refined selection of the upper bound b has the
potential to greatly improve the coverage even at the smallest values of n and θ considered. When θ is small
but the sample size n is large, the Gamma assumption becomes reasonable, and the simulation of Section 4.5
shows that the Gamma method can often provide both more reliable coverage and a shorter average length
than the Wald method. When both n and θ are large, the Wald and bootstrap methods generally perform
well. Meanwhile, the Chi Square method best applies at the combination of µ, θ, and n values that produce
a ratio quantity (7) close to 1. In practice, this subspace of values will be in between the extremes at which
the other methods are recommended. Finally, the simulation results suggest that the case of small n and
large θ represent a decision point at which it’s unclear whether to prefer the Bounded Bernstein method
or rely upon the standard techniques. Likewise, the boundaries at which each technique overtakes another
are not clearly demarcated, and some investigation of a study’s context should be considered in selecting
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between methods.

A number of other considerations apply in selecting among candidate procedures for constructing 1 − α
confidence intervals. These concerns are summarized in Table 6. In terms of computational speed, the boot-
strap method requires B bootstrap resamplings of the data and corresponding sample mean calculations
plus a final sort of the results, which leads to a computational complexity of O (Bn+B log(B)). In practice,
the value of B should be a reasonably large number such as 10,000, which renders the bootstrap method
significantly more costly than the alternatives. However, in many cases a single bootstrap confidence interval
may be computed in no more than a minute. Furthermore, compared to the time required to design and
gather data in a scientific study, even a computation requiring several hours or days to compute a bootstrap
confidence interval is reasonable. We are also concerned with the interpretability of the confidence intervals
produced by each method. In the case of a small value of µ, the resulting Wald, Unbounded Bernstein, and
Bounded Bernstein confidence intervals may result in a left endpoint that is less than zero; such a result is of
course an implausible value of µ for non-negative data. By contrast, the Chi Square, Gamma, and bootstrap
confidence intervals always result in non–negative left endpoints. In terms of applicability, the bootstrap
and Unbounded and Bounded Bernstein methods only require very mild assumptions (e.g. finite parameter
values and independent or i.i.d. data), although the Bounded Bernstein’s supposition of uniformly bounded
data is violated when the data truly follow a Negative Binomial distribution. By contrast, the Chi Square,
Gamma, and Wald confidence intervals require stronger assumptions about n, µ, and θ. The Chi Square
approximation is only applicable when the ratio quantity of Equation (7) is reasonably close to 1. Meanwhile,
the Wald and Gamma methods are only reasonable when their underlying CLT and Gamma assumptions are
respectively true. Finally, it should be emphasized that the Chi Square, Wald, Gamma, and bootstrap meth-
ods assume i.i.d. data, whereas both Bernstein confidence intervals only require that the data be independent.

The simulation results clearly demonstrate that the Bounded Bernstein, Chi Square, and Gamma methods
are useful alternatives to the Wald and bootstrap under high dispersion. However, it is also important to
consider whether these methods’ respective coverage probabilities asymptotically converge to the desired
fiduciary limit. The Wald method is well justified at large sample sizes by the Central Limit Theorem,
and bootstrap confidence intervals can be shown to converge in coverage to 1− α as the sample size n and
number of resamplings B grow large. Provided that θ is sufficiently small, the Gamma method appears to
converge faster than the Wald as a function of sample size. Such a convergence cannot be expected of the
Bounded Bernstein and Chi Square methods, though. The simulation results suggest that these techniques
will largely over–cover µ for large sample sizes. Although the coverage probability of each technique is the
most informative measure of the method’s reliability, these other aspects should be considered in selecting
among candidate procedures for constructing 1− α confidence intervals.

Future investigation in this area may explore a variety of questions raised by this study. The two Bernstein
confidence intervals may be refined through improvements in probability tail bounds, improved procedures
for calculating ε to solve Equation (12), and improved estimates of the upper limit b, variance σ2, and the
dispersion parameter θ, particularly in the case of small sample sizes. The limits of the Chi Square distribu-
tion’s applicability as a probability model for X̄ may be better substantiated through both analytical and
empirical techniques. The length of Chi Square confidence intervals may also be reduced; for instance, Tate
and Klett [1959] demonstrate a variety of approaches that reduce the length of a Chi Square interval for the
variance of a Normal distribution over that obtained from a procedure allocating equal probability mass to
each tail. A more thorough investigation of the Gamma model for X̄ would provide greater insight into the
relationship between n and θ required to justify the Gamma assumption. Finally, the proposed techniques
may be generalized to construct confidence intervals for other parameters of a sample of n i.i.d. Negative
Binomial random variables using techniques based upon the data’s empirical influence curve.
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Scenario Preferred Method
Small n, small θ Bounded Bernstein
Large n, small θ Gamma
Small n, large θ Wald, Bootstrap, or Bounded Bernstein
Large n, large θ Wald or Bootstrap

Ratio quantity close to 1 Chi Square

Table 6: General guidelines for selecting among the proposed methods according to the scenario.

Un. Bernstein B. Bernstein Chi Square Wald Boot Gamma
Computationally Fast Yes Yes Yes Yes No Yes
Positive CIs Assured No No Yes No Yes Yes

Assumptions about n, mu, or θ No No Yes Yes No Yes
Useful at Small n and θ No Yes Yes No No No
Over–covers at Large n No Yes Yes No No No
Over–covers for High θ No Yes Yes No No No

Requires Independent Data Yes Yes Yes Yes Yes Yes
Requires i.i.d. Data No No Yes Yes Yes Yes

Table 7: A comparison of the Unbounded Bernstein, Bounded Bernstein, Chi Square, Wald (Normal Ap-
proximation), bootstrap, and Gamma methods for computing 1−α confidence intervals of the mean µ based
upon n i.i.d. observations of a Negative Binomial random variable in terms of a variety of concerns about
the applicability, feasibility, and interpretability of these methods.
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