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Joint Multiple Testing Procedures for
Graphical Model Selection with Applications

to Biological Networks

Houston N. Gilbert, Mark J. van der Laan, and Sandrine Dudoit

Abstract

Gaussian graphical models have become popular tools for identifying relation-
ships between genes when analyzing microarray expression data. In the classical
undirected Gaussian graphical model setting, conditional independence relation-
ships can be inferred from partial correlations obtained from the concentration
matrix (= inverse covariance matrix) when the sample size n exceeds the number
of parameters p which need to estimated. In situations where n < p, another ap-
proach to graphical model estimation may rely on calculating unconditional (zero-
order) and first-order partial correlations. In these settings, the goal is to identify
a lower-order conditional independence graph, sometimes referred to as a ‘0-1
graphs’. For either choice of graph, model selection may involve a multiple test-
ing problem, in which edges in a graph are drawn only after rejecting hypotheses
involving (saturated or lower-order) partial correlation parameters. Most multiple
testing procedures applied in previously proposed graphical model selection algo-
rithms rely on standard, marginal testing methods which do not take into account
the joint distribution of the test statistics derived from (partial) correlations. We
propose and implement a multiple testing framework useful when testing for edge
inclusion during graphical model selection. Two features of our methodology in-
clude (i) a computationally efficient and asymptotically valid test statistics joint
null distribution derived from influence curves for correlation-based parameters,
and (ii) the application of empirical Bayes joint multiple testing procedures which
can effectively control a variety of popular Type I error rates by incorpo- rating
joint null distributions such as those described here (Dudoit and van der Laan,
2008). Using a dataset from Arabidopsis thaliana, we observe that the use of
more sophisticated, modular approaches to multiple testing allows one to identify



greater numbers of edges when approximating an undirected graphical model us-
ing a 0-1 graph. Our framework may also be extended to edge testing algorithms
for other types of graphical models (e.g., for classical undirected, bidirected, and
directed acyclic graphs).



1 Introduction

With the advent of high-throughput biological assay technology, a common
and broadly-defined analysis goal has been network identification. Given a set
of biological measurements (e.g., microarray expression data), one might wish
to infer sets of possibly interacting variables (genes). Clustering methods and
näıve pairwise zero-order correlation approaches represent some of the earliest
applications of statistical methods to this problem in the functional genomics
literature (see e.g., Golub et al. (1999), Butte et al. (2000), and numerous
other publications). Such an approach typically relies on the assumption that
coexpression among (sets of) genes infers some type of underlying coregulation
mechanism.

The last several years has literally seen an explosion of other methods which
seek to more accurately infer gene-gene associations from a collection of bio-
logical data. Gaussian graphical models (Whittaker, 1990; Cox and Wermuth,
1993, 1996; Lauritzen, 1996; Edwards, 2000) have been particularly popular in
this respect, as they are well-suited for estimating more complicated relation-
ships among genes from continuous expression data (see e.g., Butte et al., 2000;
Friedman et al., 2000; Waddell and Kishino, 2000a,b; Hartemink et al., 2001;
Toh and Horimoto, 2002a,b; Husmeier, 2003; Wang et al., 2003; Wu et al.,
2003; Friedman, 2004; Matsuno et al., 2006; Aburatani et al., 2007; Drton and
Perlman, 2007; Ma et al., 2007; Ma and Bohnert, 2008, and other work cited
below). (For work in which discrete genotype, i.e., single-nucleotide polymor-
phism (SNP) information was also used for network reconstruction, the reader
is referred to Zhu et al. (2004), Bing and Hoeschele (2005), Chessler et al.
(2005), and Lee et al. (2006), among others.) In particular, rather than sep-
arately examining marginal correlations among pairs of variables (the näıve
approach), correlation-based associations obtained from several of these newer
methods represent relationships between two (sets of) variables conditional on
one or more other variables.

The graphical model (defined below) dictates the types of independence
relationships that exist between two or more (sets of) variables. In many ap-
plications, because the graph is not given and itself must be inferred from
the data, the genetic network identification problem becomes one of graphi-
cal model selection (Wong et al., 2003; Drton and Perlman, 2004; Yuan and
Lin, 2007; Drton and Perlman, 2008). Depending on the type of graph (e.g.,
bidirected, undirected, directed acyclic, see below), model selection typically
relies on somehow estimating the (inverse) variance-covariance matrix from
which the (conditional) independence relationships can be inferred via the
resulting estimators of the (partial) correlation coefficients (N.B., parenthe-
ses in previous statement match). A common choice of graphical model is
the undirected graphical model (sometimes called the covariance selection or
concentration graph model). In this model, the saturated partial correlations
between two variables obtained when conditioning on all other variables may
be calculated from the inverse-covariance matrix (i.e., concentration) matrix.
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If two variables are conditionally independent given all other variables, then
the saturated partial correlation will be zero, and no edge will be drawn which
connects them in the graph.

As in most statistical endeavors, the model selection problem is confronted
with a tradeoff between power and Type I error. That is, one wishes to iden-
tify as many true associations as possible while still minimizing the number
of inferred spurious relationships (i.e., incorrect edges) drawn in a graph. To
ensure proper estimation capability, much of the work which utilizes direct,
traditional applications of Gaussian graphical model techniques in biology fo-
cuses on situations in which the number of variables is smaller than the sample
size. Given the obvious limitations of such an approach in a genomic setting,
other researchers have sought means around the ‘n < p’ problem. Some have
applied sparsity restrictions and shrinkage estimation approaches resulting in
regularized graphical models (Dobra et al., 2004; Schäfer and Strimmer, 2004,
2005a,b; Meinshausen and Bühlmann, 2006; Li and Gui, 2006). Others have
focused on smaller portions of the data to examine limited or lower-order par-
tial correlations for the purposes of model selection (de la Fuente et al., 2004;
Magwene and Kim, 2004; Wille et al., 2004; Castelo and Roverato, 2006; Wille
and Bühlmann, 2006).

Unlike the saturated partial correlations used in the undirected Gaussian
graphical model, lower-order partial correlations do not require a full condi-
tioning set containing all other variables in order to be estimated. As such,
partial correlations obtained from conditioning on just a few variables can be
readily estimated with modest sample sizes. The lower-order conditional in-
dependence graph is most likely a hybrid of the graphs obtained using näıve
correlation approaches (e.g., as in “relevance networks”, (Butte et al., 2000))
and the one estimated from the true undirected Gaussian graphical model (the
concentration graph). In the case where only zero-order (unconditional) and
first-order partial correlations are considered for the purposes of model selec-
tion, the resulting lower-order conditional independence graph is sometimes
called a ‘0-1’ graph (de Campos and Huete, 2000; Wille and Bühlmann, 2006).
Wille and Bühlmann (2006), however, have shown that the 0-1 graph can serve
as a good approximation to the concentration graph with edges inferred from
saturated partial correlations.

Regardless of one’s selection of type of graph or even of one’s underlying
approach to model selection, we shift our attention to another issue which
may arise in network reconstruction algorithms. For many graphical model
selection procedures, making inferences about the (saturated or lower-order
partial) correlations for the purposes of edge inclusion into the graph can be
formulated as a multiple testing problem (de la Fuente et al., 2004; Mag-
wene and Kim, 2004; Wille et al., 2004; Schäfer and Strimmer, 2005b; Wille
and Bühlmann, 2006; Drton and Perlman, 2007). In many instances, quick,
easy-to-implement multiple testing procedures (MTPs) are employed at this
step in the analysis for hypotheses concerning correlation parameters, e.g., the
Benjamini-Hochberg procedure for control of the false discovery rate, (FDR;
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Benjamini and Hochberg, 1995). Often, these procedures are marginal multi-
ple testing procedures, that is, MTPs which only rely on information about the
marginal distributions of the test statistics being used to make inference deci-
sions. We recall, however, that the test statistics obtained from a collection of
estimated (partial) correlation coefficients may themselves exhibit some degree
of correlation. By exploiting the dependencies among test statistics, we may
obtain more powerful multiple testing results, which in turn would generate
richer, less-sparse graphical models.

We propose a framework useful for testing hypotheses concerning a rich col-
lection of correlation parameters for the purposes of graphical model selection.
Central features of our work include (i) the formulation of an asymptotically
valid correlation coefficient test statistics joint null distribution based on in-
fluence curves, and (ii) an empirical Bayes joint multiple testing framework
allowing one to powerfully control generalized Type I error rates (Dudoit and
van der Laan, 2008; Dudoit et al., 2008). We focus our attention on the lower-
order correlation approaches taken in the literature (de la Fuente et al., 2004;
Magwene and Kim, 2004; Wille et al., 2004; Wille and Bühlmann, 2006), but
note that our methods could also easily accomodate or be combined with, for
example, the shrinkage approaches of Schäfer and Strimmer (2005b) or the
concentration graph work of Drton and Perlman (2007).

The next section reviews some relevant aspects of graphical models and
establishes the connection between model selection and multiple testing in the
graphical model context. Section 3 introduces our methodological contribution
by describing both an appropriate test statistics joint null distribution for use
with correlation parameters as well as empirical Bayes joint MTPs. Finally,
our methods will be highlighted with an application to an Arabidopsis thaliana
dataset. Specifically, we will attempt to approximate an undirected graph by
identifying edges in a lower-order conditional independence graph (0-1 graph).
We see evidence that utilizing a proper estimate of the test statistics joint null
distribution in combination with more sophisticated joint MTPs can result in
the inclusion of more edges in the lower-order conditional independence genetic
network. Moreover, the use of null distributions derived from influence curves
can reduce the computational burden associated with most (resampling-based)
joint multiple testing methods, making their use even more attractive in this
setting.

2 Graphical Models

2.1 Statistical Model and Parameters of Interest

Let Xn ≡ {Xi : i = 1, . . . , n} denote a simple random sample of n indepen-
dent and identically distributed (IID) random variables from a data generating
distribution P , i.e. Xi ∼ P , i = 1, . . . , n. In large-scale biological prob-
lems, the data may represent J-dimensional random vectors, or J-vectors,
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X = (X(j) : j = 1, . . . , J) ∼ P ∈ RJ , where the elements X(j) may corre-
spond to data collected on individual covariates such as gene-specific microar-
ray expression measures and where P now specifies their typically unknown
joint data generating distribution. Suppose that P is an element of a particu-
lar statistical model M, i.e., a set of possibly nonparametric distributions. In
addition, we may define the sets V ⊆ {1, . . . , J} and K ⊆ {1, . . . , J}, whose
elements denote the indices of variables comprising the data vectors collected
in Xn. Finally, we let X(K) = (X(k) : k ∈ K).

When the data Xn are assumed to be normally distributed, a number of
potentially useful parameters of interest become available for consideration.
In this case, correlation coefficients may be used to test hypotheses involving
statements about independence. If the correlation between two variables is
zero, then those variables behave independently from each other. Allowing
Σ(P ) = σ = (σ(j, j′) : j, j′ = 1, . . . , J) to denote the J × J covariance matrix,
we define the correlation coefficient parameter Cor[X(j), X(j′)] ≡ ρ(j, j′) as

ρ(j, j′) =
σ(j, j′)√

σ(j, j)
√
σ(j′, j′)

. (1)

Given a suitable estimator Σ̂(Pn) = σn = (σn(j, j′) : j, j′ = 1, . . . , J) of the
J×J covariance matrix using the empirical distribution Pn, a common method
of estimating the amount of correlation between two variables is through the
empirical correlation coefficients. These parameter estimates are given by

ρn(j, j′) =
σn(j, j′)√

σn(j, j)
√
σn(j′, j′)

. (2)

Another parameter of interest may be the correlation between two variables
X(j) and X(j′) in their conditional distribution given all other measured vari-
ables, that is Cor[X(j), X(j′)|X(V \{j, j′})] ≡ ρ(j, j′|V \{j, j′}). Conditional
correlation parameters are generally referred to as partial correlations. For
clarity, we will refer to partial correlations as saturated when the conditioning
set contains all other variables X(V \{j, j′}) as written above.

Letting Σ−1(P ) = σ′ = (σ′(j, j′) : j, j′ = 1, . . . , J) denote the J × J
inverse-covariance (i.e., precision or concentration) matrix, saturated partial
correlation parameters (cf. Lauritzen, 1996, p. 130, cited in Drton and Perlman
(2007)) can be shown to equal

ρ(j, j′|V \{j, j′}) =
−σ′(j, j′)√

σ′(j, j)
√
σ′(j′, j′)

. (3)

Given a suitable estimator Σ̂−1(Pn) = σ′n = (σ′n(j, j′) : j, j′ = 1, . . . , J) of
the J × J inverse-covariance matrix using the empirical distribution Pn, a
common method of estimating the amount of correlation between two variables
conditional on all other variables indexed by V \{j, j′} is through the empirical
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saturated partial correlation coefficients. These parameter estimates are given
by

ρn(j, j′|V \{j, j′}) =
−σ′n(j, j′)√

σ′n(j, j)
√
σ′n(j′, j′)

. (4)

Interesting to note in this formulation of saturated partial correlation is
that the parameter only implicitly depends on the variables represented in
V \{j, j′} through the matrix inversion operation. A related observation is
that standard estimation of these partial correlation coefficients also requires
an invertible, positive definite sample variance-covariance matrix of full rank.
Saturated partial correlation coefficient estimation is therefore best restricted
to cases where the number of observations exceeds the number of parameters
to be estimated, a condition often referred to in the literature as the ‘n > p’
setting.

As alluded to above, partial correlations need not necessarily be saturated.
Other possible parameters of interest, lower-order partial correlations are de-
fined as the correlation between two variables X(j) and X(j′) when condition-
ing on some subset of the variables indexed in V \{j, j′}. Typically, lower-order
partial correlations restrict the cardinality of the conditioning set to a much
smaller number, i.e., zero, one, or two. In the case where the conditioning set
is the empty set ∅, one recovers the familiar correlation coefficients of Equa-
tion (1). These unconditional parameters are sometimes equivalently called
zero-order partial correlations. When conditioning on just one variable X(k),
k ∈ V \{j, j′}, one may refer to the parameter as a first-order partial correla-
tion, and so on. The benefit of using lower-order partial correlations is that
they can be more accurately estimated from data with even modest sample
sizes such as those available in most biological studies.

Lower-order partial correlations can be derived from the ‘bottom-up’ either
through regression techniques or via a recursion using correlation coefficients
of the preceding order. Specifically, in the case of the first-order partial cor-
relation Cor[X(j), X(j′)|X(k)] ≡ ρ(j, j′|k) between variables X(j) and X(j′)
given a distinct third variable X(k), k ∈ V \{j, j′}, the recursion is defined as

ρ(j, j′|k) =
ρ(j, j′)− ρ(j, k)ρ(j′, k)√
1− ρ2(j, k)

√
1− ρ2(j′, k)

, (5)

where ρ(j, j′), ρ(j, k), and ρ(j′, k) represent the corresponding unconditional
zero-order correlations for which estimators have already been presented. A
general proof of the recursion formula is given by Anderson (2003, Section
2.5.3). In contrast to the case of saturated partial correlations, Equation (5)
highlights the fact that lower-order partial correlations depend explicitly on
the conditioning variable indexed by k. The regression-based formulation of
first-order partial regressions will be discussed in more detail in Section 3.1.4.
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2.2 Gaussian Graphical Models

Graphical models provide a convenient framework for handling large, multi-
variate data structures and for investigating complex relationships between
variables. A graph G = (V,E) consists of a set of vertices (variables) V ⊆
{1, . . . , J} connected by a series of edges in an edge set E ⊆ {1, . . . , J} ×
{1, . . . , J}. In the Gaussian graphical model context, the data are assumed
to be distributed according to a multivariate normal distribution, i.e., X ∼
P ≡ NJ(µ,Σ). By assigning elements X(j) to particular vertices in V , the
connection between statistical and graphical models is made. The elements
e(j, j′) of the edge set E impose conditional independencies between variables
X(j) and X(j′) via (pairwise and global) Markov properties for different types
of graphs, e.g., bidirectional, undirected, and directed acyclic graphs (DAGs).
A recent review of this material has also been included in a paper by Drton
and Perlman (2007), and key, relevant material from that discussion will also
be presented in the following sections.

Examples of three types of commonly considered graphical models – bidi-
rected, undirected, and directed acyclic graphs - are displayed in Figure 1. The
graphs all consist of four nodes connected by three edges. For the purposes of
the discussion to follow, we will assume the variables represented by the nodes
in these graphs follow some four-dimensional data generating probability dis-
tribution, i.e., X = (X(j) : j = 1, . . . , 4) ∼ P ∈ R4.

2.2.1 Bidirected Gaussian Graphical Models

Bidirected graphs G = (V,E) contain edges E ⊆ {1, . . . , J}×{1, . . . , J} taking
the form j ↔ j′ (Figure 1, Graph A). An upper bound on the maximum
number of edges is given by

(
J
2

)
. The pairwise bidirected Markov property of

G confers marginal independence for all pairs (j, j′) of variables in which the
edge j ↔ j′, 1 ≤ j < j′ ≤ J is absent in the graph (Drton and Perlman, 2007).
Explicitly, from Figure 1, Graph A, we have X(1) ⊥⊥ X(4), X(2) ⊥⊥ X(3),
X(2) ⊥⊥ X(4). In this special case, the Markov conditioning variable is taken
to be the empty set ∅.

For a Gaussian data generating distribution P , from Equation (1), we can
now define the relationship

X(j) ⊥⊥ X(j′) ⇐⇒ ρ(j, j′) = 0. (6)

Because of the central role of the variance-covariance matrix in estimating
ρ(j, j′), bidirected graphical models have also been called covariance graph
models where some authors prefer dashed edges to two-sided arrows (Cox and
Wermuth, 1993, 1996, cited in Drton and Perlman, 2007).

This is not to say that the bidirected graph is useful only for identifying
marginal independence relationships between pairs of variables. Conditional
independencies may also be conferred by the edges of the bidirected graph.
The global bidirected Markov property states that, for disjoint subsets A, B,
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and C of the vertices in V ,
XA ⊥⊥ XB|XC (7)

if every path from a vertex in A to a vertex in B must pass through a non-
endpoint vertex not contained in C (from Drton and Perlman (2007)). From
Figure 1, Graph A, it follows that X(2) ⊥⊥ X(4)|X(3) because the path from
variable X(2) to variable X(4) must through X(1), which is a variable not
indexed by the conditioning set {3}. Similar reasoning holds for X(2) ⊥⊥
X(4)|X(1).

In functional genomics, bidirected graphical models are (knowingly or un-
knowingly) applied when probing coexpression patterns between genes. Again,
in microarray expression studies, for example, the biological question is typi-
cally framed under the tacit assumption that coexpression implies coregulation
at the transcript level.

2.2.2 Undirected Gaussian Graphical Models

Undirected graphs G = (V,E) contain edges E ⊆ {1, . . . , J} × {1, . . . , J}
taking the form j— j′ (Figure 1, Graph B). Similar to bidirected graphical
model, an upper bound on the maximum number of edges is given by

(
J
2

)
. The

pairwise undirected Markov property of G confers conditional independence for
all pairs (j, j′) of variables in which the edge j— j′ is absent from the graph
(Drton and Perlman, 2007). In order to account for the effects of all other
variables in G, the conditioning set is taken to be V \{j, j′}. Specifically,
from Figure 1, Graph B, it follows that X(1) ⊥⊥ X(4)|(X(2), X(3)), X(2) ⊥⊥
X(3)|(X(1), X(4)), and X(2) ⊥⊥ X(4)|(X(1), X(3)).

For a Gaussian data generating distribution P , from Equation (3), we can
now define the relationship

X(j) ⊥⊥ X(j′)|X(V \{j, j′}) ⇐⇒ ρ(j, j′|V \{j, j′}) = 0. (8)

Due to the central role of the inverse variance-covariance matrix in Equa-
tion (3), undirected graphical models have also been called concentration
graph models (Cox and Wermuth, 1996) as well as covariance selection models
(Dempster, 1972) and Markov random fields (Jordan, 2003).

In addition to the pairwise Markov properties associated with undirected
graphical models, there are also global Markov properties associated with these
graphs. Global Markov properties are based on graph-theoretic arguments of
näıve separation (Lauritzen, 1996; Jordan, 2003; Drton and Perlman, 2007).
For disjoint subsets of vertices A, B, and C, the relationship XA ⊥⊥ XB|XC

holds if every path connecting the vertices in A with the vertices in B must
pass through those in C. For example, from Figure 1, Graph B, this means
that X(2) ⊥⊥ X(3)|X(1), and X(2) ⊥⊥ (X(3), X(4))|X(1).

Shrinkage approaches and methods imposing sparsity restrictions on the
graph (Dobra et al., 2004; Schäfer and Strimmer, 2004, 2005a,b; Meinshausen
and Bühlmann, 2006; Li and Gui, 2006), have all been applied to undirected
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Figure 1: Examples of bidirected (A), undirected (B) and directed acyclic graph-
ical models (C). As described in the text, the edge set E for each type of graph
structure will dictate a set of (conditional) independence relationships among
variables indexed by the vertex set V . For bidirected Gaussian graphical mod-
els of the form in subfigure A, one interpretation of the missing edge between
X(2) and X(4) is that the two variables are marginally independent, with
pairwise correlation equal to zero. In contrast, for undirected Gaussian graph-
ical models of the form in subfigure B, one interpretation of the missing edge
between X(2) and X(4) is that the two variables are conditionally indepen-
dent given all other variables (i.e., X(1) and X(3)), with pairwise saturated
partial correlation equal to zero. As mentioned in the text, for directed acyclic
Gaussian graphical models of subfigure C, the conditional independence rela-
tionships will depend on a well-numbering of the vertices in the V . In this
particular case, the absent edge implies that X(2) and X(4) are conditionally
independent given X(1). Generally, partial correlations from these graphs will
be of some order depending on a submatrix of the covariance matrix Σ(P ) = σ
(see references in text).

graphical models in the more familiar situation confronted in modern biology
where p � n. Other researchers have instead used lower-order partial corre-
lation coefficients to quantify dependencies among variables in the graph G
(de la Fuente et al., 2004; Magwene and Kim, 2004; Wille et al., 2004; Castelo
and Roverato, 2006; Wille and Bühlmann, 2006).

By restricting the analysis to lower-order partial correlations, higher-level
dependencies between sets of variables may be missed. In this sense, a re-
stricted analysis is generally no longer firmly grounded in the world of undi-
rected graphical models. Wishing to explore the probabilistic and estimation

8
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properties of graphs using only zero- and first-order partial correlations, Wille
and Bühlmann (2006) found that such a method may still provide a good ap-
proximation for the concentration graph model. Wille and Bühlmann (2006)
also show that the two graphs coincide in some situations. We may adopt the
shorthand notation adopted by Wille and Bühlmann (2006) from de Campos
and Huete (2000) in which these graphs are referred to as ‘0-1’ graphs. The
‘0-1’ moniker here refers to the fact that only zero- and first- order partial
correlations are considered when constructing the graph.

2.2.3 Directed Acyclic Graphical Models

Popular in the machine learning and epidemiologic causal inference litera-
ture, a directed acyclic graph (DAG) is characterized by unidirectional edges
j → j′ (Figure 1, Graph C). Whereas the edge sets in bidirected and undi-
rected graphical models may be considered unordered, the edge set E ⊆
{1, . . . , J} × {1, . . . , J} associated with a DAG defines a partial ordering of
the vertices in V in which no path exists connecting a vertex node j back
to itself. As a result, the maximum number of edges in a DAG is typically
some number less than

(
J
2

)
. The Markov properties of DAGs are therefore also

somewhat more complicated than the above cases. Specifically, conditional
independence assertions made regarding two variables with a missing edge be-
tween them must also adhere to a well-numbering or topological ordering of
V . In a related concept, unlike the undirected graphical model case, rather
than relying on graph theoretic properties of näıve separation, both the di-
rected pairwise Markov property and the directed global Markov property rely
on a slightly more complicated concept of d-separation (“directed separation”,
Lauritzen, 1996; Jordan, 2003, Chapter 3 and Chapter 16, respectively). Both
the terminology as well as the theoretical underpinnings associated with DAGs
extend beyond the current discussion. The reader is therefore referred to the
work cited in this section for further clarification.

DAGs are often used to represent relationships of cause and effect. While
this causal property may be appealing, the use of DAGs in studying biological
networks is often argued to be conceptually difficult. It is well known, for
example, that biological pathways may rely on positive and negative feedback
loops for autoregulation. The cyclicity of such mechanisms precisely char-
acterizes those relationships which, by definition, are disallowed by a DAG
structure. Given the statistical challenges associated with DAGs, their distri-
butional properties and estimation remain an active area of research (Kalisch
and Bühlmann, 2007, for example). Examples with biological applications can
be found in Drton and Perlman (2007) and Opgen-Rhein and Strimmer (2007).
A paper investigating the use of lower-order conditional independencies in the
DAG context was recently published by Lèbre (2009). Again, in this case,
the Benjamini-Hochberg (Benjamini and Hochberg, 1995) method was used to
control the FDR at fairly stringent siginificance levels, i.e., α = 0.01 (Lèbre,
2009).

9
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2.3 Inferring Lower-Order Graphs

2.3.1 Choice of Test Statistics

Recall from our discussion in Section 2.1 that two possible parameters of in-
terest were given by the (unconditional) correlations of Equation (1) and the
first-order partial correlations defined in Equation (5). We denote these pa-
rameters by ρ(j, j′) and ρ(j, j′|k), respectively.

Zero-order Correlations (Bidrected Graphical Models). While in gen-
eral a lack of correlation does not imply independence, in the Gaussian bidi-
rected graphical model, statements about marginal independence between
nodes in G and unconditional correlation are equivalent. An absent edge
implies marginal independence, which in turn implies zero correlation. Con-
trapositively, if one rejects the null hypothesis that ρ(j, j′) = 0, then one may
draw an edge between the two nodes j and j′. In this case, one may turn
to familiar methods for testing hypotheses of lack of correlation in order to
reconstruct the graph G from observed data. A suitable choice of test statistic
is given by the empirical correlation coefficient defined in Equation (2). For n
copies of normal IID data, i.e., X ∼ NJ(µ,Σ), and assuming the population
correlation coefficient ρ(j, j′) = 0, the test statistic

Tn(j, j′) =
√
n− 2

ρn(j, j′)√
1− ρ2

n(j, j′)
(9)

follows a t-distribution with n− 2 degrees of freedom.
Relying on asymptotic properties of the sample correlation coefficient,

Fisher’s z transformation, may also be used for testing hypotheses involving
correlation parameters. Fisher’s z = ζn is defined as

Tn(j, j′) = ζn(j, j′) =
1

2
log

1 + ρn(j, j′)

1− ρn(j, j′)
= tanh−1 ρn(j, j′). (10)

Let

ζ(j, j′) =
1

2
log

1 + ρ(j, j′)

1− ρ(j, j′)
(11)

denote the value of Fisher’s z at the true value of the population correlation
coefficient ρ(j, j′). Without loss of generality, i.e., even in the noncentral case
in which ρ(j, j′) 6= 0, a normal approximation holds such that

√
n− 3(ζn(j, j′)− ζ(j, j′))

d−→N(0,1), as n→∞. (12)

Fisher’s z-transform has asymptotic variance independent of the population
correlation and is a variance-stabilizing transformation (Anderson, 2003, Sec-
tion 4.2.3).
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Partial Correlations (Undirected Graphical Models and Lower-Order
Conditional Independence Graphs). Similar to bidirectional graphical
models, undirected graphical models imply relationships between conditional
independence statements and the values of (saturated) partial correlation co-
efficients. A nice result for test statistics of hypotheses of partial correlations
is that the empirical partial correlations are distributed similarly to their un-
conditional correlation counterparts, with only slight modifications to account
(penalize) for the cardinality of the conditioning set (Drton and Perlman,
2007; Anderson, 2003, Theorem 4.3.5). In the saturated case, one may sub-
stitute the empirical partial correlations of Equation (4) into the test statis-
tics formula in Equation (9) to generate test statistics which following a t-
distribution with n − |V \{j, j′}| − 2 degrees of freedom. Similarly, replacing
ρ(j, j′) and ρn(j, j′) with ρ(j, j′|V \{j, j′}) and ρn(j, j′|V \{j, j′}) to produce
ζ(j, j′|V \{j, j′}) and ζn(j, j′|V \{j, j′}) will produce the following augmenta-
tion to Fisher’s z-transform. As n→∞,√

n− |V \{j, j′}| − 3(ζn(j, j′|V \{j, j′})− ζ(j, j′|V \{j, j′})) d−→N(0,1). (13)

When exploring 0-1 graphs, we again consider normally distributed data X ∼
NJ(µ,Σ). Test statistics Tn(j, j′) for zero-order correlations are given above
(Equations (9) and (10)). In the case of first-order partial correlations, we are
specifically interested in the parameter ρ(j, j′|k) corresponding to the partial
correlation of variables X(j) and X(j′) conditional on a single third variable
X(k), k 6= j 6= j′. Similar to the formulas above, the cardinality of the
conditioning set is simply equal to one. It follows that, depending on the choice
of test statistic, the first-order partial correlation test statistics Tn(j, j′|k) may
either be distributed tn−3 or (asymptotically) N(0,1) with a Fisher’s z standard
deviation of

√
n− 4.

Another option for testing hypotheses concerning correlations is through
maximum likelihood estimation. Likelihood approaches have been described in
Anderson (2003, Section 4.2.2), Wille et al. (2004), and Wille and Bühlmann
(2006). They are often optimal for hypotheses based on the normal distribution
(Anderson, 2003, Section 4.2.2). When testing first-order partial correlations
of the form ρ(j, j′|k), the (log) likelihood can be easily obtained and used for
testing elements of the lower-dimensional information matrix Σ−1, specifically
H0(j, j

′|k) = Σ−1(j, j′) ≡ I(ρ(j, j′|k) = 0). Log-likelihood ratio statistics may
then be used to test the hypotheses defined above. In this case, the test
statistics are asymptotically χ2-distributed.

2.3.2 Edge Inclusion Algorithms

We focus on the frequentist algorithm for estimating lower-order conditional
independence graphs described by Wille et al. (2004) and slightly modified
later by Wille and Bühlmann (2006) to include the 0-1 graph case. The main
difference between the two estimation procedures appears to be whether to in-
clude the unconditional pairwise correlation coefficients in the algorithm (see
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below). For completeness and with minor changes from the original, the al-
gorithm proceeds as given below. While Wille et al. (2004) and Wille and
Bühlmann (2006) propose calculating p-values from likelihood ratio test statis-
tics, we have left that portion of the following algorithm more general to reflect
the discussion of other choices of test statistics described earlier.

0-1 GRAPH ALGORITHM of WILLE and BÜHLMANN

1. Our parameters of interest are ρ(j, j|k), i.e., the zero-order and first-
order pairwise partial correlation coefficients corresponding to variables
X(j) and X(j′), conditional on each possible third variable indexed by
k ∈ ∅ ∪ V \{j, j′}. The case in which k = ∅ refers to unconditional,
zero-order correlation coefficients. We wish to test hypotheses of the
form H0(j, j

′|k) = I(ρ(j, j′|k) = 0). For all j, j′ ∈ {1, . . . , J}, j 6= j′ and
k ∈ ∅ ∪ V \{j, j′}, |k| = 1, calculate the empirical first-order partial
correlation coefficients ρn(j, j′|k) and their corresponding test statistics
Tn(j, j′|k). Given a suitable choice of marginal null distribution Q0(j, j

′),
also compute the unadjusted p-values P0n(j, j′|k) for each test statistic.

2. For each of the (j, j′)-pairs, compute the maximum p-values P0n,max(j, j
′)

(alternatively, minimum (absolute) test statistics, Tn,min(j, j′)), over all
k, i.e.,

P0n,max(j, j
′) = max

k∈∅ ∪ {1,2,...,J}\{j,j′}
P0n(j, j′|k).

3. Apply a multiple testing procedure over the collection of M =
(
J
2

)
=

J(J − 1)/2 composite maximum p-values P0n,max(j, j
′), e.g., the Bonfer-

roni (1936) procedure for control of the family-wise error rate (FWER)
or the Benjamini-Hochberg (Benjamini and Hochberg, 1995) procedure
for control of the FDR. The adjusted maximum p-values are denoted by

P̃0n,max(j, j
′).

4. Draw an edge between vertex j and j′ iff

P̃0n,max(j, j
′) < α,

for some prespecified significance level (i.e., α = 0.05).

The intuition behind the algorithm can be described with the following
logic. First, one should note that there exists a two-dimensional testing prob-
lem in this scenario. That is, for each of the M =

(
J
2

)
= J(J−1)/2 (j, j′)-pairs

of variables, 1+(J−2) = (J−1) zero-order and first-order partial correlations
must be computed, for a total of J(J − 1)(J − 1)/2 calculations. Assuming
the test statistics are arranged in an M × (J − 1) matrix, obtaining P0n,max

amounts to finding row maxima, thereby reducing the testing problem into
one dimension (a column vector) through the composite p-value measure. If
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a correlation between variables X(j) and X(j′) is the possible result of an-
other variable X(k), then one would expect ρ(j, j′|k) to tend towards zero,
which implies a small value of the test statistic Tn and a correspondingly large
p-value P0n(j, j′|k). By taking the maximum p-value over all k, one assumes
there exists at least one other gene which may “explain away” the association
between j and j′ (Wille et al., 2004). Conversely, for an association to re-
main significant after calculating row maxima, then the (j, j′)-specific p-values
calculated over k must all be small, meaning that the association between j
and j′ has endured even after accounting for the individual possible effects
of all other genes. Another by-product of this algorithm is also therefore an
M -vector of indices kmax = (kmax(m) : m = 1, . . . ,M) with elements kmax(m)
corresponding to the variables (genes) which yielded the respective values of
P0n,max(j, j

′).

The adjusted p-values P̃0n,max serve as a measure of significance between
genes j and j′ and can be used to test for the presence of edges in the 0-1
graph. As noted in Wille et al. (2004) and Wille and Bühlmann (2006), the
use of P0n,max(j, j

′) is a strong, possibly over-conservative, composite measure.
Wille and Bühlmann (2006) also state,

It should be noted, however, that we test the null hypothesis that
at least one [H0(j, j

′|k)] is true versus the alternative that none
[H0(j, j

′|k)] is true. Therefore, less conservative approaches (Holm,
1979; Simes, 1986) are not applicable.

In fact, this statement appears to blur some issues inherent in a two-dimensional
sequential testing problem where the focus is on the tests over the M rows.
The term sequential refers to the fact that the vector kmax, which serves to col-
lapse one of the dimensions of the matrix of test statistics, has been obtained
in a data-adaptive manner. The MTP carried out over the vector M -vector
P0n,max in Step 3 of the above algorithm, is then conditional on kmax. That
is, once the vector of maximum p-values P0n,max (or minimum test statistics
Tn,min) has been obtained, multiple testing is no longer performed explicitly in
the k direction (across columns). Rather, any candidate subsequent MTP is
carried out on values in the (j, j′)-direction (across rows). Therefore, as long
as one is clear that Type I error control can only be guaranteed when hold-
ing the variables indexed by kmax fixed, then several choices of (single-step or
step-wise) MTPs are generally valid. In particular, the Holm procedure cited
above (Holm, 1979), like the Bonferroni procedure, is also a marginal MTP
which makes no assumptions on the joint distribution of the data or test statis-
tics. Moreover, if FDR control is applicable in this testing situation, then a
step-wise procedure for control of the more stringent FWER, is also certainly
applicable.

13

Hosted by The Berkeley Electronic Press



3 Methods

All multiple testing procedures require a null distribution to specify cut-offs
and/or adjusted p-values in order for a given Type I error rate to be probabilis-
tically controlled. This section begins with a review of points to consider when
selecting a null distribution for use in testing scenarios. With this discussion
serving as a springboard, we continue with the derivation of a test statistics
joint null distribution estimate useful when testing for the presence of edges
in a lower-order conditional independence graph.

After a review of various Type I error rates, the final part of this section
describes an empirical Bayes multiple testing methodology controlling general-
ized error rates defined as parameters of the distribution of functions g(Vn, Sn)
of the numbers of false positives Vn and true positives Sn (van der Laan et al.,
2005; Dudoit et al., 2008; Dudoit and van der Laan, 2008, Chapter 7). Ex-
amples of such error rates include, among others, the FWER and FDR. A
central component of this framework involves generating guessed sets of true
null hypotheses. These powerful, joint MTPs effectively make use of the test
statistics null distribution formulated below.

3.1 Choice of Null Distribution

Many researchers propose the use of (empirical variants of) standard, easy-to-
implement marginal multiple testing procedures such as the Bonferroni and
Benjamini-Hochberg methods to calculate adjusted p-values P̃0n,max (Wille
et al., 2004; Magwene and Kim, 2004; de la Fuente et al., 2004; Schäfer and
Strimmer, 2005b; Wille and Bühlmann, 2006). Marginal multiple testing pro-
cedures are those which are based solely on the marginal distributions of the
test statistics, i.e., on cut-off rules for the corresponding unadjusted p-values.

Joint multiple testing procedures, e.g., maxT or minP procedures, attempt
to improve upon marginal MTPs by accounting for dependencies between the
test statistics used to probe each hypothesis. Implementation of joint MTPs
can be more complicated and more computationally intensive than conducting
multiple hypothesis testing using a marginal procedure. Rather than rely-
ing on influence curves (see below), suitable test statistics joint null distri-
bution are often more generally specified and estimated via (nonparametric
or model-based) resampling procedures. Westfall and Young (1993) provide
a framework for resampling-based multiple hypothesis testing which relies on
the subset pivotality assumption for generating a valid joint null distribution.
Tests of correlation coefficients in particular are one scenario in which this as-
sumption fails to hold, in part because the test statistics joint null distribution
may depend on the truth or falsehood of hypotheses concerning dependencies
among test statistics (p. 43, Westfall and Young, 1993; Dudoit and van der
Laan, 2008, Section 2.6.5).

Asymptotically valid test statistics joint null distributions which do not
rely on the subset pivotality assumption and which are available for general
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data generating distributions have been characterized for use with joint MTPs
(Pollard and van der Laan, 2004; Dudoit et al., 2004; van der Laan et al., 2004;
van der Laan and Hubbard, 2006; Dudoit and van der Laan, 2008, Chapter
2). These null distributions are based on null domination conditions, which
state that one must select a test statistics null distribution Q0 (or estimator
thereof, Q0n) that stochastically dominates the unknown true distribution of
test statistics Qn = Qn(P ). Choosing such a Q0 ensures that one makes more
Type I errors under the null distribution than one would have had committed
had the true distribution Qn been available.

The first original proposal of Pollard and van der Laan (2004), Dudoit
et al. (2004), and van der Laan et al. (2004), defines the null distribution as
the asymptotic distribution of a vector of null shift and scale-transformed test
statistics, based on user-supplied upper bounds for the means and variances
of the test statistics for the true null hypotheses (Dudoit and van der Laan,
2008, Section 2.3). The second and most recent proposal of van der Laan and
Hubbard (2006) defines the null distribution as the asymptotic distribution
of a vector of null quantile-transformed test statistics, based on user-supplied
test statistic marginal null distributions (Dudoit and van der Laan, 2008, Sec-
tion 2.4). These marginal null distributions are often the ones the user would
have selected in a univariate testing situation, including marginal permuta-
tion distributions. In practice, the joint null distribution Q0 is also typically
unknown and itself must be estimated from the data. Resampling procedures
(e.g., non-parametric or model-based bootstrap) are available to conveniently
obtain consistent estimators Q0n of the null distribution and of the correspond-
ing test statistic cut-offs, parameter confidence regions, and adjusted p-values
(Dudoit and van der Laan, 2008, Procedures 2.3 and 2.4). One limitation of
these procedures is that they can often become computationally burdensome,
particularly for large numbers of hypotheses M , large numbers B of bootstraps
or permutations, and for more complicated test statistics.

For a broad class of testing problems, such as the test of single-parameter
null hypotheses using t-statistics, an asymptotically valid null distribution is
the M -variate Gaussian distribution N(0, σ∗), with mean vector zero and co-
variance matrix σ∗ = Σ∗(P ) equal to the correlation matrix of the vector
influence curve for the estimator ψn of the parameter of interest ψ (Dudoit
and van der Laan, 2008, Section 2.6). In this case, one may simply simulate
from a suitable multivariate normal distribution rather than committing to
calculating B vectors of permutation- or bootstrap-based test statistics. Test
statistic-specific null distribution estimation approaches may, as in the case
of t-statistics, yield continuous null distributions, which have the additional
advantage that they may not suffer as much from the discreteness of the boot-
strap as previously proposed methods (Dudoit and van der Laan, 2008, Section
2.3.2).

In the case of saturated partial correlation coefficients, a similar approach
was taken by Drton and Perlman (2007) in which an estimate of the variance-
covariance matrix of partial correlations in the concentration graph model was
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used to test for edges in the ‘n > p’ setting. Our approach for the 0-1 graph
involves deriving a joint null distribution for lower-order partial correlation test
statistics which extends the ability to approximate the dependencies between
these correlations in the setting where the number of hypotheses may exceed
the sample size.

The purpose of the following sections is to describe the formulation of a
test statistics joint null distribution useful for testing hypotheses involving
(partial) correlation coefficients. The presentation of the material below very
closely follows that of Dudoit and van der Laan (2008, Sections 1.2.5, 2.3.2,
2.6.1, 2.6.4, and 2.6.5).

3.1.1 General Set-Up: t-statistics

We consider the two-sided test of M single-parameter null hypotheses H0(m) =
I (ψ(m) = ψ0(m)) against alternative hypotheses H1(m) = I (ψ(m) 6= ψ0(m)),
where Ψ(P ) = ψ = (ψ(m) : m = 1, . . . ,M) is an M -vector of real-valued
parameters Ψ(P )(m) = ψ(m). The value of the null parameter ψ0(m) is often
taken to be zero.

The null hypotheses can be tested using an M -vector of t-statistics Tn =
(Tn(m) : m = 1, . . . ,M), defined by

Tn(m) ≡ Estimator− Null value

Standard error
=
√
n
ψn(m)− ψ0(m)

σn(m)
, (14)

where Ψ̂(Pn) = ψn = (ψn(m) : m = 1, . . . ,M) is an asymptotically linear
estimator of the parameter M -vector Ψ(P ) = ψ, with M -dimensional vector
influence curve (IC) IC(X|P ) = (IC(X|P )(m) : m = 1, . . . ,M), such that

ψn(m)− ψ(m) =
1

n

n∑
i=1

IC(Xi|P )(m) + oP (1/
√
n), (15)

and E[IC(X|P )(m)] = 0 for m = 1, . . . ,M . Let Σ(P ) = σ = (σ(m,m′) :
m,m′ = 1, . . . ,M) denote the M × M parameter covariance matrix. As-
sume that one can obtain consistent estimators σn(m,m′) of the covariances
σ(m,m′) = E[IC(X|P )(m) IC(X|P )(m′)] as well as consistent estimators σ2

n(m)
of the variances σ2(m) = σ(m,m) = E[IC2(X|P )(m)], m = 1, . . . ,M .

The influence curve of a given estimator can be derived as its mean-zero-
centered functional derivative, i.e., as a function of the empirical distribution
Pn for the entire sample of size n, applied to the empirical distribution for a
sample of size one (Gill, 1989; Gill et al., 1995). A vector influence curve is
therefore estimated for each of n observations.

Let Qn = Qn(P ) denote the finite sample joint distribution of Tn, under the
true, unknown data generating distribution P . Large absolute values of the
t-statistic Tn(m) are assumed to provide evidence against the corresponding
null hypothesis H0(m) = I (ψ(m) = ψ0(m)).
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By the central limit theorem, for the test of single-parameter null hy-
potheses using t-statistics, a t-statistic-specific null distribution Qt

0 = Qt
0(P )

is the M -variate Gaussian distribution N(0, σ∗), where σ∗ = Σ∗(P ) is the
correlation matrix of the M -dimensional vector influence curve, IC(X|P ) =
(IC(X|P )(m) : m = 1, . . . ,M), for an asymptotically linear estimator ψn of
the parameter M -vector ψ.

In this case, one can estimate Qt
0 by Qt

0n = N(0, σ∗n), where σ∗n = Σ̂∗(Pn)
is a consistent estimator of the correlation matrix σ∗. For example, one could
use the correlation matrix σ∗n corresponding to the following estimator of the
M ×M influence curve covariance matrix,

σn = Σ̂(Pn) =
1

n

n∑
i=1

ICn(Xi) IC>n (Xi), (16)

where ICn(X) = (ICn(X)(m) : m = 1, . . . ,M) is an estimator of the M -vector
influence curve IC(X|P ).

3.1.2 Tests of Means

Influence curves can be derived straightforwardly for simple parameters such
as means. For example, in the one-sample case, when estimating the mean
vector ψ = E[X], for a random M -vector X ∼ P , using the empirical mean
vector ψn = X̄n, the influence curves are IC(X|P )(m) = X(m)−ψ(m) and the
corresponding estimators are ICn(X|P )(m) = X(m)−ψn(m), where ψn(m) =
X̄n(m) =

∑
iXi(m)/n, m = 1, . . . ,M . Then, σ∗n is simply the empirical

correlation matrix. Note that the components of the vector influence curve for
each subject reflect the concept of the difference between a sample of size one
(X(m)) and a sample of size n (X̄n(m)).

3.1.3 Tests of Correlation Coefficients

A common testing problem occurs when the parameter of interest is the J ×
J correlation matrix for a random J-vector X ∼ P , that is, Ψ(P ) = ψ =
(ψ(j, j′) : j, j′ = 1, . . . , J) = Cor[X], with elements ψ(j, j′) = Ψ(P )(j, j′) =
Cor[X(j), X(j′)]. Suppose one is interested in testing the M =

(
J
2

)
= J(J −

1)/2 null hypotheses H0(j, j
′) = I(ψ(j, j′) = 0), j = 1, . . . , J − 1, j′ = j +

1, . . . , J . To reiterate, this testing problem may correspond to testing for
coexpression in a microarray study, or, in the graphical model context, to
testing for edges in a bidirectional graph (covariance model) where the Markov
properties imply marginal independence among unconnected nodes.

Common test statistics for this problem are Tn(j, j′) =
√
nψn(j, j′), where

ψn(j, j′) = Ψ̂(Pn)(j, j′) are the empirical correlation coefficients. The influence
curves for the empirical correlation coefficients ψn(j, j′) can be obtained by
applying the multivariate δ-method with the function:
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f(ξ(j, j′)) = ψ(j, j′) = Cor[X(j), X(j′)] (17)

=
Cov[X(j), X(j′)]√

Var[X(j)]
√

Var[X(j′)]

=
E[X(j)X(j′)]− E[X(j)] E[X(j′)]√

E[X2(j)]− (E[X(j)])2
√

E[X2(j′)]− (E[X(j′)])2
,

defined in terms of a 5 × 1 parameter vector ξ(j, j′) = Ξ(P )(j, j′) = [E[X(j)],
E[X(j′)],E[X2(j)],E[X2(j′)],E[X(j)X(j′)]]>, j, j′ = 1, . . . , J . Let f ′(ξ) de-
note the 1 × 5 gradient row vector of f(ξ). Then,

ψn(j, j′)− ψ(j, j′) = f ′(ξ(j, j′))(ξ1(j, j
′)− ξ(j, j′)) + oP (1/

√
n), (18)

where ξn(j, j′) = Ξ̂(Pn)(j, j′) = [X(j), X(j′), X2(j), X2(j′), X(j)X(j′)]> is a 5
× 1 column vector based on the empirical moments. In the end, the influence
curve for the estimator ψn(j, j′) ≡ ρn(j, j′) defined above in Equation (2) is
given by

IC(X|P )(j, j′) = f ′(ξ(j, j′))(ξ1(j, j
′)− ξ(j, j′)) (19)

=
1√

Var[X(j)]
√

Var[X(j′)]


E[X(j)]Cov[X(j),X(j′)]

Var[X(j)]
− E[X(j′)]

E[X(j′)]Cov[X(j),X(j′)]
Var[X(j′)]

− E[X(j)]

−1
2

Cov[X(j),X(j′)]
Var[X(j)]

−1
2

Cov[X(j),X(j′)]
Var[X(j′)]

1



>

×


X(j)− E[X(j)]
X(j′)− E[X(j′)]
X2(j)− E[X2(j)]
X2(j′)− E[X2(j′)]

X(j)X(j′)− E[X(j)X(j′)]

 .

Therefore, for each individual, one obtains a general formula for the com-
ponents of the M -dimensional influence curve. A plug-in estimator ICn(X|P )
of the vector influence curve is available by replacing each of the elements in
Equation (19) with their empirical analogs (moments, means, variances and
covariances). From these curves, one can estimate Qt

0 by Qt
0n = N(0, σ∗n),

where σ∗n = Σ̂∗(Pn) is an estimator of the correlation matrix for the empir-
ical correlation coefficients derived from the influence curves as described in
Equation (16).
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3.1.4 Tests of First-Order Partial Correlation Coefficients

As in the 0-1 graph algorithm of Wille and Bühlmann (Section 2.3.2), one
may encounter the testing problem in which the parameter of interest is the
J×J first-order partial correlation matrix for a random J-vector X ∼ P , con-
ditional on a vector of indices kmax(j, j

′), whose corresponding elements each
represent the single variable thought to best “explain away” the potential as-
sociation between variables X(j) and X(j′). That is, Ψ(P ) = ψ = (ψ(j, j′|k) :
j = 1, . . . , J − 1, j′ = j + 1, . . . , J, k ≡ kmax(j, j

′) ∈ {1, . . . , J}\{j, j′}), with
elements ψ(j, j′|k) = Ψ(P )(j, j′|k) = Cor[X(j), X(j′)|X(k)]. Suppose one
is interested in testing the M = J(J − 1)/2 null hypotheses H0(j, j

′|k) =
I(ψ(j, j′|k) = 0), j = 1, . . . , J − 1, j′ = j + 1, . . . , J, k = kmax(j, j

′).
Common test statistics for this problem are Tn(j, j′|k) =

√
n ψn(j, j′|k),

where ψn(j, j′|k) = Ψ̂(Pn)(j, j′|k) are the first-order empirical partial correla-
tion coefficients as defined in Equation (5). The parameter function defining
these first-order partial correlation coefficients is given by:

f(ξ(j, j′|k)) = ψ(j, j′|k) (20)

= Cor[X(j), X(j′)|X(k)]

=
Cov[X(j), X(j′)|X(k)]√

Var[X(j)|X(k)]
√

Var[X(j′)|X(k)]
,

where

Cov[X(j), X(j′)|X(k)] = E[(X(j)− E[X(j)|X(k)])

×(X(j′)− E[X(j′)|X(k)])|X(k)]

= E[X(j)X(j′)|X(k)]− E[X(j)|X(k)] E[X(j′)|X(k)].

One feature of Equation (20) is that it is defined in terms of a parameter vec-
tor ξ(j, j′|k) = Ξ(P )(j, j′|k) = [E[X(j)|X(k)], E[X(j′)|X(k)], E[X2(j)|X(k)],
E[X2(j′)|X(k)], E[X(j)X(j′)|X(k)]]>, j, j′, k = 1, . . . , J, j 6= j′ 6= k containing
five different conditional expectations, each requiring a method for estimation
in their own right.

The conditional expectations in Equation (20) represent regression func-
tions. Influence curves for regression coefficient parameters have been derived
(Dudoit and van der Laan, 2008, Section 2.6.6), although their use in this
scenario will lead to even more complicated parameterizations of the vector
influence curve for correlation coefficients, particularly with continuous X(k).
Specifically, at the parameter level, the influence curve will have two compo-
nents; one for the correlation parameter, and a second, nested influence curve
for the regressions. Having observed that working with the above formula re-
quires an underlying mechanism for estimating the conditional expectations,

19

Hosted by The Berkeley Electronic Press



we note that first-order partial correlations may also be estimated in terms of
the residuals obtained from linear regression.

In the least squares context, for example, we can regress both X(j) and
X(j′) on X(k) and compute the correlation between the n-dimensional error
vectors ε(j) and ε(j′), i.e., Cor[ε(j), ε(j′)]. In this case, the formula for the
vector influence curve for estimates of first-order partial correlation coefficients
between pairs of error vectors ε(j) and ε(j′), and, therefore, between pairs of
variables X(j) and X(j′) conditional on X(k), reduces down to

IC(X|P )(j, j′|k) = f ′(ξ(j, j′|k))(ξ1(j, j
′|k)− ξ(j, j′|k)) (21)

=
1√

Var[ε(j)]
√

Var[ε(j′)]

−1
2

Cov[ε(j),ε(j′)]
Var[ε(j)]

−1
2

Cov[ε(j),ε(j′)]
Var[ε(j′)]

1


>

×

 ε(j)2 − Var[ε(j)]
ε(j′)2 − Var[ε(j′)]

ε(j)ε(j′)− E[ε(j)ε(j′)]

 .
To clarify, we assume the following linear models for the conditional ex-

pected values of the variables X(j) and X(j′) conditional on X(k), j, j′, k ∈
{1, . . . , J}, j 6= j′ 6= k,

E[X(j)|X(k)] = β0,j + β1,jX(k), (22)

with errors given by

ε(j) = X(j)− E[X(j)|X(k)], E[ε(j)] = 0, ε(j) ⊥⊥ X(k). (23)

Letting β̂ denote a regression coefficient estimate of the β terms in Equation
(22), the error for the ith observation may be estimated by its corresponding
residual, i.e.,

ei(j) = Xi(j)− (β̂0,j + β̂1,jXi(k)). (24)

From this point, the first-order partial correlation estimate ρn(j, j′|k) can be
obtained from the Pearson product-moment correlation coefficient calculated
from the residual n-vectors e(j) and e(j′) . Specifically, in addition to the
recursion formula in Equation (5), we also have

ρn(j, j′|k) =
n
∑n

i=1 ei(j)ei(j
′)−

∑n
i=1 ei(j)

∑n
i=1 ei(j

′)√
n
∑n

i=1 e
2
i (j)− (

∑n
i=1 ei(j))

2
√
n
∑n

i=1 e
2
i (j
′)− (

∑n
i=1 ei(j

′))2

(25)
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Note that we have said nothing about the estimation procedure used to ob-
tain the residuals. Ordinary least squares and/or robust alternatives are both
potentially valid candidate estimation methods.

To obtain a plug-in estimator ICn(X|P ) of the vector influence curve, one
simply replaces each moment by its empirical analog and then replaces ε(j)
with e(j). Equations (22)-(24) are written generally for any choice of variable
X(k). In our specific case, recalling the recursion of (5), the number of linear
models which would need to be estimated for the 0-1 graph edge inclusion al-
gorithm reduces dramatically to 2M once the vector kmax has been obtained.
To reiterate for clarity purposes, for the M = J(J − 1)/2 pairs of variables
(j, j′), there exists another M -vector of variables indexed by kmax which rep-
resents the variables k ∈ ∅ ∪ {1, . . . , J}\{j, j′} yielding the partial correlation
coefficient with the smallest (absolute) value of the test statistics Tn, or, sim-
ilarly, the largest corresponding p-value. Elements kmax(m) include ∅ in the
case where the unconditional correlation coefficient produced the largest p-
value. The formulas in Equations (19) and (21) represent the m-th element of
the vector influence for the i-th individual. Unconditional zero-order partial
correlations can also be calculated using Equation (21) by noting that linear
model estimators of E[X(j)|X(k) = ∅] and E[X(j′)|X(k) = ∅] are simply the
means of X(j) and X(j′), i.e., a linear model fit with only an intercept term.

3.2 Choice of Type I Error Rate

A variety of Type I error rates may be relevant when testing for edge inclusion
in the graph G. The selection of a Type I error rate is a decision which is
intimately linked to the data and to the biological and statistical questions at
hand. In order to inform these decisions, we present the material below.

We define a Type I error rate as a parameter θn = Θ(FVn,Rn) of the joint
distribution of the numbers of Type I errors Vn and rejected hypotheses Rn.
Examples of Type I error rates such that Θ(FVn,Rn) ∈ [0, 1] are given below.

• The family-wise error rate (FWER) is the probability of at least one
Type I error Vn,

FWER ≡ Pr(Vn > 0) = 1− FVn(0). (26)

• The generalized family-wise error rate (gFWER(k)) is the probability of
at least k + 1 Type I errors for a user-supplied integer k,

gFWER(k) ≡ Pr(Vn > k) = 1− FVn(k). (27)

• The false discovery rate (FDR) is the expected value of the proportion
of Type I errors among the rejected hypotheses Rn, with Vn/Rn = 0 if
Rn = 0.

FDR ≡ E

[
Vn
Rn

]
=

∫
qdFVn/Rn(q). (28)
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• The tail probability for the proportion of false positives (TPPFP(q)) is
the probability that the random variable Vn/Rn exceeds a user-supplied
bound q ∈ (0, 1). Again, Vn/Rn = 0 if Rn = 0.

TPPFP (q) ≡ Pr

(
Vn
Rn

> q

)
= 1− FVn/Rn(q). (29)

This is to say the choice of which Type I error rate to control may extend
beyond the decision of whether to select the FWER or FDR (Benjamini and
Hochberg, 1995), or, more generally whether to control a tail probability or
expected value error rate. The gFWER(k), for example, can be thought of a
relaxed version of the FWER, where some discrete number of false positives
can be tolerated and probabilistically controlled. The TPPFP(q), on the other
hand, can be viewed as an alternative to FDR, where rather than controlling
the long-run average of the proportion of false positives (PFP) among the
rejections made Vn/Rn, a bound on the PFP is probabilistically controlled.
(The PFP is also sometimes referred to in the literature as the false discovery
proportion or FDP.) Controlling the TPPFP(q) has therefore also been referred
to in the literature as “exceedance control” of the random variable Vn/Rn

(Genovese and Wasserman, 2004a,b), particularly under testing conditions in
which the variance of Vn/Rn may increase.

3.3 Empirical Bayes Joint Multiple Testing Procedures

The empirical Bayes multiple testing procedures (EBMTPs) have been formu-
lated and characterized elsewhere (van der Laan et al., 2005; Dudoit et al.,
2008; Dudoit and van der Laan, 2008, Chapter 7). In this section, we reintro-
duce the methodology for illustation purposes. In particular, the mechanics of
the EBMTPs will be presented in such a manner as to include the test statistics
joint null distribution outlined above in Section 3.1. A similar presentation of
this material can be found in Dudoit and van der Laan (2008, Procedure 7.1)
and in the supplementary web material accompanying Dudoit et al. (2008).

EBMTPs are intended to control generalized tail probability and expected
value Type I error rates which can be defined as a parameter of the distribution
of a function g(Vn, Sn) of the numbers of false positives Vn and true positives Sn
(Dudoit and van der Laan, 2008). Examples of such Type I error rates include
the FWER, gFWER(k), TPPFP(q) and FDR defined in Section 3.2. A central
feature of the EBMTPs is the estimation of the distribution of guessed sets of
true null hypotheses QH0n. An ubiquitous choice of model for generating such
guessed sets is the common marginal non-parametric mixture model, where the
M test statistics are assumed to follow a common marginal non-parametric
mixture distribution,

Tn(m) ∼ f ≡ π0f0 + (1− π0)f1, m = 1, . . . ,M, (30)

where π0 denotes the prior probability of a true null hypothesis, f0 the marginal
null density of the test statistics, and f1 the marginal alternative density of the
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test statistics, i.e., π0 ≡ Pr(H0(m) = 1), Tn(m)|{H0(m) = 1} ∼ f0, and
Tn(m)|{H0(m) = 0} ∼ f1.

Applying Bayes’ rule to the elements comprising the test statistics mixture
distribution in Equation (30) results in another parameter of interest, the
local q-value function, i.e., the posterior probability function for a true null
hypothesis H0(m), given the corresponding test statistic Tn(m),

π0(t) ≡ Pr(H0(m) = 1|Tn(m) = t) =
π0f0(t)

f(t)
, m = 1, . . . ,M. (31)

One convenient feature of this equation is that it does not require specification
of the alternative distribution f1.

In practice, the local q-value function π0(t) in Equation (31) is unknown,
as it depends on the unknown true null hypothesis prior probability π0, test
statistic marginal null density f0, and test statistic marginal density f . In
many testing situations, the marginal null density is assumed to be known a
priori and can be applied directly. In the case of unconditional correlation
coefficients, for an estimate f0n of the null density f0, one may use the t
distribution with n − 2 degrees of freedom or appeal to a standard normal
distribution when using a Fisher transformation or normal approximation. An
estimate fn of the full density f may be obtained using (nonparametric) density
estimation techniques. Finally, as in Dudoit et al. (2008), a trivial estimator
π0n of the prior probability π0 of a true null hypothesis is the conservative
value of one, i.e., π0n = 1. Alternatively, under the assumption that the
null hypotheses H0(m) are conditionally independent of the data Xn given
the corresponding test statistics Tn(m), the proportion of true null hypotheses
h0/M ≡ π0 may be estimated less conservatively via the sum of the estimated
local q-values,

hQV0n

M
=

1

M

M∑
m=1

π0n(Tn(m)). (32)

Having calculated the local q-value for each element in the vector of ob-
served test statistics Tn, one can guess whether a given hypothesis is true by
generating 0/1 Bernoulli realizations of the corresponding posterior probabil-
ities. Given a vector of null test statistics T0n, a corresponding vector H0n of
guessed true null hypotheses will partition T0n into two sets of test statistics
over which to count the numbers of guessed false positives Vn and guessed
true positives Sn for a given cut-off c. The purpose of local q-values having
been established, we can now proceed with the presentation of the EBMTP
algorithm (Figure 2).

EMPIRICAL BAYES JOINT MULTIPLE TESTING PROCEDURE

1. Collect data Xn ≡ {Xi : 1, . . . , n}. The data may represent J-dimensional
random vectors such that X = (X(j) : j = 1, . . . , J) ∼ P ∈ RJ .
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2. Calculate observed test statistics Tn = (Tn(m) : m = 1, . . . ,M). Note
the possible change in dimension. For example, for tests of unconditional
correlation coefficients, M = J(J − 1)/2.

3. Randomly draw B vectors of null test statistics T0n from a suitable test
statistics (joint) null distribution Q0 (or estimator thereof Q0n) as given,
for example, by N(0, σ∗n = Σ̂∗(Pn)) in Section 3.1. Create a M×B matrix
TB0n of null test statistics.

4. Apply kernel density estimation over the vector of observed test statistics
Tn to obtain fn, an estimate of the test statistics density f .

5. Armed with additional estimators (i) f0n of the test statistics marginal
null distribution f0 (e.g., N(0, 1), tν or a kernel density estimate obtained
by pooling the elements of TB0n), and (ii) π0n of the prior probability of
a hypothesis being true (see above), evaluate the local q-value function
(Equation (31)) at Tn to obtain local q-values π0n(m). Bound these
probabilities by taking min(π0n(m), 1).

6. Given an M -vector of estimated local q-values π0n, generate M Bernoulli
realizations, i.e., draws from Bern(π0n(m)), indicating guessed sets of
true and false null hypotheses. For simplicity, do this B times.

N.B. – The end products of Steps (3) and (6) comprise B pairs (T b0n,Hb
0n)

of null test statistics and guessed sets of true null hypotheses. Generating
these pairs completes the portion common to all EBMTP applications.
Steps (1)-(6) do not depend on choice of Type I error rate or on choice
of summary measure (i.e., cut-off or adjusted p-value). To emphasize
this point, these steps are shown in gray and are found to the left of the
dashed vertical line in Figure 3.3.

7. For each choice of candidate cut-off c (or, if one wishes to calculate
adjusted p-values, for each observed test statistic Tn(m)), calculate for
each pair (T b0n,Hb

0n), the number of guessed false positives Vn. Similarly,
for each pair (Tn,Hb

0n), also calculate the number of guessed true positives
Sn. Specifically, these numbers are defined as

V b
n (c) =

∑
m∈Hb

0n

I(T b0n(m) > c), and (33)

Sbn(c) =
∑

m6∈Hb
0n

I(Tn(m) > c).

In practice, for a rich collection of candidate cut-offs (observed test statis-
tics), this step generates matrices V B

n and SBn , with rows equal to the
number of cut-offs and B columns.
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8. Apply the g-function g(Vn, Sn), corresponding to choice of Type I error
rate. For the FDR, this function equals Vn/(Vn+Sn). For tail probability
error rates, this step involves applying an indicator function whose value
is one when a threshold is crossed (e.g., k ≥ 0 for gFWER(k) or q ∈ (0, 1)
for TPPFP(q)). In the simplest case of FWER, this is I(g(Vn, Sn) ≥ 0) =
I(Vn ≥ 0).

9. Average the values obtained from applying the g-function over the B
samples. These row averages correspond to the estimated Type I error
rate for a given cut-off. We select as fine-tuned common cut-off the least
conservative cut-off which controls Type I error at nominal level α. For
adjusted p-values, the row means are estimates of the smallest Type I
error rate (e.g., FWER, gFWER(k), TPPFP(q), FDR) of the EBMTP at
which one would reject the corresponding null hypothesis. Because there
is no guarantee that these adjusted p-values are monotonic, we enforce
monotonicity by taking the minimum adjusted p-value over sequentially
smaller nested subsets of hypotheses ordered in terms of evidence against
the null hypothesis.

4 Application: Arabidposis thaliana Isoprenoid

Pathway Genetic Networks

The following section highlights the application of our methods to a dataset
from the plant model organism Arabidopsis thaliana. The data were used
by Wille et al. (2004) and Wille and Bühlmann (2006) to study lower-order
conditional independence graphs. The data are publicly available electronically
from the publisher of Wille et al. (2004).

4.1 A. thaliana Isoprenoid Pathway Dataset

The A. thaliana dataset is targeted towards examining the regulatory net-
work within and genetic crosstalk between two isoprenoid biochemical path-
ways found in higher plants. Note that we distinguish the term biochemical
pathway from any terms such as network, graph, or even a path within a graph
G. The biochemical pathway represents the ordered sequence of key molecules
known to be present and/or produced at each step in a series of intracellular
chemical reactions.

Isoprenoids serve various central roles in plant biochemistry, functioning
as membrane components, photosynthetic pigments, or hormones (Rodriguez-
Concepcion and Boronat, 2002, cited in Wille et al. (2004)). Two distinct
isoprenoid pathways exist. The mevalonate (MVA) pathway occurs in the cy-
tosol, while the non-mevalonate (MEP) pathway is confined to the chloroplast.
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Figure 2: Flowchart highlighting the algorithm behind joint empirical Bayes
multiple testing procedures. The diagram has been tailored to incorporate the
test statistics joint null distributions based on influence curves proposed in
Section 3.1. Generalized EBMTPs are modular in that they can be adapted
to control a variety of Type I error rates. The special case of the false discov-
ery rate is depicted. The numbers on the figure correspond the steps of the
algorithm described in Section 3.3 in the text.

Both pathways operate independently under normal conditions, although in-
teraction between the pathways has also been reported (Laule et al., 2003;
Rodriguez-Concepcion et al., 2004, cited in Wille et al. (2004)).

The data consist of expression measurements for J = 40 genes assayed on
n = 118 Affymetrix GeneChip microarrays. The 118 chips represent expression
measurements from plants grown under various experimental conditions (see
supplementary data, Wille et al. (2004)). Of these 40 genes, 16 were assigned
to the cytosolic MVA pathway, 19 to the plastidial MEP pathway, and the re-
maining 5 represent mitochondrial proteins. One protein associated with the
MEP pathway, GGPPS7, is absent from the data file and from the figures in
Wille et al. (2004) and Wille and Bühlmann (2006), and was therefore excluded
from our analysis. The data have been preprocessed elsewhere, and they are
complete, i.e., there are no missing expression measurements. Depending on
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the abundance of missing data one may encounter in other settings, one may
wish to impute missing observations for the calculation of variances, covari-
ances and correlations, e.g., by k-nearest neighbors imputation (Troyanskaya
et al., 2001) available in the R package impute (Hastie et al., 2001). Finally,
the data were log2-transformed before proceding with the analysis.

4.2 Multiple Testing Procedures

To continue with the analysis, we will proceed by roughly adopting the algo-
rithm of Wille and Bühlmann (2006) presented in Section 2.3.2 for detecting
edges in a 0-1 graph. The main contribution and focus of our analysis will be
our handling of Step 3 in the algorithm, where an estimate of the test statis-
tics joint null distribution will be employed in conjunction with the EBMTPs
introduced in Section 3.3. As stated above, the multiple testing procedures
used in this analysis illustrate a data-adaptive sequential testing scenario in
which the role of the M -vector kmax is to effectively reduce the dimensionality
of the testing problem from two to one dimensions. Therefore, Type I error
control is guaranteed only when holding the variables indexed by kmax fixed.

4.2.1 Null and Alternative Hypotheses

The hypotheses of interest concern the M ≡
(
J
2

)
= J(J − 1)/2 lower-order

partial correlation coefficients ψ(m) = ψ(j, j′|k) = ρ(j, j′|k). Given a vector
of indices kmax = (kmax(m) = kmax(j, j

′) : k ∈ ∅∪{1, . . . , J}\{j, j′}) described
above, the index triplets range over {(j, j′|k) : j = 1, . . . , J − 1, j′ = j +
1, . . . , J, k = kmax(j, j

′)}.
Consider two-sided tests of the M = J(J − 1)/2 null hypotheses H0(m) =

I(ψ(m) = ψ0(m)) vs. the alternative hypotheses H1(m) = I(ψ(m) 6= ψ0(m)).
For simplicity and without loss of generality, the null value ψ0(m) is taken
to be zero. The null value ψ0(m) = 0 is also biologically meaningful in our
context.

4.2.2 Test Statistics

The M null hypotheses can be tested based on the following t-statistics,

Tn(m) ≡
√
n− I(kmax(m) ∈ V \{j, j′})− 2

ψn(m)√
1− ψn(m)

, m = 1, . . . ,M,

(34)
where ψn = (ψn(m) : m = 1, . . . ,M) denotes the M -vector of empirical par-
tial correlation coefficients ρ(j, j′|k) for the pair (X(j), X(j′)) conditional on
X(k) = X(kmax(j, j

′)).
For Gaussian data generating distributions, the t-statistics of Equation

(34) will have marginal t-distributions with (n − 2) degrees of freedom when
kmax(m) is ∅ and (n − 3) degrees of freedom when kmax(m) corresponds to a
true variable index, i.e., when computing a first-order partial correlation.
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Additionally, one may appeal to Fisher’s z-transformation as given in Equa-
tion (13) to calculate transformed test statistics Zn = (Zn(m) : m = 1, . . . ,M)
which have asymptotic N(0,1) marginal distributions. In the case of the 0-1
graph, using Fisher’s transformation has the added benefit of guaranteeing
from the outset that the marginal distribution of the test statistics remains
constant over M .

4.2.3 Test Statistics Null Distributions

Marginal null distribution for t-statistics Tn(m) and transformed test statistics
Zn(m) have been described above. For large values of n, one may also appeal
to the central limit theorem and choose N(0,1) as a marginal null distribution
for t-statistics of the form Tn given in Equation (34).

We propose two estimates of the test statistics joint null distribution. The
first estimate is the one obtained using influence curves as set forth in Section
3.1.4. In this case, the test statistics joint null distribution is multivariate
Gaussian and estimated by Qt

0n = N(0, σ∗n), where σ∗n is the correlation matrix
corresponding to the variance-covariance matrix of the vector influence curve,
σn = Σ̂(Pn) as defined in Equation (16). An M × B matrix with columns
representing B realizations from N(0, σ∗n) serves (i) as an estimate Qt

0n of the
test statistics joint null distribution Qt

0 and (ii) as draws of null test statistics
T0n for the EBMTPs to follow.

A second choice of test statistics null distribution may be achieved by build-
ing upon the first joint null distribution described in the above paragraph.
Here, one may choose to use a matrix of null quantile-transformed test statis-
tics ZB

n (van der Laan and Hubbard, 2006; Dudoit and van der Laan, 2008,
Section 2.4). Applying this transformation will preserve the estimation of the
joint dependencies from the multivariate normal distribution (down columns),
but will map the null test statistics back to a user-specified marginal null dis-
tribution (across rows) that one may have chosen in the univariate testing
scenario, i.e., tn−2 or tn−3. To clarify, this choice of test statistics null distribu-
tion will transform the multivariate null distribution given above by N(0, σ∗n)
to have marginal t-distributions.

In all, three different combinations of test statistics and their respective
estimated joint null distributions were used in the analysis: (i) Fisher’s z-
statistics with N(0, σ∗n), (ii) t-statistics with N(0, σ∗n), and (iii) t-statistics with
ZB
n , the null-quantile transformed version of N(0, σ∗n) with tn−3 chosen as

marginal null distribution (Table 1). Differences between the three cases may
provide insight into the finite-sample behavior of the procedures with respect
to this particular dataset. Case (i) represents normal test statistics paired
with a normal test statistics joint null distribution. Case (ii) represents the
use of t-statistics paired with a normal approximation for choice of (marginal
and joint) null distribution, which, with n = 118 samples, may be appropri-
ate. Finally, case (iii) illustrates an approach where one may still wish to
use t-statistics to test lower-order partial correlation hypotheses, and in which
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one desires an estimate of the test statistics joint null distribution to maintain
marginal t-distributions.

4.2.4 FWER- and FDR-Controlling Multiple Testing Procedures

We chose to control both the family-wise error rate (FWER) and the false
discovery rate (FDR). Marginal MTPs such as the Bonferroni procedure for
FWER control (Bonferroni, 1936) and the Benjamini-Hochberg (BH) proce-
dure (Benjamini and Hochberg, 1995) for FDR control have been well described
in the literature. We will assume the reader is familiar with these MTPs and
move on to describe the joint MTPs used in the analysis. Both the Bonferroni
and Benjamini-Hocberg procedures are easily implemented using the function
mt.rawp2adjp() available in the R/Bioconductor package multtest (Pollard
et al., 2005, http://www.bioconductor.org).

FWER-Controlling Procedures

Single-step maxT procedure. Adjusted p-values for a single-step maxi-
mum test statistic (ss maxT) procedure (Dudoit and van der Laan, 2008, Pro-
cedure 3.5) may be calculated using either null distribution described above.
Specifically, adjusted p-values are obtained from the empirical distributions of
the B maxima of (absolute) null test statistics {maxm T

B
0n(m, b) : b = 1 . . . , B}

or null-transformed test statistics {maxm Z
B
n (m, b) : b = 1 . . . , B}. For a test

at nominal FWER level α, one rejects null hypotheses with adjusted p-values
less than or equal to α.

Empirical Bayes single-step maxT FWER-controlling procedures.
The single-step maxT procedure can be accommodated to work with the
EBMTP framework described in Section 3.3. For FWER control, the function
g(Vn, Sn) = Vn is selected for the distribution of the number of false positives,
and the tail probability error rate Pr(Vn > 0) is controlled at level α. Rather
than calculating maxima over all M hypotheses, the FWER-controlling em-
pirical Bayes procedures restrict calculating the B maxima over those null test
statistics T0n ∈ Hb

0n which correspond to null hypotheses guessed as belonging
to the set of true null hypotheses H0. In this sense, the EBMTPs controlling
the FWER are expected to be more powerful than their vanilla joint MTP
counterparts as more extreme test statistics are more likely to be assigned as
belonging to the set of true alternative hypotheses H1. Specifically, adjusted
p-values are obtained from the empirical distributions of the B restricted max-
ima of (absolute) null test statistics {maxm∈Hb

0n
TB0n(m, b) : b = 1 . . . , B} or

null-transformed test statistics {maxm∈Hb
0n
ZB
n (m, b) : b = 1 . . . , B}.

We will denote the empirical Bayes FWER-controlling procedure which
uses the most conservative estimate π0n = 1 of the probability that a null
hypothesis is true as EB-FWER(1). As in Equation (32), choosing a less con-
servative plug-in estimate π0n of the prior probability π0 may produce a more
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powerful MTP as maxima will be calculated over even further restricted sub-
sets of null test statistics. We will denote this procedure by EB-FWER(LQV), as
the less conservative estimate of π0 is a function of the local q-values obtained
through density estimation.

FDR-Controlling Procedures

Empirical Bayes common cut-off FDR-controlling procedures. For
empirical Bayes FDR control, the function g(Vn, Sn) = Vn/(Vn + Sn), and
the expected value error rate E[g(Vn, Sn)] is controlled at level α. A common
cut-off may be derived to control the Type I error rate. For a rich vector of
candidate cut-offs, e.g., c ∈ {2.00, 2.05, . . . , 4.00}, the common cut-off cn is the
smallest (i.e., least conservative) value in c which satisfies the expected value
error constraint. That is,

cn ≡ inf

{
c ∈ R :

1

B

B∑
b=1

V b
n (c(M))

V b
n (c(M)) + Sbn(c(M))

< α

}
, (35)

where c(M) denotes the cut-off M -vector with all elements equal. Adjusted p-
values may be obtained in a similar manner as above when treating the vector
of observed test statistics as cut-offs themselves. As mentioned in Section 3.3,
a monotonicity constraint is placed on the adjusted p-values by considering row
minima over sequentially smaller subsets of test statistics ordered in terms of
their evidence against the null hypothesis.

We will denote the empirical Bayes FDR-controlling procedure which uses
the most conservative estimate π0n = 1 of the probability that a null hypothesis
is true as EB-FDR(1). Because V b

n and Sbn both depend on the set of guessed
true null hypothesesHb

0n, again, as in Equation 32, choosing a less conservative
plug-in estimate π0n of the prior probability π0 may produce a more powerful
MTP. We will denote this procedure by EB-FDR(LQV), as the less conservative
estimate of π0 is a function of the local q-values obtained through density
estimation.

4.3 Results

4.3.1 Edge Identification in the 0-1 Graph

When identifying the elements of the vector kmax, none of the M least signifi-
cant test statistics were obtained using the unconditional empirical correlation
coefficients. This means that if one wishes to use t-statistics to identify edges in
the lower-order conditional graph, using the algorithm proposed by Wille and
colleagues will result in probing only first-order partial correlations with tn−3

distributions. In this case, the common-cut-off procedures described above re-
main valid MTPs for use in this setting. (Of course, combining tn−2 and tn−3
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distributions may not have produced very different end-results, although pro-
cedures based on minimum p-values or other common-quantile methods may
have been more appropriate (Dudoit and van der Laan, 2008).)

When performing density estimation in the EBMTP analysis, the estimated
proportion of true null hypotheses h0n/M (i.e., the estimated prior probability
π0n of a null hypothesis being true) was calculated to be 0.52. Given that
this estimate is sufficiently less than the conservative estimate of one used
in the EB-FWER(1) and EB-FDR(1) procedures, it may be justifiable (and
even desirable) to relax the prior and also apply the less conservative EB-
FWER(LQV) and EB-FDR(LQV) procedures in this setting.

Joint distribution estimates were generated using B = 5000 samples from
N(0, σ∗n). Results did not change appreciably when repeating the analysis
several times nor for larger values of B, specifically B = 10, 000 and B =
25, 000 (data not shown).

As expected, minor differences were observed in terms of the number of
rejections across the various combinations of test statistics and test statistic
joint null distributions used in the analysis (Table 1). Focusing on control of
the FWER, slightly more hypotheses were rejected using the joint multiple
testing procedures than the marginal Bonferroni correction. The empirical
Bayes procedures performed similarly to the ss maxT procedure, with the EB-
FWER(LQV) procedure sometimes rejecting just one more hypothesis than
either of the other joint multiple testing procedures. In the case of FDR
control, across all columns of Table 1, the EB-FDR(1) procedure rejected more
hypotheses than BH, while the EB-FDR(LQV) procedure resulted in the largest
number of edges called significant (Table 1).

Focusing on the case in which Fisher’s z-statistics were combined with the
test statistics joint null distribution obtained from sampling repeatedly from
N(0, σ∗n), it is possible to compare our results with those reported by Wille et al.
(2004) and Wille and Bühlmann (2006). Figure 3 is adapted from the papers of
Wille and colleagues and demonstrates high levels of reproducibility between
the two analyses using Fisher z-statistics and likelihood ratio tests as was done
in the other analyses. The additional edges called significant by the EB-FDR(1)
procedure (relative to BH) include, in rank-order: GGPPS11 — UPPS1, CMK
— DXR, GGPPS2 — GGPPS9, AACT1 — IPPI1, and GGPPS11 — MECPS
(Figure 3, solid red edges). Specifically, the edges GGPPS11 — UPPS1 and
GGPPS2 — GGPPS9 show evidence of cross-talk between proteins in the plas-
tidial MEP pathway and the mitochondrion, while the edge AACT1 — IPPI1
shows an association between a late product in the MEP pathway with an
early product in the cytosolic MVA pathway. The other edges CMK — DXR
and GGPPS11 — MECPS connect members of the same (plastidial) MEP
pathway. The additional edge called significant by the EB-FDR(LQV) proce-
dure (relative to EB-FDR(1)) was GGPPS6 — GGPPS12 (Figure 3, dashed
red edge). This edge connects two later products also located within the MEP
pathway.
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Test statistics Fisher’s z t-statistics t-statistics
Joint null dist. N(0, σ∗n) N(0, σ∗n) ZB

n

Marginal null dist. N(0, 1) N(0, 1) tn−3

Procedure # rejections # rejections # rejections

Bonferroni 26 29 26
ss maxT 27 29 29
EB-FWER(1) 29 29 29
EB-FWER(LQV) 29 30 30
BH 47 49 46
EB-FDR(1) 52 53 51
EB-FDR(LQV) 53 54 53

Table 1: Numbers of rejected hypotheses (significant edges) for the lower-order
conditional independence graph of isoprenoid pathway genes in A. thaliana.
Both the FWER and FDR were controlled at nominal level α = 0.05. Re-
sults are shown for various combinations of test statistics and test statistics
marginal and joint distributions. The rank order of the test statistics did not
change from procedure to procedure, so the number of rejections represents
the point on the list of ordered test statistics where one stops rejecting hy-
potheses (i.e., including edges in G). To reiterate, the joint distribution given
by N(0, σ∗n) is obtained from influence curves as in Section 3.1.4. The joint dis-
tribution ZB

n is the matrix of null quantile-transformed test statistics obtained
from N(0, σ∗n) with marginal t-distributions. Joint distribution estimates were
generated using B = 5000 samples from N(0, σ∗n).

4.3.2 Secondary Parameters of Interest

A byproduct of the ‘0-1’ algorithm of Section 2.3.2 is the vector of indices
kmax with elements kmax(m) = kmax(j, j

′) corresponding to the variable which
was ultimately conditioned on for the first-order partial correlation between
pairs of variables X(j) and X(j′). That is, the variable X(kmax(j, j

′)) was the
variable which could presumably best “explain away” any putative association
between X(j) and X(j′). Given both the statistical and biological importance
of X(kmax(j, j

′)), an interesting outcome to consider is the distribution of the
number of times a given variable was conditioned upon in the M composite
first-order partial correlations.

Among the 53 edges called significant by the EB-FDR(LQV) procedure (Ta-
ble 1, Column 1), a total of 17 different variables were used for conditioning.
Five variables, however, were used for conditioning in approximately half (26)
of the most significant test statistics (Table 2). Focusing on the variable that
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Figure 3: Edges called significant in the 0-1 graph using the lower-order partial
correlation coefficient test statistics joint null distribution of Section 3.1.4 in
conjunction with empirical Bayes joint multiple testing procedures (EBMTP) of
Section 3.3. The figures shows the results when using Fisher’s z test statistics.
The FDR was controlled at nominal level α = 0.05 to detect associations
within and between the MEP and MVA isoprenoid pathways in A. thaliana.
Dashed black lines with arrows represent biochemical pathways. Solid blue
lines indicate edges statistically reproduced from the original figure of Wille
et al. (2004) using the EBMTP framework. Dashed blue lines indicate edges
called significant in the EBMTP analysis but missing from the figure of Wille
et al. (2004) when controlling the FDR using the BH method (Benjamini and
Hochberg, 1995). Solid red lines indicate additional edges called significant
using the EBMTP(1) procdure. The dashed red line indicates the additional
edges called significant using the relatively less conservative EBMTP(LQV)
procedure to account for the estimated proportion of true null hypotheses
h0/M . The solid black line represents the single edge which could not be
reproduced from the figure in Wille et al. (2004). Joint distribution estimates
were generated using B = 5000 samples from N(0, σ∗n).
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was conditioned upon most often, MPDC1 appears to belong to a set of asso-
ciated edges within the cytosolic pathway, as it is conditioned upon by pairs of
other genes for which it itself is significantly associated (AACT2, MK, FPPS2
and MPDC1’s biochemical relative, MPDC2) (Table 2, Figure 3). Interest-
ingly, MPDC1 is conditioned upon by variables represented in two edges link-
ing the plastidial and cytosolic pathways (AACT2 — IPPI1; GGPPS6 — MK).
MPDC1 is also the conditioning variable in the edge DPPS2 — HMGR2 link-
ing the cytosolic pathway to the mitochondrion. In fact, the next two most
significant edges (DPPS1 — GGPPS8, adjusted p-value = 0.0514; DPPS3
— GGPPS1, adjusted p-value = 0.0672) also condition upon MPDC1. Both
of these edges link members of the cytosolic pathway with genes assigned to
chloroplast and mitochondrion, respectively. No edge exists, however, linking
MPDC1 to genes or gene products associated with either cell organelle.

While there is sometimes concern that the ‘0-1’ graph may lack certain
statistical properties associated with the concentration graph, it appears there
may be potentially useful biological, regulatory, and/or network-associated in-
formation contained in the vector of lower-order conditioning variables indexed
by kmax(j, j

′).

5 Discussion

We have formulated and implemented a means for inferring lower-order re-
lationships in graphical models. This work has expanded on what others in
the field have done by formalizing and then applying state-of-the-art multiple
testing approaches in this setting. Central features of our method include (i)
an asymptotically valid test statistics joint null distribution which exploits the
parametric form of t-statistics useful for probing hypotheses about correlation
parameters, and (ii) the application of powerful EBMTPs which effectively
make use of the joint distribution in (i). Both of these features are modular in
the sense that they need not be implemented in tandem. The influence curve
test statistics joint null distribution can be used in conjunction with other
joint MTPs, and the EBMTPs can also incorporate other estimates of the test
statistics joint null distribution, such as those obtained from resampling-based
methods.

The test statistics joint null distributions obtained from influence curves
effectively use the data to estimate dependencies between empirical correla-
tion coefficient test statistics in a manner which does not, for example, rely on
restrictive assumptions such as subset pivotality. In addition to the cases of
bidirected, 0-1, and undirected graphs, with special care being given to ensure
a proper vertex well-numbering, an influence curve test statistics null distribu-
tion could be adapted to the DAG setting. Moreover, joint null distributions
based on influence curves can be estimated more rapidly than null distribu-
tions estimated by other means such as permutation-based or bootstrap-based
approaches. This influence curve approach therefore represents a methodolog-
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Cond. Variable Variable 1 Variable 2 Fisher’s z Adj. p

MPDC1 AACT2 MK 5.699 0.0000
FPPS2 MK 4.593 0.0002
FPPS2 MPDC2 4.421 0.0003
AACT2 IPPI1 4.007 0.0012
GGPPS6 MK 3.555 0.0055
DPPS2 HMGR2 -3.181 0.0156
AACT2 FPPS2 3.066 0.0213

MECPS AACT1 HMGR1 4.895 0.0000
DXR HDS 4.535 0.0002
DXR GGPPS11 3.755 0.0030
CMK HMGR1 -3.635 0.0043
GGPPS12 HMGR2 -3.241 0.0135

AACT2 FPPS2 MPDC1 6.928 0.0000
MK MPDC1 3.996 0.0012
HMGR2 MK 3.031 0.0229
FPPS2 IPPI1 3.008 0.0237
AACT1 IPPI1 2.900 0.0304

DXR CMK MCT 6.952 0.0000
HDS MECPS 5.927 0.0000
CMK UPPS1 -3.259 0.0131
GGPPS11 UPPS1 -2.981 0.0253
GGPPS11 MECPS 2.853 0.0343

CMK DXR UPPS1 -6.368 0.0000
DXR MCT 5.726 0.0000
FPPS1 MCT 4.422 0.0003
MCT MECPS 3.389 0.0092

Table 2: Significant edges grouped by the variables which they were conditioned
upon in ‘0-1’ graph algorithm. The frequency with which a variable was con-
ditioned upon among the full set of hypotheses differs slightly when compared
to the frequency among the list of rejections (data not shown). Of the three
next-most significant edges (adjusted p-value ∈ (0.05, 0.07)), two conditioned
on MPDC1 and one more conditioned on MECPS. The full list of rejected
hypotheses sorted by conditioning variable is available in the supplementary
material.

ical advance in the field as practitioners often cite the computational burden
of resampling methods as a barrier to using more elaborate joint MTPs.

Joint MTPs, i.e., testing procedures which can effectively make use of a
test statistics joint null distribution (or estimator thereof), further allow one
to more effectively glean information from the data during the analysis phase.
The generalized EBMTP framework presented in this paper is an example of
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such a family of powerful methods designed for use with complex multivari-
ate distributions encountered in genomic and other high-dimensional settings.
As stated above, EBMTPs have the added benefit that they are modular in
design. The generalized EBMTPs, for example, can be applied to quickly
control a variety of Type I error rates without the need for additional rounds
of (re)sampling for each new choice of error rate, i.e., one sample of B draws
from N(0, σ∗) would suffice for controlling any or all of the FWER, gFWER(k),
TPPFP(q) or FDR. The EBMTPs could also be combined with other estimates
of the (inverse) variance-covariance matrix such as those obtained from shrink-
age approaches or test statistics null distributions for concentration graph mod-
els in the n > p setting (Drton and Perlman, 2007, for example).

6 Software and Supplementary Material

The multiple testing methods described above, including null distributions
based on influence curves and the empirical Bayes joint multiple testing proce-
dures, have been included in the April 2009 release of the R/Bioconductor pack-
age multtest (Pollard et al., 2005, http://www.bioconductor.org). Similar
to the original main user-level function MTP (for performing resampling-based
multiple hypothesis testing, such as the ss maxT procedure), the empirical
Bayes procedures have been implemented in the function EBMTP, which main
output is returned in the form of adjusted p-values. For several choices of tests
involving t-statistics, both functions allow for the use of influence curve null
distributions by setting the argument nulldist=‘ic’. Note that in multtest,
for the density estimation Steps (4) and (5) of the EBMTP algorithm of Section
3.3, the full density of the test statistics is obtained by applying kernel density
estimation over the (absolute value of the) vector of observed test statistics,
while the null density is obtained by applying kernel density estimation over
the (absolute values of the) pooled elements of the matrix of null test statistics
TB0n with column vectors sampled from N(0, σ∗n).

Arguments for calculating unconditional pairwise correlation test statistics
are available in multtest, however, first-order partial correlation test statis-
tics have not yet been implemented. A file with code implementing the ‘0-1’
algorithm of Section 2.3.2 is available at http://www.stat.berkeley.edu/

~houston/CorrTestStatsICNulldist.R. The file’s main function, IC.corr,
returns a list containing, among other objects, a vector of observed test statis-
tics (either t-statistics or Fisher’s z-statistics) and an estimate of the test
statistics null distribution derived from influence curves as in Equations (19)
and (21). An example illustrating how to interface these objects with the
multtest functionality is given in the code comments.

Test statistics joint null distributions based on influence curves may be
obtained faster than those estimated via other resampling-based approaches
such as permutation or bootstrap methods. To illustrate this point, the non-
parametric bootstrap was used to obtain an estimate Q0n of the joint null
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distribution Q0. In this set-up, the data (i.e., J-vectors of expression mea-
sures) are resampled with replacement B = 5000 times. For each bootstrap
sample, the test statistics for the first-order partial correlations conditional
on the variables indexed by kmax (fixed, see above) were calculated using the
recursion given in Equation (5). The raw bootstrap test statistics were then
transformed using the null quantile transformation of van der Laan and Hub-
bard (2006) and Dudoit and van der Laan (2008, Procedure 2.4). Run time
comparisons were performed on a Macintosh laptop computer running R 2.7.2
(R Development Core Team, 2008, http://www.R-project.org) on Mac OS
X Version 10.5.5 with 2GB of RAM and a 2.4GHz Intel Core 2 Duo processor.

Once the vector of indices kmax was obtained, the influence curve approach,
written entirely in R, required 12.90 seconds to return a 741× 5000 matrix of
null test statistics. Of this time, 3.46 seconds were dedicated to a call to
mvrnorm() in the MASS library for generating correlated test statistics (Ven-
ables and Ripley, 2002). In contrast, the nonparametric bootstrap approach,
conditional on the same vector of indices in kmax, which utilized optimized R
internals driving the cor() function, required 92.89 seconds to obtain a simi-
lar matrix of null test statistics, of which only 8.31 seconds were dedicated to
the quantile transform. Of course, the more appropriate resampling scheme
would involve calculating a new vector kbmax for each bootstrap sample. In this
case, approximately 1 hour and 45 minutes were required to obtain the ma-
trix of null test statistics. In many practical applications, test statistics may
not be so easily obtainable. Without the aid of the recursion, for example, a
bootstrap-based estimate of Q0 could have been obtained by calculating the
correlation between residuals obtained from OLS models using the lm() com-
mand as described in Section 3.1.4. Implemented entirely in R, this approach
would have required several days on the same machine to produce another
741× 5000 matrix of null test statistics.

The full text version of Table 2 can be found at http://www.stat.berkeley.
edu/~houston/kMaxResTab.txt.
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