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Collaborative Targeted Maximum Likelihood
Estimation

Mark J. van der Laan and Susan Gruber

Abstract

Collaborative double robust targeted maximum likelihood estimators represent a
fundamental further advance over standard targeted maximum likelihood estima-
tors of causal inference and variable importance parameters. The targeted maxi-
mum likelihood approach involves fluctuating an initial density estimate, (Q), in
order to make a bias/variance tradeoff targeted towards a specific parameter in a
semi-parametric model. The fluctuation involves estimation of a nuisance param-
eter portion of the likelihood, g. TMLE and other double robust estimators have
been shown to be consistent and asymptotically normally distributed (CAN) under
regularity conditions, when either one of these two factors of the likelihood of the
data is correctly specified.

In this article we provide a template for applying collaborative targeted maxi-
mum likelihood estimation (C-TMLE) to the estimation of pathwise differentiable
parameters in semi-parametric models. The procedure creates a sequence of can-
didate targeted maximum likelihood estimators based on an initial estimate for Q
coupled with a succession of increasingly non-parametric estimates for g. In a
departure from current state of the art nuisance parameter estimation, C-TMLE
estimates of g are constructed based on a loss function for the relevant factor
Q 0, instead of a loss function for the nuisance parameter itself. Likelihood-based
cross-validation is used to select the best estimator among all candidate TMLE
estimators in this sequence. A penalized-likelihood loss function for Q 0 is sug-
gested when the parameter of interest is borderline-identifiable.

We present theoretical results for “collaborative double robustness,” demonstrat-
ing that the collaborative targeted maximum likelihood estimator is CAN when
Q and g are both mis-specified, providing that g solves a specified score equation



implied by the difference between the Q and the true Q 0.

This marks an improvement over the current definition of double robustness in
the estimating equation literature.

We also establish an asymptotic linearity theorem for the C-DR-TMLE of the tar-
get parameter, showing that the C-DR-TMLE is more adaptive to the truth, and,
as a consequence, can even be super efficient if the first stage density estimator
does an excellent job itself with respect to the target parameter.

This research provides a template for targeted efficient and robust loss-based
learning of a particular target feature of the probability distribution of the data
within large (infinite dimensional) semi-parametric models, while still providing
statistical inference in terms of confidence intervals and p-values. This research
also breaks with a taboo (e.g., in the propensity score literature in the field of
causal inference) on using the relevant part of likelihood to fine-tune the fitting of
the nuisance parameter/censoring mechanism/treatment mechanism.



1 Introduction

Researchers acknowledge that questions about our infinite-dimensional, semi-
parametric world are not well-addressed by parametric models. More sophis-
ticated tools are needed to wrest meaning from data. We can and should
develop and utilize methods specifically designed to estimate a relatively small-
dimensional precisely specified parameter within such a semiparametric model
that is identifiable from the data. The ideal method would be entirely a pri-
ori specified, have desirable statistical properties, avoid reliance on ad hoc or
arbitrary specifications, and be computationally feasible.

Suppose one observes a sample of independent and identically distributed
observations from a particular data generating distribution P0 in a semi-
parametric model, and that one is concerned with estimation of a particular
pathwise differentiable parameter of the data generating distribution. A pa-
rameter should be viewed as a mapping from the semiparametric model to
the parameter space (e.g., real line). A parameter mapping is pathwise dif-
ferentiable at P0 if it is differentiable along all smooth parametric sub-models
through P0, and its derivative is uniformly bounded as a linear mapping on
the Hilbert space of all scores of these parametric submodels. Intuitively, a
pathwise differentiable parameter is a parameter which has a finite generalized
Cramer-Rao information lower bound, so that in principle, under enough reg-
ularity conditions, it is possible to construct an estimator which behaves like
a sample mean of i.i.d. random variables. Due to the curse of dimensionality
implied by the infinite dimension of semi-parametric models, standard (non-
parametric) maximum likelihood estimation is often ill defined or breaks down
due to overfitting, while, on the other hand, regularized sieve-based maximum
likelihood estimation results in overly biased plug-in estimators of the target
parameter of interest.

The latter is due to the fact that such likelihood based estimators seek and
achieve a bias-variance trade-off that is optimal for the density of the distri-
bution of the data itself. Since the variance of an optimally smoothed density
estimator is typically much larger than the variance of a smooth (pathwise-
differentiable) parameter of the density estimator, the substitution estimators
are often too biased relative to their variance. That is, substitution esti-
mators based on density estimators involving optimal (e.g., likelihood-based)
bias-variance trade-off (for the whole density) are not targeted towards the
parameter of interest.

Motivated by this problem with the bias-variance trade-off of maximum
likelihood estimation in semiparametric models, while still wanting to preserve
the log-likelihood as the principle criterion in estimation, in van der Laan and
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Rubin (2006) we introduced and developed a targeted maximum likelihood
estimator of the parameter of interest.

The targeted maximum likelihood estimator of the distribution of the data
is obtained by fluctuating an initial estimator of the relevant part of the data
generating distribution with a parametric fluctuation model whose score at
the initial estimator (i.e., at zero fluctuation) equals or includes the efficient
influence curve of the parameter of interest, and estimating the fluctuation
parameter (i.e., amount of fluctuation) with standard parametric maximum
likelihood, treating the initial estimator as offset. Iteration of this targeted
maximum likelihood modification step results in a so called k-th step targeted
maximum likelihood estimator, and its limit in k solves the actual efficient
influence curve equation defined by setting the empirical mean of the efficient
influence curve equal to zero. The latter estimator we called the targeted
maximum likelihood estimator, which also results in a corresponding plug-in
targeted maximum likelihood estimator of the parameter of interest by apply-
ing the parameter mapping to the targeted maximum likelihood estimator.

This targeted maximum likelihood step using the fluctuation model re-
moves bias of the initial estimator with respect to (w.r.t.) the target pa-
rameter, while increasing the variance of the estimator till the level of the
semi-parametric information bound, thereby resulting in a consistent, asymp-
totically linear, and semi-parametric (locally) efficient estimator.

Although in a variety of applications the fluctuation model is known, e.g.,
randomized controlled trials with known treatment assignment and missing-
ness mechanism, the fluctuation model typically depends on an unknown nui-
sance parameter, which then needs to be estimated as well. In censored data
models satisfying the so called coarsening at random (CAR) assumption this
nuisance parameter typically represents the censoring mechanism, and the den-
sity of the data factors in the relevant part of the density and the censoring
mechanism density (e.g., Heitjan and Rubin (1991), Jacobsen and Keiding
(1995), Gill et al. (1997)).

In this case, the bias reduction obtained at the targeted maximum likeli-
hood step depends on how and how well we estimate the nuisance parameter.
Specifically, the targeted maximum likelihood estimator is a so called double
robust locally efficient estimator in censored data models (including causal
inference models with the full data representing a collection of treatment reg-
imen specific counterfactuals) in which the censoring mechanism satisfies the
coarsening at random assumption. This means that, under regularity condi-
tions, it is consistent and asymptotically linear if either the initial estimator
is consistent or the nuisance parameter is consistent, and it is efficient in
the semiparametric model if the initial estimator is consistent. Another ap-
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proach for double robust locally efficient estimation is the estimating equation
methodology (see, van der Laan and Robins (2003), and review below).

An outstanding open problem that obstructs the robust practical appli-
cation of double robust estimators (in particular, in nonparametric censored
data or causal inference models) is the selection of a sensible model or esti-
mator of the nuisance parameter: this is particularly true when the efficient
influence curve estimating equation involves inverse probability of censoring
or treatment weighting, due to the enormous sensitivity of the estimator of
the parameter of interest to the estimator of the nuisance parameter. A rel-
evant recent discussion of these issues is found in Kang and Schafer (2007a),
Ridgeway and McCaffrey (2007), Robins et al. (2007), Tan (2007), Tsiatis and
Davidian (2007), Kang and Schafer (2007b).

Given an initial estimator, we are concerned with constructing an estimator
of the nuisance parameter, that results in a better bias-variance trade-off (i.e.
better MSE) for the resulting targeted maximum likelihood estimator of the
target parameter than current practice. In this article we introduce a new
strategy for nuisance parameter estimator selection for targeted maximum
likelihood estimators that addresses this challenge by using the log-likelihood
of the targeted maximum likelihood estimator (of the relevant density) indexed
by the nuisance parameter estimator as the principal selection criterion. The
nuisance parameter estimators needed for the targeting step are selected based
on the relevant log-likelihood loss function of the resulting targeted maximum
likelihood estimator, not on a loss function for the nuisance parameter itself.
This approach takes into account the established fit of the initial estimator,
and that the resulting estimator of the target parameter is indeed based on
the relevant part of the likelihood.

Recognizing that the selected estimator of the nuisance parameter is very
much a function of the goodness of fit of the initial estimator led to the devel-
opment of a new theory of collaborative double robust estimation. The asymp-
totic linearity theory presented below involves characterizing a true minimal
nuisance parameter indexed by the initial estimator limit, g0(Q), that results in
an efficient influence curve that is unbiased for the target parameter. This de-
fines the collaborative double robustness of the efficient influence curve. Given
a nested sequence of increasingly non-parametric estimators, gδ, there is a gδmin

corresponding to g0(Q) which makes the efficient influence curve unbiased for
the target parameter. In addition, all estimates of g in the sequence that are
more nonparametric than the estimator indexed by δmin, i.e. δ > δmin, also
make the efficient influence curve unbiased for the target parameter. These
results allow us to establish asymptotic linearity of the collaborative double
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robust targeted maximum likelihood estimator, under appropriate regularity
conditions.

The theory is fascinating, and results in potentially super efficient estima-
tors, the main intuition, in the context of CAR-censored data models, is that
the covariates that enter the treatment mechanism and censoring mechanism
estimator (i.e., nuisance parameter estimator) used to define the fluctuation
model in the targeted maximum likelihood step should explain the difference
between the initial estimator, Qn, and the true relevant density, Q0.

Such collaborative double robust estimators involve a variety of choices,
including the choice of initial estimator and the choice of collaborative nui-
sance parameter estimator, but all solve the efficient influence curve equation
and all rely on the collaborative nuisance parameter estimator being correctly
specified so that the wished unbiasedness of the efficient influence curve is
achieved in the limit. We propose using cross-validation w.r.t. a targeted loss
function to select among these different collaborative targeted maximum like-
lihood estimators of the relevant density. In addition, we suggest the square
of their influence curve or square of the efficient influence curve as a particu-
larly suitable loss function, corresponding with selection of the estimator with
minimal asymptotic variance.

An overview of relevant literature

The construction of efficient estimators of pathwise differentiable parameters in
semi-parametric models requires utilizing the so called efficient influence curve,
defined as the canonical gradient of the pathwise derivative of the parameter.
A fundamental result of the efficiency theory is that a regular estimator is
efficient if and only if it is asymptotically linear with influence curve equal to
the efficient influence curve. We refer to Bickel et al. (1997), and Andersen
et al. (1993). There are two distinct approaches for construction of efficient
(or locally efficient) estimators: the estimating equation approach that uses
the efficient influence curve as an estimating equation (e.g., one-step estima-
tors based on the Newton-Raphson algorithm in Bickel et al. (1997)), and
the targeted MLE that uses the efficient influence curve to define a targeted
fluctuation function, and maximizes the likelihood in that targeted direction.

The construction of locally efficient estimators in censored data models in
which the censoring mechanism satisfies the so called coarsening at random
assumption (Heitjan and Rubin (1991), Jacobsen and Keiding (1995), Gill
et al. (1997)) has been a particular focus area. This also includes the theory for
locally efficient estimation of causal effects under the sequential randomization
assumption (SRA), since the causal inference data structure can be viewed as
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a missing data structure on the intervention-specific counterfactuals, and SRA
implies the coarsening at random assumption on the missingness mechanism,
while not implying any restriction on the data generating distribution.

Gill and Robins (2001) present an implicit construction of counterfactuals
as a mapping from the observed data distribution, such that the observed
data structure augmented with the counterfactuals satisfies the consistency
assumption and the SRA. Yu and van der Laan (2002) provide a particular
explicit construction of counterfactuals from the observed data structure in
terms of quantile-quantile functions, satisfying the consistency assumption and
SRA. These results show that, without loss of generality, one can view causal
inference as a missing data structure estimation problem. Causal graphs make
explicit the real assumptions needed to claim that these counterfactuals are
actually the counterfactuals of interest.

Inverse probability of censoring weighted (IPCW) estimators were origi-
nally developed to correct for confounding-induced bias in causal effect esti-
mation. Theory for IPCW estimation and augmented locally efficient IPCW-
estimator based on estimating functions defined in terms of the orthogonal
complement of the nuisance tangent space in CAR-censored data models (in-
cluding the optimal estimating function implied by efficient influence curve)
was originally developed in Robins (1993), Robins and Rotnitzky (1992). Many
papers build on this framework (see van der Laan and Robins (2003) for a uni-
fied treatment of this estimating equation methodology, and references). In
particular, double robust locally efficient augmented IPCW-estimators have
been developed (Robins and Rotnitzky (2001b), Robins and Rotnitzky (2001),
Robins et al. (2000), Robins (2000a), van der Laan and Robins (2003),Neuge-
bauer and van der Laan (2005), Yu and van der Laan (2003)).

Causal inference for multiple time-point interventions under sequential ran-
domization was first addressed by Robins in the eighties: e.g. Robins (1986),
Robins (1989).

The popular propensity score methods to assess causal effects of single time
point interventions (e.g., Rosenbaum and Rubin (1983), Sekhon (2008), Ru-
bin (2006)) have no natural generalization to multiple time-point interventions
and may be inefficient (and less robust) estimators for single time point inter-
ventions, relative to the locally efficient double robust estimators such as the
augmented IPCW and the targeted MLE. One crucial ingredient of these pro-
posed methods is propensity score estimation in the absence of any knowledge
of the outcomes.
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Structural nested models and marginal structural models for single and
multiple time point static treatment regimens were proposed by Robins as well:
Robins (1997b), Robins (1997a), Robins (2000b). Many application papers on
marginal structural models exist, involving the application of estimating equa-
tion methodology (IPCW and DR-IPCW): e.g., Hernan et al. (2000), Robins
et al. (2000a), Bryan et al. (2003), Yu and van der Laan (2003). In van der
Laan et al. (2005) history adjusted marginal structural models were proposed
as a natural extension of marginal structural models, and it was shown that
the latter also imply an individualized treatment rule of interest (a so called
history adjusted statically optimal treatment regimen): see Petersen et al.
(2005) for an application to the “when to switch” question in HIV research.

Murphy et al. (2001) present a nonparametric estimator for a mean un-
der a dynamic treatment in an observational study. Structural nested models
for modeling and estimating an optimal dynamic treatment were proposed by
Murphy (2003), Robins (2003), Robins (2005a), Robins (2005b). Marginal
structural models for user supplied set of dynamic treatment regimens were
developed and proposed in van der Laan (2006), van der Laan and Petersen
(2007) and, simultaneously and independently, in a technical report authored
by Rotnizky and co-workers (2006), and Robins et al. (2008). van der Laan
and Petersen (2007) also includes a data analysis application of these models
to assess the mean outcome under a rule that switches treatment when CD4-
count drops below a cut-off, and the optimal cut-off is estimated as well. An-
other practical illustration in sequentially randomized trials of these marginal
structural models for realistic individualized treatment rules is presented in
Bembom and van der Laan (2007).

Unified loss based learning based on cross-validation was developed in-
van der Laan and Dudoit (2003), including construction of adaptive minimax
estimators for infinite dimensional parameters of the full data distribution in
CAR-censored data and causal inference models: see also van der Laan et al.
(2006), van der Vaart et al. (2006), van der Laan et al. (2004), Dudoit and
van der Laan (2005), Keleş et al. (2002), Sinisi and van der Laan (2004).

The oracle results for the cross-validation selector inspired a unified su-
per learning methodology mapping a library of candidate estimators into a
weighted combination with optimal cross-validated risk, thereby resulting in
an estimator which either achieves the best possible parametric model rate of
convergence up till a log-n-factor, or it is asymptotically equivalent with the
oracle selected estimator that selects the best set of weights for the given data
set. These results rely on the assumption that the loss function is uniformly
bounded and that the number of candidates in the library is polynomial in
sample size (van der Laan et al. (2007), Polley and van der Laan (2009)).
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The super learning methodology applied to a loss function for the G-
computation formula factor, Q0, in causal inference, or the full-data distri-
bution factor, Q0, of the observed data distribution in CAR-censored data
models, provides substitution estimators of the target parameter ψ0. How-
ever, although these super learners of Q0 are optimal w.r.t. the dissimilarity
with Q0 implied by the loss function, the corresponding substitution estima-
tors will be overly biased for a smooth parameter mapping Ψ. This is due to
the fact that cross-validation makes optimal choices w.r.t. the (global) loss-
function specific dissimilarity, but the variance of Ψ(Q̂) is of smaller order than
the variance of Q̂ itself.

van der Laan and Rubin (2006) integrates the loss-based learning of Q0

into the locally efficient estimation of pathwise differentiable parameters, by
enforcing the restriction in the loss-based learning that each candidate estima-
tor of Q0 needs to be a targeted maximum likelihood estimator (thereby, in
particular, enforcing each candidate estimator of Q0 to solve the efficient influ-
ence curve estimating equation). Another way to think about this is that each
loss function L(Q) for Q0 has a corresponding targeted loss function L(Q∗),
with Q∗ the targeted MLE algorithm applied to initial Q, and we apply the
loss-based learning to the latter targeted version of the loss function L(Q).
Rubin and van der Laan (2008) propose the square of efficient influence curve
as a valid and sensible loss function L(Q) for selection and estimation of Q0

in models in which g0 can be estimated consistently, such as in randomized
controlled trials.

The implications of this targeted loss based learning are that Q0 is esti-
mated optimally (maximally adaptive to the true Q0) w.r.t. the targeted loss
function L(Q∗) using the super learning methodology, and due to the targeted
MLE step the resulting substitution estimator of ψ0 is now asymptotically lin-
ear as well if the targeted fluctuation function is estimated at a good enough
rate (and only requiring adjustment by confounders not yet accounted for by
initial estimator: see collaborative targeted MLE): either way, bias reduction
will occur as long as the censoring/treatment mechanism is estimated consis-
tently. Targeted MLE have been applied in a variety of estimation problems:
Bembom et al. (2008), Bembom et al. (2009) (physical activity), Tuglus and
van der Laan (2008) (biomarker analysis), Rosenblum et al. (2009) (AIDS),
van der Laan (2008a) (case control studies), Rose and van der Laan (2008)
(case control studies), Rose and van der Laan (2009) (matched case control
studies), Moore and van der Laan (2009) (causal effect on time till event, allow-
ing for right-censoring), van der Laan (2008b) (adaptive designs, and multiple
time point interventions), Moore and van der Laan (2007) (randomized trials
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with binary outcome). We refer to van der Laan et al. (September, 2009) for
collective readings on targeted maximum likelihood estimation.

1.1 Advantages of TMLE relative to augmented IPCW
estimating function methodology

Even though the augmented IPCW-estimator is also double robust, targeted
maximum likelihood estimation has the following important advantages rela-
tive to estimating equation methods such as the augmented-IPCW estimator:
1) the TMLE is a substitution estimator and thereby respects global con-
straints of model such as that one might be estimating a probability in [0, 1]
or a (monotone) survival function at a finite set of points, 2) since, given an
initial estimator, the targeted MLE step involves maximizing the likelihood
along a smooth parametric targeted fluctuation model, it does not suffer from
multiple solutions of a (possibly non-smooth in the parameter) estimating equa-
tion, 3) the TMLE does not require that the efficient influence curve can be
represented as an estimating function in the target parameter, and thereby ap-
plies to all pathwise differentiable parameters 4) it can use the cross-validated
log-likelihood (of the targeted maximum likelihood estimator), or any other
cross-validated risk of an appropriate loss function for the relevant factor Q0

of the density of the data, as principle criterion to select among different tar-
geted maximum likelihood estimators indexed by different initial estimators
or targeted maximum likelihood steps.

The latter allows fine tuning of initial estimator ofQ0 as well as the fine tun-
ing of the estimation of the unknowns (e.g., censoring/treatment mechanism
g0) of the fluctuation function applied in the targeted maximum likelihood
step, thereby utilizing the excellent theoretical and practical properties of the
loss-function specific cross-validation selector. In particular, this property re-
sults in a collaborative double robust, and possibly super efficient, TMLE, as
introduced and studied in this article, thereby adding theoretical and practical
properties that go beyond the double robustness and efficiency. In contrast,
the augmented-IPCW estimator cannot be evaluated based on a loss function
for Q0 alone: the augmented-IPCW estimator is not a substitution estimator
Ψ(Q∗n) for some Q∗n of Q0, as is the TMLE. Instead the augmented-IPCW
estimator ψn is a certain function of an initial Qn and gn, where the perfor-
mance of gn is scored based on the orthogonal loglikelihood of g0, for which a
good fit can result in bad fit of ψ0. In trying to address these shortcomings
of the augmented IPCW-estimators we converged to the targeted MLE and,
subsequent refinement, the collaborative targeted MLE.
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1.2 Organization of article

In Section 2 we present a description of the two stage collaborative targeted
maximum likelihood methodology, the first stage representing the initial es-
timator, and the second stage representing the construction of a sequence of
targeted maximum likelihood estimators indexed by increasingly nonparamet-
ric nuisance parameter estimators, and log-likelihood based cross-validation
to select among the TMLEs and thereby select the nuisance parameter esti-
mator. The second stage of the C-DR-TMLE can be viewed as a mapping
from an initial estimator of the relevant density into a particular estimator of
the nuisance parameter needed in the fluctuation function, and corresponding
targeted maximum likelihood estimator using this nuisance parameter estima-
tor in the targeted maximum likelihood step. We also provide the rational
for the consistency of this C-DR-TML estimator under the collaborative dou-
ble robustness assumption, relying on the earlier established oracle property
of the log-likelihood-based cross-validation selector, which itself relies on the
assumption that the log-likelihood loss function is uniformly bounded.

In Section 3 we define and study collaborative double robustness of the
efficient influence curve. In particular, we define true nuisance parameters de-
pending on a choice of relevant density (i.e., limit of initial estimator), which
make the efficient influence curve an unbiased function for the target param-
eter. A collaborative targeted maximum likelihood estimator solves the effi-
cient influence curve equation and relies on the nuisance parameter estimator
to consistently estimate this true initial estimator-specific nuisance parame-
ter or more nonparametric nuisance parameter. We also discuss alternative
collaborative nuisance parameter estimators that can be used in the targeted
MLE or in estimating equation methodology.

In Section 4 we prove an asymptotic linearity theorem for such collaborative
double robust estimators, such as the collaborative double robust targeted
maximum likelihood estimator, and discuss the conditions and implications
of this theorem. In particular, this theorem provides us with influence curve
based confidence intervals and tests of null hypotheses. A study of the influence
curve teaches us that the C-DR-TMLE can be super efficient.

In Section 5 we consider targeted loss functions that can be used to se-
lect among different C-DR-TMLEs indexed by different initial estimators and
choices of nuisance parameter estimator. These targeted loss functions can
also be used to build the candidate nuisance parameter estimators within a C-
DR-TMLE estimator, and thereby to construct the sequence of corresponding
candidate targeted maximum likelihood estimators in the collaborative tar-
geted maximum likelihood algorithm. Even though we enforce the use of a
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log-likelihood-based cross-validation selector to select among these candidate
targeted maximum likelihood estimators in the C-DR-TMLE algorithm, we
propose a penalized log-likelihood loss function that is more targeted towards
the target parameter in the case the target parameter is borderline identifiable.
This penalty is particularly important to robustify the estimation procedure
in situations in which the variance of the efficient influence curve easily blows
up to infinity for certain realization of the nuisance parameter estimator (e.g.,
close to zero inverse weights).

In section 6 we consider estimation of a causal effect in a marginal structural
model, and define the collaborative double robust targeted penalized maximum
likelihood estimator of the unknown parameters of the marginal structural
model. In section 7 we present a simulation study and data analysis for the
C-DR-TMLE of the causal effect EY (1) − Y (0) of a binary treatment A,
adjusting for baseline confounders W , based on observing n i.i.d. copies of
a time-ordered data structure (W,A, Y = Y (A)). A discussion in Section 8
provides a global overview. TMLE as an imputation estimator is described in
an appendix.

1.3 An example to keep in mind

Although the methodology is completely general, throughout the paper we
ground the discussion by referring to the following example, estimation of the
additive causal effect of a binary treatment on an outcome. This example is
rich enough to illustrate the ideas and methods, and has been used intensively
in the causal inference literature. In this subsection we provide the notation,
and objects required to define the C-DR-TMLE.

Let O = (W,A, Y = Y (A)) ∼ P0 be an observed missing data structure
on full data structure X = (W,Y (0), Y (1)) with missingness binary variable
A ∈ {0, 1}. For concreteness, we consider the case that Y is binary. Suppose
the model for P0 is nonparametric, that the missingness mechanism g0(1 |
X) = P0(A = 1 | X) = P0(A = 1 | W ) satisfies the coarsening at random
assumption, and that our target parameter is the causal additive risk

Ψ(P0) = ΨF (Q0) = E0Y (1)− Y (0)

= E0{E0(Y | A = 1,W )− E0(Y | A = 0,W )},

where Q0 = (Q01, Q02) denotes the marginal distribution of W and conditional
distribution of Y , given A,W , respectively. For notational convenience, we will
suppress the F from “Full Data Parameter” in ΨF . We note that dP0(O) =
Q0(O)g0(A | X) = Q01(W )Q02(Y | A,W )g0(A | X).
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The efficient influence curve of Ψ at dP0 = Q0g0 is given by

D∗(Q0, g0) = hg0(A,W )(Y −Q0(A,W )) +Q0(1,W )−Q0(0,W )−Ψ(Q0),

where Q0(A,W ) = EQ0(Y | A,W ), hg0(A,W ) = A/g0(1 | W )− (1−A)/g0(0 |
X). We note that hg0 also plays the role of the clever covariate in the targeted
maximum likelihood fluctuation of the conditional distribution of Y , given
A,W : logQ(ε)/(1−Q(ε)) = logQ/(1−Q) + εhg0 .

We also note that an alternative representation of the efficient influence
curve is given by the augmented IPCW-representation:

D∗(Q0, g0) =

(
A

g0(1 | X)
− 1− A
g0(0 | X)

)
Y −Ψ(Q0)

−
(

A

g0(1 | X)
− 1

)
Q0(1,W ) +

(
1− A

g0(0 | X)
− 1

)
Q0(0,W )

= DIPCW (g0, ψ0)−DCAR(Q0, g0),

where DIPCW (g0, ψ0) = (A/g0(1) − (1 − A)/g0(0))Y − Ψ(Q0) is the IPCW-
estimating function, and DCAR(Q0, g0) is its projection onto TCAR defined
as the sub-Hilbert space of L2

0(P0) consisting of all functions of (A,W ) with
conditional mean zero, given W . Here L2

0(P0) is the Hilbert space of functions
of O endowed with inner product 〈h1, h2〉P0 = EP0h1(O)h2(O).

2 Collaborative double robust targeted maxi-

mum likelihood estimators

We will describe the proposed collaborative double robust targeted maximum
likelihood estimators in the context of censored data models, but the gen-
eralization to general semi-parametric models is immediate. We first review
targeted maximum likelihood estimation and loss-based cross-validation in or-
der to provide a foundation for the explanation of C-DR-TMLE.

2.1 Targeted MLE in CAR-censored data model

Let O = Φ(C,X) be a censored data structure on a full data random vari-
able X, where C denotes the censoring variable. We assume coarsening at
random so that the observed data structure O ∼ P0 has a probability dis-
tribution whose density w.r.t an appropriate dominating measure factors as
dP0(O) = Q0(O)g0(O | X), where Q0 is the part of the distribution of X that
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is identifiable, and g0 denotes the conditional probability distribution of O,
given X, which we often refer to as the censoring mechanism. By CAR, we
have g0(O | X) = h(O) for some measurable function h. If C is observed itself,
then g0 denotes the conditional distribution of C, given X.

A semiparametric model M for the probability distribution P0 of the ob-
served data structure O is implied by a model Q for the full-data distribution
factor Q0, and a model G for the censoring mechanism g0. The conditional dis-
tribution of O, given X, is identified by the conditional distribution of C, given
X. For notational convenience, we will denote both with g0. Let O1, . . . , On

be n independent and identically distributed (i.i.d.) observations of the exper-
imental unit O with probability distribution P0 ∈M. Let Pn be the empirical
probability distribution of O1, . . . , On which puts mass 1/n on each of the n
observations.

Let Ψ :M→ IRd be a d-dimensional parameter that is path-wise differen-
tiable at each P ∈ M (w.r.t. a class of finite dimensional paths through P )
with canonical gradient D∗(P ): i.e., for a rich class of parametric submodels
{P (δ) : δ} ⊂ M through P at δ = 0 with score S ∈ L2

0(P ), L2
0(P ) being

the Hilbert space of mean zero functions of O endowed with inner product
〈h1, h2〉P = Eh1h2(O) (i.e., the covariance operator), we have

d

dδ
Ψ(P (δ))|δ=0 = EPD

∗(P )S.

Because D∗(P ) is an element of the Hilbert space in L2
0(P ) generated by all

scores S of these parametric submodels (the so called tangent space), it is the
canonical gradient D∗(P ), also called the efficient influence curve at P . Any
D(P ) such that EPD

∗(P )S = EPD(P )S for all scores S in the tangent space
is called a gradient of the path-wise derivative. Thus the canonical gradient
is the unique gradient that is an element of the tangent space. For the sake
of illustration, it is assumed that Ψ(PQ,g) = ΨF (Q) for some ΨF : i..e, the
parameter of interest is a parameter of the full data distribution of X. The
efficient influence curve D∗(P ) at P with dP = Qg will also be denoted with
D∗(Q, g).

The Targeted Maximum Likelihood estimator indexed by initial
(Q, g): Given any P ∈M with dP = Qg, let {P (ε) : ε} ⊂ M be a submodel
with finite dimensional parameter ε, dominated by P , through P at ε = 0,
and whose scores at ε = 0 span a finite dimensional space within L2

0(P ) that
includes the (components of the) efficient influence curve D∗(P ) = D∗(Q, g).
Because our parameter of interest is a parameter of Q0 and the factorization
dP0 = Q0g0, it follows that such a fluctuation model can be chosen to only
fluctuate Q with a submodel Qg(ε) ⊂ Q, where this fluctuation model will be
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indexed by g. Let dP (ε) = Qg(ε)g be such a fluctuation model with fluctuation
parameter ε. In van der Laan and Rubin (2006) we also consider fluctuation
models that vary both Q and g.

At a given (Q, g), one can now define a k-th step targeted maximum likeli-
hood version Qk

g(Pn) of Q0 as follows. Let L(Q) = − logQ be the log-likelihood
loss. Firstly, let Q1

g(Pn) = Qg(ε
1
n), where

ε1n = arg min
ε
PnL(Qg(ε)).

Here we use the notation Pf =
∫
f(o)dP (o). In general, Qk

gn = Qk
g(Pn) =

Qk−1
g (Pn)(εkn), where

εkn = arg min
ε
PnL(Qk−1

g (Pn)(ε)), k = 1, . . ..

One iterates this updating till εkn equals zero within a user supplied precision.
The final update is refered to as the (iterative) targeted maximum likelihood
estimator Q∗gn = Q∗g(Pn), indexed by the initial starting point (Q, g).

The Targeted Maximum Likelihood estimator indexed by initial
estimator and estimator of nuisance parameter: The above procedure,
applied to an initial estimator Q0

n, and an estimator gn of g0, defines the
k-th step targeted maximum likelihood estimator and its limit in k, Q∗n, as
introduced and analyzed in van der Laan and Rubin (2006). By definition, the
targeted maximum likelihood estimator (Q∗n, gn) solves the efficient influence
curve equation:

0 = PnD
∗(Q∗n, gn).

Remark: Cross-validated initial estimator in the targeted MLE. If
the initial estimator is an over-fit, then the bias reduction of the targeted MLE
algorithm is not as effective. To protect against such cases one can use a cross-
validated initial estimator. Specifically, let Bn ∈ {0, 1}n be a random variable
that splits the sample in a training sample {i : Bn(i) = 0} and validation
sample {i : Bn(i) = 1}, and, let P 0

n,Bn
, P 1

n,Bn
, denote the empirical distribution

of the training and validation sample, respectively. The above targeted MLE
iterative algorithm is now given by: Qk

gn = Qk
g(Pn) = Qk−1

g (Pn)(εkn), where

εkn = arg min
ε
EBnP

1
n,Bn

L(Qk−1
g (P 0

nBn
)(ε)), k = 1, . . ..
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2.2 Loss-based cross-validation to select among (collab-
orative) targeted maximum likelihood estimators

Consider a loss function L∗(Q) for Q0 that satisfies

Q0 = arg min
Q
P0L

∗(Q).

Or, more precisely, we only require that Ψ (arg minQ P0L
∗(Q)) = Ψ(Q0). An

example of such a loss function is the the log-likelihood L∗(Q)(O) = L(Q) =
− logQ(O). Each loss function has a corresponding dissimilarity d(Q,Q0) =
P0{L∗(Q)− L∗(Q0)}.

Given different targeted maximum likelihood estimators, Pn → Q̂∗k(Pn),
of Q0, for example, indexed by different initial estimators, we can use a pre-
ferred loss-function based cross-validation to select among them. Specifically,
let Bn ∈ {0, 1}n be a random variable that splits the sample in a training
sample {i : Bn(i) = 0} and validation sample {i : Bn(i) = 1}, and, let P 0

n,Bn
,

P 1
n,Bn

, denote the empirical distribution of the training and validation sample,
respectively. The loss-function based cross-validation selector is now defined
by

k̂(Pn) = arg min
k
EBnP

1
n,Bn

L∗(Q̂∗k(P
0
n,Bn

)).

The resulting targeted maximum likelihood estimator is then given by

Q̂∗n = Q̂∗
k̂(Pn)

(Pn).

Cross-validation selector: Consider a preferred loss function that satis-
fies

sup
Q

VARP0{L∗(Q)− L∗(Q0)}
P0{L∗(Q)− L∗(Q0)}

≤M2, (1)

and that is uniformly bounded

sup
O,Q
| L∗(Q)− L∗(Q0) | (O) < M1 <∞,

where the supremum is over the support of P0, and over all possible candidate
estimators of Q0 that will ever be considered. The first property (1) applies to
the log-likelihood loss function and any weighted squared residual loss func-
tion, among others. The property (1) is essentially equivalent with the assump-
tion that the loss-function based dissimilarity d(Q,Q0) = P0L

∗(Q) − L∗(Q0)
is quadratic in a distance between Q and Q0. The property (1) has been
proven for log-likelihood loss functions and weighted L2-loss functions, and is
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in essence equivalent with stating that the loss function implies a quadratic
dissimilarity d(Q,Q0) (see van der Laan and Dudoit (2003)). If this property
does not hold for the loss function, the rates 1/n for second order terms in the
below stated oracle inequality reduce to the rate 1/

√
n.

For such loss functions, the cross-validation selector satisfies the following
(so called) oracle inequality: for any δ > 0,

EBn{P0L(Q̂k̂(P
0
n,Bn

)− L(Q0)} ≤ (1 + 2δ)EBn min
k
P0{L(Q̂k(P

0
n,Bn

))− L(Q0)}

+2C(M1,M2, δ)
1 + logK(n)

np
,

where the constant C(M1,M2, δ) = 2(1 + δ)2(M1/3 + M2/δ) (see page 25 of
van der Laan and Dudoit (2003)). This result proves (see van der Laan and
Dudoit (2003) for the precise statement of these implications) that, if the num-
ber of candidates K(n) is polynomial in sample size, then the cross-validation
selector is either asymptotically equivalent with the oracle selector (based on
sample of size of training samples, as defined on right-hand side of above
inequality), or it achieves the parametric rate log n/n for convergence w.r.t.
d(Q,Q0) ≡ P0{L(Q)−L(Q0)}. So in most realistic scenarios, in which none of
the candidate estimators achieve the rate of convergence one would have with
an a priori correctly specified parametric model, the cross-validated selected
estimator selector performs asymptotically exactly as well (up till constant!)
as the oracle selected estimator. These oracle results are generalized for esti-
mated loss functions L∗n(Q) that approximate a fixed loss function L∗(Q). If
arg minQ P0L

∗
n(Q) 6= Q0, then the oracle inequality also presents second order

terms due to the estimation of the loss function.
This preferred loss function based cross-validation can now be used to select

among different candidate targeted maximum likelihood estimators indexed
by different initial estimators, and possibly different censoring mechanism es-
timators. Specifically, we will use a preferred targeted loss function to select
among different collaborative targeted maximum likelihood estimators, which
are just special targeted maximum likelihood estimators in the sense that gn
is estimated in collaboration with the initial Qn.

For a given loss function L(Q), and an estimator Q̂(Pn), we will refer to
PnL(Q̂(Pn)) as the entropy of the fit Q̂(Pn). Similarly, for a loss function
L1(g) of g0, and an estimator ĝ(Pn), we will refer to PnL1(ĝ(Pn)) as the en-
tropy of ĝ(Pn). Both the preferred loss function for Q0, as well as this loss
function L1 for g0 represent important choices. For example, one likes to se-
lect the loss function L1 so that the dissimilarity P0{L1(g)−L1(g0)} measures
strongly how well g approaches the optimal fluctuation function implied by g0.
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In other words, we need to keep in mind how g is used, namely that it is used
to fit the wished fluctuation function implied by g0. For example, if the clever
covariate defining the fluctuation function is given by A − E(A/σ2(A,W ) |
W )/E(1/σ2(A,W ) | W ), as in the semiparametric regression model E(Y |
A,W ) − E(Y | A = 0,W ) = βA, one might want to define as loss function
L(θ1(g), θ2(g)) = w1(A/σ2(A,W ) − θ1(W ))2 + w2(1/σ2(A,W ) − θ2(W ))2, for
weight-functions w1, w2 (functions of W ), and θ1, θ2 representing the numer-
ator and denominator of the conditional expectations in the clever covariate.
Similarly, the preferred loss function for Q0 can be tuned to represent a dissim-
ilarity d(Q,Q0) that measures strongly how well Ψ(Q) approximates Ψ(Q0).
We discuss such choices in more detail in a later section.

2.3 Building a collaborative estimator of censoring
mechanism/nuisance parameter

A C-TMLE estimator is constructed by building a family of candidate estima-
tors, then choosing the best among them, using cross-validation to drive the
choice to Q0. However, we also rely upon a loss function when building each
candidate nuisance parameter (e.g. censoring mechanism) estimator, and it
is not necessary that these two loss functions be the same. In fact, as part
of building a collaborative nuisance parameter estimator in the collaborative
T-MLE procedure, we couple an increase in the log-likelihood entropy of the
targeted maximum likelihood estimator with an increase in the g0-loss func-
tion specific entropy of the corresponding nuisance parameter estimator. In
this manner, we arrange that, for increasing sample size, the cross-validation
selector will be driven towards the selection of targeted maximum likelihood
estimator with an initial estimator closer to Q0 and simultaneously a more
and more nonparametric estimator of g0 (thereby achieving the full wished
bias reduction in the limit).

That is, given a collection of candidate estimators of g0, ordered by em-
pirical fit w.r.t. a loss function for g0 such as the log-likelihood, we will build
a sequence of targeted maximum likelihood estimators of Q0 ordered by log-
likelihood entropy and indexed by increasingly nonparametric estimators of
g0, where the extend of being nonparamatric is measured by the L1-entropy.
Subsequently, we use the cross-validated log-likelihood for Q0 to choose among
these candidate targeted maximum likelihood estimators.

There are many possible approaches that construct such an ordered se-
quence of targeted maximum likelihood estimators in which a next element
in the sequence has both a higher entropy for the Q0-loss as well as a higher
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g0-loss entropy for its corresponding censoring estimator. Of course, the strict
ordering is not what drives the properties of the resulting estimator, but the
sequence should represent an approximately monotone function in the log-
likelihood entropy of Q0 and L1-entropy of g0.

This procedure represents one particular approach for constructing a tar-
geted maximum likelihood estimator that uses a collaboratively estimated
nuisance parameter. We refer to any algorithm that maps into a targeted
maximum likelihood estimator that uses a collaborative nuisance parameter
estimator (relative to the Q-estimator), as a collaborative targeted maximum
likelihood estimator.

2.4 A template for collaborative targeted MLEs

We present the following template providing a class of collaborative targeted
maximum likelihood estimators.

Initial estimator of Q0: Build an estimatorQn ofQ0, such as a super learner
based on the log-likelihood loss function L(Q), or any other loss function.

Preferred loss function for Q0: Let L∗(Q) be a (targeted) loss function for
Q0. We note that the loss function can also be data dependent, and, in
particular, the choice of loss function can depend on an initial estimator
Qn of Q0, and corresponding collaborative estimator gn (see DR-IPCW
loss functions in van der Laan and Dudoit (2003), and our section on
targeted loss functions).

Loss function for g0: Let L1(g) be a loss function for g0.

Candidate estimators of censoring mechanism/nuisance parameter:
For each δ in an index set, let gnδ be a candidate estimator of g0. Let
d(δ) = PnL1(gnδ) denote the entropy of gnδ, thereby measuring how data
adaptive gnδ is, and for a maximal value d(δ) or for d(δ) approximating
a maximum value we have that gnδ is actually a consistent estimator of
g0.

Select ordered sequence of entropies for censoring mechanism
(nuisance parameter) estimator

:

Select a sequence d0 > d1 > . . . > dK .

Select initial targeted maximum likelihood estimator: We start out
with a g0

n with entropy larger than d0 and a corresponding targeted max-
imum likelihood estimator Q∗0n = Q∗ng0n applied to initial estimator Qn.
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We refer to the pair (g0
n, Q

∗0
n ) as the initial targeted maximum likelihood

estimator in the sequence of targeted maximum likelihood estimators
that will be constructed below.

Construct next targeted maximum likelihood estimator in
sequence

:

We are given an current initial estimator Qk
n, a current targeted maxi-

mum likelihood estimator (gkn, Q
k∗
n ) in our sequence of targeted maximum

likelihood estimators, with Qk∗
n being the targeted maximum likelihood

estimator applied to current initial estimator Qk
n and nuisance parameter

estimator gkn. The current nuisance parameter estimator gkn has entropy
larger than dk. We are also given k, and thereby two corresponding en-
tropy values dk > dk+1. (we note that the initial estimator does not get
updated at each step k, but it corresponds with one of the elements in
current sequence of targeted maximum likelihood estimators)

Consider an algorithm that searches among a specified set of candidate
estimators gnδ with {δ : dk > d(δ) > dk+1)} with the goal of minimizing
the preferred loss L∗-fit of the targeted maximum likelihood estimator,
applied to initial Qk

n:
δ → PnL

∗(Qk∗
nδ). (2)

Recall that Qk∗
nδ denotes the targeted maximum likelihood estimator that

uses the optimal fluctuation model identified by censoring mechanism gnδ
applied to initial estimator Qk

n. Let gnδn be the selected estimator. If
either the fit is improved relative to current T-MLE Qk∗

n ,

PnL
∗(Qk∗

nδn) < PnL
∗(Qk∗

n ),

or the above holds for the log-likelihood loss function L(Q) = − logQ
on which the targeted maximum likelihood algorithm operates, then we
accept δn, and thereby the next targeted maximum likelihood estimator,
gk+1
n = gnδn , Q

k+1∗
n = Qk∗

nδn
, in the sequence we are constructing. The

algorithm now delivered its next k + 1-th targeted maximum likelihood
estimator. We set k = k + 1, keep the initial estimator Qk

n unchanged,
and the current targeted maximum likelihood estimator (gkn, Q

k∗
n ) is now

updated.

If this monotonicity condition fails to hold for both the log-likelihood fit
as well as the preferred loss function fit, then we reject this δn, and up-
date the initial estimator Qk

n by setting it equal to the current targeted
maximum likelihood estimator Qk∗

n . We now, rerun the above procedure
with initial Qk

n = Qk∗
n , and same dk > dk+1. This time the resulting δn
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will always be accepted since the log-likelihood fit of a targeted maxi-
mum likelihood estimator (a maximum likelihood fluctuation of an initial
estimator) is larger than the log-likelihood of initial estimator. So the
algorithm now delivers the next k + 1-th targeted maximum likelihood
estimator gk+1

n = gnδn , Q
k+1∗
n = Qk∗

nδn
in its sequence. We set k = k + 1,

the initial estimator is still set at Qk
n, and the current targeted maximum

likelihood estimator (gkn, Q
∗k
n ) is now updated (the last one in sequence

so far).

k-th step collaborative targeted maximum likelihood estimator:
The above algorithm maps a running current initial estimator, a current
targeted MLE (gkn, Q

∗k
n ) (the lastly constructed in current sequence), into

a new targeted MLE (gk+1
n , Q∗k+1

n ), and possible updated current initial
estimator. We start this algorithm with k = 0, and iterate it. This now
defines the k-th step collaborative targeted maximum likelihood estima-
tor (gkn, Q

∗k
n ), k = 0, 1, 2, . . . , K.

We are guaranteed that the fit of Q∗kn is either increasing w.r.t. the
preferred loss function (most likely, since that is the loss we minimize
at each step), or it is increasing w.r.t the log-likelihood loss used to de-
fine the targeted maximum likelihood step, relative to previous targeted
maximum likelihood estimator Q∗k−1

n . In addition, the corresponding gkn
has a L1-fit that is larger than the L1-fit of gk−1

n . At every step in which
the initial estimator is updated, we also know that the log-likelihood fit
is increasing.

Cross-validation to select number of iterations k in k-th step
C-TMLE:

Given this sequence of k-th step collaborative targeted maximum likeli-
hood estimators Pn → (Qk∗

n =)Q̂k∗(Pn), using estimator gkn, it remains
to select k, k = 0, 1, . . . , K.

We select k based on the cross-validated log-likelihood:

kn = argmax
k

EBnP
1
n,Bn

L(Q̂k∗(P 0
n,Bn

)),

where the random vector Bn ∈ {0, 1}n denotes a cross-validation scheme
such as V -fold cross-validation, and P 0

n,Bn
, P 1

n,Bn
are the empirical proba-

bility distributions of the training sample {i : Bn(i) = 0} and validation
sample {i : Bn(i) = 1}, respectively, as identified by the split vector Bn.

This finalizes the mapping from the initial estimator Qn, and the data,
into a collaborative estimator of the censoring mechanism, gn = gknn .
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We refer to Q∗n = Qkn∗
n , paired with collaborative estimator gn, as the

collaborative targeted maximum likelihood estimator of Q0.

The Collaborative (Double Robust) Targeted Maximum Likelihood
Estimator: The corresponding targeted maximum likelihood estimator
of ψ0 = ΨF (Q0) is given by the substitution estimator

Ψ(Q∗n) = Ψ(Qkn∗
n ) = Ψ(Q̂kn∗(Pn)).

We refer to this estimator as the collaborative (double robust) targeted
maximum likelihood estimator (C-DR-TMLE or C-TMLE) of ψ0, and
we recall that it is paired with a collaborative estimator gn.

C-TMLE solves an efficient influence curve equation: Since the
C-TMLE is a targeted maximum likelihood estimator Qkn∗

n , applying the
fluctuation function with censoring mechanism estimator gn = gknn to the
estimator Qkn

n , it solves the efficient influence curve equation:

0 = PnD
∗(Q∗n, gn).

This is a fundamental property of the collaborative targeted MLEs driv-
ing the targeted bias reduction w.r.t. the target parameter of interest,ψ0.

Selection among candidate C-TMLEs: The collaborative targeted max-
imum likelihood estimator depends on a choice of initial estimator Q0

n,
and choices that concern the second stage. As a consequence, one
might have a set of collaborative targeted maximum likelihood estima-
tors (Q∗nj, gnj) indexed by such choices, j = 1, . . . , J . We can now select
among these estimators Q∗nj based on loss-based cross-validation using
the preferred loss function L∗ for Q0.

Selection based on empirical efficiency maximization: Since, un-
der regularity conditions of our asymptotic linearity theorem, each j-
specific C-TMLE is asymptotically linear with influence curve
ICj(Q

∗
j , g0j) (equal to D∗(Q∗j , g0j) plus a contribution from gnj), we can

select j as the minimizer of a (cross-validated) estimate of the variance of
ICj(Q

∗
j , g0j), or, if ψ0 has dimension larger than 1, then we can minimize

an estimate of the variance of a function of ψ0. One could here ignore
the contribution from gnj and thus use the cross-validated or empiri-
cal variance of the efficient influence curve at the collaborative targeted
maximum likelihood estimator:

jn = arg min
j
EBnP

1
n,Bn

{
D∗(Q̂∗j(P

0
n,Bn

), ĝj(P
0
n,Bn

))
}2

.
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Generalization. The above C-TMLE can also be called the collaborative
minimum loss estimator. The loss function L(Q) needs to satisfy that the
derivative of ε→ L(Qg(ε)) at ε = 0 for a suitably constructed path {Qg(ε) : ε}
equals the efficient influence curve D∗(Q, g), where the efficient influence curve
at P only depends on Q(P ) and g(P ), while the target parameter Ψ(P ) =
ΨF (Q(P )) depends on P only through Q(P ). No further structure is needed
for the above template (such as dP = Q∗ g, or CAR-censored data structure).

2.5 The rationale of the consistency of the collaborative-
TMLE

The C-TMLE procedure starts with an initial estimator Qn of Q0. Suppose
that the sequence constructed in the C-TMLE template consists of a finite
number K of targeted maximum likelihood estimators Qk∗

n . By construction,
the last targeted maximum likelihood estimator in this sequence uses a cen-
soring mechanism estimator that is nonparametric (maximal g0-entropy): i.e,
the nuisance parameter estimator gKn as selected by the K-th step C-TMLE
converges to the true g0. We also know that gkn is increasingly nonparametric
in k, k = 1, . . . , K.

For simplicity, we also assume that the k-th targeted maximum likelihood
estimator in the sequence is obtained by applying the targeted maximum like-
lihood algorithm to the previous targeted maximum likelihood estimator in
sequence. This is not necessary, since we can apply the argument to the sub-
sequence for which that is true (the elements in the sequence at which the
targeted maximum likelihood update is actually carried out), but it simplifies
the presentation.

Consider the limits Q∗kgk of the targeted maximum likelihood estimators

Q∗kn in our sequence, where gk is the limit of gkn, k = 1, . . . , K, and thus
gK = g0. We also know that Pn logQ∗nkgnk

is increasing in k, by the fact
that each element in the sequence is a targeted maximum likelihood estimator
applied to previous element in sequence (as initial estimator in the T-MLE
algorithm). Therefore, P0 logQ∗kgk is non-decreasing in k. As discussed in in-
troduction, if the log Q is uniformly bounded in all its candidates Q, then
the cross-validation selector of k is asymptotically equivalent with the oracle
selector k̃n = arg maxP0 logQ∗kgnk

. For n large enough, this oracle selector be-

haves as k̃ = arg maxk P0 logQ∗kgk , where this maximum might be non-unique.
One maximum is obtained at k = K, giving P0 logQ∗Kg0 and, we know that

Ψ(Q∗Kg0) = ψ0. So if k̃ = K, then the c-tmle will be consistent for ψ0. Suppose

that k̃ is actually smaller than K. Then we have, suppressing the g’s in the
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notation,
P0 logQ∗

k̃
= P0 logQ∗

k̃+1
= . . . = P0 logQ∗K .

We know that Q∗k+1 is a T-MLE with Q∗k as initial. So the above equalities are
only possible if Q∗k+1 = Q∗k for k = k̃, . . . , K − 1. Thus Q∗K = Q∗

k̃
. Since Q∗K

is a targeted MLE at nuisance parameter g0, it follows that ε→ P0 logQ∗K,g0(ε)
is maximized at ε = 0: compare with Pn logQ∗nK(ε) is maximized at ε = 0 by
definition of the T-MLE algorithm. Since we just showed that Q∗K = Q∗

k̃
, it

also follows now
ε→ P0 logQ∗

k̃,g0
(ε)

is maximized at ε = 0. In particular, this means that the derivative at ε = 0
equals zero, giving us:

0 = P0D
∗(Q∗

k̃
, g0).

However, the efficient influence curve typically satisfies that P0D
∗(Q, g0) = 0

implies Ψ(Q) = ψ0, which then implies Ψ(Q∗
k̃
) = ψ0. Thus Ψ(Q∗

nk̃
) is consis-

tent, and thereby Ψ(Q∗nkn) is consistent.
Figure 1 illustrates the collaborative nature of the construction of a se-

quence of increasingly data-adaptive nuisance parameter estimators,
{g1

n, . . . , g
K
n }, and its relation to the performance of the initial estimator. We

generated 5000 observations of O = (W,A, Y ) from data generating distribu-
tion dP0 = Q0g0 defined as:

logit (g0(A | W )) = .15W1 + .1W2 +W3 −W4

Q0(A,W ) = A+ 3W1 − 6W2 + 4W3 − 5W5 + 3W4

where W1 through W5 are independent random variables ∼ N(0, 1), Y =
Q0(A,W ) + ε, ε ∼ N(0, 1), and g0 is the conditional density of A given con-
founding variables W = {W1,W2,W3,W4,W5}. We applied the C-TMLE to
estimate the effect of binary treatment A on outcome Y , adjusting for W ,
defined as ψ0 = EW (E(Y | A = 1,W )− E(Y | A = 0,W )).

A kernel density estimator was applied to Y and to the predicted values
of two initial estimators of Q0 = E0(Y | A,W ), which we denote with Q̂0

n,poor,

and Q̂0
n,good, respectively. These estimators were obtained with the D/S/A

algorithm (Sinisi and van der Laan, 2004), a data-adaptive machine learning
approach to model selection that was set to search over all second degree
polynomials of size six. The kernel density estimates are displayed in plots on
the left hand side of the figure.

In addition, we plotted the kernel density estimates of the predicted values
of each set of the collaboratively-constructed candidate ĝ estimators, and we
can compare them with the density of the true predictions g0(1 | W ) = P0(A =
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1|W ). These are plotted on the right hand side of the figure, overlaid with the
density estimator applied to the true values g0(1 | W ). When the initial fit
of Q0 is poor, the nuisance parameter estimator gkn converges quickly to g0 in
k, and the selected candidate estimator closely approximates g0. Plots in the
bottom half of the figure shows the behavior of the C-TMLE procedure when
Q0
n is a good estimate of Q0. When the initial fit of Q0 is good, the nuisance

parameter estimator grows slowly towards g0, and a candidate estimator that
estimates a true treatment mechanism that adjusts for fewer covariates than
the true treatment mechanism g0 that was used to generate the data.

Densities of true and estimated data
generating distributions.

P0^

P0

(d)  (e)  (f)

(a)  (c) (b)

selected estimator

(a) (b) (c) (d)
selected estimator

(e)  (f)  (g)

P0^

P0

 Initial estimate obtained using DSA algorithm

Initial estimate based on intercept model

Figure 1: Construction of a sequence of nuisance parameter estimators based
on a poor initial fit of the density (top) and a good initial fit for the density
(bottom). Kernel estimates of true densities Q0 and g0 are shown in gray.
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2.6 Revisiting the additive causal effect example

Recall that the targeted maximum likelihood estimator applied to an esti-
mator, Qn, of P (Y = 1 | A,W ) is obtained by running a univariate logistic
regression of Y , with offset the initial estimator, on an estimate of the univari-
ate clever covariate hg0(A,W ) = A/g0(1 | W ) − (1 − A)/g0(0 | W ), implied
by the treatment mechanism estimator, using an estimator gn of treatment
mechanism P (A = 1 | W ).

The collaborative targeted maximum likelihood estimation procedure starts
with computing Q0

n, an initial estimator of P (Y = 1 | A,W ) using super
learning, and then collaboratively generating a sequence of targeted maxi-
mum likelihood estimators. These use increasingly nonparametric estimators
of g0, applied to subsequent targeted maximum likelihood updates of the initial
estimator (as needed to guarantee the monotonicity in fit). In this way the se-
quence of constructed targeted maximum likelihood estimators has increasing
log-likelihood fit. The selection of the sequence of increasingly nonparametric
treatment mechanism estimators was based on maximizing the fit of the cor-
responding targeted maximum likelihood estimators of P (Y = 1 | A,W ), as
outlined in our template, thus very much driven by the outcome data. Like-
lihood based cross-validation selects the wished targeted maximum likelihood
estimator, with its paired treatment mechanism estimator, from this sequence.
It is assumed that the resulting selection of the estimator of g0 is nonparamet-
ric enough so that the collaborative double robustness of the efficient influence
curve as presented in next section is utilized, and, thereby, that our asymptotic
linearity theorem in later section can indeed be applied.

A collaborative targeted maximum likelihood estimator constructed in this
manner has made every effort to make the estimator of the additive causal ef-
fect as unbiased as possible. If we now construct a set of such collaborative
targeted maximum likelihood estimators, possibly indexed by different initial
estimators, and different ways of constructing the sequence of targeted max-
imum likelihood estimators, we can then select among these estimators the
estimator with minimal estimated variance (based on the influence curve). To
obtain an honest estimate of the variance of the resulting estimator, just as
one obtained honest cross-validated risk of an estimator that internally uses
cross-validation, one uses the honest cross-validated variance of the influence
curve of the complete estimator, including cross-validating this final selection
step that involves minimizing the variance.
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3 Collaborative double robustness of

estimating functions in CAR censored data

models

In this section we establish a new kind of collaborative robustness of the class
of estimating functions in CAR-censored data models, where, as in van der
Laan and Robins (2003), the class of estimating functions is implied by the
orthogonal complement of the nuisance tangent space of the target parameter
Ψ : M → IRd. This orthogonal complement of the nuisance tangent space
equals the space spanned by the gradients of the pathwise derivative of Ψ,
and thus includes the canonical gradient/efficient influence curve. The collab-
orative robustness result teaches us that the censoring mechanism required to
obtain an unbiased estimating function at a mis-specified Q for the parameter
of interest need not always condition on the whole full data structure. In fact,
it teaches us that the better Q approximates Q0 the less of an adjustment by
full data random variables is necessary for the censoring mechanism to still
obtain an unbiased estimating function for the parameter of interest. The
precise collaborative property of (Q, g0(Q)) such that P0D(ψ0, g0(Q), Q) = 0
will be explicitly specified, where D represents the estimating function, such
as the one implied by the canonical gradient.

3.1 The formal collaborative robustness result

The new form of double robustness we wish to establish is understood as
follows. Consider an estimating function D(Ψ(Q), G,Q) for the parameter
of interest ψ0 that is indexed by nuisance parameters (G0, Q0), and which is
already known to satisfy the classical double robustness property: for any G
under which ψ0 is identifiable from PQ0,G, we have E0D(ψ0, G,Q) = 0 if either
Q = Q0 or G = G0 (van der Laan and Robins (2003)). Given a Q, we are
interested in the question under what conditional distribution G0δ of censoring
variable C, given a reduction X(δ) of X, will we still have P0D(ψ0, G0δ, Q) = 0
and thereby that D is an unbiased estimating function for ψ at this mis-
specified Q.

Firstly, we note that P0D(ψ0, G,Q) = P0{D(ψ0, G,Q) − D(ψ0, G,Q0)} +
P0D(ψ0, G,Q0), and the latter term is zero under any G that allows iden-
tifiability of ψ0. Thus, it remains to determine for what G0δ we will have
P0{D(ψ0, G0δ, Q) −D(ψ0, G0δ, Q0)} = 0. This choice of G0δ (e.g., it includes
G0 itself) is not unique but will be dependent on a difference Q − Q0 in the
sense that X(δ) has to be rich enough so that it contains a difference Q−Q0.
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By the general representation theorem for estimating functions that are
orthogonal to the nuisance tangent space of the target parameter (Theorem
1.6, van der Laan and Robins (2003)), one can typically represent an esti-
mating function D(ψ0, G,Q) as an Inverse Probability of Censoring Weighted
Estimating function DIPCW (G,ψ0) plus a function DCAR(Q,G) in the tangent
space TCAR(G) of the censoring mechanism at G. The function DCAR(Q,G) is
defined as the projection of −DIPCW (G,ψ0) on the tangent space TCAR(G) =
{h(O) : EG(h(O) | X) = 0} of the censoring mechanism when only assum-
ing coarsening at random, where this projection is carried out in the Hilbert
space of all functions of O with mean zero and finite variance endowed with
inner product the covariance operator 〈f1, f2〉 = EQ,gf1(O)f2(O). In other in-
stances, the DIPCW might depend on Q0 through another parameter beyond
ψ0, in which case it will need to be assumed that this parameter is correctly
specified.

This teaches us that P0{D(ψ0, G,Q)−D(ψ0, G,Q0)} = P0{DCAR(Q,G)−
DCAR(Q0, G)}, since the IPCW-difference equals zero. This representation
theorem also teaches us that for all Q we have that DCAR(Q,G) has condi-
tional mean zero under G, given X. In addition, this same theorem also shows
that Q → DCAR(Q,G) is linear in Q. Therefore, it remains to show that
P0DCAR(Q − Q0, G) = 0. Now, inspection of the proof that the conditional
mean of DCAR(Q′, G) under G equals zero for a Q′ involves typically condi-
tioning on a rich enough reduction of X so that a particular function indexed
by Q′ is fixed under the conditioning. Thus, the censoring mechanism only
needs to condition on a particular function of Q−Q0.

This is best illustrated with a concrete censored data structure. For exam-
ple, consider the right censored data structures O = (C, X̄(C)), where X(t) is
a time dependent process, X = (X(t) : t) represents the full data structure,
and X̄(t) = {X(s) : s ≤ t} represents the sample path up till time t. For
this censored data structure, one can represent the projection of DIPCW onto
TCAR as DCAR(Q,G) =

∫
HQ,G(u, X̄(u−))dMG(u), where

HQ,G(u, X̄(u−)) =EQ,G(DIPCW,G | C = u, X̄(u))− E(DIPCW,G | C ≥ u, X̄(u))

dMG(u) = I(C = u)− I(C ≥ u)dΛC|X(u | X),

and ΛC|X is the cumulative hazard of C, given X. For details, we refer to chap-
ter 3 in van der Laan and Robins (2003). Here dMG(u) is a Martingale satisfy-
ing E(dMG(u) | X̄(u), C ≥ u) = 0. Due to the linearity of the conditional ex-
pectation operator, we have DCAR(Q−Q0, G) =

∫
HQ−Q0,G(u, X̄(u))dMG(u).

By conditioning onHQ−Q0,G(u, X̄(u)) within the integral, and using E(dMG(u) |
X̄(u), C ≥ u) = 0, it follows that DCAR(Q − Q0, G) also has mean zero
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under a censoring mechanism s.t. λC(u | X) only depends on X̄(u) (it
only depends on X̄(u) by CAR) through HQ−Q0,G(u, X̄(u)). One can fac-
torize HQ−Q0,G = H1(G)H2(Q − Q0), so that adjustment in λC(u | X) by
the time-dependent covariate H2(Q − Q0)(u, X̄(u)) suffices. Alternatively, it
also suffices if the censoring mechanism uses a self-iterated adjustment by
HQ−Q0,G as described later in this section. If Q approximates Q0, this func-
tion HQ−Q0,G(u, X̄(u)) will be shrunk to zero, so that less conditioning becomes
necessary.

The following much simpler (but in essence making the same point) ex-
ample helps to further illustrate the general collaborative double robustness
property of the efficient influence curve. Suppose the observed censored data
structure is O = (W,∆,∆Y ) and X = (W,Y ) is the full data random variable,
where ∆ is the censoring variable. Suppose one wishes to estimate ψ0 = E0Y .
The efficient influence curve is given by

D(ψ0,Π0, Q0) = DIPCW (ψ0,Π0) +DCAR(Q0,Π0),

where

DIPCW (ψ0,Π0) = Y
∆

Π0(W )
− ψ0

DCAR(Q0,Π0) = −E(Y | ∆ = 1,W )

(
∆

Π0(W )
− 1

)
,

Π0(W ) = P0(∆ = 1 | W ) and Q0(W ) = E0(Y | W,∆ = 1). Consider a Q.
We are interested in the question under what conditional distribution Π0δ of
∆, given a reduction W (δ) of W , will we still have P0D(ψ0,Π0δ, Q) = 0 and
thereby that D is an unbiased estimating function for ψ at this mis-specified
Q. Firstly, we note that P0D(ψ0,Π, Q) = P0{D(ψ0,Π, Q) − D(ψ0,Π, Q0)} +
P0D(ψ0,Π, Q0), and the latter term is zero under any Π for which P0(Π(W ) >
0) = 1. Thus, it remains to determine for what Π0δ P0{D(ψ0,Π0δ, Q) −
D(ψ0,Π0δ, Q0)} = 0.

This teaches us that P0{D(ψ0,Π, Q)−D(ψ0,Π, Q0)} = P0{DCAR(Q,Π)−
DCAR(Q0,Π)}, since the IPCW-difference equals zero:

P0{D(ψ0,Π, Q)−D(ψ0,Π, Q0)} =
(Q−Q0)(W )

Π0(W )
(∆− Π0(W )) .

Note that we used here that Q → DCAR(Q,Π) is linear in Q. Therefore, it
remains to show that P0DCAR(Q − Q0,Π) = 0. This can be represented as
H(Q − Q0,Π0)(W )(∆ − Π0(W )) as above, with H(Q − Q0,Π0)(W ) = (Q −
Q0)(W )/Π0(W ).
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The proof that the conditional mean of DCAR(Q−Q0,Π) under Π equals
zero involves conditioning on a rich enough reduction of W so that Q − Q0

is captured by the conditioning: if (Q−Q0)(W ) only depends on W through
W (δ), then

E
(Q−Q0)(W )

Π0(W (δ))
(∆− Π0(W (δ))) = 0.

In particular, we have that the conditional mean of DCAR(Q−Q0,Π0), given
(Q − Q0)(W ), equals zero if Π0(W ) = P (∆ = 1 | Q − Q0(W )). This shows
that if, for example, (Q − Q0)(W ) only depends on one component W1, then
P0D(ψ0,Π0, Q) = 0 for Π0(W1) = P0(∆ = 1 | W1), and, more general, for
Π0(W ′) with W1 ⊂ W ′ . That is, the better job Q does in approximating Q0

the less inverse probability of missingness weighting is required to still obtain
an unbiased estimating function for ψ0.

Summary: Consider the efficient influence curve D(Q,G). Suppose we
already know that for Q with Ψ(Q) = ψ0 P0D(Q0, G) = 0 for all G. Given a
Q with Ψ(Q) = ψ0, characterize the set of G0(Q)s for which P0D(Q0, G0(Q))−
D(Q,G0(Q)) = 0. For such Q and corresponding G0(Q)’s we have
P0D(Q,G0(Q)) = 0. Given the representation theorem for estimating func-
tions derived from the orthogonal complement of the nuisance tangent space,
it appears that we need to determine the conditional distributions G0δ of C,
given a reduction X(δ) of X, for which E0DCAR(Q − Q0, G0δ(Q)) = 0. Thus
we need to determine the conditional distributions G0(Q) of C that solves the
score equation E0DCAR(Q−Q0, G0) = 0 of score DCAR(Q−Q0, G0). In partic-
ular, if G0(Q) is a MLE of a finite dimensional parameter (e.g., same dimension
as ψ0), whose score spans DCAR(Q−Q0, G0), then E0DCAR(Q−Q0, G0) = 0.
More generally, if G0 is a limit of an efficient (e.g. NPMLE) estimator in a
model for G0 that has a tangent space at G0 that contains DCAR(Q−Q0, G0),
then this G0 also satisfies E0DCAR(Q − Q0, G0) = 0. In addition, a self-
iterated iterative MLE, starting with arbitrary offset G, for a parameter with
score DCAR(Q − Q0, G), at G, can be employed as well, as presented below,
resulting in an updated G0(Q) of G so that E0DCAR(Q−Q0, G0(Q)) = 0.

We will now present the general result which can be applied to any CAR-
censored data model as defined and studied in van der Laan and Robins (2003).

Theorem 1 (Collaborative Double Robustness of Efficient Influence
Curve/Estimating Functions)

CAR-censored data model: Let O = Φ(C,X) ∼ P0 be a censored data
structure with full data random variable X ∼ PX0, and censoring variable
C with conditional probability distribution G0 of C, given X. Assume G0

satisfies the coarsening at random assumption. Let g0(C | X) = dG0(C | X)
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a probability density of G0 w.r.t. an appropriate dominating measure that
satisfies coarsening at random itself. Let M denote the observed data model
for P0. Due to CAR, we have w.r.t. an appropriate dominating measure
dP0(O) = Q0(O)g0(O | X), where g0(O | X) is only a function of O (by
CAR), and Q0 denotes the identifiable part of the full data distribution PX0

(Gill et al. (1997)). (Here we abused notation to indicate that the conditional
density of O, given X, is a deterministic function of the conditional density
of C, given X, and, in fact, represents the identifiable part of the censoring
mechanism G0.) Let Q and G be models for Q0 and G0 which imply a model
M = {dP = Qg : Q ∈ Q, G ∈ G} for P0.

Parameter of interest: Let Ψ : M → IRd be pathwise differentiable
parameter of interest and it is assumed that Ψ(P0) = ΨF (Q0) is only a function
of Q0. Let D∗(Q,G) be the efficient influence curve/canonical gradient of Ψ
at dP = Qg.

We make the following assumptions:

Augmented “PCW”-representation of efficient influence curve:
(PCW stands for Probability of Censoring Weighted) For each Q ∈ Q,
G ∈ G,

D∗(G,Q) = Dh(G,Q)(G,Q) = Dh(G,Q),PCW (G,Γ(Q))+Dh(G,Q),CAR(G,Q′),

for mappings (G,Q) → h(G,Q), (h,G,Q) → Dh,PCW (G,Γ(Q)),
(h,G,Q′) → Dh,CAR(G,Q′(Q,G)), both defined on H × G × Q, a
parameter mapping Γ on Q, and (G,Q)→ Q′(G,Q).

(We refer to Theorem 1.3 in van der Laan and Robins (2003) for such
a general representation of the efficient influence curve and, more gen-
erally, the orthogonal complement of the nuisance tangent space, where
the CAR-components are elements of the tangent space TCAR of G con-
sisting of all functions of O with conditional mean zero, given X, under
G. Under that representation, we have that E0Dh,PCW (G0, γ0) = 0 and
Dh,CAR(G0, Q

′) has conditional mean zero, given X, for all Q′.)

Linearity of CAR-component: Q′ → Dh,CAR(G,Q′) is linear on a set Q′

containing {Q′(G,Q) : G,Q} in the sense that for all h ∈ H, and all

Q1, Q2 ∈ Q
′

Dh,CAR(G,Q′1)−Dh,CAR(G,Q′2) = Dh,CAR(G,Q′1 −Q′2).

Robustness for mis-specified censoring mechanism: For all Q0 ∈ Q0

and G ∈ G(Q0) ⊂ G, where (e.g.,) G(Q0) is defined as all censoring
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mechanisms G for which ψ0 can be identified from dP = dQ0g, we have

E0Dh(G,Q0) = 0 for all h ∈ H.

Robustness of CAR-component: For a reduction X(δ) of X (i.e., X(δ) =
f(X, δ) for some function f), let G0δ be the conditional distribution of
C, given X(δ).

Let Qδ
′

be a set within Q′ for which for each Q̄′ ∈ Qδ
′

E0Dh,CAR(G0δ, Q̄
′) = 0.

(Typically, one can select Qδ
′

as all functions in Q′ that are only func-
tions of X through X(δ).)

Let Γ(Q) = Γ(Q0) (typically implying Ψ(Q) = ψ0), G0δ ∈ G(Q0), and

assume Q′ −Q′0 ∈ Qδ
′
, where Q′ = Q′(G0δ, Q) and Q′0 = Q′(G0δ, Q0). Then

E0D
∗(G0δ, Q) = 0.

We also have for all G ∈ G(Q0)

E0D
∗(G,Q0) = 0.

Proof. Suppose Γ(Q) = Γ(Q0) and Q′ − Q′0 ∈ Qδ
′
. Let G∗0 = G0δ be the

conditional distribution of C, given X(δ), and assume it is an element of
G(Q0).

By the “Augmented ‘PCW’-representation of efficient influence curve” as-
sumption, we have

E0D
∗(G∗0, Q) = E0Dh(G

∗
0, Q)

for some h ∈ H. Thus,

E0D
∗(G∗0, Q) = E0Dh(G

∗
0, Q)

= E0{Dh(G
∗
0, Q)−Dh(G

∗
0, Q0)}+ E0Dh(G

∗
0, Q0).

By the assumption thatG∗0 ∈ G(Q0), it follows that the last term E0Dh(G
∗
0, Q0)

= 0.
By the “PCW-representation” assumption we have

E0{Dh(G
∗
0, Q)−Dh(G

∗
0, Q0)}=E0{Dh,PCW (G∗0,Γ(Q))−Dh,PCW (G∗0,Γ(Q0))}

+E0{Dh,CAR(G∗0, Q
′(Q,G∗0))−Dh,CAR(G∗0, Q

′(Q0, G
∗
0))}.
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By the assumption that Γ(Q) = Γ(Q0), the first term equals zero. By the
“linearity of CAR-component”-assumption we have that the last term equals:

E0{Dh,CAR(G∗0, Q
′)−Dh,CAR(G∗0, Q

′
0)} = E0Dh,CAR(G∗0, Q

′ −Q′0),

where Q′ = Q′(G∗0, Q) and Q′0 = Q′(G∗0, Q0).

We assumed that Q′ − Q′0 ∈ Qδ
′
. Thus, by the “Robustness of CAR-

component”-assumption we have that

E0Dh,CAR(G∗0, Q
′ −Q′0) = 0.

This proves E0D
∗(G∗0, Q) = 0. 2

3.2 Examples illustrating the collaborative double
robustness in censored data models

For the sake of illustration, we will now explicitly establish the collaborative
double robustness of the efficient influence curve estimating function in two
additional examples. These results are also corollaries of the above general
Theorem 1.

3.2.1 Example I: Marginal additive causal effect in nonparametric
model

We have the following double robustness result for our additive causal effect
example.

Theorem 2 Let dP0 = Q0dG0 be the distribution of O = (W,A, Y ) and let
the model for P0 be nonparametric.

Let Ψ(Q0) = EQ01{EQ02(Y | A = 1,W ) − EQ02(Y | A = 0,W )} be the pa-
rameter on this model, where it is assumed that it is identifiable from P0. Here
Q01 denotes marginal distribution of W and Q02 the conditional distribution
of Y , given A,W . The efficient influence curve of Ψ at P = (Q,G) is given
by

D∗(Q,G)(O) = h(G)(A,W )(Y −Q2(A,W )) +Q2(1,W )−Q2(0,W )−Ψ(Q),

where Q2(A,W ) = EQ(Y | A,W ) denotes the conditional mean of Y , given
A,W , under Q = (Q1, Q2).

Assume

(Q02 −Q2)(A,W ) = EQ0(Y −Q2(A,W ) | A,W ) = f0(A,W (Q))
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is only a function of A,W (Q) for a W (Q) = Φ(Q2,W ) for some mapping Φ:
i.e., W (Q) denotes a reduction or subset of the full vector random variable W
indexed by Q.

Let dG0(Q) be the conditional distribution of A, given W (Q). If Ψ(Q) =
Ψ(Q0), then

EP0D
∗(Q,G0(Q)) = 0.

Or, equivalently, if we represent D∗(Q,G) as D∗(Ψ(Q), Q,G), then

EP0D
∗(ψ0, Q,G0(Q)) = 0.

We also have: If Pr(PG(A = 0 | W ) ∗ PG(A = 1 | W ) > 0) = 1, then

EP0D
∗(Q0, G) = 0,

or equivalently,
EP0D

∗(ψ0, Q0, G) = 0.

Proof. The last statement is easy and well known (e.g., van der Laan and
Robins (2003)). The first statement needs to be proved, or can be derived as
a corollary of Theorem 1. Note, if Ψ(Q) = ψ0, then

E0D
∗(Q,G0(Q)) = E0h(G0)(A,W (Q))(Y−Q(A,W ))+Q(1,W )−Q(0,W )−ψ0.

If E0(Y −Q(A,W ) | A,W ) = f0(A,W (Q)) is only a function of A,W (Q), then
it follows by first taking the conditional mean, given A,W , and then taking
the mean of A, given W (Q),

E0D
∗(Q,G0(Q)) = E0h(G0)(A,W (Q))f0(A,W (Q))

+Q(1,W )−Q(0,W )− ψ0

= E0f0(1,W (Q))− f0(0,W (Q)) +Q(1,W )−Q(0,W )

−ψ0.

Now, note that f0(A,W (Q)) = Q0(A,W ) − Q(A,W ), which proves that
the latter quantity equals zero.

2

The implication of this result is that, given an estimate Q of Q0, we only
need to estimate G0(Q), conditioning on W (Q), or any conditional distribution
that conditions on more than W (Q). Thus, if Q already succeeds in explaining
most of the true regression E0(Y | A,W ), then only little inverse weighting
with G0(Q) = P (A = · | W (Q)) remains to be done. That is, the amount and
manner of inverse weighting required to obtain a consistent estimator of the
causal effect ψ0 can be adapted to the approximation error of Q relative to the
true regression.
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3.2.2 Example II: Semiparametric regression

Let O = (W,A, Y ) ∼ P0. Assume the model E0(Y | A,W ) − E0(Y | A =
0,W ) = Aβ0V for some V ⊂ W . If the variance of Y , given A,W , only
depends on W , then the efficient score of β0 at P0 can be represented as

D∗(Π0, θ0, β0)(O) = (A− Π0(W ))(Y − Aβ0V − θ0(W )),

where Π0(W ) = E0(A | W ), and θ0(W ) = E0(Y | A = 0,W ). For the sake
of illustration we will use this simpler representation, but the same double
robustness applies to the general efficient influence curve representation as
(e.g.) presented in van der Laan and Robins (2003).

Theorem 3 Suppose E0(Y − Aβ0V − θ(W ) | A,W ) = f0(W (θ)) for some
function f0 of W (θ) where W (θ) = Φ(W, θ) is function of W and θ. Note that
this states that θ0(W ) − θ(W ) = f0(W (θ)) is only a function of a reduction
W (θ) of W . Let Π0(θ)(W ) = E0(A | W (θ)). Then

E0D
∗(Π0(θ), θ, β0) = 0

We also have
E0D

∗(Π, θ0, β0) = 0

Proof. Only the first robustness result needs to be proved. First take the
conditional mean, given A,W , which results in the term E0(A−Π0(θ)(W (θ)))
f0(W (θ)). Subsequently, we take the conditional mean, given W (θ), which
proves it equals zero. 2

3.3 Construction of collaborative double robust estima-
tors

By using a collaborative estimator gn(Q) of a g0(Q) in the set of conditional
distributions that conditions on the required function of Q−Q0 (and g0 itself),
one can construct collaborative double robust estimators. For example, one
could use the targeted maximum likelihood estimator applied to initial estima-
torQn and using the resulting collaborative estimator gn(Qn). One can also use
estimating equation methodology, solving for ψn in 0 = PnD

∗(ψ,Qn, gn(Qn)).
The formal asymptotic linearity (and thereby asymptotic normality) of such
estimators is studied in the next section. Our proposed collaborative targeted
maximum likelihood procedure is one particular collaborative double robust
targeted maximum likelihood estimator, which also involves updating the ini-
tial estimator Qn beyond the construction of an appropriate gn(Qn). However,
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we could also simply have taken gn(Qn) from our proposed collaborative tar-
geted maximum likelihood procedure, and still use the targeted maximum
likelihood estimator with initial estimator Qn. In addition, we could also have
used our proposed collaborative estimator gn(Qn) to solve an estimating equa-
tion 0 = PnD

∗(Qn, gn(Qn), ψ) = 0 in ψ.
Other methods for construction of collaborative estimators gn(Qn) are of in-

terest as well. For example, one could consider a collection of one-dimensional
fluctuations of Qn and use maximum likelihood to test these fluctuations. In
this manner one can select a dimension reduction involving the X-components
that still significantly increase the log-likelihood (or other loss function) be-
yond the initial fit Qn. One could then fit gn by running a machine learning
algorithm that only conditions on the selected components. This procedure
only uses the initial estimator to obtain a dimension reduction, but from then
on it uses an external procedure based on the loss function for g0.

Given an initial estimator Qn, another idea of interest for construction
of a collaborative estimator gn(Qn) is the following. One first constructs a
sequence of increasingly nonparametric estimators ĝj of g0, j = 1, . . . , J . These
estimators could already be based on a dimension reduction based on offset
by initial estimator. Given an initial estimator Q̂, we select the following
estimator of g0:

jn = arg min
j
‖ EBnP

1
n,Bn

D∗(Q̂(P 0
n,Bn

), ĝj(Pn)) ‖2,

where Bn denotes a random variable in {0, 1}n defining a random split in
training sample {i : Bn(i) = 0} and validation sample {i : Bn(i) = 1}, and
P 0
n,Bn

, P 1
n,Bn

denote the empirical probability distributions of the training and
validation sample, respectively. Thus, one selects the estimator that minimizes
the Euclidean norm of the cross-validated mean of efficient influence curve at
the estimator Q̂. If j is too small, then P0D

∗(Q̂, gj) will be non zero, so that
jn will always select a large enough j for n tending to infinity. If, on the
other hand, j is large enough so that P0D

∗(Q̂, gj) = 0, then the expectation of

{PnD∗(Q̂, gj)}2 will be equal to its variance which will be increasing in j, so
that smaller j’s, but larger than the critical one, will be preferred. One now
defines as collaborative estimator the estimator gn(Qn) ≡ ĝjn(Pn) indexed by
this choice jn.

http://biostats.bepress.com/ucbbiostat/paper246



3.4 Estimating the sufficient minimal adjustment
covariate from the data

Let H(g0, Q − Q0) be the component that needs to be adjusted for in g0 =
g0(Q). One could estimate this component from the data using appropriate
methodology. If, given an arbitrary initial fit g, one would add H(g,Q−Q0)
as main term in a fluctuation model of g, and the fluctuation function is
chosen so that the score of the coefficient of this main term at zero equals
DCAR(Q−Q0, g0), then the MLE-update of g will solve the wished score equa-
tion P0DCAR(Q−Q0, g0) = 0. We can refer to H(g0, Q−Q0) as the minimal
adjustment covariate, needed to obtain the wished collaborative robustness.

The sufficient covariate H(g,Q−Q0), that is needed to update g, depends
on g itself as well, so that, even given an estimate of Q − Q0, the above
maximum likelihood update of an initial g does not work. There are two
approaches that can be used to deal with this self-dependence of the minimal
adjustment covariate for g.

Firstly, one can extract the few components of only Q − Q0, and enforce
nonparametric adjustment by these covariates in a fit of g0(Q) of the censoring
mechanism. In this manner, the resulting censoring mechanism estimator will
estimate a true conditional distribution that conditions on covariates that
imply the value of H(g0(Q), Q − Q0). Secondly, one can also only adjust for
H(g0, Q−Q0) as a main term, given an estimate g0, and iterate this updating
process of g till convergence. In the latter case, as mentioned above, it is
assumed that the score of the fluctuation of g implied by this main term
extension H(g,Q−Q0) at zero equals DCAR(g,Q−Q0). Let’s illustrate these
two approaches with an example.

For example, in the additive causal effect example with O = (W,A, Y ),
ψ0 = EY (1)−Y (0) and Y continuous, we have H(g0, Q−Q0) = 1

g0(1|W )
E(Y −

Q | A = 1,W ) + 1
g0(0|W )

E(Y −Q | A = 0,W ), and the score of ε, at ε = 0, of

logistic regression model gε(1 | W ) = 1/(1 + exp(−C0(W ) − εH(g,Q − Q0)),
using an offset C0(W ), is given by DCAR(g,Q−Q0) = H(g,Q−Q0)(A− g(1 |
W )).

One can estimate E(Y − Q |A = 1,W ) and E(Y − Q |A = 0,W ) with a
machine learning algorithm, treating an initial estimate Q as offset (possibly
cross-validated to make the offset independent of Yi). If Y is binary, we would
use Q as offset and one could estimate these Q − Q0-components by running
a logistic regression with Q as offset. Given this estimate of the two Q −
Q0-components that span H(g0, Q−Q0), one could now force nonparametric
adjustment by these two estimated covariates in the estimate of g0.
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Alternatively, given an initial estimator g0
n, one could obtain an estimate

H0
n by plugging in an estimate of Q0 − Q, and this initial g0

n. One could
now force in this H0

n as a main term in g0
n, resulting in an updated g1

n. This
process is iterated till convergence. In the limit we have that gn solves 0 =
PnH(gn, ̂Q−Q0)(A − gn(1 | W )). Here g0

n would already be a collaborative
estimator of g0(Q), such as the one proposed in our collaborative targeted
maximum likelihood estimator, so that the collaborative double robustness is
preserved (we do not want to only rely on correct specification of ̂Q−Q0, and
thereby of this sufficient minimal covariate)

We do not advise starting the above iterative algorithm at a purposely mis-
specified estimator g0

n. Instead we want to apply the above iterative algorithm
at a collaborative estimator g0

n, such as the one presented in our template of
the C-TMLE in Section 2. For example, after having run the C-TMLE in Sec-
tion 2, we would carry out a subsequent update of the resulting collaborative
estimator gn by applying the above iterative updating algorithm, starting at
g0
n = gn, and using an estimator of Q0 − Q. If we would only include this

estimate of the sufficient covariate H(g0, Q − Q0) in gn, then the consistency
of the estimator ψn fully relies on correct estimation of Q − Q0, and thereby
on correct estimation of Q0, and therefore would not utilize the collaborative
double robustness of the efficient influence curve. Instead of carrying out a
subsequent update of a collaborative estimator gn using the iterative algo-
rithm, we could incorporate an estimate Hn (or its (Q − Q0)-components) in
our proposed template for the collaborative targeted MLE by forcing it in our
candidate censoring mechanism estimators.

In the above additive causal risk example, we estimate H(g,Q − Q0) by
plugging in an initial estimate g0 and Q − Q0, and the iterative adjustment
succeeds in its goal as long as the estimate of Q − Q0 is correct, even if (the
initial) g is misspecified. One could also use a representation such as H(g0, Q−
Q0) = Eg0,Q0(DIPCW (g0, Q) | A = 1,W )− E0(DIPCW (g0, Q) | A = 0,W ), and
estimate the two regressions by regressing an IPCW -function indexed by g0, Q
on A,W , and evaluate it at A = 1 and A = 0, respectively. Here DIPCW =
(Y − Q){A/g0(A | W ) − (1 − A)/g0(A | W )}. One could now apply the
above iterative updating algorithm to this (non-substitution based) manner of
estimating H(g0, Q−Q0). As shown in (e.g.) van der Laan and Robins (2003)
for monotone censored data structures and causal inference data structures,
involving censoring and treatment actions over time, DCAR(Q − Q0, g0) does
allow such a representation

∑
j Hj(g0, Q−Q0)(A(j)−g0j(1 | F(j)), where F(j)

represents the history before censoring or treatment A(j), andHj(g0, Q−Q0) =
E0(DIPCW | A(j) = 1,F(j))− E0(DIPCW | A(j) = 0,F(j)) for some IPCW -
function. The disadvantage of this approach is that it relies on g0 representing a
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true conditional distribution, while in the iterative substitution based approach
the main term adjustment at a possibly misspecified g still yields the wished
collaborative double robustness.

4 Asymptotic linearity of collaborative double

robust TMLE

The collaborative targeted maximum likelihood estimator Q∗n equals a kn-th
step collaborative targeted maximum likelihood estimator, and thereby equals
a targeted maximum likelihood estimator with a starting estimator Qk

n (e.g.,
the kn − 1-th collaborative targeted maximum likelihood estimator), and the
censoring mechanism estimator gn = gnδn as selected in the kn-step, given the
collection of candidate estimators gnδ indexed by δ ranging over an index set.

Thus, just like the targeted maximum likelihood estimator, the collabo-
rative targeted maximum likelihood estimator ψn = Ψ(Q∗n) of ψ0 solves the
efficient influence curve estimating equation

0 = PnD
∗(Q∗n, gn, ψn).

For simplicity, we will make the assumption that the efficient influence
curve at a PQ,g can be represented as an estimating function in ψ: i.e., the
efficient influence curve at P can be represented as D∗(Q(P ), g(P ), ψ(Q(P )))
for some mapping (Q, g, ψ) → D∗(Q, g, ψ). However, the theorem in this
section can be generalized to any efficient influence curve D∗(Q, g) at a data
generating distribution PQ,g.

It is a reasonable assumption that Q∗n converges to some element Q∗ in the
model for Q0, where Q∗ is not necessarily equal to the true Q0. In addition,
let’s assume that, for each δ, the δ-specific censoring mechanism estimator gnδ
converges to some g0δ. For example, if δ indicates an adjustment set, then
it might be assumed that gnδ converges to the true conditional distribution,
given this δ-specific adjustment set.

For a given Q, we define δ(Q) as the index δ with entropy d(δ) minimal
and so that

P0D
∗(Q, g0δ(Q), ψ0) = 0.

In other words, given the family of adjustments indexed by δ, δ(Q) represents
the minimal adjustment necessary in the censoring mechanism to obtain the
collaborative double robustness/unbiased estimating function for ψ0. It is then
a natural assumption that

P0D
∗(Q, g0δ, ψ0) = 0 for each δ with d(δ) ≥ d(δ(Q)).
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In other words, if one uses a more nonparametric estimator of the censor-
ing mechanism than needed (i.e.., than δ(Q)), then one certainly obtains the
wished unbiasedness.

We will assume that, as n converges to infinity, then the selected censoring
mechanism estimator gn = gnδn converges to a fixed g0δ0 representing the limit
of a gnδ0 , not necessarily equal to the conditional distribution, given the full
X. For notational convenience, we will also denote this limit with g0.

It is assumed that d(δ0) ≥ d(Q∗) so that

0 = P0D
∗(Q∗, g0, ψ0),

which will be the fundamental assumption for asymptotic normality of the C-
TMLE. In other words, it is assumed that our collaborative C-TMLE proce-
dure selects a nonparametric enough estimator gn for the censoring mechanism
(in collaboration with Q∗n) so that the required unbiasedness of the efficient
influence curve estimating function is achieved.

To derive the influence curve of Ψ(Q∗n), the asymptotic linearity theorem
below assumes also that the limit of the selected censoring mechanism estima-
tor satisfies

P0D
∗(Q∗n, g0, ψ0) = oP (1/

√
n). (3)

As a consequence of this assumption (3), the influence curve does not involve
a contribution requiring the analysis of a function of Q∗n. This important sim-
plification of the influence curve allows straightforward calculation of standard
errors for the C-TMLE. The assumption (3) requires the limit g0 to be non-
parametric enough w.r.t. the actual estimator Q∗n so that enough orthogonality
is achieved to make the contribution P0D

∗(Q∗n, g0, ψ0) second order.

Why assumption (3) holds for C-TMLE: We now explain why this
assumption is reasonable for the C-TMLE.

Define g0(Q∗n) as g0δ∗n with δ∗n = min{δ : d(δ) ≥ d(δ0), P0D
∗(Q∗n, g0δ, ψ0) =

0}. In other words, g0(Q∗n) corresponds with the limit of the least nonparamet-
ric estimator (among all estimators more nonparametric than the one identified
by δ0) that still yields the wished unbiasedness of the estimating function at
Q∗n, and it as close as possible to g0 = g0δ0 .

We note that

P0D
∗(Q∗n, g0, ψ0)−D∗(Q∗, g0, ψ0) =P0D

∗(Q∗n, g0(Q∗n), ψ0)−D∗(Q∗, g0(Q∗n), ψ0)

+ Rn,

where Rn is a second order term (like Rn1 below) involving the difference
Q∗n − Q∗ and g0(Q∗n) − g0. By definition of g0(Q∗n) and the fact that Q∗n
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converges to Q∗, it is reasonable to assume g0(Q∗n)→ g0 as n→∞. So Rn is
a second order term, so that it is reasonable to assume Rn = oP (1/

√
n).

By definition of g0(Q∗n), we do not only have

P0D
∗(Q∗n, g0(Q∗n), ψ0) = 0,

but also that g0(Q∗n) is equally or more nonparametric than g0(Q∗) so that

P0D
∗(Q∗, g0(Q∗n), ψ0) = 0.

This implies now that indeed

P0D
∗(Q∗n, g0, ψ0) = oP (1/

√
n).

Finally, we note that the next theorem can be applied to any collabora-
tive double robust estimator, as discussed in previous section, not only the
collaborative double robust targeted maximum likelihood estimator.

Theorem 4 Let (Q, g, ψ)→ D∗(Q, g, ψ) be a well defined function that maps
any possible (Q, g,Ψ(Q)) into a function of O. Let O1, . . . , On ∼ P0 be i.i.d,
and let Pn be the empirical probability distribution. Let Q → Ψ(Q) be a d-
dimensional parameter, where ψ0 = Ψ(Q0) is the parameter value of interest.
In the following template for proving asymptotic linearity of Ψ(Q∗n) as an esti-
mator of Ψ(Q0), Q∗n represents the collaborative targeted maximum likelihood
estimator, but it can be any estimator.

Let Q∗ denote the limit of Q∗n. Let gn be an estimator and g0 denote its
limit.

Assume

Efficient Influence Curve Estimating Equation: 0 = PnD
∗(Q∗n, gn, ψn),

where ψn = Ψ(Q∗n).

Censoring Mechanism Estimator is Nonparametric Enough:

P0D
∗(Q∗, g0, ψ0) = 0.

P0D
∗(Q∗n, g0, ψ0) = oP (1/

√
n).

(Above we show why the latter is indeed a second order term for the
C-TMLE.)

Consistency:

P0(D∗(Q∗n, gn, ψn)−D∗(Q∗, g0, ψ0))2 → 0 in probability,

as n → ∞. And the same is assumed if one or two of the triplets
(Q∗n, gn, ψn) is replaced by its limit (Q∗, g0, ψ0).
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Identifiability/Invertibility: c0 = −d/dψ0P0D
∗(Q∗, g0, ψ0) exists and is in-

vertible.

Donsker Class: {D∗(Q, g,Ψ(Q)) : Q, g} is P0-Donsker, where (Q, g) vary
over sets that contain (Q∗n, gn), (Q∗, gn), (Q∗n, g) with probability tending
to 1.

Contribution due to Censoring Mechanism Estimation: Define the
mapping g → Φ(g) ≡ P0D

∗(Q∗, g, ψ0). Assume Φ(gn) − Φ(g0) = (Pn −
P0)ICg0 + oP (1/

√
n) for some mean zero function ICg0 ∈ L2

0(P0).

Second order terms: Define second order term

Rn1 = P0{D∗(Q∗n, gn, ψn)−D∗(Q∗, gn, ψn)}
−P0{D∗(Q∗n, g0, ψ0)−D∗(Q∗, g0, ψ0)},

and assume Rn1 = oP (1/
√
n). Note Rn1 is a second order term involving

difference between Q∗n −Q and gn − g0.

Define second order term

Rn2 = P0{D∗(Q∗, gn, ψn)−D∗(Q∗, g0, ψn)}
−P0{D∗(Q∗, gn, ψ0)−D∗(Q∗, g0, ψ0)},

and assume Rn2 = oP (1/
√
n). Note Rn2 is a second order term involving

differences gn − g0 and ψn − ψ0.

Then, ψn is asymptotically linear estimator of ψ0 at P0 with influence curve

IC(P0) = c−1
0 {D∗(Q∗, g0, ψ0) + ICg0} .

That is,
ψn − ψ0 = (Pn − P0)IC(P0) + oP (1/

√
n).

In particular,
√
n(ψn − ψ0) converges in distribution to a multivariate normal

distribution with mean zero and covariance matrix Σ0 = E0IC(P0)IC(P0)>.

Proof: The principal equations are 0 = PnD
∗(Q∗n, gn, ψn) and

P0D
∗(Q∗, g0, ψ0) = 0. So, we have

P0D
∗(Q∗, g0, ψn)−D∗(Q∗, g0, ψ0) = −{PnD∗(Q∗n, gn, ψn)− P0D

∗(Q∗, g0, ψn)} .
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Let c0 = − d
dψ0

P0D
∗(Q∗, g0, ψ0). Then,

c0(ψn − ψ0) + o(| ψn − ψ0 |) = (Pn − P0)D∗(Q∗, g0, ψn)

+Pn{D∗(Q∗n, gn, ψn)−D∗(Q∗, gn, ψn)}
+Pn{D∗(Q∗, gn, ψn)−D∗(Q∗, g0, ψn)}.

We denote the three terms on the right with I,II and III, and deal with them
separately below.

I: By the Donsker condition, and consistency condition, we have

(Pn − P0){D∗(Q∗, g0, ψn)−D∗(Q∗, g0, ψ0)} = oP (1/
√
n).

Thus, we obtain (Pn−P0)D∗(Q∗, g0, ψ0) + oP (1/
√
n) as first term approxima-

tion. We refer to van der Vaart and Wellner (1996) for this empirical process
theorem.
II: We have

Pn{D∗(Q∗n, gn, ψn)−D∗(Q∗, gn, ψn)} =

Pn − P0){D∗(Q∗n, gn, ψn)−D∗(Q∗, gn, ψn)}
+P0{D∗(Q∗n, gn, ψn)−D∗(Q∗, gn, ψn)}.

The first term is oP (1/
√
n) by our Donsker class condition, and consistency

condition at Q∗n, gn, ψn. We also have

P0{D∗(Q∗n, gn, ψn)−D∗(Q∗, gn, ψn)} = P0{D∗(Q∗n, g0, ψ0)−D∗(Q∗, g0, ψ0)+Rn1,

where

Rn1 = P0{D∗(Q∗n, gn, ψn)−D∗(Q∗, gn, ψn)−D∗(Q∗n, g0, ψ0)−D∗(Q∗, g0, ψ0)}
= oP (1/

√
n),

by assumption.
Rn1 is a second order term involving Q∗n − Q∗ and (gn, ψn) − (g0, ψ0). It

remains to consider the term P0{D∗(Q∗n, g0, ψ0) − D∗(Q∗, g0, ψ0)}, which is
oP (1/

√
n) by ”Censoring Mechanism is Nonparametric Enough”-assumption.

III: We have

Pn{D∗(Q∗, gn, ψn)−D∗(Q∗, g0, ψn) =

(Pn − P0){D∗(Q∗, gn, ψn)−D∗(Q∗, g0, ψn)}
+P0{D∗(Q∗, gn, ψn)−D∗(Q∗, g0, ψn)}.
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The first term is oP (1/
√
n) by Donsker class condition, and consistency con-

dition at Q∗n, gn, ψn. We also have

P0{D∗(Q∗, gn, ψn)−D∗(Q∗, g0, ψn)} = P0{D∗(Q∗, gn, ψ0)−D∗(Q∗, g0, ψ0)}+Rn2,

where

Rn2 = P0{D∗(Q∗, gn, ψn)−D∗(Q∗, g0, ψn)−D∗(Q∗, gn, ψ0)−D∗(Q∗, g0, ψ0)}
= oP (1/

√
n),

by assumption. Thus the third term equals P0D
∗(Q∗, gn, ψ0)−D∗(Q∗, g0, ψ0),

which, by definition, equals Φ(gn)−Φ(g0). We assumed that Φ(gn)−Φ(g0) =
(Pn − P0)ICg0 + oP (1/

√
n). Thus, the third term equals (Pn − P0)ICg0 +

oP (1/
√
n).

We can thus conclude that

ψn−ψ0 = (Pn−P0)c−1
0 {D∗(Q∗, g0, ψ0) + ICg0}+ oP (| ψn−ψ0 |) + oP (1/

√
n).

This implies | ψn − ψ0 |= OP (1/
√
n), and thereby the stated asymptotic

linearity. 2

4.1 Statistical Inference

If Q∗ = Q0, then ICg0 = 0, so that the influence curve reduces to the efficient
influence curve D∗(Q0, g0, ψ0) at a possibly weakly adjusted g0. If gn converges
to the fully adjusted conditional distribution, given X, then we know that ICg0
equals minus the projection of D∗(Q∗, g0, ψ0) onto the tangent space of the
model used by gn (van der Laan and Robins (2003), Section 2.3.7). We suggest
that, even if g0 is not the fully adjusted censoring mechanism, we will typically
still have that D∗(Q∗, g0, ψ0) is a conservative influence curve. In other words,
if Qn starts approximating the true Q0, then the ICg0 contribution gets smaller
and smaller, while if Qn stays away from Q0, then gn starts approximating the
fully adjusted g0, in which case, inference based on D∗ is conservative. This
might explain why we see good coverage in our simulations based on ”influence
curve” D∗(Q∗n, gn, ψ

∗
n). If gn corresponds with a parametric MLE estimator

(for a data adaptively selected parametric model), then we propose to use the
parametric delta-method to compute the analytic formula for the influence
curve ICg0 in order to obtain an accurate influence curve.

One can estimate the covariance matrix Σ = E0ICIC
> of the influence

curve with the empirical covariance matrix Σn = 1/n
∑n

i=1
ˆIC(Oi) ˆIC(Oi)

>,
and statistical inference can be based on the corresponding mean zero multi-
variate normal distribution, as usual.
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4.2 Selection among difference collaborative targeted
maximum likelihood estimators

Suppose that we have a set of candidate collaborative targeted maximum like-
lihood estimators (Q̂∗k(Pn), ĝk(Pn)), k = 1, . . . , K. Suppose that each of these
estimators satisfy the conditions of the theorem. For example, these might
be collaborative targeted maximum likelihood estimators as defined in our
template, using different initial estimators indexed by k, but the same collab-
orative estimator for the censoring mechanism as a function of the data and
the initial estimator (thus still resulting in different realizations if the initial
estimators are different). Then Ψ(Q̂∗k(Pn)) is asymptotically linear with in-
fluence curve D∗(Q∗k, g0k, ψ0), k = 1, . . . , K. We can now select among these
candidate C-DR-TMLEs by maximizing the estimated efficiency, as in Rubin
and van der Laan (2008).

Specifically, let Ψ be a one-dimensional parameter. We now select the k
that minimizes the cross-validated variance of the influence curve:

kn = arg min
k
EBnP

1
n,Bn

D∗2(Q̂∗k(P
0
n,Bn

), ĝk(Pn,Bn), ψn).

Thus, we would use the estimator ψn = Ψ(Q̂∗kn(Pn)). If Ψ is multidimensional,
then one needs to agree on a real valued criterion applied to the covariance
matrix of the influence curve, such as the sum of the variances along the
diagonal, and minimize over k the criterion of the cross-validated covariance
matrix of the k-specific influence curve.

4.3 Irregular C-TMLE and super efficiency

If gn converges to the fully adjusted g0(· | X) (fully adjusting for X, under
CAR) and Q∗n converges to Q0, then it follows that ψn is asymptotically linear
with influence curve equal to the efficient influence curve D∗(Q0, g0, ψ0). So
in that case, ψn is an asymptotically efficient estimator and thereby also a
regular estimator.

Due to the particular way gn is constructed in response to Qn, it is eas-
ily argued that the collaborative targeted MLE can be an irregular estimator
and can be super efficient by achieving an asymptotic variance that is smaller
than the variance of the efficient influence curve. In particular, our previous
arguments showed that if the initial estimator is a maximum likelihood esti-
mator according to a correctly specified parametric model, then gn will avoid
nonparametric fits, thereby staying away from estimating the fully adjusted
g0 that would result in an efficient estimator in first order. In this case, by
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the above theorem, the influence curve of ψn will be equal to D∗(Q0, g0, ψ0),
using a non-fully adjusted g0, so that the variance of the influence curve will
be smaller than the variance of the efficient influence curve that involves a
fully adjusted g0.

The super efficiency may have very attractive features in practice. For ex-
ample, there might be a covariate that is very predictive of censoring/treatment,
but have no relation to the outcome. The C-TMLE will now decide to not
adjust for this covariate at all in the selected censoring mechanism, and as a
consequence, it might achieve the efficiency bound for the data structure ex-
cluding this covariate, but still assuming CAR, so that the C-TMLE will have
smaller asymptotic variance than the efficiency bound. The resulting super
efficient estimator not only shows improved precision, but also yields more
reliable confidence intervals, by avoiding heavily non-robust (and harmful) op-
erations. In most practical scenarios, such a covariate will still have a weak
link with the outcome. In this case, for very large sample sizes, the C-TMLE
will adjust for this covariate and thereby only be asymptotically efficient, but
it will still behave as a super efficient estimator for practical sample sizes, by
not adjusting for this covariate. That is, it invests in effective bias reduction
focussing on covariates that are still predictive of the outcome, taking into
account the already included initial estimator. This behavior is completely
compatible with an estimator that aims to minimize mean squared error of
the estimator of the target parameter, and certainly avoids steps that both
increase bias as well as variance.

Finally, we remark that in simulations in which Qn converges fast to the
true Q0, gn seems to have a temptation to converge to a random choice g0

that is beyond the required minimal censoring mechanism with probability 1.
That is, likelihood based cross-validation might over-select the adjustment in
the censoring mechanism relative to the minimal adjustment, and the amount
of over-selection remains random (but small) for large sample sizes (this is a
known property of cross-validation). This naturally results in an irregularity
of the estimator. Simulations have not shown practical problems for statistical
inference, but this remains an area of study.

5 Targeted loss functions implied by efficient

influence curve

The template of the collaborative targeted maximum likelihood estimators is
based on 1) a log-likelihood loss function (i.e., same loss function that is max-
imized at targeted maximum likelihood step) to select among candidate tar-
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geted maximum likelihood estimators indexed by increasingly nonparametric
estimators of censoring mechanism, and 2) a preferred loss function to compare
targeted maximum likelihood estimators using different censoring mechanism
estimators, in order to build these candidate censoring mechanism estimators.
One can also use a preferred loss function to select among different candi-
date collaborative targeted maximum likelihood estimators (e.g., indexed by
different initial estimators).

In this section we propose targeted loss functions implied by the efficient
influence curve of Ψ. Firstly, the log-likelihood can be replaced by a penalized
log-likelihood that is sensitive to sparse data bias w.r.t. target parameter,
as defined in next subsection This penalized log-likelihood can also play the
role of the preferred loss function. In the second subsection we propose as
preferred loss function the cross-validated variance of the efficient influence
curve, relying on an overall collaborative estimator of censoring mechanism
w.r.t. an initial estimator, or a candidate specific collaborative estimator.
In the last subsection, we utilize the mean of the efficient influence curve as a
criterion to generate a targeted loss function for Q that incorporates a sequence
of increasingly nonparametric estimators of the censoring mechanism.

5.1 The MSE-penalized cross-validated log-likelihood

In the C-DR-TMLE we applied loglikelihood based cross-validation to select
among different targeted maximum likelihood estimators, indexed by different
censoring mechanism estimators. We propose here a penalized log-likelihood
criterion that results in robust estimators in the context of sparse data w.r.t.
the parameter of interest.

Consider candidate (e.g., collaborative) targeted maximum likelihood esti-
mators Pn → Q̂∗δ(Pn) of the true Q0 ∈M, targeting a parameter ψ0 = Ψ(Q0),
indexed by δ. Our proposed criterion for selecting δ is

δn = argmax
δ

EBnP
1
n,Bn

log Q̂∗δ(P
0
n,Bn

)−MSE(Pn)(δ),

where the first term is the cross-validated log-likelihood for the candidate es-
timator Q̂∗δ(Pn), and MSE(Pn)(δ) is an estimator of the mean squared error
(variance plus bias-squared) of the substitution estimator Ψ̂(Q̂∗δ(Pn)) as an esti-
mator of its δ-specific limit (thus ignoring asymptotic bias). The MSE(Pn)(δ)
is possibly appropriately scaled relative to the log-likelihood term. The sole
motivation for the proposed additional penalty term is to make the criterion
more targeted towards ψ0, while still preserving the log-likelihood as the dom-
inant term in regular situations: i..e, asymptotically, the penalty is negligible
(in regular situations the MSE behaves as 1/n).
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5.1.1 Variance of targeted maximum likelihood estimator relative
to its δ-limit

If the target parameter cannot be reasonably identified from the data the log-
likelihood of the targeted maximum likelihood estimator is not sensitive enough
to such a singularity: in fact, on many occasions this just means that the
targeted maximum likelihood algorithm will be ineffective (i.e., the maximum
likelihood fluctuations get too noisy) so that in essence the log-likelihood of
the initial estimator drives the selection.

Therefore it is crucial that the log-likelihood terms are penalized by a term
that blows up (in the negative direction) for δ-values for which the variance
(or bias, addressed in next subsection) of the targeted maximum likelihood
estimator Ψ(Q̂∗δ(Pn)) relative to its limit ψ0(δ) = Ψ(Q̂∗δ(P0)) gets large. Since
we can derive the influence curve of the targeted maximum likelihood estimator
Ψ(Q̂∗δ(Pn)) as an estimator of ψ0(δ), this variance can be estimated with the
variance of this influence curve at this targeted maximum likelihood estimator
Q̂∗δ(Pn). As follows from the study of TMLE in van der Laan and Rubin (2006)
one can often use as approximate influence curve the efficient influence curve
D∗(Q∗δ , gδ) at the limit of the targeted maximum likelihood estimator (Q̂∗δ , ĝδ),
which simplifies the penalty while it remains equally effective.

We first define the cross-validated covariance matrix

Σ(Pn)(δ)

n
=

1

n
EBnP

1
n,Bn

{
D∗(P̂ ∗δ (P 0

n,Bn
))D∗(P̂ ∗δ (P 0

n,Bn
))>
}
.

For example, if the target parameter is 1-dimensional (i.e., d = 1), then we
have

σ2(Pn)(δ)

n
=

1

n
EBnP

1
n,Bn

{
D∗(P̂ ∗δ (P 0

n,Bn
))
}2

.

For example, one can define the variance term of the MSE as

σ2(Pn)(δ) = aΣ(Pn)(δ)a>,

for a user supplied vector a, so that σ2(Pn)/n represents the variance estimate
of the estimator of a>ψ0(δ).

Our proposal presented in the MSE-subsection below will actually have the
form

σ2(Pn)(δ) =
d∑
j=1

a>j Σ(Pn)(δ)aj, (4)

where aj are the row vectors of the square root of a user supplied matrix such
as the inverse of the the correlation matrix of Σ(Pn)(δ).
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5.1.2 Bias of targeted maximum likelihood estimator relative to its
δ-limit

We might also wish to estimate the bias of the targeted maximum likelihood
estimator Ψ(Q̂∗δ(Pn)) relative to its limit ψ0(δ) (even though in most applica-
tions the variance appears to drive the MSE term). For example, this could
be done with the bootstrap:

EPn

{
Ψ(Q̂∗δ(P

#
n ))−Ψ(Q̂∗δ(Pn))

}
,

where P#
n represents the empirical distribution of a bootstrap sampleO#

1 , . . .,O
#
n

from the empirical distribution Pn. However, this would be much too computer
intensive in many applications in which the targeted maximum likelihood es-
timator involves data adaptive model or algorithm selection. By noting that
a bootstrap sample corresponds on average with 2/3 of the n observations,
the following analogue bias estimate can be viewed as an approximation of
this bootstrap bias that only requires 3 times applying the targeted maximum
likelihood estimator to a sample of size n ∗ 2/3:

B(Pn)(δ) = EBn3

{
Ψ(Q̂∗δ(P

0
n,Bn

))−Ψ(Q̂∗δ(Pn)
}
,

where Bn3 denotes the 3-fold cross-validation scheme.
If d = 1, then we will add to the variance term in the previous section the

squared bias B(Pn)2 to create a MSE-term. If d > 1, then in our proposal
below we will construct an appropriate function of B(Pn) representing the
analogue of the variance term (4):

b(Pn)2(δ) ≡
∑
j

(a>j B(Pn)(δ))2.

Additional rationale behind bias term: To provide further understand-
ing of this kind of bias estimate B(Pn), we note the following. Let Ψ̂(Pn)
be an estimator of its target Ψ̂(P0), where it plays the role of the δ-specific
targeted maximum likelihood estimator Ψ(Q̂∗δ(Pn)). The fundamental assump-
tion allowing statistical inference for Ψ̂(P0) is the assumption of asymptotic
linearity:

Ψ̂(Pn)− Ψ̂(P0) = (Pn − P0)D(P0) +R(Pn), (5)

where D(P0) is the influence curve of the estimator, and R(Pn) is the re-
mainder. The asymptotic linearity assumption now assumes that R(Pn) =
oP (1/

√
n).
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The representation (5) of the mapping Pn → Ψ̂(Pn) implies for any cross-
validation scheme Bn

B(Pn) = EBnΨ̂(P 0
nBn

)− Ψ̂(Pn)

= EBn

{
Ψ̂(P 0

nBn
)− Ψ̂(P0)

}
−
{

Ψ̂(Pn)− Ψ̂(P0)
}

= EBn

{
(P 0

nBn
− P0)D(P0) +R(P 0

n,Bn
)
}

−{(Pn − P0)D(P0) +R(Pn)}
= EBnR(P 0

n,Bn
)−R(Pn),

where we use that EBnP
0
n,Bn

D(P0) = PnD(P0). Thus, our proposed bias es-
timate B(Pn) equals, for any cross-validation scheme, an average difference of
the remainder applied to a subsample of size n(1−p) and the full sample of size
n. Therefore, one can conclude that this term will be very sensitive to a large
remainder (e.g., second order terms) in the asymptotic linearity expansion (5).

5.1.3 MSE of targeted maximum likelihood estimator relative to
its δ-limit

If d = 1, then we define the MSE term as

MSE(Pn)(δ) =
σ2(Pn)(δ)

n
+B(Pn)2.

If d > 1, then we assume that we are provided with a user-specified d× d
symmetric positive definite matrix ρ, so that the square root of this matrix ρ1/2

exists. Our MSE term will represent the expectation of the Euclidean norm of
ρ1/2(Ψ̂−ψ), or equivalently, the expectation of (Ψ̂−ψ)>ρ(Ψ̂−ψ). One concrete
proposal is to set ρ1/2 equal to the square root of the inverse of an estimate of
the correlation matrix of the asymptotic covariance matrix of

√
n(Ψ̂− ψ), so

that the linearly transformed vector has uncorrelated components.
Let aj be the j-th row of the matrix ρ1/2, j = 1, . . . , d. The wished MSE

term is now the sum of the MSEs of the linear combination a>j Ψ̂. Therefore,
the MSE term is represented as

MSE(Pn)(δ) =
1

n

∑
j

a>j Σ(Pn)(δ)aj + n
{
a>j B(Pn)(δ)

}
.

This is equivalent to defining a variance term

σ2(Pn)(δ)

n
=

1

n

∑
j

a>j Σ(Pn)(δ)aj,
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a bias term
b(Pn)(δ) =

∑
j

{
a>j B(Pn)(δ)

}
,

and defining

MSE(Pn)(δ) =
σ2(Pn)(δ)

n
+ {b(Pn)(δ)}2.

5.2 Targeted loss functions relying on a collaborative
estimate of censoring mechanism

Let D∗(Q0, g0, ψ0) be the efficient influence curve at dP0 = Q0g0 for the pa-
rameter Ψ : M → IR. Consider a set of estimators Q̂k(Pn) that are all more
nonparametric than an initial estimator Q̂0(Pn). Let ĝ0 be a collaborative
estimator, relative to the initial estimator Q̂0, so that P0D

∗(Q0∗, g0, ψ0) = 0.
Since, Q̂k is more nonparametric than Q̂0, it is reasonable to assume that ĝ0

is also a collaborative estimator for Q̂k, so that P0D
∗(Qk∗

g0 , g
0, ψ0) = 0, where

now Qk∗
g0 denotes the limit of the targeted maximum likelihood estimator of

Q̂k using ĝ0.
We can use as criterion for selection among Q̂k, the cross-validated es-

timated variance of D∗(Qk∗
g0 , g

0,Ψ(Qk∗
g0 )), where Qk∗

g0 denotes the limit of the

targeted maximum likelihood estimator of Q̂k using ĝ0. Of course, this is also
a selection among the collaborative targeted maximum likelihood estimators
Q̂k∗
ĝ0 .

By our asymptotic linearity theorem, this selection among Q̂k corresponds
with minimizing the variance of the influence curve of the (collaborative) tar-
geted maximum likelihood estimators Ψ(Q̂k∗

ĝ0 ) based on initial estimator Q̂k

using the collaborative estimator ĝ0. The crucial assumption is that ĝ0 is
indeed a collaborative estimator estimating a true g0 that involves enough ad-
justment, so that P0D

∗(Qk∗
g0 , g

0, ψ0) = 0. However, this assumption is needed
for construction of estimators of ψ0, and is already relying on weaker assump-
tion than double robustness.

This criterion can now be used as the preferred loss function in our tem-
plate for the collaborative targeted maximum likelihood estimator to build
the candidate censoring mechanism estimators. It will require obtaining a sin-
gle collaborative estimator ĝ0 after having obtained the initial estimator: for
example, one could carry out a dimension reduction based on improved fits
relative to initial estimator, and estimate it with a super learner only adjusting
for the selected variables.
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We already discussed that the same criterion can be used to select among
any set of candidate collaborative targeted maximum likelihood estimators
(Q̂k∗

ĝk
, ĝk), relying on collaborative estimators ĝk, so that P0D

∗(Q̂k∗, gk, ψ0) = 0:

kn = arg min
k
EBnP

1
n,Bn

D∗2(Q̂k∗(P 0
n,Bn

), ĝk(P 0
n,Bn

),Ψ(Q̂k∗(Pn)).

However, the above only relies on a single collaborative estimator ĝ0, and is
therefore particularly suitable for building the second stage within the collab-
orative targeted MLE template.

5.3 Targeted loss functions incorporating a sequence of
increasingly nonparametric estimators of censoring
mechanism

Consider an initial estimator Q̂. We wish to develop a criterion to select among
candidate estimators of Q0 that are more nonparametric than Q̂, such as esti-
mators using Q̂ as offset. A special application of the loss function presented
in this subsection is that Q̂ is empty. Consider a sequence of increasingly non-
parametric estimators ĝj, j = 1, . . . , J , of g0, which could be based on Q̂: For
example, they might be based on a dimension reduction which has as goal to
estimate Q0− Q̂. Consider the following hypothetical criterion for a candidate
Q:

Q→
J∑
j=1

w(j) ‖ P0D
∗(Q, ĝj(P0)) ‖2,

for a list of weights/scalars (w(j) : j = 1, . . . , J), where ‖ · ‖ denotes a possibly
weighted Euclidean norm applied to the vector of the form P0D

∗(Q, g).
Firstly, if Q = Q0, then the criterion is minimized. In addition, let j0(Q)

be such that P0D
∗(Q, ĝj(P0)) = 0 for all j ≥ j0. Since this mean zero property

holds if ĝj solves a score implied by Q−Q0, it follows that the closer Q is to
Q0 the more j-specific terms within this sum are close to zero. Finally, by the
fact that D∗ is a gradient of the path-wise derivative of the target parameter
Ψ, for j ≥ j0, we have that P0D

∗(Q, ĝj(P0)) ≈ Ψ(Q)− ψ0 (either exact, or in
first order), which shows that this criterion also targets ψ0 (see van der Laan
and Robins (2003), Section 1.4).

The cross-validated analogue of this criterion is given by

Dn(Q̂k) ≡ EBn

J∑
j=1

w(j) ‖ P 1
n,Bn

D∗(Q̂k(P 0
n,Bn

), ĝj(Pn)) ‖2 .
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If ψ0 is one dimensional, a sensible choice of weights are given by the inverse of
the variance of the empirical means, so that it downweights the noisy j-specific
signals:

w(j)−1 = P 1
n,Bn
{D∗(Q̂k(P 0

n,Bn
), ĝj(Pn))}2,

and makes the criterion Dn() unit free. Analogues of such weighting can be
obtained for multi-dimensional ψ0 as well, and are recommended.

One can add this criterion to a valid loss function such as the log-likelihood
criterion L(Q̂k), giving a more targeted loss function

L∗(Q̂k) ≡ L(Q̂k) +Dn(Q̂k).

The additional term Dn preserves the validity of the loss function L (i.e., its
minimum still identifies Q0), while it makes the selection targeted towards ψ0.
One can add both Dn as well as the above presented MSE-penalty, where the
latter is asymptotically negligible but important in sparse data (w.r.t. ψ0)
situations.

6 Example: Targeted maximum likelihood

estimation of the marginal structural model

Suppose we observe O = (W,A, Y = Y (A)), where W are baseline covariates,
A is a discrete treatment, and Y is a subsequently measured outcome. It is
assumed that A is realized in response to the realization of W , and Y is realized
in response to both W and A. The full data structure on the experimental unit
is X = (W, (Y (a) : a)), so that A represents the missingness variable for the
missing data structure O on X. We assume the randomization assumption:
g0(a | X) = P0(A = a | X) = P0(A = a | W ).

Consider a marginal structural model for the full data distribution

E0(Y (a) | V ) = m(a, V | β0)

that models the causal effect of a treatment intervention A = a on the outcome
Y . For example, one might assume a simple linear model m(a, V | β0) =
β0(a, V, aV ).

Since it is often unreasonable to assume such a parametric form, but such
parametric forms can still provide very meaningful projections of the true
causal curve, we consider the nonparametric extensions of the parameter β0:

Ψh(P0) = argmin
β

EP0

∑
a

h(a, V )(Q0(a,W )−m(a, V | β))2,
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where Q0(a, w) = E0(Y | A = a,W ). We have that Ψh(P0) represents a
projection of E0(Y (a) | V ) onto the working model m(| β0). Specifically,

Ψh(P0) = argmin
β

EP0

∑
a

h(a, V ) (E(Y (a) | V )−m(a, V | β))2 .

In particular, if E0(Y (a) | V ) = m(a, V | β0), then for each h we have Ψh(P0) =
β0. Without the randomization assumption and consistency assumption, we
can interpret Ψh(P0) as the same projection, but E(Y (a) | V ) = E(E(Y | A =
a,W ) | V ) now represents a (non-causal) dose response curve of the effect of
A on Y that controls for the measured confounders W .

We note that this nonparametric extension only depends on P0 through
the conditional mean of Y , given A,W , and the marginal distribution of W .
For simplicity, we will also use the notation Ψh(Q0), where Q0 now denotes
both the marginal distribution of W and the conditional distribution of Y ,
given A,W .

The efficient estimating function for this nonparametric extension Ψh of β0

is given by:

Dh(P0)(O) =
h1(A, V )

g0(A | W )
(Y −Q0(A,W ))

+
∑
a

h1(a, V )(Q0(a,W )−m(a, V | Ψh(P0)),

where h1(a, V ) = h(a, V ) d
dψ
m(a, V | ψ). We will assume that h1(A, V ) =

d/dψ0m(A, V | ψ0)h(A, V ) is chosen so that h1 does not depend on ψ0, which
is easily arranged for the case that m is linear in ψ and that m is logistic linear.
For example, if we use the linear form (1, a, V, aV ), then, if m is linear, then we
can choose h1 = d/dψ0m(A, V | ψ0)g(A | V ) = ((1, A, V,AV )g(A | V ), and,
if m is logistic linear, then we can choose h1 = d/dψ0m(A, V | ψ0)/(m(1 −
m)(A, V | ψ0))g(A | V ), which equals (1, A, V,AV )g(A | V ), again.

Let D∗h(P0) = −c−1
0 Dh(P0) be the corresponding efficient influence curve

obtained by standardizing the efficient estimating function by the negative of
the inverse of the derivative matrix c0 = d/dψ0E0Dh(P0) (noting that Dh(P0)
can indeed be viewed as a function in ψ0).

If Y is continuous and we use a normal error regression model as a working
model, then a targeted maximum likelihood estimator of ψh0 can be obtained
by adding to an initial estimator Q0(A,W ) of E0(Y | A,W ) the d-dimensional
ε-extension εCh(g)(A,W ), where

Ch(g)(A,W ) =
h1(A, V )

g(A | W )
,
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for some fit g of g0, and fitting ε with maximum likelihood (i.e., least squares
estimation) using Q0 as offset. The resulting update Q1(A,W ) is now a first
step targeted maximum likelihood estimator. It is also the actual targeted
maximum likelihood estimator, since iteration is not resulting in further up-
dates (the clever covariate does not change at a targeted MLE update). One
estimates the distribution of W with the empirical distribution. The estimate
Q1 and the empirical distribution of W now yields a substitution estimate of
the target parameter ψh0. If Y is binary, the same εCh(g)(A,W ) is added on
the logit scale, and ε is fitted with maximum likelihood estimation. Again, the
targeted maximum likelihood estimator converges in one step.

6.1 Penalized log-likelihood for candidate treatment
mechanism fits

Let Q̂(Pn) be an initial regression estimator of Q0 = E0(Y | A,W ). For a
given Pn → ĝ(Pn), let Q̂∗ĝ(Pn) be the targeted maximum likelihood estimator
corresponding with the covariate Ch(ĝ(Pn)). Let Bn be a cross-validation
scheme, and let P 1

n,Bn
and P 0

n,Bn
be the empirical distributions of the validation

and training sample, respectively, as identified by Bn ∈ {0, 1}n. Let

Σ̂CV (Pn)(ĝ) = EBnP
1
n,Bn

D∗h(Q̂
∗
ĝ(P

0
n,Bn

), ĝ(P 0
n,Bn

))2

be the cross-validated estimate of the covariance matrix of the efficient influ-
ence curve at the estimator Q̂ and ĝ. We also consider the empirical estimate
of this covariance matrix

Σ̂(Pn)(ĝ) = PnD
∗
h(Q̂

∗
ĝ(Pn), ĝ(Pn))2.

Let
B̂(Pn)(ĝ) = EBnΨ̂ĝ(P

0
n,Bn

)− Ψ̂ĝ(Pn)

be the bias estimator for the targeted maximum likelihood estimator Ψ̂ĝ(Pn) =

Ψh(Q̂
∗
ĝ(Pn)) obtained by plugging in Q̂∗ĝ(Pn) in the parameter mapping Ψ. Here

we can use three-fold cross-validation as choice for Bn.
We will penalize the log-likelihood with the an estimate of the following

average mean squared error

1

n

n∑
i=1

E
(
m(ai, vi | Ψ̂ĝ(Pn)))−m(ai, vi | Ψ̂ĝ(P0))

)2

.

This mean squared error can be decomposed as 1/n
∑n

i=1 Var(m(ai, vi | Ψ̂ĝ(Pn)))

and 1/n
∑n

i=1 Bias2(m(ai, vi | Ψ̂ĝ(Pn))). The variance terms of this mean
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squared error can be estimated by

σ2
i (ĝ)

n
≡ z(ai, vi)

>Σ̂(Pn)(ĝ)z(ai, vi)

n
,

where

z(ai, vi) =
d

dβ
m(ai, vi | β)

∣∣∣∣
β=Ψ̂ĝ(Pn)

.

We keep open the option that one uses either the cross-validated covariance
matrix Σ̂CV (Pn) or the empirical covariance matrix Σ̂(Pn).

The bias terms of this mean squared error can be estimated as

Bi(ĝ) ≡ EBnm(ai, vi | Ψ̂ĝ(P
0
n,Bn

))−m(ai, vi | Ψ̂ĝ(Pn)).

If m is linear in β, then this reduces to

Bi(ĝ) = m(ai, vi | B(Pn)).

Thus, we obtain the following mean squared error estimate for the targeted
maximum likelihood estimator Ψ̂ĝ(Pn) for a given g-estimator:

M̂SE(Pn)(ĝ) ≡ 1

n

n∑
i=1

{
σ2
i (ĝ)

n
+Bi(ĝ)2

}
.

We suggest that the penalized log-likelihood could also only be penalized by
the empirical variance component of the MSE. Therefore, we also define

σ2(Pn)(ĝ) ≡ 1

n

n∑
i=1

σ2
i (ĝ)

n
.

Consider now the following two penalized log-likelihood criterions for ĝ,
given the initial estimator Q̂0:

L(ĝ | Q̂0) =
1

n

n∑
i=1

(Yi − Q̂∗ĝ(Pn)(Wi, Ai))
2 + M̂SE(Pn)(ĝ),

or

L(ĝ | Q̂0) =
1

n

n∑
i=1

(Yi − Q̂∗ĝ(Pn)(Wi, Ai)))
2 + σ2(Pn)(ĝ).

For Y binary, the RSS is replaced by the log-likelihood of Y , given A,W .
We will use the penalized log-likelihood as loss function to build the can-

didate treatment mechanism estimators, according to the template for the
collaborative targeted MLE in Section 2.
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6.2 Algorithm for estimating the treatment mechanism
based on penalized log-likelihood

Given any candidate adjustment set W ∗ ⊂ W , let an estimator ĝ(Pn)(W ∗)
of g0(A | W ∗) be specified. This allows us to define a criterion in candidate
adjustment sets W ∗, given the current estimator Q̂:

L(W ∗ | Q̂)→ L(ĝ(Pn)(W ∗) | Q̂).

Thus, one can evaluate/score any given adjustment set W ∗ with L(W ∗ | Q̂).
Given Q̂, one can now use this empirical criterion in adjustment sets to

construct an estimator of g0(Q̂) with a greedy type algorithm maximizing over
a set of candidate adjustment sets. One starts with the empty adjustment set
and selects the best addition move among a set of candidate addition moves
based on the criterion. One iterates this process until there does not exist an
addition move that improves the criterion. More aggressive greedy algorithms
can be implemented as well, as with any machine learning algorithm that is
based on iterative local maximization of an empirical criterion. One could
apply this algorithm to candidate adjustments sets that have a certain size or
entropy for the corresponding ĝ(Pn)(W ∗).

Alternatively, one creates a sequence of nested (increasing in size) adjust-
ment sets W ∗

j , j = 1, . . . , J , for each W ∗
j one obtains a particular estimator

ĝj(Pn) of g0(A | W ∗
j ) (e.g., using super learning), and maximizes the penalized

log-likelihood criterion over all these J adjustment sets.
In our algorithm in the next subsection defining the sequence of C-TMLEs

we apply this greedy algorithm to candidate estimators that are more non-
parametric than the selected estimator of g0 in the previous step.

6.3 Iteration to obtain sequence of targeted maximum
likelihood estimators indexed by increasingly non-
parametric estimators of treatment mechanism

Given an initial estimator Q̂ of E(Y | A,W ) and a corresponding estimator
ĝ(Q̂) defined above, sometimes denoted with ĝ, we define a resulting targeted
maximum likelihood estimator

Q̂∗ĝ(Pn) = Q̂(Pn) + εnh(ĝ(Q̂)(Pn)),

where εn is the least squares estimator of the regression coefficient ε treating
Q̂(Pn) as offset and h(ĝ(Q̂)(Pn)) as covariate. We can define this as a first step
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targeted maximum likelihood estimator based on an initial Q̂(Pn), and corre-
sponding censoring mechanism estimator ĝ(Q̂)). Let’s denote this operation
as:

Q̂1(Pn) = Q̂(Pn) + ε1nh(ĝ(Q̂)(Pn)).

This process can now be iterated by replacing Q̂(Pn) by this update Q̂1(Pn):

Q̂2(Pn) = Q̂1(Pn) + ε2nh(ĝ(Q̂1)(Pn)),

where we require that the next censoring mechanism estimator ĝ(Q̂1)(Pn) is
obtained with the same algorithm as presented in above subsection, but now
maximizing over candidate estimators that are more nonparametric than the
previously obtained ĝ(Q̂)(Pn).

In general, we define the k-th step of this targeted maximum likelihood
estimator as

Q̂k(Pn) = Q̂k−1(Pn) + εknh(ĝ(Q̂k−1)(Pn)),

where ĝ(Q̂k−1)(Pn) involves maximizing over more nonparametric candidate
estimators than ĝ(Q̂k−2)(Pn).

This algorithm results in a sequence of k-th step collaborative targeted
maximum likelihood estimators Ψ(Q̂k(Pn)) of ψ0, and corresponding increas-
ingly nonparametric censoring mechanism estimators ĝk(Pn) (i.e., ĝ(Q̂k−1)(Pn)
in above notation), k = 1, . . . , K.

We could also have defined candidate targeted maximum likelihood estima-
tors using a forward selection algorithm each time finding the best next term
to add in the treatment mechanism, so that k denotes the number of terms
included in ĝk. In that case, k corresponds with the size of the model for ĝk,
and the targeted MLE step would be carried out when needed in order to guar-
antee an increase in either the penalized or non-penalized log-likelihood fit of
Q̂k, as described in our general template for collaborative targeted maximum
likelihood estimation in Section 2.

6.4 Collaborative TMLEs

If the initial estimator Q̂ is indexed by a choice δ1 and the choice of algorithm
ĝ(Q̂) is indexed by a δ2, then, for each δ1, δ2, this results in candidate k-th step
collaborative targeted maximum likelihood estimators Pn → Q̂k

δ1,δ2
(Pn), corre-

sponding treatment mechanism estimators Pn → ĝkδ2(Pn), and corresponding

Pn → Ψ(Q̂k
δ1,δ2

(Pn)) targeted maximum likelihood estimators of ψ0, indexed
by k.
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For each δ1, δ2, in order to select among these candidate targeted maximum
likelihood estimators indexed by k, we use the cross-validated penalized log-
likelihood defined as:

L(k, δ1, δ2) = EBnP
1
n,Bn

(
Y − Q̂k

δ1,δ2
(P 0

n,Bn
)(W,A)

)2

+M̂SECV (Pn)(Q̂k
δ1,δ2

, ĝkδ2).

This results now in candidate (δ1, δ2)-specific collaborative targeted max-
imum likelihood estimators Q̂∗δ1,δ2 , with corresponding initial estimator Q̂δ1

and collaborative treatment mechanism estimator ĝδ1,δ2 (note the choice of k
is now a function of δ1, δ2 so that also the collaborative estimator ĝ is indexed
by these choices).

6.5 Selection among candidate collaborative targeted
maximum likelihood estimators

We could select δ1, δ2 by minimizing the same cross-validated penalized log-
likelihood, e.g., by simply simultaneously minimizing the above criterion over
the triplets (k, δ1, δ2). Alternatively, we could employ empirical efficiency max-
imization for all these candidate collaborative targeted maximum likelihood
estimators that are assumed to be asymptotically linear with influence curve
the efficient influence curve plus a contribution from the collaborative estima-
tor of g0, as stated in our asymptotic linearity theorem. Thus, by ignoring
this latter contribution to the influence curve, we could also select δ1, δ2 as
the minimizer of the sum of the variances of the components of the efficient
influence curve of ψ0: ( with δ = (δ1, δ2))

δn = arg min
δ

d∑
j=1

PnD
∗
j (Q̂

∗
δ , ĝδ)

2.

Other criteria based on the vector-efficient influence curve could be considered
as well.

6.6 Statistical inference based on CLT

The resulting collaborative targeted maximum likelihood estimator Qn =
Q̂∗(Pn) and corresponding gn = ĝ(Pn) solve the efficient influence curve equa-
tion 0 = PnD

∗(Ψ(Qn), gn, Qn), so that ψn = Ψ(Qn) can be analyzed with our
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asymptotics theorem, and inference can be based on the influence curve. So
we could estimate the covariance matrix as

Σn = EBnP
1
n,Bn

D∗(Q̂∗(P 0
n,Bn

), ĝ∗(P 0
n,Bn

))2,

where one should include the gn-component to obtain more accurate infer-
ence. Statistical inference would be based on the normal working model
ψn ∼ N(ψ0,Σn) to construct confidence intervals, confidence bands, p-values,
and possible multiple testing adjusted p-values.

7 Simulation

In this section we first describe an implementation of the C-TMLE algorithm,
then review other estimators in the literature before presenting the results of
three simulations designed to offer a performance comparison across a variety
of situations commonly found in the analysis of real-world data. Though
each of these estimators described below is capable of providing an unbiased
estimate of the parameter of interest under ideal conditions, results indicate
that the C-TMLE estimator consistently performs as well or better than the
others across all simulations. We end by comparing performance of the new
C-TMLE estimator with the standard TMLE.

7.1 C-TMLE implementation

The general C-TMLE procedure is to create several stage 1 (non-targeted)
density estimators and carry out stage 2 procedures for each of these. Penalized
cross-validation is used to choose among the final candidate estimators that are
indexed by stage 1 and stage 2 candidates. The implementation presented here
is based on only one initial stage 1 estimate for simplicitly. We describe specific
choices that were employed for the simulations and data analysis presented in
the following sections, occasionally noting other implementation options.

Step 1: Obtain an estimate Q0
n of Q0(A,W ). A data-adaptive machine learn-

ing approach to obtaining this initial estimate is recommended. The
super learner (SL) is a prediction algorithm that creates a weighted com-
bination of predictions of many individual prediction algorithms, with
weights selected using V-fold cross-validation (van der Laan et al., 2007).
In practice, it is important to include algorithms in the SL library of pre-
dictors that cover different model spaces, e.g. support vector machines,
splines, neural nets, etc., since the true best estimation method is un-
known. If SL is not used, any particular data adaptive machine learning
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algorithm providing a consistent estimate is acceptable. For the simula-
tions described below, the DSA algorithm was used to provide the initial
estimate of the the true regression of Y on treatment A and confounders
W .

Step 2: Generate candidate second stage estimators Qk
n. In the simulations

forward selection was used to build a sequence of updates for g0 that are
increasing in size.

Though not required, a sensible approach is to use the intercept model
for g to construct a first clever covariate, h1, used to create the first
targeted maximum likelihood candidate, Q1

n.

g1
n(1 | W ) = P (A = 1), g1

n(0 | W ) = P (A = 0)

h1 =

(
I[A = 1]

g1
n(1 | W )

− I[A = 0]

g1
n(0 | W )

)
.

This results in the first candidate second stage estimator Q1
n = Q0

n +
ε1h1, where ε1 is fitted by least-squares regression of Y on h1 with offset
Q0
n. Next we create an updated model for g by adding a main term to

the intercept, and the resulting targeted MLE using the corresponding
clever covariate is evaluated. The best main term is selected based on
a penalized log-likelihood criterion for the targeted MLE fit. Additional
terms are incorporated in the g-fit as long as they increase the overall
penalized log-likelihood for the resulting Q0-targeted MLE fit. Thus the
penalized likelihood is defined as the empirical sum of squared residuals
at the resulting Q0-fit plus a penalty term proportional to the estimated
variance of the target parameter, the empirical variance of D∗, the main
component of the efficient influence curve (see below), at the resulting
Q0-fit and the candidate g-fit. In the event that no terms in the model
for g increase the penalized likelihood of the resulting Q0-fit, the targeted
MLE update is carried out with the clever covariate that provided the
best penalized log-likelihood, and the above process is iterated with this
new initial estimator and next clever covariate indexed by g fits that are
still building on last g-fit.

As an example suppose that in addition to the intercept term, m terms,
ordered 1, . . . ,m, are incorporated into the model for g, at which point
no further increase of the penalized log likelihood is possible. We define
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candidate estimators Q2
n through Qm+1

n as:

Q2
n = Q1

n + ε2h2

Q3
n = Q1

n + ε3h3

...

Qm+1
n = Q1

n + εm+1hm+1

where the corresponding models gi+1
n contains all the terms in the model

for gin plus one additional term, i = 2, . . . ,m. At this point Qm+1
n is

considered as a new “initial” estimate of the true regression, and the
entire process starts over in order to build a second clever covariate aug-
menting the previous fit gm+1

n used in hm+1. To continue the example,
Qm+2
n = Qm+1

n + εm+2hm+2. This process is iterated until all terms are
incorporated into the final model for g. If the maximal number of terms
that can be added is given by K, then this results in K candidate es-
timators Qk

n, k = 1, . . . , K, corresponding with treatment mechanism
estimators gkn, k = 1, . . . , K. Note that the number of clever covariates
in Qk

n that are added to the initial estimator Q0
n cannot be predicted,

and depends on how many covariates can be added to the treatment
mechanism estimator in each iteration before reaching the local maxi-
mum (not allowing a further increase of the penalized log-likelihood).

Note that the model for g is not restricted to main terms only. For ex-
ample, variables can be created that correspond to higher-order terms.
In addition, a categorical or continuous covariate can be split into many
binary covariates, thereby allowing for more nonparametric modeling of
the effect of a single covariate. When there are many covariates it might
be desirable in practice to terminate the procedure before all covariates
have been incorporated into the model for g, though care must be taken
to ensure that none of the candidates thereby excluded from the subse-
quent selection process potentially maximize the penalized log-likelihood
criterion. SL can be integrated into the second stage as well. A series
of increasingly non-parametric propensity score SL estimates can be ob-
tained based on different adjustment sets. These SL fits are used as
the main terms for the stage 2 forward selection to build candidate ĝ
estimators.

The presented algorithm illustrates that the number of clever covariates
used to update the initial estimator Q0

n depends entirely on the likelihood
and cannot be pre-determined. Terms are incorporated into the model
for g for a single clever covariate until there is a decrease in the likelihood.
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At that point the estimate is updated from Qm
n → Q

(m+1)
n and the process

iterates until all candidate TMLEs have been constructed.

We also note that we can represent these estimators Qk
n and correspond-

ing treatment mechanism estimators gkn as mappings Q̂k and ĝk applied to
the empirical distribution Pn: Qk

n = Q̂k(Pn), gkn = ĝk(Pn), k = 1, . . . , K.
These mappings Pn → Q̂k(Pn) represent our candidate estimators of the
true regression Q0, and in the next step we use cross-validation to select
among these candidate algorithms.

Step 3: Select the estimator that maximizes the V-fold cross-validated pe-
nalized likelihood, where V was set to 5. Maximizing the penalized
likelihood is equivalent to minimizing the residual sum of squares (RSS)
plus a penalty term corresponding to the mean squared error (MSE),
which can be decomposed into variance and bias terms:

k∗ = argmin
k

cvRSSk + cvV ark + n ∗ cvBias2
k.

These terms are defined as follows:

cvRSSk =
V∑
v=1

∑
i∈V al(v)

(Yi − Q̂k(P 0
nv)(Wi, Ai))

2

cvV ark =
V∑
v=1

∑
i∈V al(v)

D∗2(Q̂k(P 0
nv), ĝk(Pn),Ψ(Q̂k(P 0

nv)))(Oi)

cvBiask =
1

V

V∑
v=1

Ψ(Q̂k(P 0
nv))−Ψ(Q̂k(Pn))

D∗(Q, g,Ψ(Q))(O) =
I[A = 1]− I[A = 0]

g(A | W )
(Y −Q(A,W ))

+
1

n

n∑
i=1

Q(1,W )−Q(0,W )−Ψ(Q)

where v ranging from 1 to V indexes the validation set V al(v) for the
vth fold, Ψ(Q) is a mapping from Q to the parameter of interest, and
Q̂k(P 0

nv) denotes the k-th C-TMLE applied to the corresponding training
sample P 0

nv, containing n(1− p) observations, with p = 1/V .

There are many variations for obtaining ψC−TMLE
n . For example, given

an a priori set of candidate nuisance parameter estimators, ĝj, that includes
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highly non-parametric candidates we could construct clever covariates hj(g),
and then use forward selection with this set of clever covariates, using the initial
estimator as off-set, to build (second stage) model-fits for Q0 of increasing size,
where each term in the model corresponds to one of the clever covariates. The
number of clever covariates that are added in this forward-selection algorithm
can be selected using likelihood-based cross-validation.

Note that in contrast with the algorithm described above, in which previous
coefficients are used as fixed offsets in the regression, coefficients in front of
each term are estimated by least squares, thereby solving the efficient influence
equation corresponding to each ĝj, in particular the most non-parametric of
these. Because these covariates are highly correlated, refitting all coefficients
in front of clever covariates at each step in the forward selection algorithm
is likely to result in highly variable coefficient estimates, and therefore less
stability in the estimate of the parameter of interest.

Another alternative approach is to define ψC−TMLE
n = ψ(Q1

n), where Q1
n =

Q0
n+εnh(gk

∗
n ) is the targeted MLE updating the initial estimator with the final

selected clever covariate defined by carrying out the k∗ moves in the above
forward selection algorithm to obtain a g-fit, where k∗ is the optimal number
of moves selected by likelihood-based cross-validation (exactly as above). This
variation did not improve performance in simulation studies not presented in
this article. We mention these alternatives only to underscore the fact that
C-TMLE methodology can be implemented in a variety of ways, and is not
limited to the specific implementation presented here.

7.1.1 Inference

The variance of the influence curve (IC) of the C-TMLE provides suitable
inference, under certain regularity conditions, and assuming that the collabo-
rative estimator gn converges to a g0 = g0(Q), where g0(Q) represents a true
conditional distribution of A given W (Q) for a subset or reduction W (Q) of
all covariates W , so that P0D

∗(Q, g0(Q), ψ0) = 0. For example, it suffices that
the limit g0(Q) is a true conditional distribution of A, given W (Q), for a W (Q)
such that (Q0 −Q)(1,W ), (Q0 −Q)(0,W ) only depend on W through W (Q).
The asymptotics theorem presented above states that ψn is an asymptotically
linear estimator of ψ0 with influence curve

IC(P0) = D∗(Q, g0, ψ0) + ICg0 ,

where ICg0 denotes the influence curve of the linearization of P0D
∗(Q, gn, ψ0)

viewed as an estimator of P0D
∗(Q, g0, ψ0). This additional term ICg0 rep-

resents the contribution to the influence curve from the estimator gn. The

http://biostats.bepress.com/ucbbiostat/paper246



formula for the efficient influence curve/canonical gradient D∗(Q, g0, ψ0) is
given in the previous section for the particular causal effect parameter, ψ0 =
EW [E[Y | A = 1,W ]− E[Y | A = 0,W ]].

In our application of C-TMLE, gn is a data adaptively selected logistic re-
gression model fitted with maximum likelihood estimation. Thus, if we define
{gα : α} as the logistic regression model selected, and αn is the MLE, then
gn = gαn . We will approximate ICg0 with the influence curve of the asymptotic
linearization of P0D

∗(Q, gαn , ψ0)−D∗(Q, gα, ψ0). This ICg0 can now be deter-
mined with a straightforward application of the delta method. The formula
for ICg0 we derived is given by:

ICg0(O) = −a0 · ICα(O)

where

a0 = P0(Y −Q(A,W ))
−→
Whα(A,W ),

hα(A,W ) =

[
Agα(0 | W )

gα(1 | W )
+

(1− A)gα(1 | W )

gα(0 | W )

]
,

ICα(O) = P0

[−→
W
−→
W Tgα(1 | W )gα(0 | W )

]−1

(A− gα(1 | W ))
−→
W.

The notation
−→
W is used to denote the vector of main terms that is included

in the logistic regression model gαn . Note that a0 is a vector of the same

dimension as
−→
W .

This influence curve is estimated by its empirical analog, given by:

ÎCg0(O) = −an · ÎCα(O)

where

an =
1

n

n∑
i=1

(Yi − Q̂(Ai,Wi))
−→
Wihαn(Ai,Wi),

hαn(Ai,Wi) =

[
Aigαn(0 | Wi)

gαn(1 | Wi)
+

(1− Ai)gαn(1 | Wi)

gαn(0 | Wi)

]
,

ÎCα(O) =

[
1

n

n∑
i=1

−→
W i

−→
W T

i gαn(1 | Wi)gαn(0 | Wi)

]−1

(A− gαn(1 | W ))
−→
W.

The standard error of the C-TMLE is now estimated as SE(ψn) =
√
var(IC)/n,

where var(IC) = 1/n
∑

i
ˆIC

2

i is the sample variance of the estimated influence
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curve. A 95% confidence interval (CI) is constructed as ψn±1.96SE(ψn). The
bootstrap is an alternative valid method for asymptotically valid inference,
but it is much more computationally intensive.

We remark that it is good practice to incorporate the additional term
ICg0 in the influence curve, thereby targeting the true influence curve of the
estimator. We can provide the following qualitative understanding of the con-
tribution of ICg0 to the influence curve of the estimator. If Q0

n converges to
the true Q0, then the term ICg0 equals zero, and if Q0

n is inconsistent, and gn
converges to the fully adjusted g0, then ICg0 is known to reduce the variance of
the influence curve (section 2.3.4 van der Laan and Robins (2003)). Based on
these two facts, we suggest that ignoring the contribution ICg0 will typically
result in asymptotically conservative confidence intervals. Empirical evidence
presented in Section 6 using finite samples (n = 1000) supports this. However,
from a theoretical point of view, there seems to be no guarantee that ICg0
always reduces the variance.

7.2 Current methods for estimating marginal
causal treatment effects

Current methods for estimating the marginal causal effect of a treatment A on
outcome Y are compared with C-TMLE on simulated data below. The esti-
mators under consideration are the G-computation estimator (Robins, 1986),
the IPTW estimator (Hernan et al. (2000), Robins (2000b)), a double robust
IPTW estimator (DR-IPTW), (Robins and Rotnitzky (2001); Robins et al.
(2000); Robins (2000a)), a propensity score estimator (Rosenbaum and Ru-
bin, 1983) that calculates the marginal treatment effect as the mean across
strata defined by the conditional probability of receiving treatment, and an
extension to propensity score estimators implemented in Matching, a publicly
available R package (Sekhon (2008)).

Recall that our parameter of interest is given by: ψ0 = EW [E[Y | A =
1,W ] − E[Y | A = 0,W ]]. Each of the estimators we are considering rely
on estimates of one or both of the following: Q0(A,W ) ≡ E[Y | A,W ] and
g0(A,W ) ≡ P (A | W ). The first conditional distribution can be estimated by,
for example, a regression of Y on A and W . The second, which we refer to as
the treatment mechanism, is sometimes known, for example in a randomized
trial. When the treatment mechanism is unknown it can be estimated by a
logistic regression of A on W . Each estimator is defined below.
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ψGcompn =
1

n

n∑
i=1

(Q0
n(1,Wi)−Q0

n(0,Wi))

ψIPTWn =
1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]
Yi

gn(Ai,Wi)

ψDR−IPTWn =
1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]

gn(Ai | Wi)
(Yi −Q0

n(Wi, Ai))

+
1

n

n∑
i=1

(Q0
n(1,Wi)−Q0

n(0,Wi))

ψC−TMLE
n =

1

n

n∑
i=1

(Q∗n(1,Wi)−Q∗n(0,Wi))

ψPropScoren =
1

n

n∑
i=1

(Q0
n(1, si)−Q0

n(0, si))

ψMatching
n =

1

n

n∑
i=1

(Q0
n(1,mi)−Q0

n(0,mi))

where Q0
n refers to an initial estimate of Q0(A,W ), Q∗n refers to an updated

targeted estimate of Q0(A,W ), described in detail in the next section. For
the propensity score method, si indicates a stratum of the propensity score of
covariate vector Wi, and Q0

n(a, s) denotes an estimator of the true conditional
mean E(Y | A = a, S = s) given treatment and propensity score. In the
last equation mi indicates a set of matched observations to which subject i
is assigned, where matches are based on minimizing a distance between the
user supplied covariates W . Each set of matched observations indexed by m
results in a corresponding mean regression Q0

n(a,m) representing an estimate
of E(Y | A = a,M = m). The creation of the partitioning in sets of matched
observations is only a function of the data (Wi, Ai), i = 1, . . . , n, thus ignoring
the outcome data.

Regarding asymptotic properties of the estimators, the G-computation es-
timator relies on consistent estimation of Q0, the IPTW estimator relies on
consistent estimation of g0, while the DR-IPTW estimator yields consistent
estimates if one or both nuisance parameters are estimated consistently.

Notice that ψC−TMLE
n is a G-computation estimate. However, unlike G-

compu-tation, which is consistent only when Qn is a consistent estimator for
Q0, C-TMLE estimates are consistent if either Q0 or g0 is estimated consis-
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tently. ψC−TMLE
n can equivalently be formulated as a double-robust IPTW

estimator:

ψC−TMLE
n =

1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]

g∗n(Ai | Wi)
(Yi −Q∗n(Wi, Ai))

+
1

n

n∑
i=1

(Q∗n(1,Wi)−Q∗n(0,Wi))

The propensity score method implemented uses the Deletion/Substitution/
Addition (DSA) algorithm (Sinisi and van der Laan, 2004) to model condi-
tional treatment probabilities given covariates W . This data-adaptive algo-
rithm searches over a large space of polynomial models by adding, subtracting,
or substituting terms, starting with a base user-specified regression model. The
final model, selected by cross-validation with the L2 loss function, was used
to estimate a propensity score for each observation. Observations were then
divided into five strata based on the quantiles of these propensity scores. Re-
gression of Y on A and strata indicator variables using the full model enabled
the calculation of stratum-specific treatment effects, which were averaged to
obtain the marginal effect. The Matching estimator generalizes the propensity
score approach by carefully matching observations in the treatment and con-
trol groups in such a way that potential confounders are evenly distributed,
across the matches.

The Matching procedure relies on the genetic algorithm (Holland and Re-
itman (1977)) to achieve this goal. This is a non-parametric approach for
selecting weights on covariates that are in turn are used to determine which
observations are matched. Candidate sets of matches are evaluated based on a
loss function and a distance metric specified at run-time, and are used to gen-
erate successive sets of candidates that achieve good balance Sekhon (2008).
The marginal treatment effect is the average effect across strata defined by the
matches.

Propensity score methods are especially effective when overall match qual-
ity is a function of true confounders. Estimates can suffer even when overall
match quality is high if a small subset of covariates responsible for introducing
the most bias into the estimate is unevenly distributed between treatment and
control groups. Because matches are made without regard to the outcome
variable, these methods do not exploit all information available in the data
and are known to be less than fully efficient (Abadie and Imbens, 2006). A
violation of the experimental treatment assignment assumption, also called
the positivity assumption, is known to reduce the quality of the match and

http://biostats.bepress.com/ucbbiostat/paper246



introduce bias into the estimate, and can be detected once the matches have
been specified. The lack of identifiability as measured by such an assumption
results in potential bias for each method, but the augmented IPTW, targeted
MLE, and G-computation method allow reliance on extrapolation.

7.3 Comparison of estimators

For each simulation we have a data structureO = (W,A, Y ), whereW=(W1, . . . ,
W6) is a set of potential confounders of the relationship between binary treat-
ment variable A and continuous outcome Y . Our parameter of interest is
the marginal causal effect of treatment on the outcome: ψ = EW [E[Y |
A = 1,W ] − E[Y | A = 0,W ]]. The simulations are designed to demon-
strate estimator performance in the face of confounding of the relationship
between treatment and outcome, complex underlying data-generating distri-
butions, and practical violations of the Experimental Treatment Assumption
(ETA), i.e., P (A = a | W ) < α, for some small α, implying that there is very
little possibility of observing both treated and untreated subjects for some
combination of covariates present in the data.

These simulations are designed specifically to illustrate features of the C-
TMLE estimator, and there are other simulations for which the relative perfor-
mance of the estimators would differ. For example, when a correct model for
the underlying data generating distribution is known, a parametric regression
approach would be optimal. When the outcome is rare, as is often the case in
safety analysis, we would not expect the initial fit, Q0

n, to have much predic-
tive power. In this case, the fully adjusted g0 is very likely needed for full bias
reduction, so creating and evaluating intermediate candidates with C-TMLE
may be needlessly computationally expensive. Standard TMLE might be a
better approach. Adjusting for many confounders may lead to violations of
the ETA assumption when n is small relative to the number of confounders
or if the confounders are very strongly predictive of treatment. There are two
ways to deal with this. First, one could extrapolate based on model assump-
tions to arrive at an estimate of the desired parameter. Secondly, one could
acknowledge that the parameter of interest is not identifiable from the data,
and choose an adjustment set that provides bias reduction without yielding an
estimate with variance so large that it is essentially meaningless. This latter
approach is taken by second stage of the C-TMLE procedure, by basing the
selection of confounders based on the penalized log-likelihood, while the ex-
trapolation approach is still present through the initial first stage estimator.
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Data generation Covariates W1, . . .W5 were generated as independent nor-
mal random variables. W6 is a binary variable.

W1,W2,W3,W4,W5 ∼ N(0, 1)

logit(P (W6 = 1 | W1,W2,W3,W4,W5)) = .3W1 + .2W2 − 3W3

Two treatment mechanisms were defined:

logit(g1,0)= logit(P(A=1 |W1, W2, W3, W4, W5, W6))= .3W1 + .2W2 − 3W3

logit(g2,0)= logit(P(A=1 |W1, W2, W3, W4, W5, W6))= .15(.3W1 + .2W2 − 3W3)

The observed outcome Y was generated as

Y = Qi,0(A,W ) + ε, ε ∼ N(0, 1)

with corresponding regression equations:

Q1,0(A,W ) = A+ .5W1 − 8W2 +W3 + 8W3 − 2W5

Q2,0(A,W ) = A+ .5W1 − 8W2 +W3 + 8W 2
3 − 2W5

We consider three different data-generating distributions, (Q1,0, g1,0) in simu-
lation 1, (Q2,0, g1,0) in simulation 2, and (Q2,0, g2,0) in simulation 3. Note that
W6 is strongly correlated with treatment mechanism A in simulations 1 and
2 (corr=0.54), but is not an actual confounder of the relationship between A
and Y . W1,W2, and W3 are confounders. The linear nature of the confound-
ing due to W3 in simulation 1 differs from that in simulations 2 and 3, where
the true functional form is quadratic. In this way simulations 2 and 3 mimic
realistic data analysis scenarios in which the unknown underlying functional
form is seldom entirely captured by the regression model used in the analysis.
Finally, the treatment mechanism in simulations 1 and 2 leads to ETA viola-
tions (p(A = a | W ) ranges between 9 × 10−7 and 0.9999978, approximately
one-third of the probabilites are outside the range (0.05, 0.95)). In simula-
tion 3 there are no ETA violations (0.11 < p(A = a | W ) < 0.88). In each
simulation the true value of the parameter of interest is 1.

7.3.1 Simulation

1000 samples of size n = 1000 were drawn from each data generating dis-
tribution. Marginal treatment effect estimates were calculated based on the
unadjusted regression of Y on A, Gcomp, IPTW, DR-IPTW, propensity score
and C-TMLE methods.
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A main-effects model for Gcomp and DR-IPTW, Q̂, was obtained using
the DSA algorithm with the maximum model size set to seven. A model
for the treatment mechanism ĝ used in IPTW, DR-IPTW, propensity score,
and Matching estimation was also selected by DSA, again restricted to main
terms. The Matching function considered this treatment mechanism model
as merely one additional covariate, indistinguishable from the other potential
confounders, W . The procedure was run using default settings, except popu-
lation size for each generation was increased to 200. In contrast, the C-TMLE
algorithm includes an aggressive search through a larger space of models to
obtain an initial estimate of the density. As a proxy for the super-learner
algorithm we used the DSA algorithm to select a model for Q̂ containing at
most six terms, allowing quadratic terms and two-way interactions.

We expect to see that the estimators that rely on consistent estimation
of Q0 are unbiased in simulation 1, (Gcomp, DR-IPTW, C-TMLE), while
estimators relying on consistent estimation of g0 are unbiased in simulation 3
(IPTW, DR-IPTW, propScore, Matching, C-TMLE).

7.3.2 Results

Table 1: Mean estimate and standard error (SE) for each estimator based on
1000 iterations with sample size n = 1000. ψ0 = 1.

Simulation 1 Simulation 2 Simulation 3

ψn SE ψn SE ψn SE

Unadj −11.97 0.64 −0.98 0.91 0.29 0.86
Gcomp 0.99 0.09 0.76 1.22 0.95 0.68
IPTW −4.36 0.72 0.03 0.76 0.83 0.90
DR-IPTW 0.99 0.09 0.94 0.62 1.03 0.80
C-TMLE 0.99 0.09 1.00 0.10 1.00 0.07
PropScore -1.09 1.27 0.42 1.38 0.93 0.59
Matching −1.22 0.82 0.54 0.73 0.96 0.25

Mean estimates of the treatment effect and standard errors are shown in
Table 1 for each simulation. Mean estimates and (0.025, 0.975) quantiles of
the probability distribution of each estimator are plotted in Figures 2 and 3.
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Figure 2: Mean estimates and (0.025,0.975) quantiles for each estimation
method, simulations 1 and 2. Dashed line is at true parameter value.
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Figure 3: Mean estimates and (0.025,0.975) quantiles for each estimation
method, simulation 3. Dashed line is at true parameter value.

Figures 2 and 3 illustrate each estimator’s behavior. As expected, esti-
mators relying on consistent estimation of Q0 are unbiased in simulation 1,
estimators relying on consistent estimation of g0 are unbiased in simulation 3.

• The unadjusted estimator yields biased results in all three simulations
due to its failure to adjust for confounders.

• The G-computation estimator performs well in simulation 1 when the
model is correctly specified. We understand that misspecification (sim-
ulations 2 and 3) will often, though not always, lead to bias in the esti-
mates. However the plots highlight another phenomenon that is easy to
overlook. the inability of the misspecified model to adequately account
for the variance in the outcome often leads to large residual variance
of the estimator, and in practice would have low power to reject a null
hypothesis.

• Truncation bias due to ETA violations causes the IPTW estimator using
truncated weights to fail in simulations 1 and 2. The estimate is not
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biased in simulation 3, but the variance is so large that even in this
setting where we’d expect IPTW to be reliable it would fail to produce
a significant result.

• DR-IPTW estimates are unbiased and have low variance when the func-
tional form is correctly modeled by the regression equation (simulation
1). Though we see little bias in the other two simulations, the variance
is large due to misspecification of the treatment mechanism. Because
W6 is a strong predictor of A and is indistinguishable from a true con-
founder of the relationship between Y and A it is always included in the
treatment mechanism, behavior that does not help achieve an accurate
estimate of the true treatment effect.

• Propensity score estimators are known to perform poorly when there are
ETA violations, e.g. simulations 1 and 2 (Sekhon (2008)). Researchers
constructing the propensity score could observe this and choose an al-
ternate propensity score model, but without using information about
the outcome this choice would likely be made based on the predictive
power of the model, not the potential bias reduction. Both propensity
score-based methods do a reasonable job in simulation 3. Abadie and
Imbens (2006) shows that matching estimators will not obtain the semi-
parametric efficiency bound. This theory is borne out in simulation 3,
where neither matching methodology confidence interval is as tight as
that of the collaborative targeted maximum likelihood estimator.

7.4 Comparison of C-TMLE and TMLE

The double robust property of the targeted maximum likelihood estimator
obviates the need for accurate estimation of both Q0 and g0 since correct spec-
ification of either one leads to consistent estimates of the parameter of interest.
However, accurate estimates of both are needed to achieve the Cramer-Rao ef-
ficiency bound. Implementations of the standard targeted maximum likelihood
estimator (TMLE) therefore strive for ideal estimates of both Q0 and g0.

In contrast, the collaborative nature of the second stage of the C-TMLE
estimation algorithm leads to selection of an estimator, gn, that targets that
portion of the treatment mechanism needed to reduce bias not already ade-
quately addressed by the first stage estimator for Q0. For example, covariates
included in the model for Q0

n might not be selected into the model for gn
because they do not increase the penalized log-likelihood. At the same time,
confounders that are not adequately adjusted for in the initial density estimate
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are quickly added to model for gn unless the gain in bias reduction is offset
by too great an increase in variance. When the initial estimate of the density
is a very good fit for the true underlying density, TMLE and C-TMLE have
similar performance w.r.t bias, but the C-TMLE will have smaller variance by
selecting a gn that targets non fully adjusted g0, resulting in a possibly super
efficient estimator. When the initial fit is less good, C-TMLE makes judicious
choices regarding inclusion of covariates in the treatment mechanism. As pre-
dicted by theory, again, this might lead to lower variances when no covariates
cause ETA violations. When inclusion of all confounding covariates does vi-
olate the ETA assumption, the C-TMLE estimator, in essence, targets a less
ambitious data adaptively selected parameter that is identifiable. Data were
simulated to illustrate these phenomena.

7.4.1 Data generation

Covariates W1,W2, and W3 were generated as independent random uniform
variables over the interval [0, 1]. W4 and W5 are independent normally dis-
tributed random variables.

W1,W2,W3 ∼ U(0, 1)

W4,W5 ∼ N(0, 1)

Treatment mechanism g0 was designed so that W3 is highly predictive of treat-
ment:

logit(g0) = logit(P (A = 1 | W )) = 2W1 +W2 − 5W3 +W5

The observed outcome Y was generated as

Y = Q0(A,W ) + ε, ε ∼ N(0, 1)

with corresponding regression equation:

Q0(A,W ) = A+ 4W1 − 5W2 + 5W4W5

7.4.2 Simulation

C-TMLE and TMLE estimates of the parameter of interest, again defined as
ψ = EW [E[Y | A = 1,W ]−E[Y | A = 0,W ]], were obtained for 1000 samples
of size n = 1000 drawn from data generating distribution (Q0, g0). For this
study we deliberately select a misspecified main-terms only model for Q0 by
running the DSA algorithm on 100,000 observations drawn from that same
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distribution. P (A = a | W ) for these observations ranges from 0.004 to 0.996.
Approximately 17% of the observations have covariates indicating that the
probability of receiving treatment is less than 0.05, indicating that practical
ETA violations in finite samples will cause unstable TMLE estimates.

For each iteration an initial regression, Q0
n, was obtained by fitting the

DSA-selected model, Y = A+W1 +W2, on n observations in the sample. We
expect that any estimate of ψ based solely on this model is likely to be incorrect
because the model fails to take into account the effect on the outcome of the
missing interaction term, and also fails to adjust for the confounding effect
of W5. The targeting step for both targeted maximum likelihood estimators
reduces this bias.

In order to construct the covariate used to target the parameter of interest
in the updating step of the TMLE algorithm we obtain an estimate gn of g0 by
running the DSA algorithm, allowing quadratic terms and two-way interaction
terms to enter the model. This model was not fixed over the 1000 iterations;
the model selection process was carried out each time a sample was drawn
from the population. Similarly, covariates that were candidates for inclusion
in the model for gn in the second stage of the C-TMLE estimation algorithm
include (W1, . . . ,W5, W 2

1 , . . . ,W
2
5 ), and all two-way interaction terms (WiWj),

where i 6= j.

7.4.3 Results

Results of the simulation are shown in Table 2. A small number of aberrant
TMLE estimates were major contributers to the variance of that estimator.
The three highest TMLE estimates of the treatment effect were (771.91, 37.22,
9.52). It is likely that these high values arise from atypical samples containing
observations that presented unusually strong ETA issues. In contrast, all C-
TMLE estimates calculated from those same samples range between 0.307 and
1.698. Both estimators’ average treatment effect estimates are not far from
the true value, ψ0 = 1. As expected, the variance of the TMLE estimator is
many times larger than that of the C-TMLE estimator.

Not surprisingly, W3, the strong predictor of treatment that is not a true
confounder of the relationship between treatment and outcome, is included in
every one of the 1000 models for gn selected by the DSA algorithm, but it
is included in only 35 of the models constructed in the second stage of the
C-TMLE algorithm. At the same time, the interaction term W4W5 is included
in only two out of 1000 models for g0 selected by DSA, but is present in 576,
more than half, of the collaborative models.

This clearly demonstrates the differences between TMLE’s reliance on an
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external estimate of g0 and the collaborative approach to estimating the treat-
ment mechanism used by C-TMLE. However, we note that the degradation of
TMLE performance under sparsity is due to the unboundedness of the fluctu-
ation function, and can be mitigated by employing an alternative fluctuation
function that respects known bounds on the data model. Though a full dis-
cussion is beyond the scope of this paper, details may be found in Gruber and
van der Laan (2010).

Table 2: Comparison of C-TMLE and TMLE estimators at different levels of
truncation. Mean estimate and variance based on 1000 iterations.

truncation # obs
level truncated ψn variance

C-TMLE ∞ 0 0.98 0.04

TMLE ∞ 0 1.73 597.52
40 1 1.36 162.38
10 2 0.94 1.99
5 9 0.92 1.68

7.4.4 Confidence Intervals

The variance of the influence curve provides the basis for calculation of a 95%
confidence interval for the C-TMLE estimate.

95%CI = ψC−TMLE ± 1.96
√

(var(IC)/n)

Two sets of confidence intervals were constructed for each of the 1000
iterations in simulation 4, withQ0

n misspecified by a main-terms only regression
model. As described above, one set of CIs is based on D∗(Q, g), the first term
of the IC. The second set is based on the variance of D∗(Q, g) + ICg, which
includes the contribution from the estimation of gn. Table 3 shows that CIs
based on D∗ alone are conservative when the model for Q0

n is misspecified,
as expected. In contrast, observed coverage closely approximates the nominal
95% coverage rate when the contribution from the ICg term is taken into
account.

Confidence intervals were also created for an additional 1000 samples from
the same data generating distribution that were analyzed using a correct model
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for Q0
n. Coverage rates for these confidence intervals are given in Table 3.

When Q0
n is correctly specified we observe little difference in the coverage rate

whether or not we take the contribution from ICg into account, indicating
zero contribution to the variance from the estimate of gn. Attaining the nom-
inal rate indicates that inference is reliable even when the estimator is super
efficient.

Table 3: Empirical coverage of 1000 confidence intervals constructed at a
nominal 95% level. SE calculated as

√
var(IC)/n, where the IC was estimated

with and without ICg.

Coverage
D∗(Q, g0) D∗(Q, g0) + ICg

Q0
n misspecified .979 .943

Q0
n correct .932 .933

7.5 Data Analysis

We apply the C-TMLE estimator to an observational dataset previously an-
alyzed with the goal of identifying HIV mutations that affect response to the
antiretroviral drug lopinavir. (Bembom et al., 2009, 2008) The data includes
observations on O = (W,A, Y ), where the outcome, Y , is the change in log10

viral load measured at baseline and at follow-up after treatment has been ini-
tiated. If follow-up viral load was beneath the limit of detection Y was set
to the maximal change seen in the population. A ∈ {0, 1} is an indicator of
the presence or absence of a mutation of interest, taking on the appropriate
value for each of the 26 candidate mutations in 26 separate analyses. W con-
sists of 51 covariates including treatment history, baseline characteristics, and
indicators of the presence of additional HIV mutations. Practical ETA viola-
tions stemming from high correlations among some of the covariates and/or
low probability of observing a given mutation of interest make it difficult to
obtain stable low variance estimates of the association between A and Y . Be-
mbom used a targeted maximum likelihood estimation approach incorporating
data-adaptive selection of an adjustment set that relies on setting a limit on
the maximum allowable truncation bias introduced by truncating treatment
probabilities less than α to some specified lower limit. Covariates whose inclu-
sion in the adjustment set introduces an unacceptable amount of bias are not
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selected. That study’s findings showed good greement with Stanford HIVdb
mutation scores, values on a scale of 0 to 20 (http://hivdb.stanford.edu, as of
September, 2007, subsequently modified ), where 20 indicates evidence exists
that the mutation strongly inhibits response to drug treatment and 0 signi-
fies that the mutation confers no resistance. Because the C-TMLE method
includes covariates in the treatment mechanism only if they improve the tar-
geting of the parameter of interest without having too adverse an effect on
the MSE, we expect similar performance without having to specify truncation
levels or an acceptable maximum amount of bias.

7.5.1 Analysis description

The dataset consists of 401 observations on 372 subjects. Correlations due to
the few subjects contributing more than one observation were ignored. Sep-
arate analyses was carried out for each mutation. In each, an initial density
estimate, Q0

n, was obtained using DSA restricted to addition moves only to se-
lect a main-terms model containing at most 20 terms, where candidate terms
in W include pre-computed interactions detailed in Bembom et al. A was
forced into the model. An estimate of the effect on change in viral load was
recorded for each mutation. Influence curve-based variance estimates incorpo-
rating the contribution from estimating g given by the ICg term, was used to
construct 95% confidence intervals.

7.5.2 Results

Table 4 lists the Stanford mutation score associated with each of the HIV mu-
tations under consideration, as well as the C-TMLE estimate of the adjusted
effect of mutation on lopinavir resistance. 95% confidence intervals were con-
structed based on the variance of the IC. Confidence intervals entirely above
zero indicate a mutation increases resistance to lopinavir. Eight of the twelve
mutations having a mutation score of 10 or greater fall into this category. Point
estimates for the remaining four mutations were positive, but the variance was
too large to produce a significant result. Only one of the six mutations thought
to confer slight resistance to lopinavir was flagged by the procedure, though
with the exception of p10FIRVY point estimates were positive. Stanford mu-
tation scores of 0 for four of the five mutations found to have a significantly
negative effect on drug resistance support the conclusion that these mutations
do not increase resistance, but are not designed to offer confirmation that a
mutation can decrease drug resistance. However, Bembom et al. report that
there is some clinical evidence that two of these mutations, 30N and 88S, do
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Table 4: Stanford score (2007), C-TMLE estimate and 95% confidence interval
for each mutation. Starred confidence intervals do not include 0.

mutation score estimate 95% CI

p50V 20 1.703 ( 0.760, 2.645)∗

p82AFST 20 0.389 ( 0.091, 0.688)∗

p54VA 11 0.505 ( 0.241, 0.770)∗

p54LMST 11 0.369 ( 0.002, 0.735)∗

p84AV 11 0.099 (-0.139, 0.337)
p46ILV 11 0.046 (-0.222, 0.315)
p82MLC 10 1.610 ( 1.377, 1.843)∗

p47V 10 0.805 ( 0.282, 1.328)∗

p84C 10 0.602 ( 0.471, 0.734)∗

p32I 10 0.544 ( 0.325, 0.763)∗

p48VM 10 0.306 (-0.162, 0.774)
p90M 10 0.209 (-0.063, 0.481)
p33F 5 0.300 (-0.070, 0.669)
p53LY 3 0.214 (-0.266, 0.695)
p73CSTA 2 0.635 ( 0.278, 0.992)∗

p24IF 2 0.229 (-0.215, 0.674)
p10FIRVY 2 −0.266 (-0.545, 0.012)
p71TVI 2 0.019 (-0.243, 0.281)

p23I 0 0.822 (-0.014, 1.658)
p36ILVTA 0 0.272 (-0.001, 0.544)
p16E 0 0.239 (-0.156, 0.633)
p20IMRTVL 0 0.178 (-0.111, 0.467)
p63P 0 −0.131 (-0.417, 0.156)
p88DTG 0 −0.426 (-0.842,-0.010)∗

p30N 0 −0.440 (-0.853,-0.028)∗

p88S 0 −0.474 (-0.781,-0.167)∗

indeed decrease lopinavir resistance.
Our findings are quite consistent with the Stanford mutation scores and

with the results from the previous analysis using the data-adaptively selected
adjustment set targeted maximum likelihood estimation approach. The C-
TMLE method was able to achieve these results without relying on ad hoc or
user-specified tuning parameters.
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7.6 Summary

Simulation studies demonstrate the collaborative double robustness and effi-
ciency of C-TMLE methodology, which allows for consistent efficient estima-
tion in situations when other estimators can fail to perform adequately. In
practice these failures may lead to biased estimates and to confidence inter-
vals that fail to attain the correct coverage, as suggested by the IPTW results
in simulations 1 and 2, where weights depend on a variable highly predictive
of treatment that is not a true confounder of the relationship between Y and
A. It is worth noting that the unadjusted estimator applied to data from a
randomized controlled trial in which randomization fails to evenly distribute
confounders across treatment arms will also yield (finite sample) biased results,
as we saw in simulations 1,2, and 3.

As simulations 2 and 3 demonstrate, a misspecied parametric model not
only results in biased estimates, but can also easily fail to adequately explain
the variance in the outcome. Therefore estimates of the parameter of inter-
est will have a larger variance than the semiparametric information bound
achieved by an efficient estimator, such as C-TMLE. Such misspecified para-
metric models can easily result in the construction of a confidence interval
that contains 0, and therefore a failure to reject a false null hypothesis, even
when the point estimate is close to the true value of the parameter of interest.
Since misspecied parametric models are the rule rather than the exception,
in the analysis of data from an unknown data-generating distribution, using
C-TMLE combined with super learning for the initial estimator, is a prudent
course of action.

Estimators that rely on nuisance parameter estimation (IPTW, DR-IPTW,
TMLE, propensity score-based estimation) break down when there are ETA
violations, failing to reduce bias, or even increasing bias, while incurring high
variance that renders estimates meaningless (no statistical signicance). An
effort to reduce variance through truncation introduces bias into the estimate,
and requires a careful trade-off. C-TMLE addresses these issues, in the sense
that it is able to utilize the covariates for effective bias reduction, avoiding
harmful bias reduction efforts. As a targeted-MLE, the bias-variance tradeoff
is targeted towards the estimation of the parameter of interest, not the esti-
mate of the entire density. The collaborative nature of the estimation of the
treatment mechanism in the C-TMLE confers three advantages:

1. The treatment mechanism model will exclude covariates that are highly
predictive of treatment but do not truly confound the relationship be-
tween treatment and the outcome.
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2. The treatment mechanism model will include only covariates that help
adjust for residual bias remaining after stage 1 adjustment.

3. Cross-validation based on a penalized log-likelihood will not select a
treatment mechanism model that includes a term that leads to violations
of the ETA assumption and thereby large variance of the corresponding
targeted MLE without the benefit of a meaningful bias reduction.

Influence-curve based inference is theoretically sound, and achieves the de-
sired coverage rate across a wide range of simulations, in addition to the ones
presented.

8 Discussion

For most data sets little to no knowledge is available about the data generat-
ing distribution. Consequently, the true model is a large infinite dimensional
semi-parametric model. In such models many data adaptive approaches can
be considered for fitting the true distribution of the data, based on different
approximation function spaces, different searching strategies for maximizing
an empirical criterion (such as the empirical log-likelihood) over these spaces,
and different methods for selecting the fine tuning parameters indexing the
function spaces and search strategies. Depending on the true data generating
distribution, these algorithms will have very different levels of performance in
approximating the true data generating distribution. As a consequence, cross-
validation based super learning should be employed to find the best weighted
combination among a large user supplied set of candidate estimators of the true
data generating distribution. The user has an option to select the wished loss
function. The oracle property of the cross-validation selector (van der Vaart
et al. (2006), van der Laan et al. (2006)) teaches us that the super learner will
asymptotically perform exactly as well, w.r.t. the loss-based (e.g., Kullback-
Leibler) dissimilarity measure, as the best weighted combination of the candi-
date algorithms optimized for each data set. A crucial assumption is that the
loss function used in this super learning methodology is uniformly bounded
in all the candidate estimators. This could be viewed as a semi-parametric
model assumption, and it is essential for robustness of the resulting estimator
against outliers. It can be arranged by bounding the candidate estimators so
that the loss function remains bounded.

The super learner fit represents a best fit for the purpose of estimation of
the whole distribution of the data w.r.t. the loss-function specific dissimilarity,

http://biostats.bepress.com/ucbbiostat/paper246



so that the bias-variance trade-off is not targeted (enough) w.r.t. the parame-
ter of interest. Overall, the resulting estimate it overly biased for the smooth
target parameter.

Therefore, our methodology involves a second targeted modification of the
first stage super learner fit that aims to reduce the bias w.r.t the target pa-
rameter, while simultaneously increasing the likelihood fit. A single fluctuation
function that would yield asymptotic optimal bias reduction as defined by the
efficient influence curve of the target parameter is determined. This fluctua-
tion function needs to have a score-vector at zero fluctuation whose linear span
includes the efficient influence curve of the target parameter. This fluctuation
function depends on an unknown nuisance parameter of the data generating
distribution, such as a censoring mechanism.

In one particular embodiment of our C-TMLE, we define an iterative se-
quence of subsequent fluctuations, starting with the initial super learner fit,
where the subsequent fluctuation functions are estimated with increasingly
nonparametric estimates of the nuisance parameter, including a final fully
non-parametrically estimated fluctuation function. In addition, by construc-
tion, we make sure that for each fluctuation function the nuisance parameter
estimator that results in maximal increase in likelihood (or preferred loss func-
tion) fit is selected, among the candidate nuisance parameter estimators that
are more nonparametric than the one selected at previous fluctuation function.
In this way, we arrange that most of the targeted bias reduction occurs in the
first few fluctuations. The actual number of times we carry out the subsequent
update is selected with likelihood based cross-validation.

Essentially, we try to move towards the asymptotically optimal bias reduc-
tion (identified by the true nuisance parameter/censoring mechanism used in
the data generating distribution) along a sequence of targeted bias reduction
steps, but we stop moving towards this asymptotically optimal bias reduction
when it results in a loss of likelihood fit as measured by the cross-validated
log-likelihood. In general, our template for C-TMLE allow a fine sequence of
nested targeted bias reduction steps (i.e., a fine sequence of candidate second
stage estimators indexed by increasingly nonparametric nuisance parameter es-
timators) whose fits contain this set of candidate-fits as a subsequence, thereby
potentially providing an additional improvement in practical performance of
the resulting C-TMLE.

Theoretical results teach us that this push towards the asymptotically op-
timal bias reduction takes into account how well the initial estimator approx-
imates the true distribution, by giving preference to targeted bias reduction
steps that improve the log-likelihood fit using the initial estimator as off-set.
As a consequence, the C-TMLE is able to avoid selecting irrelevant or harmful
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(w.r.t. relevant factor of density) fits of the nuisance parameter, even though
such fits might improve the overall fit of the nuisance parameter. That is,
the fit of the nuisance parameter is targeted towards our primary goal, the
parameter of interest.

Specifically, we establish a general asymptotic linearity theorem for collab-
orative targeted maximum likelihood estimators, which provides us with the
influence curve of our estimator, and thereby statistical inference. Fortunately,
the influence curve happens to be equal to the efficient influence curve at the
collaborative nuisance parameter estimator (its limit) plus a contribution of the
nuisance parameter estimator as an estimator of its limit, providing immediate
variance estimates. Gains in efficiency, resulting in possible super efficiency,
are obtained by estimating the nuisance parameter collaboratively, in relation
to the initial estimator. An inspection of the efficient influence curve allows
us to precisely define the sufficient and minimal term H(g0, Q−Q0) one needs
to adjust for in g0 to achieve the wished full bias reduction. We propose to
estimate this term and force adjustment by this term in the candidate cen-
soring mechanism estimators within the C-TMLE procedure, without relying
on its correct specification, thereby preserving and only enhancing the double
robustness of the C-TMLE.

The targeted maximum likelihood estimator relies itself on maximizing an
empirical mean of a loss function over a fluctuation function, and the derivative
of this empirical criterion at zero fluctuation needs to be the empirical mean of
the efficient influence curve at the estimator to be fluctuated. We refer to this
loss as the log-likelihood loss, but it needs to be understood that this choice
can already be targeted (e.g,. van der Laan (2008b)) in the sense that it is
typically implied by the efficient influence curve of the target parameter (e.g,
one would not use a likelihood based on factors that are not needed to evaluate
the target parameter). In addition, we propose to replace this log-likelihood
by a penalized log-likelihood, where the penalty is scaled appropriately, has
negligible contribution for nicely identifiable target parameters, but blows up
for fits that result in extremely variable or biased estimators of the parameter of
interest. Even though the penalty’s effect on the Kullback-Leibler dissimilarity
is asymptotically negligible for identifiable parameters, for parameters that are
borderline identifiable, this penalty can yield dramatic additional finite sample
improvements to the C-TMLE. In essence, it builds in a sensible robustness of
the resulting C-TMLE as an estimator of the target parameter.

Given the initial estimator, the candidate censoring mechanism estimators,
and the corresponding sequence of targeted MLE indexed by these increasingly
nonparametric estimators of the censoring mechanism, the log-likelihood or
penalized log-likelihood is used for cross-validation selection of the depth of the
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bias reduction (i.e, for selection among these candidate targeted MLEs) in the
C-TMLE algorithm. However, a preferred loss function can be used to build
the initial estimator, to build the candidate censoring mechanism estimators,
and to select among different collaborative C-TMLEs. In particular, one could
use the penalized log-likelihood as preferred loss function.

We propose as a possibly more targeted selection criterion the cross-validated
variance of the square of the efficient influence curve (e.g., if target parameter
is one-dimensional), where a collaborative estimator is used for the nuisance
parameter (censoring mechanism) in the efficient influence curve: i.e. we pro-
pose as loss function for a candidate Q the square of the efficient influence
curve at its targeted version, using a collaborative estimator of g0. Indeed,
E0D

∗2(Q∗g0 , g0,Ψ(Q∗g0) = E0D
∗2(Q∗g0 , g0, ψ0) is a variance of a collaborative

double robust estimator of ψ0, indexed by initial estimator Q, using known
g0, and is thereby a valid and sensible loss function. In order to also take
into account that g0 is estimated, one could also minimize the variance of the
actual influence curve of the collaborative double robust targeted MLE using
Q as initial and using gn as collaborative estimator. This would imply the
same square of influence curve, but now the influence curve equals D∗ plus an
contribution from estimation of g0.

Finally, we are also able to select a targeted loss function for g0 in the C-
TMLE template, by making its loss-based dissimilarity a measure of goodness
of fit of the g0-specific fluctuation function in which the estimator of g0 is used.

The collaborative double robust maximum likelihood estimator utilizes 1)
loss-based super learning to obtain the best initial estimator of Q0 (grounded
by theory for cross-validation selector), 2) loss-based super learning to generate
best estimators of candidate censoring mechanisms adjusting for increasingly
large adjustment sets (grounded by theory for cross-validation selector), 3)
specification of loss functions that target the needed Q0, g0 for identification
of the efficient influence curve, 4) targeted maximum likelihood estimation
along a fluctuation function using such a censoring mechanism estimator to
remove bias for target parameter (grounded by theory for targeted maximum
likelihood estimation), 4) Q0-(penalized)-likelihood based cross-validation to
select among such candidate censoring mechanism estimators, and thereby
obtain the collaborative estimator of the censoring mechanism for the fluctua-
tion function that removes the bias, while avoids unnecessary loss in variance
(grounded by oracle results for cross-validation, collaborative double robust-
ness, and our asymptotic linearity theorem), 5) efficient influence curve based
dimension reductions (the minimal sufficient covariate) to be included in the
censoring mechanism estimators that allow for effective bias reduction in the
T-MLE, if correctly specified, (and will not harm the collaborative double
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robustness if not) (grounded by theory on efficient influence curve represen-
tation and our collaborative double robustness theorem), 6) efficient influence
curve based loss function for Q0 to build more targeted candidate censoring
mechanism estimators 7) efficient influence curve based loss functions for Q0

to make the initial estimator more targeted, to make the selection among can-
didate C-TMLE more targeted, resulting in smaller asymptotic variance of
the resulting C-TML estimator of the target parameter (grounded by empir-
ical efficiency maximization theory, and our asymptotic linearity theorem for
C-TMLE).

To summarize, this article provides a template for loss-based adaptive (su-
per) efficient estimators in semiparametric models that are targeted towards
a particular target feature of the distribution of the data, and for which sta-
tistical inference is available.
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Appendix

TMLE as an imputation estimator

Consider the goal of estimating EY1. It is desirable for the estimator Qn to
satisfy 0 =

∑
i{EQn(Y1|Oi)−PQn(Y1 = 1)}, which makes Ψ(Qn) an imputation

estimator. In other words, averaging the imputed values EQn(Y1|Oi) for Y1

under Qn for i = 1, .., n, gives the same estimator as the mean of Y1 under
Qn. Below, we show that this holds if Qn solves the score equation

∑
iAi(Yi−

EQn(Y |Ai,Wi)). With this insight, we can now compute a targeted maximum
likelihood estimator that is also an imputation estimator, by using a bivariate
ε fluctuation function involving both the clever covariate and the term A.
Similarly, we can construct a targeted maximum likelihood estimator that is
also an imputation estimator for the additive causal effect parameter EY (1)−
Y (0). This problem was presented in Rubin and van der Laan (2008).

Details of this derivation follow. Let O = (W,A, Y ), with Y binary. Con-
sider the score D(Q)(O) = EQ(Y1 | O)− EQY1. We note that

EQ(Y1 | O) = I(A = 1)Y + I(A = 0)EQ(Y | A = 1,W ).

We wish to find the component of D(Q) that is in the tangent space of the
conditional distribution of Y , given A,W . We have

E(D(Q) | A,W ) = E(Y | A = 1,W ).
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We decompose

D(Q) = D1(Q) +D2(Q)

= {D(Q)− E(Y | A = 1,W )}+ {E(Y | A = 1,W )− EQY1}.

The first component can be written as

{E(D1(Q) | Y = 1, A,W )− E(D1(Q) | Y = 0, A,W )}(Y − EQ(Y | A,W )),

which reduces to A(Y − EQ(Y | A,W )).
Consider now the score D(Q)(O) = EQ(Y0 | O)− EQY0. We note that

EQ(Y0 | O) = I(A = 1)EQ(Y | A = 0,W ) + I(A = 0)Y.

We wish to find the component of D(Q) that is in the tangent space of the
conditional distribution of Y , given A,W . We have

E(D(Q) | A,W ) = E(Y | A = 0,W ).

We decompose

D(Q) = {D(Q)− E(Y | A = 0,W )}+ {E(Y | A = 0,W )− EQY0}.

We can write this first component as

{E(D1(Q) | Y = 1, A,W )− E(D1(Q) | Y = 0, A,W )}(Y − EQ(Y | A,W )),

which reduces to (1− A)(Y − EQ(Y | A,W )).
Suppose now that one wishes to solve the score equation of score D(Q) =

EQ(Y1 − Y0 | Oi)− EQ(Y1 − Y0). We follow the same proof as above. Firstly,

EQ(Y1 − Y0 | O) = I(A = 1){Y − EQ(Y | A = 0,W )}
+I(A = 0){EQ(Y | A = 1,W )− Y }.

We wish to find the component of D(Q) that is in the tangent space of the
conditional distribution of Y , given A,W . We have E(D(Q) | A,W ) = EQ(Y |
A = 1,W )− EQ(Y | A = 0,W )). We decompose

D(Q) = D1(Q)+D2(Q) ≡ {D(Q)−E(D(Q) | A,W )}+{E(D(Q) | A,W )−EQY1}.

We can write this first component as

{E(D1(Q) | Y = 1, A,W )− E(D1(Q) | Y = 0, A,W )}(Y − EQ(Y | A,W )),
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which reduces to (2A− 1)(Y − EQ(Y | A,W ).
Therefore, if we want Q∗n to be an imputation estimator for both EY0, EY1,

then we wish to have an estimator Q∗n that solves the bivariate score equation

0 =
∑
i

(1, Ai)(Yi − EQ∗
n
(Y | Wi, Ai)).

This can be arranged by applying the targeted MLE update with the fluctua-
tion function corresponding with covariate-extension ε(1, A, hg(A,W )), where
hg denotes the clever covariate for the target parameter (say) EY1 − EY0.
If one wishes to solve the score equation of score D(Q) = EQ(Y1 − Y0 |
Oi)− EQ(Y1 − Y0), then, one uses the bivariate extension ε1(2A− 1) + ε2hg.
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