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Analytic programming with fMRI data:

a quick-start guide for statisticians using R

Ani Eloyan, Shanshan Li, John Muschelli,

Jim Pekar, Stewart Mostofsky, Brian S. Caffo

July 11, 2012

Abstract

Functional magnetic resonance imaging (fMRI) is a thriving field that plays an im-

portant role in medical imaging analysis, biological and neuroscience research and

practice. This manuscript gives a didactic introduction to the statistical analysis of

fMRI data using the R project along with the relevant R code. The goal is to give

statisticians who would like to pursue research in this area a quick start for program-

ming with fMRI data along with the available data visualization tools.

1 Introduction

This primer was created to get statisticians who are new to the field of imaging data analy-

sis a quick overview and tools for programming their own analyses of fMRI data; targeted

at those who would like to pursue the programming using the R project (R Development
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Core Team, 2011). The key benefits of programming on one’s own is the ability to extend

analyses and build and create new tools. Of course, the key benefits of using the R project

are that it’s open source, cross-platform, free (as in cost), has excellent graphical capabil-

ities and is an award-winning lingua franca of statisticians. Matlab (www.mathworks.com)

is the standard scripting language in neuroimaging and signal processing, has a widely

used integrated development environment and GUI creation software. Both R and Matlab

are cross-platform and have excellent graphics capabilities. Both are high level scripting

languages that are easy to learn and have a large collection of add-ons and subroutines.

For those wanting more automated methods for the analysis of fMRI data, several

programs exist to perform the most standard analyses. In addition, power users should

learn these programs for comparison purposes to avoid reinventing existing and well es-

tablished tools. We give a non-exhaustive list of some of our favorite freely available

software below.

SPM SPM (http://www.fil.ion.ucl.ac.uk/spm/) is a collection of open source Matlab

scripts, often calling compiled code. SPM is arguably the most popular software

for the analysis of fMRI data, in no small part due to a well developed GUI. It has

methods for single-subject and multi-subject analyses and tools for displaying the

results and data visualization. It can perform all of the basic preprocessing proce-

dures of the imaging data. Moreover, it has an active user community with several

user contributed add-ons. The SPM scripts are well documented, and are easily

understood.

FSL FSL (http://www.fmrib.ox.ac.uk/fsl/) is UNIX-based software that performs sin-
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gle and multi subject analyses, preprocessing and visualization of results. It has a

graphical user interface, though is most effectively used at the command line, ty-

ing routines together using shell scripts. FSL is open source and can be compiled

from scratch. In addition, pre-compiled binaries are available, notably for OSX. For

Windows, FSL can be run in a virtual machine.

MIPAV MIPAV (http://mipav.cit.nih.gov/) is JAVA software created by the US Na-

tional Institutes of Health. It has very broad functionality for preprocessing, analysis

and visualization of imaging data. However, it is most useful through an active col-

lection of modules.

AFNI AFNI (http://afni.nimh.nih.gov/afni/) is UNIX-based software. It offers a full

analysis and processing suite and we often use it in conjunction with FSL and BASH

scripting.

FreeSurfer FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) is a UNIX-based soft-

ware for registration (often atlas based) and analysis of medical imaging data. It is

often discussed as having excellent registration and visualization tools.

In addition to the above packages for analysis and processing of fMRI data, there are

R packages related to fMRI, primarily focused on analysis post-registration.

AnalyzeFMRI Analysis package for fMRI including a graphical user interface.

oro.nifti Package for reading in nifti files, a common fMRI imaging format.

fmri Package for reading in and analyzing fMRI data. Includes data for HRF convolution

models and ICA.

3
Hosted by The Berkeley Electronic Press



neuroSim Package for simulating fMRI data. As a consequence, has tools for creating

and investigating designs with HRF convolution models.

Rniftilib Package for loading and writing the 3D or 4D images.

There is a frequently updated list on CRAN of packages for medical image analysis at

http://cran.r-project.org/web/views/MedicalImaging.html.

The remainder of the manuscript is organized as follows. Sections 2, 3 and 4 describe

the structure of the functional magnetic resonance imaging (fMRI) data, discuss ways of

obtaining the data and give a brief overview of the steps of preprocessing of the fMRI

data. Section 5 describes the different formats that can be used for viewing the fMRI

data in R along with examples of a Gaussian smoother of the data matrix and obtaining

the mask of the three dimensional image. A discussion of the HR function and the role

of the design matrix in task based fMRI studies is discussed in Section 6, an example

of voxel-vise regression is shown in Section 6.2.2. The between subjects random effect

models are discussed in Section 7. Section 8 gives an overview of the connectivity based

analysis of fMRI data including seed voxel based methods, singular value decomposition

and independent component analysis. We discuss some of the visualization tools in R or

other software in Section 9. Finally, Section 10 completes the paper by pointing out useful

further reading tools.
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2 fMRI

Functional magnetic resonance imaging (fMRI) is a modern brain imaging measurement

technology. As its name suggests, the technology images the brain over time as it func-

tions using a magnetic resonance imaging (MRI) machine. Standard fMRI images the

so-called BOLD (blood oxygen level dependent) signal, described further below. BOLD

fMRI is not the only functional brain imaging technology available using an MRI scanner.

For example, arterial spin labeling (Zhou et al., 2001) is a closely related functional MRI

technology, while dynamic contrast enhanced imaging (see Roberts et al., 2006; Shino-

hara et al., 2011) is another, very different, functional brain imaging use of an MRI scan-

ner. However, the term fMRI, when used without qualifying statements, refers to BOLD

fMRI. Briefly opening the discussion to non-magnetic resonance (MR) based technologies

we note that positron emissions tomography (PET), single photon emissions computed

tomography (SPECT), electroencephalograms (EEG), magnetoencephalograms (MEG)

and other measurement devices can be used for functional brain imaging, each with dif-

ferent goals, limitations, strengths and scientific interpretations.

The BOLD signal (Ogawa et al. (1990), Turner et al. (1991), Ogawa et al. (1992),

Turner et al. (1993), Aguirre et al. (1998), Logothetis et al. (2001), Logothetis and Wan-

dell (2004)) measures the cerebral hemodynamic changes concomitant to neuronal acti-

vation of the brain. A localized increase in neural activity results in increase in blood flow

(“reactive hyperemia”) to the activated region when excess of oxygenated hemoglobin

is delivered to the region. Consequently, a reduction in deoxyhemoglobin concentration

follows, resulting in an increase in magnetic field homogeneity. The gradient echo EPI
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sequence allows to study the activation of specific regions of the brain during a task.

Deoxyhemoglobin serves as an endogenous susceptibility contrast agent allowing MRI to

report on local hemodynamic changes. Hence, the BOLD signal in response to a stimulus

is given a name - the hemodynamic response (see Figure 1). This figure shows an initial

delay of the response since it takes time for the vasculature of the brain to respond to the

need for oxygen after the stimulus and then a subsequent brief undershoot is observed.

The origin of the undershoot is still controversial. One explanation of the undershoot is the

there is some ongoing oxygen consumption after reaching the point of origin. The other

is that the excess volume of deoxygenated blood results in delayed vascular compliance.

A slight modulation of the MRI signal is called BOLD fMRI signal. Here the scanner

records images every second or so (the so-called TR or time of repetition). At each time

point a 3D image of the brain is obtained. In BOLD fMRI the image is collected one slice

at a time for each time point instead of scanning the 3D image immediately. Hence, a

slice time correction (e.g. by Fourier transformation (Aguirre et al., 1998)) is applied to the

resulting images as part of the preprocessing. Empirical face validity of the methodology

can be demonstrated by simple motor or visual tasks. For example, consider a so-called

“finger tapping” task where a subject is asked to tap their finger while in the scanner

and then rest, repeating this sequence for a certain time interval. When the images are

averaged over the times at rest and compared to the times when tapping the finger, and

appropriate statistical tests are performed, motor areas of the brain are clearly significant

(see Witt et al. (2008) for overview of finger tapping task related analysis in the literature).

By virtue of the well defined motor area of activation and ease of performing the task,

finger tapping tasks are commonly used for scanner and methodological validation, as
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well as often being of intrinsic interest in the study of motor areas.

We will not thoroughly discuss the details of the methods by which the MR scanners

use the principles of magnetic resonance to achieve different images. However, newcom-

ers to the area might be surprised to find the amazing variety of biological signals that

one can visualize using MR. These include separate modalities to study white matter,

gray matter, overall structure, white matter tracts, tracers injected into the body and le-

sions in the brain. There are multiple structural and functional imaging types, all acquired

using the principles of MR. See Prince and Links (2006) for a general introduction to MR

imaging.

The development of the BOLD fMRI technology facilitated research in the analysis

of cognitive function of the brain. For instance, one may be interested in identifying the

regions in the brain that are involved in performing a mental operation or a cognitive

task, how active is a brain region during a task, what is the shape of the time course of

activation and quantifying the extent of connectivity between brain regions during tasks.

Since there are several sources of variability introduced during data collection, statistical

methods are required in order to accurately obtain the regions of interest. For instance, in

Section 6.2 we discuss two types of experimental designs used frequently in fMRI analysis

- block design and event-related design. It can be shown that the block designs have high

detection power, by detection we refer to the ability of the method to detect activation,

whereas the event related designs have better estimation efficiency in that they can be

used to estimate the shape of the HR (Liu et al., 2001). In Section 6.2 we show several

statistical methods that can be used to answer the questions posed above.
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3 Obtaining data

As many neuroscience researchers are joining open science initiatives promoting public

access for data, numerous websites offer data sets that can be downloaded freely. How-

ever, we have a few favorite canonical data sets that are good starting points for analysis.

The first is SPM’s example datasets that include single subject and inter-subject analy-

ses. The second data set of interest is the NITRC 1000 Connectome project’s resting

state data. Most of the SPM datasets are preprocessed and ready for analysis, however,

the NITRC data needs extensive preprocessing. Unix shell scripts using FSL and AFNI

can be found on their website for those who are interested in preprocessing.

The SPM example data sets can be downloaded at

http://www.fil.ion.ucl.ac.uk/spm/data/

and (with their permission) will be used as example data in this manuscript. The NITRC

example data set can be downloaded at

http://www.nitrc.org/projects/fcon_1000/

The 1,000 Connectome project data involves the most preprocessing. We therefore put

a processed image in .nii format along with the corresponding 2D matrix in .rda format

for download on our servers at:

www.biostat.jhsph.edu/~bcaffo/dowloads/rest_res2standard.nii.gz

www.biostat.jhsph.edu/~bcaffo/dowloads/imageDataMatrix.rda

Here we choose images from the Kennedy Kreiger Institute (the home institution of several

of the coauthors of this manuscript).
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We also note that FSL has an evaluation suite, the FEEDS data set, that we have

found very useful, both for learning FSL as well as debugging new methods. The FSL

example data sets can be downloaded at

http://www.fmrib.ox.ac.uk/fsl/feeds/doc/index.html

4 Preprocessing

Preprocessing is an essential component in the analysis of fMRI data. Standard pre-

processing requires, for example, skull stripping, evaluation and corrections for motion,

coregistering, spatial smoothing and registration to a template. We discuss two prepro-

cessing steps in particular, spatial smoothing and registration to a template. However, for

newcomers to the area, we suggest leaving all the steps, except for possibly the spatial

smoothing to standard software, or acquiring data where preprocessing has already been

completed in an acceptable form. R, in particular, does not have well developed fMRI pre-

processing routines in general. For those readers interested in pursuing preprocessing

as a research endeavor, good theoretical foundations are given by Miller et al. (1993) and

Younes (2010).

Warping the images of a subject to a template, often called spatial normalization, is

the key step of (attempting) to put subject images into a common space. That is, each

registered image will appear the same and hence the spatial locations of the voxels in

the brain are ideally interpretable across subjects, in other words, voxel 1 for subject 1

is the same as voxel 1 for subject 2. In functional neuroimaging, this process relies on

numerous assumptions. For example, it presumes anatomical similarity across subjects
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at the functional resolution of interest. This assumption becomes especially problematic

when studying diseased brains, where anatomy can be drastically different than healthy

control template brains. Also, it presumes localization of the brain function of interest to

common anatomical locales across subjects.

Setting these issues aside, normalization is accomplished by mathematically warping

each subject’s collection of images over time to a so-called “template”. A template is

typically a highly detailed structural image obtained by imaging a subject repeatedly or

warping several subjects into one common image. It is important to know what template

the images you are working on have been registered to. The template is especially useful

for overlaying results on top of it which then helps in contextualizing the results. Because

it is often a highly accurate structural image (or there is an associated image in the same

space), it is useful for interpretation, as neuroscientists can visually relate findings to im-

portant structural landmarks. Moreover, some templates are in wide use and key regions

have been tabulated (see Chialvo (2010) for more details).

We commonly use templates created by the Montreal Neurological Institute (MNI)

(http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach). The International Con-

sortium for Brain Mapping (ICBM) (http://www.loni.ucla.edu/ICBM/) releases labeled

brain atlases. We should also mention the famous Talairach Atlas - a coordinate system

created before MR imaging was in place. Relating results to Talairach coordinates is often

done to put results in historical perspective familiar to neuroscientists. Some templates

have conversion utilities to convert their coordinates to Talairach coordinates.

Finally, spatial smoothing using a filter is a step that can be easily done in R and is

(or not doing so) generally a designed component of a statistician’s analysis plan. Hence,

11
Hosted by The Berkeley Electronic Press



of all the preprocessing steps, this is the one we suggest omitting to be (or not to be)

performed in R.

5 Loading data and structures

5.1 Array format

Two key data representations are the array format and the matrix format. Array format is

the more natural format for the data. A 3D image is naturally represented as an array, say

I, where I[i,j,k] is the intensity of voxel i,j,k in the image. Note a 3D unit element of

an image is called a voxel for “volumetric pixel”. If the image is collected repeatedly (like

in fMRI), then 4D arrays (I[i,j,k,t]) are useful, though often are very large.

Medical images in neuroimaging are usually saved in one of a few available formats.

However, all formats have common properties, for instance, they are binary and the data

are stored as a long floating point vector. Header information includes descriptive features

of the image such as the physical dimensions of a voxel and the size of each of the three

dimensions, as well as other information.

DICOM DICOM is a standard image format often used as scanner output. DICOM im-

ages have the header information built into the binary file. 3D DICOM files are

sometimes split into several files of 2D slices, but can be combined into a single file.

Analyze The Analyze format includes two files for each 3D image: a header file with the

extension .hdr and an image file with the extension .img. The header and image

files have to have the same filename and have to be saved in the same folder. The
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4D images are stored as separate files, in other words the 3D image for each time

point is saved as a separate file.

NIFTI Nifti files typically have the extension .nii and are a current standard for the anal-

ysis of fMRI data. Nifti files can have more than 3 dimensions. Often nifti files are

compressed using gzip and so the file extension is .nii.gz. If your analysis pro-

gram can not gunzip the file, simply uncompress them using any of the standard

compression software tools and the result will be a standard (uncompressed) nifti

file.

5.1.1 Example: reading in and spatially smoothing images using a Gaussian filter

In this example we read in a sample 3D so-called contrast image and smooth it using a

3D Gaussian filter (Mikl et al., 2008) included in the package AnalyzeFMRI. First we read

in the data.

library(AnalyzeFMRI)

imageFileName <- "pathToImageFile/imageFile.img"

img <- f.read.analyze.volume(imageFileName)[,,,1]

Here we assume that imageFile.img is an Analyze image file with a header and image

pair, imageFile.hdr and imageFile.img. Notice this data is 3D, yet the program reads it

in as 4D, with the fourth dimension 1. Hence the array subscripting drops the dimension

by 1. This data is in the format of an image and header file. It is often useful to read in the

header information

headerFileName <- "pathToImageFile/imageFile.hdr"
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hdr <- f.read.analyze.header(headerFileName)

We can visualize this image.

##visualize the image

tempImg <- img

tempImg[is.na(tempImg)] <- min(img, na.rm = TRUE)

for (k in 1 : dim(img)[3])

image(tempImg[,,k], axes = FALSE)

Note that the creation of the temporary image is only useful as the raw image stores the

background as NA. Note also the image command does not scale the image relative to the

actual voxel dimensions. The following smooths the image using the function GaussS-

moothArray

simg <- GaussSmoothArray(tempImg,

voxdim = c(3, 3, 3),

ksize = 5,

sigma = diag(4, 3),

mask = as.integer(!is.na(img)))

for (k in 1 : dim(img)[3])

image(simg[,,k], axes = FALSE)

Here the mask statement contains the smoother to the non-background areas. The

voxdim variable is the voxel dimensions, in this case three millimeters cubed. The voxel

dimensions can be found using visualization programs or inspecting the hdr variable that

14
http://biostats.bepress.com/jhubiostat/paper245



was read in. The ksize and sigma parameters are smoothing parameters. The sigma pa-

rameter is the standard deviation of the Gaussian kernel (specified in mm) while ksize is

the truncation width. See the documentation for GaussSmoothArray for more information.

5.2 Matrix format

The array format, while useful for smoothing, is not a convenient data structure for most

other analyses. Most importantly, it is not a parsimonious structure, since it includes all of

the voxels outside of the brain (the background of the image). It is common to mask the

3D data, i.e. extract the voxels of interest, disregard the spatial structure of the voxels and

put them in a long 1D vector. In fMRI, if there is one vector per time or subject, these can

be stacked into a matrix for analysis. Note under this structure, any analysis must either

be invariant to spatial location or the spatial location information must be kept elsewhere

for back reconstruction of the image. For example, if there are 30,000 non-background

voxels, one could retain the 3×30,000 matrix of location indices for those voxels.

Masks can be created in a variety of ways. They can be obtained from the template or

from the data itself. The mask is an important structure to retain, as it can map a vector

back to an array format for display.

In this example, we will take a collection of 3D contrast images (one per subject) and

create a mask. Using the mask, we will then create the data matrix.

5.2.1 Example: creating a mask and data matrix

First we get a list of the files (with absolute paths)
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#the directory where the images are stored

fileDir <- "PATH_TO_DIRECTORY/cons_can/"

#the collection of images

files <- dir(fileDir, pattern = "*.img", full.names= TRUE)

It is useful to have the image dimensions assigned to an object. We are assuming that all

images are registered and have the same dimensions.

##get the image dimensions by reading in the first image

imageDim <- f.read.analyze.header(files[1])$dim[2 : 4]

Now we loop over the images and find the intersection of non-background regions across

subjects. We then find the corresponding non-background indices and place them in a

vector called mask.

mask3D <- array(1, imageDim)

for (file in files) {

img <- f.read.analyze.volume(file)[,,,1]

mask3D <- mask3D * ( !is.na(img) )

}

##get the mask as a list of indices

mask <- which( mask3D == 1 )

Now we loop over subjects and collect them into a matrix by grabbing the relevant indices

across subjects.

##now cycle through the data and get the data into a matrix format
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dataMatrix <-NULL

for (file in files) {

##load file and make 3d

img <-f.read.analyze.volume(file)[,,,1]

dataMatrix <-rbind(dataMatrix, img[mask])

}

noSubjects <-nrow(dataMatrix)

noVoxels <-ncol(dataMatrix)

6 Within subject paradigm analysis

6.1 HRF modeling

In Matlab using SPM, the HRF can be explored using the function spm hrf. Inspecting

the function shows that the HRF is a discretized difference of two gamma functions (see

Friston et al., 2007)

f(u) = f1(u)− f2(u)/p5

=

(
T
p3

)p1/p3
up1/p3−1 exp(−Tu/p3)

Γ(p1/p3)
−

(
T
p4

)p2/p4
up2/p4−1 exp(−Tu/p4)

Γ(p2/p4)p5
,

for u > 0. Typically, it is also normalized, either divided by its integral or maximum, to have

average or peak value of 1 respectively. The logic behind this specification of the HRF is

that the initial post-stimulus increase in blood oxygenation is represented by f1, with the
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subsequent depletion represented by f2. Figure 1 displays an example HRF.

Notice that f1 is a gamma density with shape p1/p3 and rate T/p3 and f2 is a gamma

density with shape p2/p4 and rate T/p5. The SPM documentation defines T as the TR, p1

as the delay of the response to the onset, p2 as the delay of the undershoot relative to the

onset, p3 as the dispersion of the response, p4 as the dispersion of the undershoot and

p5 as the ratio of the response to the undershoot. Conceptually, these are annotated in

Figure 1.

We briefly give motivation for these parameters. Note, the mean of density f1 is p1/T

while the mean of density f2 is p2/T . Hence, if p1 and p2 are given in seconds and

T is seconds per scan, p1/T can be thought of as the delay to the mean (not modal)

response in TR units while p2/T is the delay to the mean undershoot in TR units. Given

that the gamma variance is p1p3/T 2, and the mean is p1/T , p3/T is the factor by which the

response gamma distribution mean is scaled to obtain its variance. Similarly p4/T is the

factor by which the undershoot gamma distribution mean is scaled to obtain its variance.

Since the integral of f1 and f2 are 1, p5 is the ratio of the two functions comprising the

HRF. Note, it is not, as its name suggests, the ratio of the peak value of f1 to the peak

value of f2.

We emphasize the importance of keeping track of the time units (either seconds or

TR) when working with designs and the HRF. The spm hrf evaluates the HRF in TR units.

Moreover, an optional shift of the HRF can be specified. That is, setting the HRF to

f {u-(p6
T

)) } where p6/T is an HRF lag in TR units.
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6.2 Discussion on designs

In task-based fMRI, there are two common designs: event-related and block. Event-

related refers to multiple stimuli that are assumed to occur instantaneously and have

some time between events. A simple task would be having the participant push a button

every 20 seconds or so to look at motor cortex activation. If there is a “continuous” task

being performed, such as sequential finger tapping, then the design is referred to as a

block design. See Figure 6.2 to see examples of stimulus functions in each design. If the

events become so frequent that they have no temporal resolution, an event-related design

is essentially a block design.

Typically, the fMRI data can be modeled as a sum of response, trend and noise:

data = response+ trend+ noise.

The response is assumed to be a linear combination of different responses from K differ-

ent stimuli. That is, the response in scan i, i = 1, 2, ..., N , can be written as xi1β1 + ... +

xiKβK , where xij is the response from stimuli j in scan i, K is the number of stimuli and

N is the number of scans. Some voxels show considerable trend over time. The trend

can be linear or nonlinear hence a flexible polynomial model is often employed to allow

for nonlinear effect in the trend. For example, a polynomial trend of order q for the ith

scan can be written as
∑q

l=0 zlγl, where zl = tl. Finally, a random error εi is added to the

observed data, Yi, yielding

Yi =
K∑
k=1

xikβk +

q∑
l=1

zlγl + εi.

Using matrix notation:

Y = [Y1, Y2, ..., YN ]T
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0 200 400 600 800 1000

Block Design
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Figure 2: Stimulus vectors for Event-related and Block designs. The top figure corre-

sponds to an event-related design, where the spikes correspond to stimuli. The spikes do

not need equal spacing between events. The lower panel is a block design, where there

is a sustained period of activity/task. Again, the spacing does not need to be equal in

block designs, but they usually are.

X =



x11 · · · x1K 1 · · · 1

x21 · · · x2K 1 · · · 2q

...
...

...
...

...
...

xN1 · · · xNK 1 · · · N q


β = [β1, ..., βK , γ0, ..., γq]

T

ε = [ε1, ε2, ..., εN ]T
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The generalized linear model can be written as

Y = Xβ + ε.

Note that, in the above equation, X is derived based on specific hemodynamic assump-

tions, for example, Gamma, Glover, and SPM canonical HRF, and β is interpreted as the

size of the hemodynamic response (see Lu et al. (2006) for more details). The errors are

generally not independent in time, and the correlation structure needs to be specified with

caution. In the general linear model, using a wrong correlation structure could lead to

bias in coefficient estimation. A simple model for the temporal correlation is the first order

autoregressive model (Worsley et al., 2002), that is, εi = ρεi−1 + ξi, where |ρ| < 1 and ξi

are iid.

6.2.1 Example: creating design matrix with convolution

One way of creating a design matrix is by using the function fmri.design in the R package

fmri. The function fmridesign in the matlab package fmristat can also create design

matrix for a linear model with given stimuli and possible polynomial trend terms.

In the following example, we read in the .nii data, extract a 4D numeric array from

the data and store it as a raw vector to reduce object size. Then we create expected

BOLD signals for a given task indicator function (that is, assume onset times (in scans)

and duration of ON stimulus in scans are known). The design matrix is created using the

function fmri.design, and the hemodynamic response is evaluated in the general linear

model Tabelow and Polzehl (2011).

library(fmri)
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imageFileName <- "pathToImageFile/imageFile.nii"

img <- read.NIFTI(imageFileName)

ttt <- extract.data(img)

data <- list(ttt = writeBin(as.numeric(ttt), raw(), 4),

mask = img$mask,

dim = img$dim0)

class(data) <- "fmridata"

hrf <- fmri.stimulus(scans = img$dim0[4],

onsets = onsets,

durations = dur)

x <- fmri.design(hrf, order = 2)

model <- fmri.lm(data, x, keep = "all")

If there are m experimental stimuli, there will be m expected bold responses hrf1,

hrf2, ..., hrfm. The design matrix can be created using

x <- fmri.design(cbind(hrf_1,..., hrf_m), order = 2)

In the following example we pass an HRF function and the stimulus parameters to get

a convolved design matrix, commonly used in general linear models (GLM) in task-based

fMRI.

by=0.01

scans <- 100

tr = 2.5

### onsets are in seconds
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onsets <- c(5.25, 21.45, 100.12, 223.5)

durations <- c(5, 5, 10, 10)

ans <- design(onsets = onsets,

durations = durations,

tr = tr,

scans = scans)

In the code above, by is denoting how fine of a grid one wants to compute the HRF,

in seconds. Finer grids may be required due to the level of precision of the onsets of

the stimuli. The function design takes in the number of scans, the TR, the times and

durations of stimuli in seconds and returns the resulting vector of the stimulus convolved

with the HRF. The result is in TR units, so if there were 100 scans, the vector would be

of length 100. For event-related designs, the durations of the events would be considered

instantaneous, so the duration would be 0. The example above is an example of a block

design.

6.2.2 Example: voxel-wise regression modeling

Having the design matrix we may run regression models for voxel-wise analysis of the

brain. Suppose Yi is a voxel by time matrix for person i. Then we can use the following

code for GLM analysis with the design matrix above.

Y <- matrix(rnorm(1000*100), nrow=1000, ncol=100)

lms <- apply(Y, 1, function(x) lm(x ~ ans$res))

summs <- lapply(lms, summary)
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coefs <- lapply(summs, function(x) x$coefficients)

###Taking Intercept Map

int_vals <- sapply(coefs, function(x) x["(Intercept)", ])

int_est <- int_vals["Estimate",]

int_pvals <- int_vals["Pr(>|t|)",]

beta_vals <- sapply(coefs, function(x) x["ans$res", ])

beta_est <- beta_vals["Estimate",]

beta_pvals <- beta_vals["Pr(>|t|)",]

Overall, the code can run linear models, extract coefficients and p-values from those

linear models. These values should be in the same order as the Y matrix, so the transfor-

mation from Y back into a 3-dimensional array should be the same for these β coefficients

and p-values to obtain brain maps. Afterwards, one can choose their type of multiple com-

parisons corrections to obtain significantly activated clusters.

7 Between subjects random effect models

In the fMRI literature, “random effect analysis” refers to an inter-subject analysis of paradigm-

related contrast images. Specifically, in the first stage, subject-specific regression models

are fit, relating the HRF-convolved design matrix to the fMRI time series at each voxel

separately. Coefficients are obtained from the fit, or estimable linear combinations of

coefficients (so-called contrasts). As there is one contrast per voxel, the resulting collec-

tion of voxel-specific contrast values are referred to as contrast images, and are usually

stored as a 3D image. Random effect analysis then analyzes these images across sub-
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jects. That is, comparing inter-subject variation in estimated hemodynamic response to

the paradigm to variation in covariates, diagnoses, treatments, and so on. The name ran-

dom effect analysis is given as the process is an approximation of formal random effects.

7.1 Example: group activation

Below, we consider a simple form of random effect analysis using the SPM data. Specifi-

cally, we consider group activation. That is, we take the subject-specific contrasts and test

whether their voxel specific mean is different than 0. We’ll assume that the following steps

have been completed: 1) a mask containing non-background voxels has been created,

2) the mask has been applied to every subject’s contrast map resulting in a vectorized

map, 3) the data have been concatenated into a matrix containing noSubjects (number

of subjects) rows and noVoxels (number of voxels) columns. (Code for this is included

in the supplementary material.) Assume that the data matrix is assigned to the variable

dataMatrix. In our case, there are 12 subjects and roughly 50,000 non-background vox-

els. As a first test, consider a test of zero mean applied at each voxel.

##apply the function t.test to every column (voxel)

ttest.out <- apply(dataMatrix, 2,

function(x) {

temp <- t.test(x)

c(temp$statistic, temp$p.value)})

##label the rows

rownames(ttest.out) <- c("statistic", "pvalue")
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Figure 3: P-value histogram from a group-level significance test of the SPM contrast data.

Figure 7.1 displays the P-value histogram. Now threshold these P-values using Ana-

lyzeFMRI’s false discovery rate threshold

Threshold <- Threshold.FDR(ttest.out[1,],

q = .05,

cV.type = 2,

type = "t",

df1 = noSubjects - 1)

Now we can create an image where we plot P-values surviving this FDR threshold

overlaid on a template brain. We often do this by outputting the results then using 3rd

party software for display. Note, it is, of course, possible to do this in R, say using the

image function. Moreover, we have previously used rgl to perform 3D rendering. How-

ever, note the following: the template brain and the statistical image results: 1) may not
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have the same array dimensions, 2) voxels may not correspond to the same real world di-

mensions, such as the voxels in the template being 1mm3 while the voxels in the statistical

image being 3mm3, 3) the images may not have the same origin. All of this information is

contained in the raw and template image’s header file. The origin is the point that is used

to match images. Hence, when overlaying images if one appears shifted, it is probably

due to incorrectly set values of the image origins. Another problem that can occur is that

the voxels are not square. For example, the Z physical dimension (in the direction from

the feet to the head), is often different than that of the other two. If this is not accounted for,

the images will appear strange, not unlike a geographical map with an incorrect contrast

ratio. These issues can all be handled in R, but care must be taken.

outputImage <- array(0, imageDim)

toSave <- ttest.out[1,] >= fdrThreshold

outputImage[mask[toSave]] <- ttest.out[1, toSave]

7.2 Example: permutation testing

Suppose that the mask has been created and the images have been vectorized and saved

as the matrix dataMatrix. More details on permutation testing can be found in Nichols and

Holmes (2002).

# Number of subjects

n.s=12

n=2^n.s

# Matrix of all possible combinations of 1 and -1 for each subject
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perm.mat=matrix(1,n.s,n)

for(i in 1:n.s){

p=n/(2^i)

j=1

while(j<(2^i)){

perm.mat[i,(p*j+1):(p*(j+1))]=-1

j=j+2

}}

# Get the distribution of the maximum t

# statistic for each permutation

tmax=rep(0,n)

tmin=rep(0,n)

for(i in 1:n){

data.temp = perm.mat[,i]*dataMatrix

ttest.out <- apply(data.temp, 2,

function(x) {

temp <- t.test(x)

temp$statistic

})

tmax[i]=max(ttest.out)

tmin[i]=min(ttest.out)

}
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And then look at the histogram of the t statistic to make a decision on whether to reject

the null hypothesis or not. The R function expand.grid() can also be used to obtain the

grid for the permutation test above.

8 Connectivity anaysis

Functional connectivity refers to the analysis of correlations of measured brain function

between potentially remote areas of the brain (Friston et al., 2007). In fMRI, this trans-

lates to evaluating correlations, or perhaps other forms of associations between voxels or

regions. We emphasize that fMRI represents only one modality to investigate functional

connectivity. Others include: EEG, MEG, PET and ECoG. It is important when investigat-

ing connectivity to consider the goals of the analysis and the spatial/temporal resolution

of the technology under study (Friston et al., 2007).

Such analyses have become so influential in fMRI, that they have been abbreviated as

fc-fMRI (for functional connectivity fMRI). A subset of such analyses considers functional

connectivity while a subject is at rest in the scanner, or so called resting state functional

connectivity (rs-fc-fMRI). Much of the analysis of rs-fc-fMRI centers around the so-called

“default mode network”, a hypothesized brain network that is activated in subjects at rest

(Buckner et al., 2008).

8.1 Connectivity and preprocessing

The analysis of brain connectivity data requires special preprocessing that may be useful

for paradigm-related studies, but is crucial for the study of connectivity. Most notably
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it is addressing background nuisance signals. These include signals related to cardiac

function and respiration. Because one is concerned with correlations between voxels,

such background effects can create spurious relationships that are not of interest. In

contrast, they are less crucial in a paradigm-related study, since the paradigm is likely not

aliased with the nuisance signal, though to the contrary, they are probably not orthogonal

to the paradigm. In event-related designs where events are presented randomly, the

randomization mechanism helps ensure a lack of relationship with nuisance signals.

There are several methods for addressing nuisance signals in fc-fMRI. These include

a connectivity analysis of the ventricles, the spaces in the brain filled with cerebrospinal

fluid. There should be no measured connectivity of interest in the ventricles, hence any

correlations found here and elsewhere likely represent nuisance signals. A similar ap-

proach would look at white matter, though such analyses would be highly dependent on

very accurate registration.

8.2 Seed voxel approaches

Assuming that there is no nuisance signals in the brain, the correlations of the fMRI time

courses can be computed for each pair of voxels in the brain. The number of these pairs

in the brain is often very large and the brute force computation of the correlations may be

computationally expensive. Regions of interest (ROI) are obtained (for instance, by using

the anatomy of the brain or by independent component analysis as described in Section

8.3). For each ROI a seed voxel can be chosen as one of the voxels in the ROI or as the

average time course of all voxels in the ROI. The correlation map of the seed voxel with
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the voxels in the rest of the brain is called the connectivity map. The obtained connectivity

maps may be used, for instance, to compare the connectivity of an ROI between subjects

in two disease groups.

Many analyses use the Fisher R to Z transform: 1
2
log(1+r)
log(1−r) where r is a correlation

value, to obtain connectivity maps that should have approximately normally distributed

values. Standardizing this matrix by the standard error 1√
T−3 , where T is the number of

time points in the correlation, is frequently used, especially when different participants

have different lengths of scans. These maps then can be analyzed using random Markov

field corrections for multiple comparisons through SPM, using t-tests or the nonparametric

rank-sum test, or other methods for testing differences across groups (Friston et al., 2007).

8.3 Singular Value Decomposition and Independent Component Anal-

ysis

Since the fMRI data are very large and complex, dimension reduction techniques are

often used to identify important signals in the data as well as help with visualization.

For example, singular value decomposition (SVD) - a well known statistical dimension

reduction technique, is often used for preprocessing the data before testing or inference.

A commonly used dimension reduction method is the independent component analy-

sis (ICA, see Hyvärinen et al. (2001) for an extensive overview). It is mainly used in fMRI

to obtain functional networks in the brain. It has been implemented both for resting state

and task related fMRI experiments. Here we show the use of ICA for an attention task

using one of the SPM example datasets. Four different conditions were explored: fixation,
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attention, no attention and stationary.

There are several methods one can use for applying ICA for these data. For instance,

the R package AnalyseFMRI has a function f.ica.fmri that is based on the fastICA

algorithm (Hyvärinen et al., 2001). Our example data are in Analyze format where each

3D scan is saved in a separate file. In order to use f.ica.fmri the individual scans per

time point have to be combined into one array, since the argument has to be one 4D

array instead of several 3D image files. Suppose that the 4D image where one of the

dimensions is time and the other three are the three coordinates of the brain is saved as

fullimg.img.

f = f.ica.fmri("fullimg.img",n.comp=3)

The fastICA package in R can be used directly to obtain ICA analysis as follows.

Suppose filesImg is a vector of the names of image files for each time point. We create

a matrix img that is a 2D (time by voxel) version of the fMRI data (using the mask that can

be obtained as described in Section 5.2.1) and apply ICA directly to img.

t=length(filesImg)

img=matrix(0,t,d)

for(i in 1:t){

f1=f.read.analyze.volume(filesImg[i])[,,,1]

f=as.vector(f1[mask==1])

img[i,]=f

}

f=fastICA(t(img),n.comp=3)
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The variable f$S is the collection of the independent components. Next, we back-

reconstruct the components as images. The networks are identified as the regions that

are highly activated in the corresponding independent component. In other words, to

obtain the brain networks we can threshold the values of each column in f$S. We will

use a simple thresholding tool here by including the values greater than a threshold θ. We

also save the arrays back to image format for visualization.

theta=2

S=pmax(abs(x$S),theta)

S[S==theta]=0

img=array(0,c(53,63,46,m))

for(i in 1:m){

temp2=array(0,dim(mask))

temp2[mask==1]=S[,i]

img[,,,i]=temp2[,,]

}

f.write.analyze(img,file="fica",size="float",pixdim=c(3, 3, 3, 1, 0, 0, 0),

originator=c(27, 38, 18, 0, 0))

The R function image or any other visualization software can be used to plot the

fica.img file.
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8.4 Group ICA

Group ICA is the extension of the ICA method above to obtain brain networks from fMRI

datasets from a population. The method was first introduced by Calhoun et al. (2001)

and has been since widely used in the neuroimaging literature. The method is based on

concatenating the two dimensional time by voxel matrices observed for each subject and

applying principal component analysis to reduce the dimension to the desired number of

components. Then the single subject ICA algorithm is applied to the resulting matrix to

obtain the common independent components for the group.

There are two different ways of matrix concatenation: one assumes that the spatial

brain networks are statistically independent (spatial group ICA), the other assumes that

the time courses are statistically independent (temporal group ICA). Spatial group ICA

is more frequently used, which assumes common spatial networks across subjects yet

different temporal mixing matrices. By common spatial maps assumption, one can con-

catenate all subjects’ data in the temporal domain, and apply ICA to the aggregated data

matrix.

Below is an example for spatial group ICA:

mask = f.read.analyze.volume(fileMask)[,,,1]

groupDataMatrix <- NULL

for (file in files) {

img <- f.read.analyze.volume(file)

imageDataMatrix <- t(apply(img, 4, function(imgi) imgi[mask]))

rmeans <- rowMeans(imageDataMatrix)
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cmeans <- colMeans(imageDataMatrix)

imageDataMatrix <- sweep(imageDataMatrix, 2, cmeans, "-")

imageDataMatrix <- sweep(imageDataMatrix, 1, rmeans, "-")

groupDataMatrix <- rbind(groupDataMatrix , imageDataMatrix)

}

m=20

f=fastICA(t(groupDataMatrix),n.comp=m)

9 Displaying results

Different modalities can be used for displaying the results obtained by the analysis of

fMRI data described above. In most cases a group of voxels in the brain is found by the

analyses and can be visualized by overlaying the voxels on a template brain. For instance,

in the case of ICA the functional networks obtained can be displayed by overlaying the

networks on a template brain. Some of the issues with the originator of the image and the

correct voxel size used in the template brain and the image overlayed on it are discussed

in Section 7.1. In this section, we will discuss some of the functions that can be used for

visualization in R, Matlab or using other software.

9.1 Within R

The function image() in R can be used for plotting the 2D images for each value of the

third dimension to display the images for each slice of the brain. The rgl and misc3d
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packages have tools for creating 3D renderings and isosurfaces directly in R. We have

found that images generally need to be slightly downsampled to avoid memory issues.

Usually, this does not impact the appearance of the graphics dramatically.

9.2 Third party software

There are several visualization software that can be used for looking at the fMRI data.

They vary from software for quick visualization to 3D renderings of the brain with compli-

cated visualizations of slices and cross-sections. For instance 3D Slicer and Mipav can

be used to obtain 3D renderings of the brain overlayed on template brains. These soft-

ware can also be used for masking the brain or cropping regions of interest as well as

registration. The videos at http://www.youtube.com/watch?v=GNsWRnm7gQw show a step

by step illustration for using 3D Slicer or Mipav for visualization and analyses.

10 Further reading and discussion

Below we give a woefully incomplete list of papers in the area.

• A good starting point for fMRI is the SPM book Friston et al. (2007).

• Nicole Lazar’s introduction to fMRI Lazar et al. (2001) and book Lazar (2008).

• Martin Lindquist’s Statistical Science manuscript on fMRI Lindquist (2008)

• Thomas Nichol’s overview paper on permutation testing in fMRI Nichols and Holmes

(2002).
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• Vincent Calhoun’s introductions to ICA and group ICA in fMRI Calhoun et al. (2003,

2001)

• Jonathan Taylor’s manuscript about the HRF Worsley and Taylor (2006)

• Highly technical papers about random field theory are Siegmund and Worsley (1995);

Worsley (1995). A more accessible discussion including permutation testing can be

found in Hayasaka et al. (2004) and similarly Worsley et al. (1996).

• A somewhat dated but still very relevant, overview of the analysis of fMRI data Wors-

ley (1997).

• A more recent tutorial can be found here Smith (2004).

• An expository article on R and neuroimaging Tabelow et al. (2011)

• Our work on SVD for fMRI Caffo et al. (2010).

This manuscript gives an admittedly very brief introduction and quick start guide for

fMRI. For those interested in pursuing further development in the area we recommend

investigating processing pipelines as a next important step.
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A Appendix

A.1 Glossary of terms

Axial See “transverse”.

BOLD Blood oxygen level dependent. Refers to the target of measurement of fMRI.

Boxcar Referring to fMRI paradigms where blocks (boxcars) of stimuli are presented.

Coronal Anatomical orientation same direction as the face.
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Event related design Referring to a design where stimuli are presented separately.

fc-fMRI Functional connectivity fMRI. The study of correlations in brain signals.

fMRI Functional magnetic resonance imaging. Using an MRI scanner to image brain

function typically through the BOLD signal.

HRF Hemodynamic response function. The function that relates the BOLD signal to neu-

ral stimuli.

ICA Independent components analysis; a tool for

rs-fc-fMRI Resting state fc-fMRI. Investigating functional connectivity through fMRI while

subjects are at rest in the scanner.

Sagital Anatomical direction looking from the side, toward the ear.

TR Time of repetition. The time between MRI scans.

Transverse Also see “axial”, anatomical orientation representing a plane parallel to the

floor for a person standing on the ground.
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