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Evaluation of Statistical Methods for
Normalization and Differential Expression in

mRNA-Seq Experiments

James H. Bullard, Elizabeth A. Purdom, Kasper D. Hansen, and Sandrine Dudoit

Abstract

The focus of this article is on the design and analysis of mRNA-Seq experiments,
with the aim of inferring transcript levels and identifying differentially expressed
genes. We investigate two mRNA-Seq datasets obtained using Illumina’s Genome
Analyzer platform to measure transcript levels in reference samples considered in
the MicroArray Quality Control (MAQC) Project. We address the following four
main issues: (1) exploratory data analysis for mapped reads, relating read counts
to variables describing input samples and genomic regions of interest; (2) assess-
ment and quantitation of biological effects (e.g., expression levels in Brain vs.
UHR) and nuisance experimental effects (e.g., library preparation, flow-cell, and
lane effects); (3) evaluation and comparison of methods for the identification of
differentially expressed genes; (4) impact of base-calling calibration method (phi
X vs. auto-calibration).
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Abstract

Background: High-throughput sequencing technologies, such as the Illumina
Genome Analyzer, are powerful new tools for investigating a wide range of bi-
ological and medical questions. Statistical and computational methods are key
for drawing meaningful and accurate conclusions from the massive and complex
datasets generated by the sequencers. We provide a detailed evaluation of statis-
tical methods for normalization and differential expression (DE) analysis of Illu-
mina transcriptome sequencing (mRNA-Seq) data. Results: We compare statis-
tical methods for detecting genes that are significantly DE between two types of
biological samples and find that there are substantial differences in how the test
statistics handle low-count genes. We evaluate how DE results are affected by
features of the sequencing platform, such as, varying gene lengths, base-calling
calibration method (with and without phi X control lane), and flow-cell/library
preparation effects. We investigate the impact of the read count normalization
method on DE results and show that the standard approach of scaling by total lane
counts (e.g., RPKM) can bias estimates of DE. We propose more general quantile-
based normalization procedures and demonstrate an improvement in DE detection.
Conclusions: Our results have significant practical and methodological implica-
tions for the design and analysis of mRNA-Seq experiments. They highlight the
importance of appropriate statistical methods for normalization and DE inference,
to account for features of the sequencing platform that could impact the accuracy
of results. They also reveal the need for further research in the development of
statistical and computational methods for mRNA-Seq.

4

http://biostats.bepress.com/ucbbiostat/paper247



1 Background
For the past decade, microarrays have been the assays of choice for high-throughput
studies of gene expression. Recent improvements in the efficiency, quality, and cost
of genome-wide sequencing have prompted biologists to rapidly abandon microar-
rays in favor of ultra high-throughput sequencing, a.k.a., second-generation or next-
generation sequencing: e.g., Applied Biosystems’ SOLiD, Helicos BioSciences’ He-
liScope, Illumina’s Genome Analyzer, and Roche’s 454 Life Sciences sequencing sys-
tems. These high-throughput sequencing technologies have already been applied to
monitor genome-wide transcription levels (mRNA-Seq), DNA-protein interactions (ChIP-
Seq), chromatin structure, and DNA methylation (Chiang et al., 2009; Dohm et al.,
2008; Hoen et al., 2008; Lee et al., 2008; Li et al., 2008; Marioni et al., 2008; Mor-
tazavi et al., 2008; Nagalakshmi et al., 2008; Wang et al., 2008).

We evaluate statistical methods for the inference of differential expression (DE)
with mRNA-Seq, using reference samples from the MicroArray Quality Control (MAQC)
Project (MAQC Consortium, 2006). With corresponding quantitative real-time poly-
merase chain reaction (qRT-PCR) data on roughly one thousand genes, we compare
different normalization and DE procedures and assess possible biases related to the
sequencing technology. For genes that are well-expressed in both samples being com-
pared, the examined tests (Fisher’s exact test and GLM-based tests) are indistinguish-
able. However, substantial differences exist in their ability to give reliable DE estimates
when even just one of the samples yields low read counts (e.g. ≤ 10). One inherent
bias of the Illumina platform is the preferential sequencing of longer genes (Oshlack
and Wakefield, 2009). With the tests considered here, longer genes are more likely de-
clared DE. We demonstrate that weighting the DE statistics by gene length can mitigate
this effect.

While small “nuisance” technical effects can be observed due to differences in flow-
cells/library preparations, we show that these do not impact substantially the differen-
tial expression calls for the MAQC dataset. We also find that not using the standard
phi X control lane in each flow-cell, as in the base-calling calibration procedure rec-
ommended by Illumina, does not negatively impact DE detection. Moreover, auto-
calibration without the phi X lane increases both quantity and quality of mapped reads.
In this regard, there is no obvious benefit in using a phi X lane; doing away with such
a control lane leads to more balanced and cost-effective designs.

We demonstrate that the greatest impact on DE detection is the choice of normal-
ization procedure. As different lanes have different total read counts, i.e., sequencing
depths, the usual approach is to scale gene counts within each lane by the total lane
count: e.g., the now standard reads per kilobase of exon model per million mapped
reads (RPKM) of Mortazavi et al. (2008) or the hypergeometric model of Marioni
et al. (2008). We show that this form of global normalization is heavily affected by
a relatively small proportion of highly-expressed genes and, as such, can give biased
estimates of DE if these few genes are differentially expressed across the conditions
under comparison. We propose alternative more robust quantile-based normalization
procedures that remove the bias without introducing additional noise.
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2 Methods

2.1 MAQC Datasets
This article considers two mRNA-Seq datasets related to the MicroArray Quality Con-
trol Project (MAQC Consortium, 2006) and obtained using Illumina’s Genome Ana-
lyzer II high-throughput sequencing system (Illumina, 2008). The experiments analyze
two biological samples: Ambion’s human brain reference RNA and Stratagene’s hu-
man universal reference RNA, herein referred to as Brain and UHR, respectively.

In the first experiment (MAQC-2), two types of biological samples (Brain and
UHR) were assayed, each using seven lanes distributed across two flow-cells (Figure
11a). One library preparation was used for each of the two types of biological samples.
In the second experiment (MAQC-3), four different UHR library preparations were as-
sayed using 14 lanes from two flow-cells; each library preparation was assayed on only
one of the flow-cells (Figure 11b).

As part of the original MAQC Project, around one thousand genes were also chosen
to be assayed by qRT-PCR (Canales et al., 2006). We use these qRT-PCR data as a
gold-standard to benchmark the gene expression values determined by mRNA-Seq.
Additionally, a large number of microarray experiments were conducted. We compare
the mRNA-Seq measures to those derived from a set of Affymetrix Human Genome
U133 Plus 2.0 arrays (GSE5350, samples AFX 1 [A—B][1-5]; see Supplementary
Text for details on array and qRT-PCR analysis).

2.2 Overview of the Illumina Sequencing Platform
We give a brief, non-technical overview of the steps involved in an Illumina mRNA-
Seq experiment (Illumina, 2008). A sample of interest undergoes library preparation,
a series of steps to convert the input RNA into small fragments of DNA that can be se-
quenced by the Illumina machine. Specifically, starting with any total RNA sample, Il-
lumina’s mRNA-Seq library preparation protocol includes poly-A RNA isolation, RNA
fragmentation, reverse transcription to cDNA using random primers, adapter ligation,
size-selection from a gel, and PCR enrichment (Illumina, 2009, Figure 6). The result-
ing cDNA library is placed in one of the eight lanes of a flow-cell. Individual cDNA
fragments attach to the surface of the lane and subsequently undergo an amplification
step, whereby they are converted into clusters of double-stranded DNA. The flow-cell
is then placed in the sequencing machine, where each cluster is sequenced in parallel.
Specifically, at each cycle, the four fluorescently labeled nucleotides are added and the
signals emitted at each cluster recorded. For each flow-cell, this process is repeated for
a given number of cycles, e.g., 35 cycles in the MAQC experiments. The fluorescence
intensities are then converted into base-calls. The number of cycles determines the
length of the reads; the number of clusters determines the number of reads.

2.3 Pre-processing of Sequencing Data
For the two MAQC experiments, 35 base-pair-long reads were obtained using Illu-
mina’s standard Genome Analyzer pre-processing pipeline, Version 1.3 (Bentley et al.,
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2008; Illumina, 2008). We used Bowtie to map reads to the genome (GRCh37 assem-
bly) (Langmead et al., 2009).

Illumina’s default base-calling algorithm, Bustard, can be calibrated in two ways.
The method recommended by Illumina is to reserve one lane per flow-cell for sequenc-
ing DNA (typically phi X DNA) and use data from this control lane to determine base-
calls and quality scores for the other seven lanes (Bentley et al., 2008, Supplementary
Information, p. 7). Bustard can also be run using the auto-calibration method, which
scores base-calls in a manner similar to the phred base-caller (Ewing and Green, 1998).
In both MAQC experiments, one lane of each flow-cell was reserved for sequencing phi
X genomic DNA. For one experiment (MAQC-2), we obtained both auto-calibrated and
phi X-calibrated reads.

Except for Section 3.2.2, we focus on phi X-calibrated, purity-filtered reads that
map uniquely to the genome, with up to two mismatches. The restriction to reads map-
ping to the genome implies that exon-exon junction reads are excluded (∼ 10% of the
reads). Additionally, the library preparation protocol does not allow consideration of
strand-specific counts, so reads mapping to the forward and reverse strands are pooled.

2.4 Definition of Union-intersection Genes
In our evaluation of DE, we focus on overall expression of a gene, rather than isoform-
specific expression. There is no standard technique for summarizing expression levels
of genes with several isoforms (see, for example, Marioni et al. (2008) and Mortazavi
et al. (2008) for different approaches). For a given gene, we first define a constitutive
exon as a set of consecutive exonic bases (i.e., portion of or entire exon) that belong
to each isoform of the gene. We then define a union-intersection (UI) gene as a com-
posite gene-level region of interest consisting of the union of constitutive exons that
do not overlap with coding exons of other genes (based on Ensembl, Version 55; see
Supplementary Text). We retain all genes identified with chromosomes 1–22, X, and
Y. In addition to including protein-coding genes, the UI genes represent a number of
other classes of Ensembl annotation, such as pseudogenes and small RNAs.

2.5 Normalization
In order to derive gene expression measures and compare these measures between
(groups of) lanes, one first needs to normalize read counts to adjust for varying lane
sequencing depths and potentially other technical effects. All but one of the normal-
ization methods considered here are global procedures, in the sense that only a single
factor di is used to scale the counts (per-lane).

We evaluate three types of global normalizations: (1) total lane counts, as in RPKM
of Mortazavi et al. (2008), (2) per-lane counts for a “housekeeping” gene expected to be
constantly expressed across biological conditions, e.g., POLR2A, (3) per-lane upper-
quartile of gene counts for genes with reads in at least one lane. In order to make the
normalized expression measures comparable, the scaling factors are themselves scaled
so that their sum across all lanes is equal to the sum of the total counts across all 14
lanes (see Supplementary Text).
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The expression quantitation problem can be framed in terms of generalized linear
models (GLM),

log(E[Xi,j |di]) = log di + λa(i),j + θi,j , (1)

where the natural logarithm of the expected value of the read countXi,j for the jth gene
in the ith lane is modeled as a linear function of the gene’s expression level λa(i),j for
the biological condition a(i) assayed in lane i plus an offset (log di) and possibly other
technical effects (θi,j).

Finally, we propose a quantile normalization procedure, inspired from the microar-
ray normalization approach of Irizarry et al. (2003a) and its implementation in the R
package aroma.light. Specifically, for each lane, the distribution of read counts is
matched to a reference distribution defined in terms of median counts across sorted
lane. The normalized data are rounded to produce integer values that can be used with
the DE statistics described in Section 2.6, below.

2.6 Differential Expression
We compare three types of methods for inferring DE, each of which yields one test
statistic per gene: Fisher’s exact test statistic, likelihood ratio statistics based on a
generalized linear model as in Equation (1), and t-statistics based on estimated param-
eters of the same GLM. Two different t-statistics are evaluated, which use different
techniques for estimating the variance of the estimated parameters. We also assess the
impact of flow-cell effects, either through the addition of parameters θi,j in the GLM or
through a Mantel-Haenszel test, an extension of Fisher’s exact test (see Supplementary
Text).

All of the considered DE statistics can accommodate global normalization via an
offset di. For the GLM-based statistics, the offset is handled as in Equation (1). Fisher’s
exact test and the Mantel-Haenszel test compare the distribution of the counts of the
jth gene to that of d.

The likelihood ratio statistics are the most general, as they can be used for com-
parisons of any number of biological sample types and adjust for general experimental
effects as well as sample covariates, e.g., RNA quality. The t-statistics are only appli-
cable for testing differences between two groups. The t-statistics and likelihood ratio
statistics are based on maximum likelihood estimators from the same GLM, but have
different performance in certain cases. Distributional properties of all of the GLM-
based statistics are derived under asymptotic theory; therefore, they may have poor
behavior for small numbers of input samples or low counts (though this is not what we
experience). In contrast, Fisher’s exact test makes no assumption about sample size;
however, it only adjusts for global experimental effects and even the Mantel-Haenszel
extension allows only a single gene-level experimental effect.

Likelihood ratio statistics have been used in Marioni et al. (2008) for the special
case of only a global lane effect (i.e., θi,j = 0 in Equation (1)); these authors also
mentioned applying an arcsine-root transformation for variance stabilization of the per-
gene read proportions within each lane. Bayesian statistics with Gamma prior for the
Poisson parameter have been found to yield similar results as the above GLM-based
test statistics (Taub, 2009). Other test statistics considered in the recent mRNA-Seq
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literature include t-statistics with square root-transformed standard errors and Bayesian
statistics based on the Beta-Binomial distribution (Hoen et al., 2008).

2.7 Receiver Operator Characteristic Curves using qRT-PCR Gold-
standard

The qRT-PCR data of Canales et al. (2006) are used as gold-standard to determine
“true” differential expression and derive receiver operator characteristic (ROC) curves
for various mRNA-Seq and microarray DE methods. The qRT-PCR estimate of UHR
to Brain expression log-fold-change is the difference of average expression measures
for UHR and Brain across replicates (see Supplementary Text).

We divide the genes assayed by qRT-PCR into three sets, “non-DE”, “DE”, and
“no-call”, based on whether their absolute expression log-fold-change is less than a,
greater than b, or falls within the interval [a, b], respectively. We ignore the “no-call”
genes when determining true/false positives/negatives. True positives (TP) are reported
when the sequencing (or microarray) platform not only correctly declares a gene DE,
but also agrees with qRT-PCR regarding the direction of DE. The true positive rate
(TPR) is then defined as the total number of TPs divided by the total number of DE
genes according to qRT-PCR; the false positive rate (FPR) is computed as usual. See
Table 1 for a summary.

2.8 Software
In order to facilitate analysis and visualization of mRNA-Seq data, we developed the
R packages Genominator and GenomeGraphs (Durinck et al., 2009). In addition to
the analysis methods implemented in these packages, all R programs used in this study
are available at: www.stat.berkeley.edu/˜bullard/mRNA-Seq;

3 Results and Discussion

3.1 Comparison of mRNA-Seq Differential Expression Statistics
Lists of differentially expressed genes are typically produced by computing, for each
gene, a test statistic comparing expression levels between the two types of biological
samples and ranking the genes based on p-values assessing the statistical significance
of the observed differences.

We evaluate various statistics for differential expression (see Section 2.6) and find
that the main difference between test statistics is their ability to handle low counts,
an issue of great importance when investigating differential expression in context of
mRNA-Seq. When both samples have zero reads, clearly nothing can be said about dif-
ferential expression. The more pertinent zero-count or low-count scenario occurs when
a gene has zero reads for one sample and a reasonable number for the other. Around
700 genes (∼ 1.8%) have zero reads in either Brain or UHR and 10 or more reads in the
other tissue. Presumably, this represents an interesting biological phenomenon, where
a gene in one tissue is completely non-expressed.
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For genes with zero counts in either sample, the t-statistics fail: the estimated
standard errors become extremely large (or infinite in the case of the delta method
t-statistic) and the nominal p-values cluster around one, regardless of the number of
reads in the other sample. For Fisher’s exact test and the GLM-based likelihood ratio
test, however, we see a continuum of p-values as desired. For genes with reasonable
counts in both samples, the choice of test statistic makes little difference in the nominal
p-values (Figure 9). Because they cannot stably handle low-count genes, the t-statistics
are failing to detect many “easy” cases of DE (i.e., genes with large differences in ex-
pression between the two conditions) and, as a result, have very low sensitivity. The
poor performance of the t-statistics is reflected in ROC curves of the DE tests using
qRT-PCR as gold-standard. Removal of genes with fewer than 20 reads in both samples
completely accounts for the poor sensitivity of the t-statistics and results in equivalent
ROCs for the various DE statistics, all of which are dramatically improved (Figure 1).

As the different mRNA-Seq DE tests show similar behavior, we will from here on
focus only on the results from the GLM-based likelihood ratio tests. The results do
not change when different test statistics are used, except for the already noted poor
performance of the t-statistics for low-count genes.

3.2 Impact of Technical Effects on Differential Expression
3.2.1 Gene-length Biases in Differential Expression

It is expected from the mRNA-Seq assay that longer transcripts contribute more “se-
quencible” fragments than shorter ones expressed at the same level. There is clearly
a positive association between gene counts and length, an association that is not en-
tirely removed via scaling by gene length, as in the RPKM of Mortazavi et al. (2008)
(Figure 13). This suggests either higher expression among longer genes or non-linear
dependence of gene counts on length.

As noted by Oshlack and Wakefield (2009), the dependence of gene counts on
length creates “gene length-related biases” in mRNA-Seq DE results: longer genes tend
to have more significant DE statistics (Figure 2). All of the mRNA-Seq DE statistics
evaluated here have an inherent dependence of their estimated standard errors on read
counts. This is a serious shortcoming in terms of creating “gene-lists” for differential
expression, as the resulting lists could favor long genes with small underlying effects as
compared to short genes with large effects. Considering only estimated fold-changes
is inadequate, as this ignores the fairly large range of standard errors for a given fold-
change and gene length.

One can possibly remedy the length dependence of DE statistics using a fixed num-
ber of bases from each gene; repeating the DE analysis by randomly selecting 250 bp
from each gene removes the association between DE significance and length (Figure
14). This also indicates that the cause of the association is the length of the gene and
not differences in the underlying expression levels of longer genes. However, a fixed-
length analysis is unsatisfactory, as it discards large amounts of data and there is no
natural choice of common length.

A weighted analysis based on gene length might constitute a reasonable compro-
mise towards a length-independent DE filter. Indeed, scaling each t-statistic by the
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inverse of the square root of length provides a length-independent ranking (Figure 2).
However, the problem of choosing a cutoff still remains. Under the assumptions pre-
sented in Oshlack and Wakefield (2009), with the unweighted t-statistics and using the
same cutoff across genes, power increases with gene length for a given level of DE.
Under the same scenario, for the weighted t-statistics, both Type I error rate and power
decrease with length.

3.2.2 Impact of Base-calling Calibration Method

The practice of reserving one lane out of eight, in each flow-cell, for sequencing bac-
teriophage phi X genomic DNA has important implications for experimental design, in
terms of sample size and balance. We find that more reads are mapped to the genome
with auto-calibration than with the standard phi X calibration, at each of three map-
ping stringency levels (Figure 3). Purity-filtered perfectly matching (FPM) reads are
unlikely to contain sequencing errors and can serve as proxies for perfectly accurate
reads. Similarly, purity-filtered reads with either 0, 1, or 2 mismatches (FMM) are
comprised of both FPM reads as well as reads that represent sequencing errors. Then,
the ratio (FMM-FPM)/FMM can be viewed as a rough estimate of the sequencing error
rate, assuming no SNPs. For all lanes, the auto-calibration method produces slightly
lower error rates (by ∼ 5%).

The increased number of reads is spread unevenly throughout the transcriptome. A
majority of the UI genes have no change in read counts between calibration methods,
whereas around 25% of the genes have 4 or more additional reads when using auto-
calibration. When computing an (FMM-FPM)/FMM ratio for each gene for both phi
X and auto-calibration, the auto-calibration has a lower error rate by about 3.8% on
average.

The significance of differences in expression measures between the two calibra-
tion methods was evaluated by comparing observed differences to a permutation dis-
tribution of differences obtained by randomly swapping the auto-calibrated and phi
X-calibrated sets of read counts for each of the 14 lanes. We find that in terms of
absolute expression measures there are small, but statistically significant differences
between the two calibration methods. However, relative expression measures, as used
in DE analyses, do not appear to be significantly different (see Supplementary Text).

Although our assessment is based on only two flow-cells, it seems quite clear that
auto-calibration is advantageous, as it yields more balanced designs, frees up one lane
per flow-cell, and produces a larger number of higher quality reads per lane.

3.2.3 Lane, Flow-cell, and Library Preparation Effects

The Poisson distribution has been shown to provide a good fit to the distribution of
gene-level counts across replicate lanes, after normalization by total lane counts (Lee
et al., 2008; Marioni et al., 2008); our experience with both the MAQC data and unpub-
lished datasets for Drosophila melanogaster supports this conclusion. The goodness-
of-fit of the Poisson model across three different organisms and four different sequenc-
ing facilities strongly supports its validity as a model for lane variation and justifies the
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pooling of read counts across lanes by summation. Note, however, that the applica-
bility of the Poisson distribution is questionable when analyzing biological replicates
(i.e., samples from different individuals within a given biological group, such as, pa-
tients with the same type of cancer). The use of negative binomial or empirical Bayes
methods, as described in the SAGE literature (Lu et al., 2005; Robinson and Smyth,
2007), may be sensible in such settings of increased variability.

Our analyses also confirm the previously noted small technical differences between
flow-cells (Marioni et al., 2008), though there is evidence of slightly more variation
between flow-cells than between replicate lanes (Figure 15c). Regardless of their sta-
tistical significance, estimated flow-cell effects are small and thus have a minor impact
only in detecting extremely small biological effects; almost none for genes with more
than 3 reads/lane.

To the best of our knowledge, there has been no published examination of the tech-
nical variation introduced during library preparation; replication of the library prepara-
tion is both expensive and time-consuming. There are clear library preparation effects
on the total number of reads (Figure 11). After adjusting for differences in total lane
counts, there is evidence for increased variation across replicate library preparations
as compared to flow-cells and lanes (Figure 15d); however, this increased variability
is mainly due to high-count genes for which there is high power to detect small dif-
ferences. A direct comparison of library preparation effects to flow-cell and biological
effects is not possible due to the experimental design, but comparison of the magnitude
of the estimated differences suggests that library preparation effects are much smaller
than the biological effects between Brain and UHR (Figure 4) and slightly larger for
some genes than flow-cell effects (Figure 4 and Figure 15).

The biological differences between Brain and UHR samples may be much larger
than those typically observed; therefore, technical sources of variation need not always
be irrelevant. Finally, we note that the MAQC data are somewhat “ideal”, in the sense
that: (1) commercial-grade RNA was sequenced and (2) the sequencing was performed
in-house by Illumina. A typical mRNA-Seq experiment begins with the extraction of
RNA from biological specimens and variability induced during extraction may be much
larger than the technical variability seen here.

3.3 Normalization of mRNA-Seq data
Because the total number of reads varies between lanes, read counts must be normal-
ized to allow comparison of expression measures across lanes or samples. This subject
has received relatively little attention in the mRNA-Seq literature. The common prac-
tice is to scale the gene counts by lane totals (Marioni et al., 2008; Mortazavi et al.,
2008). We find, however, that more general quantile-based procedures yield much bet-
ter concordance with qRT-PCR and are hopefully more robust than normalization by a
single housekeeping gene.

Here, we evaluate a variety of normalization procedures and focus on two main
questions: (1) Does the normalization improve DE detection (sensitivity)? (2) Does
the normalization result in low technical variability across replicates (specificity)? To
assess DE detection, we rely on the qRT-PCR data of Canales et al. (2006) as a gold-
standard for determining true and false positives. Because there are a limited number
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of non-DE genes in the qRT-PCR data, we also assess goodness-of-fit to the Poisson
model for replicate lanes (GLM 1 in Table 4).

The simplest form of normalization is achieved by scaling gene counts, in lane i, by
a single lane-specific factor di. In essence, these global scaling factors define the null
hypothesis of no differential expression: if a gene has the same proportions of counts
across lanes as the proportions determined by the vector of di’s, then it is deemed
non-differentially expressed.

The standard total-count normalization results in low variation across lanes, flow-
cells, and library preparations, as discussed above. What has not been understood
previously, is that this normalization technique reflects the behavior of a relatively small
number of extremely high-count genes: 5% of the genes account for approximately
50% of the total counts in both Brain and UHR. These genes are not guaranteed to
have similar levels of expression across different biological conditions and, in the case
of the MAQC-2 dataset, they are noticeably over-expressed in Brain, as compared to
the majority of the genes (Figure 5).

Accordingly, the performance of total-count normalization is not particularly im-
pressive for detecting DE (Figure 6): sensitivity is only slightly higher as compared to
the microarray data, even for genes with relatively large differences in expression (> 2
absolute log-ratio). When including genes with lower levels of differential expression
(> 0.5 absolute log-ratio), performance is no better (and perhaps slightly worse) than
that of microarrays. This contradicts general expectation given that the mRNA-Seq
data are less noisy and thus better at detecting small expression differences. For small
levels of DE, the bias in estimated log-ratios using total-count normalization makes the
sequencing estimates less accurate.

We evaluate two alternatives for normalization of mRNA-Seq data. One approach
relies on a single housekeeping gene like POLR2A, a standard technique for normaliz-
ing qRT-PCR expression measures. However, this is not a feasible solution in general,
since it is not known a priori which genes have stable expression levels (in Canales
et al. (2006), POLR2A was chosen only after examining many replicates for UHR and
Brain across a number of plates).

In analogy with standard techniques for normalizing microarray data, we propose
to match the between-lane distributions of gene counts in terms of parameters such as
quantiles. For instance, one could simply scale counts within lanes by their median.
In our case, due to the preponderance of zero and low-count genes, the median is
uninformative for the different levels of sequencing effort. Instead, we use the per-lane
upper-quartile (75th percentile), after excluding genes with zero reads across all lanes
(see Supplementary Text).

Compared to total-count normalization, both POLR2A and upper-quartile normal-
ization significantly reduce the bias of DE relative to qRT-PCR (Figure 7), with upper-
quartile having bias near zero. ROC curves illustrate that both upper-quartile and
POLR2A normalization are unequivocally better than total-count normalization at de-
tecting DE and result in improved sensitivity of sequencing relative to microarray data.

A closer look at technical variation for the different normalization procedures shows
that upper-quartile normalization does not noticeably increase the level of variability as
compared to total-count normalization; POLR2A normalization is slightly more vari-
able but still comparable (Figure 8).
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Finally, it is also feasible to perform quantile normalization across lanes, as is often
done in microarray experiments (Irizarry et al., 2003b). However, there does not seem
to be added benefit to this more complicated normalization strategy. Quantile normal-
ization performs similarly in the ROC analyses (Figure 16a) and induces comparable,
or even slightly more, variability than upper-quartile normalization (Figure 8). We
again recall the somewhat artificial nature of the MAQC data, which were obtained at
essentially the same time, by one lab, using ideal RNA samples. As more data become
available, there may be larger variations in gene count distributions necessitating more
aggressive normalization.

4 Conclusions
Our main novel finding is the extent to which normalization affects differential expres-
sion results: sensitivity varies more between normalization procedures, than between
test statistics. Although the standard total-count normalization results in Poisson varia-
tion across replicate lanes, it has poor detection sensitivity when benchmarked against
qRT-PCR. Instead, we propose scaling gene counts by a quantile of the gene-count
distribution (the upper-quartile) and show that such normalization improves sensitivity
without loss of specificity.

It is possible that the improvement of POLR2A over total-count normalization is
due to more closely matching the qRT-PCR data, which were normalized by POLR2A,
rather than proper reflection of actual biological differences. Indeed, additional scal-
ing of the microarray data by POLR2A slightly improves the ROC compared to the
standard microarray quantile normalization. It is more likely, however, that total-count
normalization, with its reliance on high-count genes, poorly reflects biological differ-
ences. This can be seen by taking a closer look at the POLR2A gene, which was chosen
because of its very similar expression in UHR and Brain across many qRT-PCR repli-
cates (Canales et al., 2006): the UHR to Brain fold-change of POLR2A is estimated
as 1.3 for total-count normalization in contrast to 0.97 for upper-quartile normalization
and 0.90 for microarray data.

In regards to DE test statistics, the GLM-based likelihood ratio statistics and Fisher’s
exact statistics perform equally well in terms of sensitivity and handling of low-count
genes. We find likelihood ratio tests appealing because of their generality. Indeed, us-
ing the GLM framework, one can adjust for potential confounding variables, including
quantitative covariates, e.g., age of sample, as well as accommodate different count
distributions (negative binomial in cases of over-dispersion).

A serious concern with all the DE methods considered here is the inherent depen-
dence of power on read count, which in turn is related to both gene expression level
and length. As most DE studies produce gene-lists, which are often then related to
functional annotation (e.g. GO), it is undesirable for significance values to be driven
by features such as length. A weighted analysis based on gene length might lead to
a reasonable length-independent ranking of genes, that would allow short genes with
large effects to gain in significance compared to long genes with small effects.

We find that technical variation is quite low across lanes and flow-cells and slightly
larger across library preparations. In all cases, however, the effect on differential ex-
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pression results is minimal. We note that the MAQC datasets are unusual, in that we
expect extremely large differences in expression between Brain and UHR and only
small library preparation effects because of the high quality of the RNA. In practice,
library preparation effects may be closer in magnitude to biological effects.

We have demonstrated that while there are some differences between phi X and
auto-calibration in the early stages of the analysis pipeline, the differences in terms of
differential expression are small. Overall, auto-calibration seems advantageous, as it
yields more balanced designs, frees up one lane per flow-cell, and produces a larger
number of higher quality reads per lane.

The analysis conducted in this work, as well as others, is predicated on a “whole-
gene” view of expression profiling. We evaluated technical effects, phi X calibration,
and normalization methods using a very constrained UI gene definition. We limited
ourselves to such a strict definition in order to ensure that the evaluation was not biased
by alternative splicing or overlapping genes. Our UI gene definition is a gross over-
simplification, as a large amount of biologically relevant information is lost; we exclude
more than 50% of the reads which fall within Ensembl genes.

As high-throughput sequencing becomes more prevalent, our ability to precisely
characterize the transcriptome of a sample will dramatically increase. More refined
analyses, such as isoform-level expression, allele-specific expression, and genome an-
notation (segmentation), involve comparing distinct regions within a sample as opposed
to the same region across samples. Such analyses will require an understanding of the
effect of sequence composition on base coverage to account for the heterogeneity of
base-level count distributions within a gene.
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mRNA-Seq
Non-DE DE + DE −

Non-DE TN FP FP N
qRT-PCR DE + FN TP FP PDE − FN FP TP

Table 1: Definition of true and false positive rates Synopsis of the rules for calling
true/false positives and negatives, which take into account the sign of the direction of
differential expression: “+” for over-expression in UHR, “−” for over-expression in
Brain. The true positive rate (TPR) is estimated as TP/P and the false positive rate
(FPR) as FP/N.
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Figure 1: Comparison of differential expression statistics: ROC curves. (a) All DE
statistics, no gene filtering. (b) GLM-based likelihood ratio statistics and t-statistics,
before and after removing genes with fewer than 20 reads in either Brain or UHR. In
both plots, a gene was declared non-DE if its qRT-PCR absolute log-ratio was less than
0.2 and DE if its absolute log-ratio was greater than 2.0. Note that the ROC curves
do not reach the point (1,1), because of the sign condition in the definition of true
positives.

(a) t-statistics (b) Length-weighted t-statistics

Figure 2: Differential expression statistics, by length. Boxplots of the ranks of DE
statistics vs. gene lengths for UI genes at least 250 bp-long and with non-zero counts
in both Brain and UHR. (a) Delta method t-statistics. (b) Delta method t-statistics
weighted by the inverse of the square root of gene length.
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Figure 3: Impact of base-calling calibration method on read-mapping. Barplots of av-
erage read counts per lane with and without phi X calibration, for each of the four bio-
logical sample (Brain, UHR) and flow-cell (F2, F3) combinations. Reads are classified
into three nested categories: purity-filtered perfectly matching reads (FPM); purity-
filtered reads with either 0, 1, or 2 mismatches (FMM); unfiltered reads with either 0,
1, or 2 mismatches (MM).
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Figure 4: Comparison of biological, library preparation, and flow-cell effects. Box-
plots of estimated log-fold-changes for UHR vs. Brain biological effects (GLM 2 in
Table 4), flow-cell effects adjusting for biology (GLM 4), library preparation effects
within flow-cell (GLM 7). Estimates are presented for total-count (black) and upper-
quartile (blue) normalization.
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Figure 5: Impact of highly-expressed genes. (a) Cumulative percentage of total read
count for Brain (green) and UHR (purple) samples, starting with the gene with the
highest read count (across the seven Brain or UHR lanes). Cumulative read counts are
marked for the 5, 10, 20, and 30 percent most highly expressed genes. (b) Running
value of the UHR/Brain expression fold-change for unnormalized counts, starting with
the gene with the lowest total count across all 14 lanes. Horizontal lines correspond
to: the ratio of the counts for all genes (black), the ratio of the counts for the POLR2A
gene (red), and the ratio of the per-lane upper-quartile of counts for genes with reads
in at least one lane (blue).
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

680 genes

(b) qRT-PCR positives: LR> 0.5

Figure 6: Comparison of mRNA-Seq and microarray differential expression calls to
qRT-PCR: ROC curves. Genes common to all three platforms and present for both
qRT-PCR and sequencing (see Supplementary Text) were evaluated and declared DE
if their qRT-PCR absolute log-ratio was (a) greater than 2 or (b) greater than 0.5; genes
were declared non-DE if their absolute log-ratio was less than 0.2. The GLM-based
likelihood ratio test was used for the sequencing data. Two normalization procedures
are presented for mRNA-Seq: total-count (black) and upper-quartile (blue) normaliza-
tion. Microarray data were normalized using RMA (gray). Note that the ROC curves
do not reach the point (1,1), because of the sign condition in the definition of true
positives.
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Figure 7: Comparison of mRNA-Seq and microarray differential expression calls to
qRT-PCR: ROC curves. Difference scatterplots comparing the estimates of UHR/Brain
expression log-ratio from qRT-PCR to those from (a) mRNA-Seq, using the standard
total-count normalization, and (b) microarrays, using the standard RMA normaliza-
tion. Shown are the genes shared between all three platforms, present in both Brain
and UHR according to both mRNA-Seq and qRT-PCR (see Supplementary Text), and
having absolute qRT-PCR expression log-ratio less than 4. Horizontal lines in (a)
represent the median UHR/Brain log-ratio for the sequencing data after the standard
total-count normalization (black), POL2RA normalization (red), quantile normaliza-
tion (yellow), upper-quartile normalization (blue); horizontal lines in (b) show the me-
dian UHR/Brain log-ratio for the microarray data after the standard RMA normaliza-
tion (black) and POL2RA normalization (red).
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(a) Total-count (b) POLR2A

(c) Upper-quantile (d) Quantile normalization

Figure 8: Comparison of normalization procedures: Goodness-of-fit of Poisson model.
The multiplicative Poisson model (GLM 1 in Table 4) is fit to the seven Brain lanes
in the MAQC-2 experiment after (a) total-count, (b) POLR2A, (c) upper-quartile, and
(d) quantile normalization. Goodness-of-fit statistics are computed and displayed in
χ2 quantile-quantile plots. Genes with goodness-of-fit statistics in the top quantiles of
the χ2-distribution are displayed using colored plotting symbols: red (1, 5]%, purple
(.1, 1]%, gold [0, .1]%. Similar plots for UHR show the same patterns.
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Figure 9: Comparison of GLM-based DE statistics. Scatterplot matrix of nominal p-
values on the log-scale for differential expression statistics for genes assayed by both
mRNA-Seq and qRT-PCR. Genes with zero p-values are not displayed. Plotting sym-
bols are colored according to the read counts of the corresponding gene in the Brain
and UHR samples. Black: ≥ 6 reads for both Brain and UHR; Green: ≥ 6 reads for
Brain, < 6 reads for UHR; Blue: < 6 reads for Brain, ≥ 6 reads for UHR; Red:< 6
reads for both Brain and UHR.
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Figure 10: Comparison of GLM-based and Fisher DE statistics. Scatterplot matrix of
nominal p-values on the log-scale for differential expression statistics for genes assayed
by both mRNA-Seq and qRT-PCR. Plotting symbols are as described in the caption of
Figure 9.
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Figure 11: Experimental design and per-lane read counts. Barplots of per-lane read
counts for: (a) MAQC-2 experiment and (b) MAQC-3 experiment. There are fourteen
lanes in each experiment. The MAQC-2 experiment assayed single library preparations
of Brain and UHR RNA, each using seven lanes distributed across two flow-cells. The
MAQC-3 experiment assayed four different library preparations of UHR RNA, each
across 3-4 lanes within a single flow-cell. The fifth lane in each flow-cell was reserved
for phi X genomic DNA. Only purity-filtered reads that map uniquely to the genome
with up to two mismatches in the first 35 bases (FMM) are retained. Total lane counts
are partitioned into read counts for introns, constitutive exons, non-constitutive exons,
and intergenic regions.
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(a) Raw counts
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(b) Total-count normalization
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(c) Upper-quartile normalization

0.
00

0.
05

0.
10

0.
15

0.
20

Log normalized counts

D
en

si
ty

−16 −14 −12 −10 −8 −6

(d) POLR2A normalization

Figure 12: Distribution of UI gene counts. (a) Raw counts, (b) log counts after total-
count normalization, (c) log counts after upper-quartile normalization, (d) log counts
after POLR2A normalization. The density of quantile-normalized counts is the same
for each lane and shown in yellow in panel (a). Brain samples are shown in green and
UHR samples are shown in purple.
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(a) Count vs. length (b) Count per-kb vs. length

(c) Count vs. GC-content (d) Count per-kb vs. GC-content

Figure 13: Distribution of UI gene counts for Brain, by length and GC-content. For
each gene, total and per-kb read counts were summed over the seven Brain lanes
(MAQC-2). Bivariate binned Gaussian kernel density smoothers are displayed for:
(a) total gene count vs. gene length; (b) per-kb gene count vs. gene length; (c) total
gene count vs. gene GC-content; (d) per-kb gene count vs. gene GC-content. Marginal
Gaussian kernel density smoothers are displayed above and to the right of the plots for
gene length/GC-content and gene count, respectively. The curves represent lowess fits.
Only genes with non-zero read counts were included.
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(a) Full-length UI genes
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(b) 250-bp UI gene regions

Figure 14: Differential expression statistics, by length. Boxplots of absolute DE t-
statistics (delta method) stratified by length for: (a) full-length genes and (b) a random
sample of 250 base-pairs for each full-length gene longer than 250 base-pairs. The
width of each boxplot is proportional to the number of genes within each length stra-
tum.
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(a) Replicate lanes (MAQC-2) (b) Replicate lanes (MAQC-3)

Quantiles of
extreme points

<0.1%
0.1−1.0%
1.0−5.0%

(c) Lanes across flow-cells (MAQC-2) (d) Lanes across library prep and flow-cells
(MAQC-3)

Figure 15: Goodness-of-fit of gene-level multiplicative Poisson model across lanes,
flow-cells, and library preparations. The multiplicative Poisson model (GLM 1 in
Table 4) is fit to the following sets of lanes representing different combinations of bi-
ological samples, library preparations, and flow-cells. Panel (a): Four replicate Brain
lanes in flow-cell F3. Panel (b): Four replicate UHR lanes of library preparation S3 in
flow-cell F4. Panel (c): Seven Brain lanes across flow-cells F2 and F3. Panel (d): Four-
teen UHR lanes of four library preparations across flow-cells F4 and F5. Goodness-
of-fit statistics are computed and displayed in χ2 quantile-quantile plots. Genes with
goodness-of-fit statistics in the top quantiles of the χ2-distribution are displayed using
colored plotting symbols as indicated in legend.
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(a) mRNA-Seq
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Figure 16: Comparison of mRNA-Seq and microarray normalization procedures: ROC
curves. Panel (a): ROC curves comparing mRNA-Seq DE calls for total-count,
POLR2A, upper-quartile, and quantile normalization. Panel (b): ROC curves compar-
ing microarray DE calls for RMA and POLR2A normalization. Genes were declared
DE if their qRT-PCR absolute log-ratio was greater than 2.0 (solid) or greater than 0.5
(dashed); genes were declared non-DE if their absolute log-ratio was less than 0.2.
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

All (680)
Filtered (422)

(b) LR ≥ 0.5

Figure 17: Comparison of mRNA-Seq and microarray DE calls: ROC curves. ROC
curves comparing upper-quartile normalized mRNA-Seq and RMA normalized mi-
croarray DE calls. Genes were declared DE if their qRT-PCR absolute log-ratio was
(a) greater than 2 or (b) greater than 0.5; genes were declared non-DE if their absolute
log-ratio was less 0.2. Considered were those genes common to both platforms and
present in both qRT-PCR and sequencing (solid). Filtering is as before: genes with
fewer than 20 reads in either Brain or UHR were excluded.

32

http://biostats.bepress.com/ucbbiostat/paper247



qRT−PCR

−3 −1 1 2 3

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●
●

●

●

●
●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

● ●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

−3 −1 1 2 3

−
1.

0
0.

0
0.

5
1.

0

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

−
4

−
2

0
2

4

●
●

●

●

●

●

●
●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
● ●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●

●

● Seq (Total)
●

●●●

●
● ●●

●

●●
●

●●

●

●

●

●
●

●●

●

●

● ●●

●

● ●

●

●

●

●
● ●

●
●

●

● ●

●●

●

●

●
●●

● ● ●
●

●
●

●

●
●●●

●
●●

●● ●
● ● ●

●

●
●

●
●●●

●

●

●
●

●

●

● ●
●

●

●

●

●● ● ● ●●● ●

●

● ●●
●

●

● ●● ●● ●●

●

●
●

●●

●●

●

●
● ●

●●
●

●

●
●

●●

●

●

●
●

●
●

● ●
●

●

● ●● ●
●

● ●●
●

●

●

●

● ●● ●
●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●

●●●●
●

●
● ●● ●●

●

● ●
●

●●

●

●
●

●
●● ●

●
●

●

●● ●●
●●

●

●

●

● ●

● ●

●

●

● ●

●

●

●

●
● ●

●

●

●
● ●

● ●

●

●
●

●
●●

●
●

● ●
●

●

●

●

●
●

●
● ●●

●

●

●

●●

● ●

●
●

●●

● ●●●

●
●●

● ●●●●

● ●

● ●●● ●
●

●
●

●●

●

●●●
●●

●

●
●

●

●

●●● ●●
●

●

●

●
●

●

● ●

●

● ●●●

●
●

●

●

● ●
●

●●
●

●

●
● ●

●●● ●●● ● ●

●
●

●●

●

●

●
●● ●

●

●

●

●

●

●
●

●
●

● ●
●

●

●
●

●

●● ●●
●●

●

●

●● ● ●● ● ●● ●●

●
●

●
●●

●●

●

●
●

●●
●

●

●

●
●●

●●●●● ●●●

●

●
● ●●

●
●

●

● ●● ●
●

●

● ●●●
●

●

●

●
●

●
● ●

●

●

●
● ● ●
●

●

●

●

● ● ●

●

●
●

● ●
●

●
●

●

●
●

●
●● ●● ●●

●

●

●

●

●

●●●

●

●

● ●●●
● ●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●● ●

●

●

●

●
●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●
●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●
●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

● Seq (Quantile)

−
1.

0
0.

0
0.

5
1.

0

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●●

●

●●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●
●●●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●●

●

●●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
● ●

●

●

●
●●●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

−4 −2 0 2 4

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●●

●

●●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
● ●

●

●

●
●●●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
● Micro.

Figure 18: Pairs plot, comparison of normalization. In the lower diagonal are standard
x-y plots, while in the upper-diagonal are MA plots of the difference x-y plotted against
the average of x and y. No difference between the platforms is shown by a grey line;
in the MA plots, the value of the median difference is shown as a red line. Note that
difference between total counts and median normalization is just a shift of the log-ratio
values and thus we show only the total-counts normalization.
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5 Supplementary Text

5.1 Data
5.1.1 mRNA-Seq Data

The calibration method used in Bustard for quality-scoring of base-calls is highly rel-
evant in terms of experimental design. In the auto-calibration method, base-calls are
scored in a manner that is similar to the phred base-caller (Ewing and Green, 1998). An
alternative, recommended by Illumina, is to reserve one control lane per flow-cell for
sequencing DNA, typically bacteriophage phi X genomic DNA (Bentley et al., 2008).

Bustard also provides a variety of read quality measures. For a given cluster, the
chastity ck at cycle k is defined as the highest of the four fluorescence intensities di-
vided by the sum of the highest two intensities. The purity filter (PF) discards any read
for which the chastity at any of the first 12 sequencing cycles is less than 60%, i.e.,
min1≤k≤12 ck < 0.60 (Bentley et al., 2008, Supplementary Information, p. 6). For the
MAQC-2 and MAQC-3 datasets, the percentage of reads passing the purity filter (out
of the total number of clusters) varies between 50% and 76% per lane. Summaries of
the Genome Analyzer output are provided in Tables 2 and 3.

We used Bowtie (Langmead et al., 2009), Version 0.10.1, to align reads to the
genome (H. sapiens, NCBI 37.1 assembly). We used a strict alignment policy, which
enforces a strong definition of uniqueness: a perfect match is a read that perfectly
matches a position and does not match elsewhere, even when allowing up to two mis-
matches. In this regard, we minimize the chance that a perfect match read is a read
with an error that happens to perfectly match elsewhere. The Bowtie command for
implementing this mapping strategy is:

-r -v 2 -a -m 1 -p 8 --quiet h_sapiens_37_asm

Mapped reads were classified into the following three nested categories: (1) purity-
filtered perfect match (FPM) reads, that passed the purity filter and mapped uniquely as
described above; (2) purity-filtered mismatch (FMM) reads, that passed the purity filter
and mapped with either 0, 1, or 2 mismatches; (3) mismatch (MM) reads, that mapped
with either 0, 1, or 2 mismatches, regardless of purity filtering.

As a result of the above pre-processing steps, we therefore have six sets of mapped
reads, corresponding to two calibration methods (auto-calibration and phi X calibra-
tion) and three mapping stringencies (FPM, FMM, and MM). In our main analysis, we
focus on phi X-calibrated, purity-filtered reads that map uniquely to the genome, with
up to two mismatches (FMM).

Note that, by mapping to the genome, we do not capture exon-exon junction reads,
which would be relevant in studies of alternative splicing. In any given lane, around
10% of the reads mapped to exon-exon junctions. Additionally, the library preparation
protocol does not allow consideration of strand-specific counts, i.e., reads mapping to
the forward and reverse strands are pooled.
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Table 2: MAQC-2: Pre-processing summary. The table reports summaries from Illu-
mina’s standard Genome Analyzer pre-processing pipeline: Firecrest image analysis
and Bustard base-calling (Bentley et al., 2008). “Yield (kb)”: Product of number of
purity-filtered clusters and number of bases per cluster (per lane). “Raw clusters”: Av-
erage± standard deviation of per-tile number of clusters detected by the image analysis
module of the pipeline. “PF clusters”: Average± standard deviation of per-tile number
of detected clusters that meet the purity filtering criterion. Note that the fifth lane in
each flow-cell was reserved for sequencing phi X genomic DNA.

Flow-cell Lane Biology Yield (kb) Raw clusters PF clusters
F2 L1 UHR 296866 128513 ± 8346 88353 ± 9043
F2 L2 Brain 277172 113931 ± 13407 81641 ± 13201
F2 L3 UHR 324216 134627 ± 9441 92633 ± 8700
F2 L4 Brain 294120 112663 ± 6475 84883 ± 5541
F2 L6 UHR 310230 131166 ± 8986 88637 ± 9422
F2 L7 Brain 283315 113651 ± 7401 80947 ± 8981
F2 L8 UHR 287474 122293 ± 12000 82135 ± 10298
F3 L1 Brain 203301 117128 ± 6695 58086 ± 16486
F3 L2 UHR 260693 135475 ± 7102 74483 ± 14256
F3 L3 Brain 273610 118160 ± 6825 78174 ± 10553
F3 L4 UHR 313353 136806 ± 7869 89529 ± 9365
F3 L6 Brain 288766 120813 ± 7309 82504 ± 9424
F3 L7 UHR 288312 136649 ± 7037 82374 ± 11148
F3 L8 Brain 243072 116163 ± 6596 69449 ± 10014

Table 3: MAQC-3: Pre-processing summary. Cf. Table 2 caption.

Flow-cell Lane Lib. Prep. Yield (kb) Raw clusters PF clusters
F4 L1 S3 258032 114634 ± 10132 79272 ± 13356
F4 L2 S4 334535 144311 ± 11288 96547 ± 10952
F4 L3 S3 311489 120708 ± 9614 88997 ± 9017
F4 L4 S4 354932 141855 ± 11771 101409 ± 8263
F4 L6 S3 316489 119383 ± 8989 90425 ± 7053
F4 L7 S4 336469 140959 ± 10373 97105 ± 7050
F4 L8 S3 278196 113575 ± 8529 79484 ± 8161
F5 L1 S5 251885 118150 ± 7715 81780 ± 8955
F5 L2 S6 364813 162401 ± 11096 105285 ± 4996
F5 L3 S5 324904 124526 ± 7446 92829 ± 3300
F5 L4 S6 371195 158799 ± 11354 106055 ± 3718
F5 L6 S5 314057 118976 ± 6562 89730 ± 2854
F5 L7 S6 357717 157457 ± 9475 102204 ± 4237
F5 L8 S5 288629 122585 ± 10022 82465 ± 8166
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5.1.2 qRT-PCR Data

For benchmarking purposes, we use the quantitative real-time polymerase chain re-
action (qRT-PCR) data of Canales et al. (2006) to obtain distinct measures of gene
expression (Gene Expression Omnibus (GEO), Series GSE5350, www.ncbi.nlm.
nih.gov/geo). In this TaqMan assay, a quantitative measure of template abundance
is provided by the threshold cycle (CT ), i.e., the number of PCR cycles at which one de-
tects a significant exponential increase in the fluorescence of a labeled TaqMan probe.
The greater the threshold cycle, the less abundant the template.

As described in Canales et al. (2006, p. 1120–1121), for each of 997 protein-coding
genes, between four (994 genes) and eight (3 genes) CT measures were obtained for
each of Brain and UHR. Due to annotation differences, of the 997 genes assayed by
qRT-PCR, 965 matched a unique UI gene. We find there is no systematic relationship
between gene expression measures and mapping status.

Following Canales et al. (2006), a detection limit of 35 was set on the raw CT val-
ues. For each type of biological sample (Brain and UHR), genes were further classified
as present (P) if they were detectable in at least three fourths of the qRT-PCR assays
and absent (A) otherwise. According to this criterion, 797 genes were declared present
in both Brain and UHR samples, 26 present in only Brain samples, 76 present in only
UHR samples, and 40 absent in both types of samples. The CT measures available
from GEO were normalized as in Canales et al. (2006), separately for the Brain and
UHR samples, using the POLR2A gene as a reference.

In what follows, the qRT-PCR expression measures are represented as

Yi,j ≡ ∆Ci,j × log 2, (2)

where ∆Ci,j = Ci,P OLR2A − Ci,j are POLR2A-normalized threshold cycles CT for
protein-coding genes j = 1, . . . , 939, in TaqMan assays i = 1, . . . , nj (nj = 8 for
all but three genes that have nj = 16). The qRT-PCR measures are originally on
a log base-2 scale. Multiplication by log 2 transforms these measures to the natural
logarithmic scale used throughout. The qRT-PCR estimate of UHR to Brain expression
log-fold-change is the difference of averages: ȲUHR,j − ȲBrain,j .

5.1.3 Affymetrix Microarray Data

Affymetrix microarray data were downloaded from GEO:
(GSE5350, MAQC AFX 123456 120CELs.zip). To minimize variation across labs,
we used data only from lab 1, i.e., AFX 1 [A—B][1-5].CEL$. Arrays were pre-
processed using RMA (Irizarry et al., 2003b) and then differential expression was de-
termined by the R/Bioconductor package limma (Smyth, 2004), using the standard
pipeline of lmFit and eBayes.

In order to match Affymetrix probesets with our UI genes, we used the R/Bioconductor
package biomaRt, which retrieves data from Ensembl, Version 55. In cases where
multiple probesets matched to a single UI gene, we took the median measurement for
the log-ratio, standard errors, and p-values, so as not exclude a large fraction of the
microarray data.
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5.2 Defining Genomic Regions of Interest
Using Ensembl, Version 55, annotation, we define a union-intersection (UI) gene as a
composite gene consisting of unions of constitutive exons that do not overlap a coding
region of another gene. Specifically, for a given gene, a constitutive exon is defined
as a set of consecutive exonic bases (i.e., portion of or entire exon) that belong to
each isoform of the gene of interest. We further exclude any portion of such region
that overlaps the coding region of any other gene, either constitutive or alternative, on
either strand (Figure 19a). A gene model defined according to this union-intersection
principle can be viewed as representing all isoforms of a given gene. Reads are assigned
to a given gene if their 5’-end falls within the region, as depicted in Figure 19b.

Figure 20 examines basic features of the set of UI genes considered in the present
article and built using gene annotation from Ensembl (www.ensembl.org, Version
55). Figure 21 displays an example gene and its base-level read counts.

We also define an Ensembl gene as the union of all exons from a given gene, ex-
cluding regions which overlap any other gene on either strand. Our definition of UI
genes is clearly more restrictive than that of Ensembl genes, as it retains only consti-
tutive exons. The genome coverage of UI genes is 42,708,318 base-pairs, whereas the
coverage of Ensembl genes is 82,020,267 base-pairs.

We call an Ensembl gene or a UI gene present, if it has at least one read in both
Brain and UHR samples. Filtered genes are defined as having at least 20 reads in both
samples.

5.3 Generalized Linear Models for Gene-level Counts
Consider J genes and let Xi,j denote the number of reads mapping to gene j in lane
i. Sums of counts over all lanes or genes are represented with the standard “·” symbol,
e.g., Xi,· denotes total counts in lane i.

Generalized linear models (GLM) provide a flexible and extensible statistical infer-
ence framework for mRNA-Seq. Though we focus on models with the log/Poisson link
function (McCullagh and Nelder, 1989), what follows may be applied using alternative
link functions and distributions, such as the negative binomial.

We formulate a gene-level GLM for read counts Xi,j , such that log(E[Xi,j ]) =
λa(i),j + θi,j , where a(i) ∈ {1, . . . , A} is the biological group (e.g., Brain or UHR)
corresponding to lane i, λa(i),j is the parameter of interest representing the expression
level of gene j in biological group a(i), and θi,j is a nuisance parameter representing
experimental effects, such as library preparation, flow-cell, and lane effects. Suitable
identifiability constraints need to be specified for each experimental design under con-
sideration, e.g.,

∑
j exp(λa,j) = 1 for each biological group a.

Ultimately, the parameter of interest is the ratio of transcript counts in biologi-
cal group a2 vs. a1, i.e., a transcript expression fold-change. In the mRNA-Seq as-
say, each transcript is divided into a number of fragments. As a result, the parameter
exp(λa2,j−λa1,j) represents the ratio of the number of fragments for biological group
a2 vs. a1. Under certain assumptions for the library preparation process (concerning
fragmentation, in particular), it can be argued that transcript and fragment fold-changes
are proportional, with a single proportionality constant across all genes.
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It is clear any reasonable model must normalize read counts to adjust for the large
differences in sequencing depths between lanes (or samples). This can be achieved by
introducing a lane-level parameter, δi, in the GLM,

log(E[Xi,j ]) = δi + λa(i),j + θi,j . (3)

Instead of fitting the above GLM jointly to all J genes (in the tens of thousands), it is
equivalent to fit the following log-linear regression model per gene,

log(E[Xi,j |di]) = log di + λa(i),j + θi,j , (4)

where di is a lane-level random variable, such as the total lane countXi,·, and the offset
log di is to be treated as a quantitative covariate whose regression coefficient is set to
one.

To evaluate the presence of experimental effects, we fit the model of Equation (1)
with different choices of θi,j that account for groupings of lanes into flow-cells (fc) or
library preparations (prep), as well as interactions of these effects with biological (bio)
effects, where appropriate (see Table 4). We use likelihood ratio statistics per gene to
compare the fits of models with various combinations of effects, e.g., (1+bio+fc) vs.
(1+bio). We also use χ2 goodness-of-fit statistics to assess deviation from a particular
null model – again per gene (such an approach was also applied in Marioni et al. (2008),
to assess goodness-of-fit for a particular model of inter-lane variation).

We note that by estimating a large number of parameters we risk overfitting and
introducing noise into our estimators. In this instance, however, our goal is an overall
assessment of experimental effects. To correct for such effects in practice and obtain
reliable estimators of λa,j for specific genes, more sophisticated approaches may be
appropriate, such as pooling data across genes using empirical Bayes methods.

5.4 Normalization
The total-count, upper-quartile, and POLR2A normalization procedures involve a choice
of a global scaling factor d, which is a vector of length equal to the number of lanes (14
in each of the two MAQC datasets). The offset d is incorporated in GLM-based tests
(i.e., the LLR and the t-statistics) as described below. We note that the total-count off-
set corresponds to the maximum likelihood estimator of the parameter δi in the GLM
of Equation (3).

We rescale the offset vector d so that the sum of its elements is equal to the to-
tal count across all lanes (roughly 67 million). This is done solely for the purpose of
comparing normalizing factors and only affects Fisher’s exact test, for which the distri-
bution of the test statistic depends on the actual magnitude of d. The GLM-based tests
are unaffected, because differences in the overall magnitude of the normalizing scale
factor can be absorbed into an intercept term.1 In our implementation of Fisher’s exact
test, d is acting as observed data even though it is not (except in the case of total-count
normalization). GLM clearly give a more logical framework for allowing different
choices of global normalization.

1The GLM of Equations (3) and (4) do not include an intercept term, but this is just a matter of reparam-
eterization.
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The final normalization considered is quantile normalization (Irizarry et al., 2003a),
as implemented in the R package aroma.light (Bengtsson, 2009); the median across
sorted lanes was chosen as the reference distribution. The normalized data are rounded
to produce integer values that can be used with each of the DE statistics described
below.

5.5 Differential Expression Statistics
Identifying genes that are differentially expressed between A conditions corresponds
to testing the following J per-gene null hypotheses: H0(j) : λ1,j = · · · = λA,j , where
λa,j is the expression level of gene j in samples of type a. We evaluate three main
types of DE tests.

• Log-likelihood ratio (LLR) statistics for GLM:

TLLR

j = 2(lj(λ̂, θ̂)− lj(λ̂0, θ̂0))∼̇χ2(A− 1), (5)

where lj denotes the log-likelihood function for the jth gene and (λ̂, θ̂) and
(λ̂0, θ̂0) denote, respectively, the maximum likelihood estimators (MLE) of the
biological and experimental effect parameters under the full model and null
model.

• t-statistics for GLM (2 sample comparisons, A = 2):

T t

j =
(λ̂2,j − λ̂1,j)− 0√

V̂ar[λ̂1,j ] + V̂ar[λ̂2,j ]
∼̇N(0, 1), (6)

where the variances of λ̂ may be estimated from (1) the standard GLM fitting
procedure glm in R (?), e.g., based on an estimator of the information matrix ob-
tained from the Hessian of the log-likelihood function, or (2) the delta method,
where V̂ar[λ̂a,j ] = 1/

∑
i I(a(i) = a)Xi,j (assuming θi,j constant across sam-

ples).

• Fisher’s exact test is based on the 2 × A contingency table created by cross-
tabulating genes with biological sample type (Brain and UHR). The Mantel-
Haenszel test of conditional independence within stratum extends Fisher’s exact
test to account for a single additional experimental effect (e.g., flow-cell). In
all cases, except quantile normalization, row 1 corresponds to the total number
of reads observed in the jth gene; in quantile normalization, it corresponds to
the rounded quantile-normalized value. For total-count normalization, row 2
corresponds to the lane totals less the number of reads in the jth gene. In the
case of POLR2A, upper-quartile, and quantile normalization, pseudo-counts are
generated to match the total number of reads (see Normalization section, above).
The tests are implemented using the fisher.test and mantelhaen.test functions
in R.

39

Hosted by The Berkeley Electronic Press



5.6 Receiver Operator Characteristic Curves
Definition of true and false positive rates Given a “DE” (positive, P) or “non-DE”
(negative, N) call from qRT-PCR, define a true positive (TP) as the event that the test
of interest (based on either sequencing or microarray data) calls a gene DE that qRT-
PCR called DE and that the direction of DE agrees between the two assays. Let a false
positive (FP) event occur when the test calls a gene DE that qRT-PCR called non-DE
(Table 1). We consider a true positive rate (TPR) defined as

Pr(TP|qRT-PCR is DE) =
Pr(TP, qRT-PCR is DE)

Pr(qRT-PCR is DE)

and estimated with

(# TP and qRT-PCR is DE)/(total # genes)
(# qRT-PCR is DE)/(total # genes)

=
TP
P
.

Note that this is not the standard definition of TPR, usually expressed in terms of TP,
FP, TN, and FN. We consider the standard definition of false positive rate (FPR),

Pr(FP|qRT-PCR is non-DE),

estimated with

(# FP and qRT-PCR is non-DE)/(total # genes)
(# qRT-PCR is non-DE)/(total # genes)

=
FP
N
.

Analysis of qRT-PCR data Conceivably, every gene could be declared differentially
expressed at some cutoff, which means any “false positive” could be due either to noise
or errors or to extremely high sensitivity of the (sequencing or microarray) platform.
Furthermore, the qRT-PCR measures of DE are themselves imperfect, though generally
accepted as the best available such measures – they have very low levels of variation
and the variation is extremely uniform across genes. Rather than rely on the p-values
from a test statistic for differential expression in qRT-PCR, we instead remove the 12
genes with standard errors greater than .25. In this manner, we focus on the more
biologically relevant fold-change rather than the standard errors.

5.7 Experimental Effects: Lane, Flow-cell, and Library Prepara-
tion

We investigate various experimental effects for gene-level counts, including lane, flow-
cell, and library preparation effects. For this, we rely on the total-count normalization,
which gives the best results in terms of goodness-of-fit of the Poisson model for repli-
cate lanes. Figure 22 displays mean-difference scatterplots of expression fold-changes
vs. overall expression measures for lanes representing different combinations of flow-
cells, library preparations, and biological groups (Brain and UHR). It is immediately
clear that the magnitude of the differences between biological groups dwarfs any of
the experimental effects. Mean-difference scatterplots of log-fold-change vs. overall
expression are preferable to scatterplots of expression measures, as the latter often give
a misleading impression of concordance between samples.
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Replicate lanes Figures 15a and 15b show quantile-quantile (QQ) plots of χ2 goodness-
of-fit statistics for the multiplicative Poisson model fit within sets of replicate lanes for
each UI gene (GLM 1, Table 4). Note that zero-read genes have undefined χ2-statistics
and are not plotted. Each QQ-plot is very close to the 0, 1 line; in particular, at worst
only the top 0.1% of genes (and less than 10 genes for many of the sets of replicates)
do not closely follow the null distribution – a remarkably good fit for non-simulated
data. When goodness-of-fit is assessed without correcting for differences in total num-
ber of reads, the results unsurprisingly show lack-of-fit. Analogous QQ-plots stratified
by read count for MAQC-3 (Figure 23) indicate that genes with a reasonable number
of reads (average of 3 or more reads per lane) show excellent fit; genes with fewer
reads exhibit poor fit. This discrepancy most likely results from the breakdown of the
asymptotic χ2 approximation.

Flow-cell and library preparation effects We assess whether different aspects of
the experimental design (flow-cell, library preparation) influence our ability to esti-
mate the biological effects of interest. In Figures 24c and 24d, we see that when we
ignore flow-cell or library preparation designation, the QQ-plots demonstrate lack-of-
fit as compared to similar plots for replicate lanes. In particular, flow-cell and library
preparation QQ-plots show deviation for the top 1% and 5% of genes, respectively,
whereas analogous plots for replicate lanes only show deviation in the top 0.1% (if
at all). Explicitly adjusting for flow-cell or library preparation effects results in near
linear QQ-plots.

Next, to assess the significance of technical effects compared to biological effects,
we compare various parameterizations of the log-linear regression model using likeli-
hood ratio statistics (Table 4). The count-stratified QQ-plots of Figure 25a demonstrate
that globally, the most significant differences between models are related to biology, as
opposed to flow-cell.

Figure 4 demonstrates that flow-cell effects are much smaller in magnitude than
biological effects. Although a direct comparison of library preparation effects to flow-
cell and biological effects is not possible (due to confounding and nesting in MAQC-2
and MAQC-3, respectively), the boxplots suggest that both technical effects are much
smaller than biological effects.

In summary, the above analysis suggests that there are both flow-cell and library
preparation effects, but of less significance and of smaller magnitude than biological
effects. Ignoring flow-cell has only a minor impact in detecting extremely small bio-
logical differences; almost none when genes have greater than 3 reads/lane.

5.8 Phi X Calibration Analysis
In each flow-cell, one lane out of eight was reserved for sequencing bacteriophage
phi X genomic DNA and used by Genome Analyzer’s base-caller Bustard for base-
calling and quality-scoring (Bentley et al., 2008, Supplementary Information, p. 7).
This practice has important experimental design implications, in terms of sample size
and balance. We used the MAQC-2 dataset to investigate the impact of the calibration
method (phi X calibration vs. auto-calibration) at various levels of the analysis pipeline,
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Table 4: Log-linear regression models. The following class of log-linear regression
models are considered separately for each gene j: log(E[Xi,j |Xi,·]) = logXi,· +
λa(i),j + θi,j . Each row in the table corresponds to a different parameterization of the
biological effect λ (bio) and experimental effect θ, to represent different combinations
of biological, library preparation, and flow-cell effects. Specifically, library preparation
(prep) and flow-cell (fc) effects are denoted, respectively, by βb(i) and γc(i), where a(i),
b(i), and c(i) map lane i to its corresponding biological, library preparation, or flow-
cell group, respectively. Recall that in MAQC-2, biological effects (λ) are confounded
with library preparation effects (β), and in MAQC-3, library preparation effects (β) are
nested within flow-cell effects (γ). The gene index j is omitted to simplify notation.

Dataset Model Formula λa(i) θi # parameters Constraints

MAQC-2

1 1 0 α 1

λBrain = 0, γF2 = 02 1 + bio λa(i) α 2
3 1 + fc 0 α+ γc(i) 2
4 1 + bio + fc λa(i) α+ γc(i) 3

MAQC-3
5 1 0 α 1

βS3 = 0, γF4 = 06 1 + fc 0 α+ γc(i) 2
7 1 + fc:prep 0 α+ βb(i) 4

including base-calling, read-mapping, and (differential) expression inference.

5.8.1 Base-calling and Quality-scoring

We first examine the effect of the calibration method on base-calls by cycle and by lane
(in base-calling, a cycle refers to a position in a read, here, from 1 to 35).

The pseudo-color image in Figure 27 illustrates that there is good overall agreement
between phi X and non-phi X-calibrated reads (less than 3% discrepancy). However,
the discrepancy rate between the base-calls for the two calibration methods varies be-
tween cycles (higher for later cycles) and between lanes and flow-cells (higher for
flow-cell F3). Furthermore, Figure 28 shows that not all base substitutions are equally
likely, with phi X calls of ‘C’ being more frequently assigned another base by auto-
calibration and the ‘C’ to ‘G’ transversion being the most common substitution.

Overall, quality scores assessing the base-calls tend to be higher with auto-calibration.
Figure 30a shows per-cycle quality scores for phi X and non-phi X-calibrated reads av-
eraged across the seven lanes of each flow-cell. The quality scores for auto-calibration
are generally higher at each cycle and, as previously noted, quality degrades through
cycle (Bentley et al., 2008). Flow-cell F3 generally has lower quality scores and much
steeper drops in quality for higher cycles. Additionally, Figure 30b, which shows the
difference in quality scores by lane, demonstrates substantial variation in differences of
quality scores between flow-cells and between lanes within flow-cells. The differences
in base-calling quality scores between flow-cells F2 and F3 may explain the flow-cell
effects reported earlier on downstream gene expression measures.
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5.8.2 Absolute and Relative Expression Measures

Next, we consider the impact of the calibration method on (differential) expression
statistics, based on purity-filtered perfect match (FPM) reads.

The significance of differences in estimates between the two calibration methods
can be assessed by comparing observed differences to a permutation distribution of
differences obtained by randomly swapping the auto-calibrated and phi X-calibrated
sets of read counts for each of the 14 lanes. Such a permutation scheme respects the
joint distribution of gene counts within lane and the experimental design (lane/flow-
cell/library preparation/biological sample structure). The empirical cumulative distri-
bution function (ECDF) and scatterplots of permutation p-values in Figure 31 suggest
that, although small in magnitude, the differences in absolute expression measures are
significant, especially for ROI with large read counts (Figure 31, Panels (a) and (c)).
However, differences in expression fold-changes between UHR and Brain do not ap-
pear to be significant (Figure 31, Panels (b) and (d)).

In summary, while there are some differences between phi X and auto-calibration
in the early stages of the analysis pipeline, the differences in terms of differential ex-
pression are small. Unfortunately, we only have two flow-cells from which to assess
the impact of auto-calibration vs. phi X calibration. However, it seems quite clear,
using these two flow-cells, that auto-calibration is advantageous, as it yields more bal-
anced designs, frees up one lane per flow-cell, and produces a larger number of higher
quality reads per lane.
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(a) UI vs. Ensembl genes
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Figure 19: Union-intersection and Ensembl gene models. Panel (a): Illustration of
union-intersection (UI) and Ensembl gene definitions for two genes (pink and blue)
with multiple isoforms (Section 2.4). The original transcripts, as would be reported by
Ensembl, are displayed in the top panel. Below are the corresponding UI and Ensembl
gene models. Note that because the genes overlap, the entire exon region is removed,
not just the overlap. Panel (b): Illustration of read-counting for a gene with two iso-
forms. Isoform A has a shorter 3’-most exon as compared to Isoform B. The UI gene
model includes the entire 3’-most exon for Isoform A. In addition to reads originating
from the constitutive portion of the UI gene, reads emanating exclusively from Isoform
B may also be counted.
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(b) Length by Ensembl annotation

Figure 20: UI gene Ensembl annotation. Panel (a): Barplots of the distribution of UI
genes by Ensembl annotation. Panel (b): Boxplots of UI gene lengths by Ensembl
annotation. Ensembl annotation categories are sorted in decreasing order of their car-
dinalities; only categories comprising more than ten UI genes are displayed (22 out of
25 categories).
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Figure 21: Base-level read counts. The plot provides two representations of base-level
read counts summed across the seven Brain and seven UHR lanes for Ensembl Gene
ENSG00000117362. Regions corresponding to the union-intersection gene model and
Ensembl transcripts are indicated by dark green and light blue boxes, respectively. The
top two read tracks (Brain, UHR) display numbers of reads with 5’-end at a given base
(Section 2.4). UI gene counts for the Brain and UHR samples are reported below the
tracks; Ensembl gene counts are in parentheses. The t-statistics for UHR vs. Brain dif-
ferential expression are based on GLM adjusting for flow-cell effects (1+bio+fc, Table
4). The second set of tracks (Brain-P, UHR-P) correspond to a “pileup” representation
of “overlap” counts, i.e., of numbers of reads overlapping a given base.
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(a) MAQC-2: Replicate lanes (b) MAQC-2: Lanes across flow-cells

(c) MAQC-3: Lanes across library prep. (d) MAQC-2: Lanes across biological groups

Figure 22: Mean-difference scatterplots of read counts across lanes, flow-cells, library
preparations, and biological groups. Scatterplots of expression fold-changes vs. over-
all expression measures for pairs of lanes representing different combinations of bio-
logical samples, library preparations, and flow-cells. Panel (a): Replicate Brain lanes
in flow-cell F3. Panel (b): Brain lanes in flow-cell F3 vs. F2. Panel (c): UHR library
preparation S4 vs. S3 lanes in flow-cell F4. Panel (d): UHR vs. Brain lanes in flow-
cell F2. Only the qRT-PCR genes are individually plotted as a representative sample
of genes; for comparison, these genes are plotted over the bivariate Gaussian kernel
density smoothers of the MD-plots for all UI genes that contain reads in any lane of
either the MAQC-2 or MAQC-3 datasets. Expression measures were normalized by
total lane counts and then multiplied by 106 to make the scales commensurate when
comparing different numbers of lanes.
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Figure 23: MAQC-3: Goodness-of-fit of ROI-level Poisson model for replicate lanes,
by count. The multiplicative Poisson model of Equation (1) is fit to each UI gene within
library preparation. Goodness-of-fit statistics are computed and displayed in uniform
quantile-quantile plots for the corresponding nominal χ2 p-values. The QQ-plots are
stratified according to UI gene counts averaged over all fourteen lanes. The count strata
partition the UI genes into nine groups of approximately the same cardinality, but vastly
different count ranges.
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(a) MAQC-2: Replicate lanes (b) MAQC-3: Replicate lanes

(c) MAQC-2: Lanes across flow-cells (d) MAQC-3: Lanes across library prep.

Figure 24: MAQC-2 and MAQC-3: Goodness-of-fit of ROI-level multiplicative Poisson
model across lanes, flow-cells, and library preparations. The multiplicative Poisson
model of Equation (1) is fit to the following sets of lanes representing different com-
binations of biological samples, library preparations, and flow-cells. Panel (a): Four
replicate Brain lanes in flow-cell F3. Panel (b): Four replicate UHR lanes of library
preparation S3 in flow-cell F4. Panel (c): Seven Brain lanes across flow-cells F2 and
F3. Panel (d): Fourteen UHR lanes of four library preparations across flow-cells F4
and F5. Goodness-of-fit statistics are computed and displayed in χ2 quantile-quantile
plots. The top 5%, 1%, and 0.1% quantiles are indicated in red, violet, and orange,
respectively.
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(a) MAQC-2 (b) MAQC-3

Figure 25: Count-stratified QQ-plots comparing the fit of log-linear regression mod-
els with various formulations of the biological and experimental effect parameters.
The log-linear regression model of Equation (1) is fit to each UI gene for various for-
mulations of the biological and experimental effect parameters, λ and θ, respectively
(Table 4). Models are compared with log-likelihood ratio statistics and the associated
nominal χ2 p-values are displayed in uniform quantile-quantile plots. The QQ-plots
are stratified according to UI gene counts averaged over all fourteen lanes. The count
strata partition the UI genes into nine groups of approximately the same cardinality,
but vastly different count ranges.
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(b) mRNA-Seq, UI genes

Figure 26: MAQC-2: Differential expression statistics, by GC-content. Panel (a):
Scatterplot of absolute mRNA-Seq DE statistics vs. GC-content for all UI genes.
Panel (b): GC-content-stratified boxplots of absolute mRNA-Seq DE statistics for UI
genes partitioned by GC-content into ten groups of approximately the same cardinal-
ity. For mRNA-Seq, the DE statistics are t-statistics for differences of biological effects
λUHR,j − λBrain,j , based on GLM adjusting for flow-cell effects (1+bio+fc, Equations
(1) and (6), Table 4).
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Base−call % discrepancy by cycle and by lane
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Figure 27: MAQC-2: Impact of phi X calibration, base-calling. Pseudo-color image of
the per cycle and per lane percentage (out of 11,244,980–13,680,634 clusters per lane)
of base-calling differences with and without phi X calibration.
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Figure 28: MAQC-2: Impact of phi X calibration, base-calling. Pseudo-color image
of the per cycle and per lane joint distribution of base-calls with and without phi X
calibration. Each cell in the image corresponds to the percentage (out of 11,244,980–
13,680,634 clusters per lane) of base-call pairs of a given type, at a given cycle and in
a given lane, e.g., an (A,C) pair corresponds to a base-call of ’A’ with phi X and ’C’
without phi X calibration. A base-call of ’N’ is returned when all four fluorescence
intensities are zero. Concordant base-calls are not displayed, as they dwarf discrepant
calls.
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Figure 29: MAQC-2: Impact of phi X calibration, quality-scoring. Pseudo-color image
of the per-cycle distribution of changes in quality scores with vs. without phi X cali-
bration. The frequencies for equal quality scores are not displayed, as they consistently
exceed 75%. Note that a quality change of 5 could correspond to an increase in quality
from 35 with phi X calibration to 40 with auto-calibration, or an increase in quality
from 5 to 10.
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Figure 30: MAQC-2: Impact of phi X calibration, quality-scoring. Plots of per-cycle
average quality scores (out of 11,244,980–13,680,634 clusters per lane) with and with-
out phi X calibration. Panel (a): Average quality scores are averaged across seven lanes
for flow-cells F2 and F3. Panel (b): Average difference of quality scores between phi
X calibration and auto-calibration for fourteen lanes.
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(a) Brain: p-values (b) UHR vs. Brain: p-values

(c) Brain: p-values vs. counts (d) UHR vs. Brain: p-values vs. counts

Figure 31: MAQC-2: Impact of phi X calibration, biological effect estimation. Panel
(a): Empirical cumulative function of permutation p-values for differences in Brain
effects λ̂Brain,j without vs. with phi X calibration. Panel (b): Empirical cumula-
tive distribution function of permutation p-values for differences in biology effects
λ̂UHR,j − λ̂Brain,j , i.e., expression log-ratios, without vs. with phi X calibration. Panel
(c) : Bivariate binned Gaussian kernel density smoother of permutation p-values for
differences in Brain effects λ̂Brain,j vs. read counts summed over the seven Brain
lanes. Panel (d): Bivariate binned Gaussian kernel density smoother of permutation p-
values for differences in biology effects λ̂UHR,j−λ̂Brain,j vs. read counts summed over
all fourteen lanes. Estimates of (absolute and relative) biological effects are based on
GLM with only biological effects: λ̂a,j = log(X+a,j/X+a,·), a ∈ {Brain, UHR},
for the UI genes having non-zero counts with both types of calibration for each of the
fourteen lanes. Two-sided p-values are computed based on 1, 000 random permutations
of the phi X and non-phi X sets of read counts for each of the fourteen lanes (from the
possible 214 = 16, 384), with a floor of 2/1, 000.
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(a) All UI genes (b) qRT-PCR genes

Figure 32: MAQC-2: Impact of phi X calibration, differential expression statistics –
Purity-filtered perfectly matching reads (FPM). Mean-difference scatterplots of DE
statistics without vs. with phi X calibration. Panel (a): All UI genes. Panel (b): genes
assayed by qRT-PCR. DE statistics are t-statistics for differences of biological effects
λUHR,j − λBrain,j , based on GLM adjusting for flow-cell effects (1+bio+fc, Equations
(1). Genes are declared differentially expressed if their nominal Bonferroni Gaussian
adjusted p-values do not exceed 0.05. Discrepant DE calls are highlighted using red
and green plotting symbols: red for DE according to phi X base-called lanes only and
green for DE according to non-phi X base-called lanes only.
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