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1 Introduction

Modern epidemiology faces many challenges in identifying real exposure effects on disease
risks. This is particularly true in studies of environmental chemical exposures where popu-
lation effects are likely small, measurement error is large, and a priori knowledge regarding
the complex relationships between the many chemicals under study limited. Clearly, suc-
cessful identification of real effects must start with proper study design, including limitation
of measurement error and collection of sufficient data on confounders. However, even under
the strong assumption of perfect study design, many exposure effects reported in the liter-
ature may not be real due to the approach to data analysis. Specifically, we consider three
problems with ‘typical’ approaches to data analysis:

1. Failure to define a meaningful measure of effect;

2. Failure to account for the use of exploratory, data-adaptive methods with regard to
inference;

3. Failure to account for multiple testing.

In this paper, we propose an algorithm designed to address each of these limitations in
turn by combining recent advances in the causal inference and multiple-testing literature
along with modifications to traditional non-parametric inference methods. Specifically, this
algorithm does the following:

1. Estimates a population intervention model, for which we use a recently introduced
parameter from the causal inference literature [Hubbard and van der Laan, 2005] nat-
urally suited to environmental epidemiologic questions;

2. Provides marginal inference for this effect estimate based on a modified version of
the conditional permutation test [Rosenbaum, 1984] to account for the presence of
high-dimensional covariates using the propensity score;

3. Provides joint inference for multiple effect estimates using the Quantile Transformation
Method [van der Laan and Hubbard, 2006].

We further describe an application of this algorithm to data collected from the Center for
the Health Assessment of Mothers and Children of Salinas (CHAMACOS) project [Eskenazi
et al., 2006]. This constitutes the first reported application of the estimation and infer-
ence methods referred to above to an environmental epidemiological data set. CHAMACOS
is a longitudinal birth cohort study aimed at assessing the effects of pesticides and other
environmental exposures on health outcomes in pregnant women and their children. The
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CHAMACOS data set contains information on on birth outcomes among Latina mothers,
neurobehavioral outcomes, hundreds of covariates and over one hundred exposure measure-
ments representing at least 40 different chemicals. CHAMACOS is one of the first com-
prehensive studies of the impacts of chronic low-level pesticide exposure on human health,
particularly in children.

In §2 we provide more background on the problems with ‘typical’ data analysis enumer-
ated above and briefly describe how components of the proposed machine-learning algorithm
address these problems. In §3 we define the data structure and parameters of interest. In
§4 we describe the CHAMACOS data set in more detail. In §5 we describe estimation and
inference for parameters of interest according to the components of the algorithm. In §6
we describe results of an application of this algorithm to the CHAMACOS data. In §7 we
provide a discussion.

2 Background

1. Failure to define a meaningful measure of effect: As a simple abstract example, consider
a study of the effect of some baseline level of a chemical exposure A on a continuously
measured disease outcome Y . Further assume that a high-dimensional covariate vector
W is observed containing sufficient data on confounders of the exposure effect. A typical
approach to data analysis would likely involve regressing Y on a function of A and W .
The likely reported exposure effect in this case would be the estimated coefficient on A in
the postulated regression model. Assuming the regression model is correct, this coefficient
represents the effect of A on Y , conditional on the covariates in W .

While this measure of effect has the advantage of being easily computed, it is often not
very meaningful. Recall that the purpose of including W in our linear regression model is to
adjust for confounding (remove bias). These variables are not included in the model because
we are explicitly interested in the effect of A on Y conditional on all of these variables. The
true parameter of interest is likely the marginal effect of A on Y , or, possibly this effect
conditional on only a small subset of W , V ∈ W . For example, one might be interested in
estimating the effect of exposure on the outcome separately in women and men.

Estimation of marginal structural models (MSM) introduced by Robins [1998] provides
an alternative to traditional regression approaches. In particular, the parameters of MSMs,
which model the distributions of counterfactual or potential outcomes under hypothetical
exposure levels, represent marginal or conditional effects directly of interest. MSMs are
estimated using inverse-probability weighting (IPW) or doubly-robust extensions (DR-IPW)
[van der Laan and Robins, 2003]. The first component of the proposed algorithm discussed
here consists of estimation of a recently proposed new class of models based on the MSM
termed population intervention models [Hubbard and van der Laan, 2005]. These models
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are also estimated using IPW or DR-IPW and are particularly relevant to population-based
studies of risk factors.

2. Failure to account for the use of exploratory, data-adaptive methods with regard
to inference: In both traditional regression approaches and estimation of MSMs, we are
required to make modeling assumptions about nuisance parameters; that is, aspects of the
true data-generating mechanism beyond assumptions about the exposure effect of interest. In
traditional regression approaches such as that described above, we must make assumptions
regarding the distribution of Y given A and W . In estimation of MSMs, we must make
assumptions regarding either the distribution of Y given A and W or the distribution of A
given W (often referred to as the ‘treatment mechanism’). Data-adaptive approaches are
ubiquitously used to estimate these nuisance parameters. In the case of traditional regression
approaches, the use of such techniques is rarely reported. Even if they are reported, they are
even less frequently accounted for in inference on estimated exposure effects. Alternatively,
parametric assumptions are usually used to make inference that no longer hold when the
form of nuisance parameters are selected data-adaptively.

The second component of the proposed algorithm attempts to address this problem
through the use of a version of the conditional permutation test designed to provide more
robust inference for the IPW and DR-IPW population intervention model estimators.

3. Failure to account for multiple testing : High-dimensional epidemiological data sets
often involve testing multiple exposure effects on multiple outcomes. Despite this, most
reports fail to account for multiple-testing in claims of statistical significance. This is mainly
the result of the overly conservative nature of well-known multiple testing procedures (MTPs)
such as the Bonferroni procedure.

The third component of the algorithm implements the Quantile Transformation Method
[van der Laan and Hubbard, 2005], an MTP which appropriately adjusts for multiple testing
(i.e. controls the appropriate type I error rate at some desired level α) and has been shown
to be more powerful in simulation studies to alternative MTPs [Chen et al., 2007].

More detail regarding each of the components of the algorithm is provided in §5.

3 Data structure and parameters of interest

We assume we observe n i.i.d. copies of

O = {W,A, Y }.

We define W as a p-dimensional vector of covariates; A = (A1, . . . , Aj, . . . Aq) where Aj is
the jth exposure of interest; Y = (Y1, . . . , Yk, . . . , Yr) where Yk is the kth outcome of interest.
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We assume a time-ordering of variables such that W precedes A which precedes Y . In order
to define our parameter of interest, we view this observed data structure as a missing data
structure, where the full, unobserved data structure consists of both the observed data and,
for all j, k, the possibly unobserved counterfactual outcome Yaj ,k, aj ∈ Aj. Specifically, Yaj ,k

represents the kth outcome an individual would have experienced had they, possibly contrary
to fact, received level aj for the jth exposure of interest, for Aj the set of all possible levels
of this exposure.

We make the following three identifying assumptions in order to link the observed and
full data structures for all j, k:

1. Consistency assumption: Aj = aj =⇒ Yaj ,k = Yk.

2. No unmeasured confounding (sequential randomization) assumption: Yaj ,k

∐
Aj|W .

3. Experimental treatment assignment (ETA) assumption: 0 < Pr(Aj = aj|W ) < 1 for
all aj ∈ Aj.

Of these identifying assumptions, only violations of the ETA assumption may be empirically
examined based on the observed data.

We define the parameter of interest, for all j, k, by:

ψaj ,k = E[Yaj ,k]− E[Yk]. (1)

A population intervention model is a model for this parameter [Hubbard and van der Laan,
2005]. When aj = 0 represents the level unexposed, ψ0j ,k may be interpreted as the effect
of removing the jth exposure on the mean of the kth outcome in the target population (a
measure akin to attributable risk).

Here we will consider only the marginal causal effect (1). However, as formalized in
Hubbard and van der Laan [2005], (1) may be extended to models conditional on a subset
of covariates V ∈ W . That is, we may define the alternative parameter:

ψ(V )aj ,k = E[Yaj ,k|V ]− E[Yk|V ].

Here we interpret ψ(V )0j ,k as the effect of removing the jth exposure on the mean of the kth

outcome in the target population within specific strata of V (e.g. amongst men or amongst
women).

For simplicity, we will also only consider constant models for (1) or ψaj ,k = βaj ,k. In
general, however, (1) may be a function of aj such that ψaj ,k = m(aj|βj,k) for some Euclidean
parametrization βj,k → m(aj|βj,k) Hubbard and van der Laan [2005]. Allowing (1) to be a
function of aj can reduce variability of estimators when aj has many categories or is measured
continuously. This is at the expense of bias if this parametric assumption is incorrect.
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4 CHAMACOS data description

Study participants were recruited amongst pregnant women initiating prenatal care at Na-
tividad Medical Center, a county hospital in the city of Salinas, California, or at Cĺınica de
Salud del Valle de Salinas in the Salinas Valley, California. The recruitment sites serve a
majority of low-income individuals, with a large proportion working in agriculture. Eligible
women were less than 20 weeks gestation, 18 years or older, Medi-cal eligible, fluent in En-
glish and/or Spanish, and planning to deliver at Natividad Medical Center. A total of 601
women were enrolled between October 1999 and October 2000. Of these, 536 continued in
the study through delivery. Based on these 536 deliveries to 531 Latina women, the data set
consists of information on 542 infants (536 live infants, 3 still-born infants, and 2 neonatal
deaths). Chemical exposure measurements were taken at approximately 26 weeks gestation
and again post-delivery (not all women had both samples) via maternal blood samples. For
a more detailed description of data collection procedures, see Eskenazi et al. [2006], Fenster
et al. [2007] and Chevrier et al. [2008].

A subset of the variables in the CHAMACOS data set is used for illustration pur-
poses in this article. These consist of four birth outcomes (Y ), 30 chemical exposures (A)
and 13 covariates (W ). Outcomes include birthweight (grams), gestational age (weeks),
head circumference (cm), and length (cm). Exposures include 19 polychlorinated biphenyls
(PCBs) (18, 28, 44, 49, 52, 66, 74, 99, 101, 118, 138, 146, 153, 156, 180, 183, 187, 194,
201) and 11 organochlorines (OCs). The 11 OCs include (table abbreviations in paren-
theses): β-hexachlorocyclohexane (BHC); Dieldrin (DIE); γ-hexachlorocyclohexane (GHC);
hexachlorobenzene (HCB); Heptachlor epoxide (HPE); Mirex (MIR); o,p´-DDT (ODT);
Oxychlordane (OXY); p,p´-DDE (PDE); p,p´-DDT (PDT); and trans-Nonachlor (TNA).
The primary exposure levels used for all chemicals were those taken during pregnancy. How-
ever, if this level was missing and the post-delivery level was non-missing, the latter was used.
All exposure measurements were measured in ng/g and lipid-adjusted. Values below the limit
of detection (LOD) were imputed as LOD/2. Observations were assigned Aj = 0 if their
observed level of the jth chemical was in the bottom quartile of the empirical distribution of
Aj.

Baseline covariates included: infant sex; pre-pregnancy BMI (underweight or normal,
overweight, obese); marital status (single, married/living as married); poverty level (at or
below poverty level, ≥200% poverty level); maternal education (≤6th grade, 7-12th grade,
≥high school graduate); parity (0, ≥1); number of years in the US (≤1, 2-5, 6-10, 11+);
country of origin (US, Mexico or Other); gestational age at first prenatal visit (weeks); and
maternal age at delivery (years). Poverty level was calculated by dividing household income
by the number of people supported by that income and comparing this value to federal
poverty thresholds [U.S. Census Bureau, 2000].

In estimating associations where the exposure of interest was a PCB, three OCs (p,p´-
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DDE; p,p´-DDT; o,p´-DDT) were considered for any data-adaptive selection of models in
addition to the baseline covariates W . For associations where this exposure was an OC, the
sum of all 19 PCBs was considered in addition to the baseline covariates. Only non-missing
PCBs were included in the sum for each observation.

The final analysis was limited to observations non-missing on all of these 13 covariates.
This reduced the data set from 542 to 380 observations.

5 Methods

5.1 Estimation: IPW and DR-IPW estimation of the Population
Intervention Model

Let aj = 0 and ψaj ,k ≡ ψj,k. Using the estimating equation methodology of [van der Laan
and Robins, 2003] the IPW and DR-IPW estimators of ψj,k for the constant population
intervention model ψj,k = βj,k are defined, respectively, as follows [Hubbard and van der
Laan, 2005]:

ψ̂j,k =
1

n

n∑
i=1

Di(j, k, ĝj)

=
1

n

n∑
i=1

I(Ai = 0)

ĝj(0|Wi)
Yi − Ȳ (2)

and

ψ̂j,k =
1

n

n∑
i=1

Di(j, k, ĝj, Q̂j,k)

=
1

n

n∑
i=1

I(Ai = 0)

ĝj(0|Wi)
Yi − Ȳ

− I(Ai = 0)− ĝj(0|Wi)

ĝj(0|Wi)
Q̂j,k(0,Wi), (3)

where ĝj ≡ ĝj(0|W ) ≡ P̂ r(Aj = 0|W ) and Q̂j,k ≡ Q̂j,k(0,W ) ≡ Ê[Yk|Aj = 0,W ] are data-
adaptively selected estimates of the nuisance parameters gj ≡ gj(0|W ) ≡ Pr(Aj = 0,W ) and

Qj,k ≡ Qj,k(0,W ) ≡ E[Yk|Aj = 0,W ], respectively. ψ̂j,k as defined by (2) will be a consistent

estimator of the true ψj,k if the data-adaptively selected form of ĝj(0|W ) is correct. ψ̂j,k as
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defined by (3) will be a consistent estimator of the true ψj,k if either the data-adaptively

selected form of ĝj(0|W ) or the data-adaptively selected form of Q̂j,k(0|W ) is correct.

For the application of the machine learning algorithm, data-adaptively selected estimates
of these nuisance parameters were obtained using the Deletion/Substitution/Addition (DSA)
algorithm (Sinisi and van der Laan [2004]). The DSA algorithm is a data-adaptive modeling
routine which uses cross-validation, based on the squared error (L2) loss function, to obtain
a best model based on a set of candidate estimators. The space of candidate estimators
is limited by three variables: the maximum allowable model size, the maximum order of
interactions, and the maximum sum of powers on a single model term. In the estimation of
both gj(0|W ) and Qj,k(0,W ), values for these limiting parameters were selected as 6, 2 and
3, respectively.

Estimates of gj(0|W ) were truncated such that values were restricted above 0.1 in order
to reduce variability associated with practical ETA violations. The possible implications of
truncation, as well as the presence of practical ETA violations, on IPW estimates is discussed
in §6.

5.2 Marginal inference: a modified conditional permutation test

Contrary to the estimators (2) and (3) above, assume that the correct forms of the nuisance
parameters gj and Qj,k are known a priori with corresponding maximum likelihood estimates

ĝ∗j and Q̂∗
j,k. Alternative IPW and DR-IPW estimators of ψj,k to (2) and (3) are, in turn,

defined as:

ψ̂∗j,k =
1

n

n∑
i=1

Di(j, k, ĝ
∗
j ) (4)

and

ψ̂∗j,k =
1

n

n∑
i=1

Di(j, k, ĝ
∗
j , Q̂

∗
j,k) (5)

It has been shown [van der Laan and Robins, 2003, Hubbard and van der Laan, 2005]
that, for both (4) and (5),

√
n(ψ̂∗j,k − ψ0

j,k) −→ N(0, σ2
j,k) for ψ0

j,k the true population value
of ψj,k. Conservative estimates of σ2

j,k can be obtained using

σ̂2
j,k =

var(D(j, k, ĝ∗j ))

n
(6)

and

σ̂2
j,k =

var(D(j, k, ĝ∗j , Q̂
∗
j,k))

n
(7)
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for (4) and (5), respectively, where var(D(j, k, ĝ∗j )) and var(D(j, k, ĝ∗j , Q̂
∗
j,k)) are obtained

using the sample variance.

However, the forms of gj and Qj,k are rarely known a priori and thus inference will
almost always be based on the estimators (2) or (3). Here we propose an exact test of the
null hypothesis that Aj and Yk are independent based on the estimators (2) or (3) using a
modification of the conditional permutation test.

First, we define how the conditional permutation test of this null hypothesis is imple-
mented when W is of small dimension and consists of only covariates with few categories:

• Calculate the test statistic T =
ψ̂j,k√
σ̂2

j,k

for ψ̂j,k defined by (2) or (3) and, accordingly,

σ̂2
j,k defined by (6) or (7), using the original observed data.

• Randomly permute the values of Aj within each stratum of W and recalculate the test
statistic based on this permutation.

• Repeat the previous step B times to obtain a B-length vector of test statistics T0 =
(T01, ..., T0B).

• To obtain a p-value (p), calculate the proportion of elements in T0 for which the
absolute value exceeds the absolute value of the original test statistic calculated from
the observed data.

T0 is referred to as the conditional permutation distribution of T . The conditional permu-
tation test rejects the null hypothesis of independence between Aj and Yk given W if p < α
for some pre-specified level α (e.g. α = 0.05).

Note that this testing procedure will still retain correct type I error control at level α even
when the test statistic is defined using poor estimates of σ2

j,k (which, as noted above, may
be the case when estimators of the exposure effect are based on data-adaptively selected
estimates of nuisance parameters). Testing procedures using the conditional permutation
distribution as the assumed null will still retain correct type I error control when the standard
error is over or underestimated due to the fact that the test statistic can be defined as any
algorithm of the data.

In practice however, testing using the conditional permutation test may be infeasible.
Specifically, permutation within W becomes difficult when W is high-dimensional or even
has one element with continuous values. Here we present an ad hoc modification of the
conditional permutation test for more general W which uses ĝj, the estimated treatment
mechanism or propensity score, when gj is assumed to follow a logistic model. This modified
approach is implemented as the second step of the proposed machine-learning algorithm.
Specifically,
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• Obtain an estimate of the propensity score, ĝj(0|W ), for each observation using stan-
dard logistic regression.

• Order the data by these estimated probabilities, ĝj(0|W ).

• Group observations so that, within each group, the minimum number with Aj = 0 or
Aj = 1 is M . This grouping constitutes a new categorical variable W ∗.

• Follow the steps above for performing the conditional permutation test, permuting
within strata of W ∗ in place of W .

Use of this version of the conditional permutation test assumes that each category of
W ∗ will contain individuals with comparable values on the covariates W . The method of
grouping we propose is one of a variety of ad hoc procedures which have been suggested for
obtaining these categories based on the propensity score, including that originally proposed
by Rosenbaum [1984] based on a backtrack algorithm. Simulation studies have suggested
that defining W ∗ using our approach successfully controls the type I error rate at the desired
level α.

In the application to CHAMACOS, the conditional permutation distribution for each
test was based on B = 5, 000 permutations, with categories for W ∗ defined by M = 2. As
discussed extensively above, ĝj(0|W ) generally represents a data-adaptively selected estimate
of the true propensity score. In the application of these methods to the CHAMACOS data
set, we found that programs took an unreasonable amount of time to run when the form
of ĝj(0|W ) was reselected data-adaptively within each permutation iteration. To address
this issue, forms for ĝj selected using the DSA on the original data were reused, with model
coefficients re-estimated using maximum likelihood within each permutation.

5.3 Joint inference: Quantile Transformation Method

The previous section describes marginal inference based on estimates of the effect of a single
exposure Aj on a single outcome Yk. Usually we will be interested in testing multiple
exposure-outcome associations. If we are testing hypotheses regarding all exposure-outcome
combinations, we will have a total of m = q × r tests. As described in §4, the CHAMACOS
data set consists of 30 chemical exposures and 4 outcomes, resulting in a total of 120 tests.

While in environmental epidemiology the value of m is generally substantially greater
than one, reported approaches to inference usually ignore the multiple testing problem. In
particular, these reports fail to correctly define the false positive or type I error rate in terms
of the total number of false positives, Vn. Note that Vn is a random variable which can take
on the values zero or one in the case where m = 1 and any value between zero and the
total number of true null hypotheses amongst the m tests in the case where m > 1. There
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are various forms for the type I error rate, depending on the type and stringency of control
desired by the investigator. For the purposes of this discussion and in the application below,
we focus on controlling the family-wise error rate (FWER) or P (Vn > 0) at α.

Failure to correctly define the type I error rate appropriately in most reported epidemi-
ologic investigations is likely due to the fact that the well-known and easily implemented
Bonferroni procedure is overly conservative. Specifically, it requires the (unlikely true) as-
sumption that all m tests are independent, rejecting the null hypothesis for p < α

m
. Intu-

itively, one can imagine that if all m tests are perfectly correlated, we should divide by one in
place of m. Multiple testing procedures (MTPs) which, in addition to correctly controlling
the type I error rate below α, further maximize power through use of information on the
joint dependence structure of the test statistics are preferable.

The third step of the algorithm implements one such approach, referred to as the Quantile
Transformation Method (van der Laan and Hubbard [2005]). The Quantile Transformation
Method is a resampling-based method which essentially incorporates the desirable charac-
teristics of currently available MTPs, including the use of information on the dependence
structure of the test statistics. This approach is an extension of a resampling-based method,
originally proposed by Pollard and van der Laan [2003] and further developed by Dudoit
et al. [2004], which creates an appropriate joint null distribution using the bootstrap. The
observed m test statistics are then compared to this estimated joint null to obtain p-values.
P-values obtained via some MTP are generally referred to as adjusted and those obtained
otherwise as raw or marginal.

To implement the Quantile Transformation method:

• Sample with replacement (or bootstrap) the observed data (W,A, Y ) amongst the n
observations.

• Calculate the m-length vector of test statistics based on this new sample.

• Repeat these first two steps B2 times to obtain a m×B2 matrix of test statistics, T#,
where T#

l,b represents the test statistic obtained from the bth bootstrap sample for the

lth test, l = 1, . . . ,m, b = 1, ..., B2.

• Using the lth row of T#, calculate the empirical bootstrap distribution Qnl for the
lth test statistic Tl, where Qnl(t) = Pn(Tl < t). This results in a m × B2 matrix of
estimated probabilities, Qn.

• Apply the quantile-function (or inverse probability function) Q−1
0l (x) to the lth row of

Qn, defining Q−1
0l in terms of the assumed null distribution for the lth test statistic.

This maps Qn to a new m × B2 matrix, Q−1
0 , representing a joint null distribution

for the observed m test statistics. For example, for x = 0.5, Q−1
0l (x) is the median

of the null distribution for the lth observed test statistic. Note that Q−1
0l can be the
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inverse probability function for any desired marginal null distribution for the lth test
statistic. In our case, we define the marginal null distribution in terms of the modified
conditional permutation distribution described in §5.2.

Once the joint null distribution, Q−1
0 for the m test statistics is obtained, various MTPs

can be applied to obtain an adjusted p-value. In our application to CHAMACOS we apply
the single-step minP approach, which converts the matrix Q−1

0 to p-values based on the
distribution of each row. The adjusted p-value is then obtained by comparing the lth raw
p-value to the distribution of the minimum from each column. The FWER is controlled at
α by rejecting the null hypothesis for a given test when the adjusted p-value is less than
α. For an extensive review of various MTPs, including minP and maxT, see Dudoit et al.
[2004], van der Laan et al. [2004b], and van der Laan et al. [2004a].

In our data application, the joint null distribution of the test statistics was estimated
using B2 = 5, 000 bootstrap samples. As in the case of the modified conditional permutation
tests, we found unreasonable computing times when the forms of ĝj and Q̂j,k were re-selected

using the DSA within each bootstrap iteration. Again, here, the forms of ĝj and Q̂j,k chosen
by the DSA using the original sample data were re-used within each bootstrap iteration with
model coefficients re-estimated using maximum likelihood based on the bootstrap sample.

6 Results

Tables 1 through 4 present results based on estimates of (1) unadjusted for W . The form of
the unadjusted estimator is identical to that of the IPW estimator (2) with the weights ĝj
calculated as the proportion of observations with Aj = 0 (this is simply the difference between
the mean of the outcome amongst the baseline exposure group or A = 0 and the overall
mean). All p-values (both raw and adjusted) in Tables 1 through 4 are obtained from the
simple permutation distribution; that is, only the Aj’s are permuted as there are no variables
in W considered. Tables 5 through 8 and 9 through 12 present results based on the IPW and
DR-IPW estimates of (1), respectively. For comparison purposes, Tables 5 through 12 present
p-values based on both the conditional permutation distribution and the standard Normal.
Adjusted p-values are presented based on both the Bonferroni and Quantile Transformation
Methods. Results are separated by outcome for ease of presentation, however, adjusted
p-values take into account all 120 tests.

Out of the 120 tests of association, the algorithm found only one significant associa-
tion defining α = 0.1 between HPE (j = 24) and head circumference (k = 3) with the
DR-IPW estimator ψ̂24,3 = −0.507 and an adjusted p-value of 0.079 obtained using the
Quantile Tranformation Method with marginal distribution defined by the modified condi-
tional permutation distribution. This suggests, assuming our identifying assumptions hold,
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that infant head circumference would decrease 0.507 cm on average were all maternal HCB
levels changed to the bottom quartile of the observed distribution compared to the mean of
observed maternal HCB levels.

Note that results based on the unadjusted estimate of (1) and the IPW adjusted estimate
should be identical when the model selected by the DSA for ĝj(0|W ) is constant (i.e. no
variables in W predict exposure). Despite this, marginal p-values based on the unadjusted
estimator in Tables 1 through 4 differ slightly from marginal p-values based on the IPW
estimator reported in Tables 5 through 8, even in the case where ĝj(0|W ) is constant. This
is because the latter are obtained by conditionally permuting Aj within levels of W ∗ whereas
the former are obtained by simply permuting Aj marginally. In this case, the unadjusted
estimator is to be preferred. We recalculated the Quantile Transformation Method adjusted
p-values replacing the conditional permutation distributions of the IPW estimator with the
simple permutation distribution of the unadjusted estimator in cases where the model se-
lected by the DSA for ĝj(0|W ) was constant and resulting adjusted p-values were essentially
unchanged.

Again, the consistency of our IPW and DR-IPW estimates of (1) relies on the ETA
assumption. Our use of truncated weights is an attempt to reduce variability in the presence
of possible practical ETA violations at a cost to bias resulting from misspecification of the
treatment mechanism (estimates in Tables 5 through 12 are starred where truncation is
used). There are methods to examine the bias due to the ETA assumption [Wang et al.,
2006], as well as other parameters one could estimate that are less like to suffer from such
a bias [van der Laan and Petersen, 2007]. For now, we take this relative simple, ad hoc
approach, noting that other more detailed diagnostics and alternative parameter estimates
are available.

To illustrate differences between the standard Normal and the modified conditional per-
mutation distribution, Figure 1 overlays the cumulative distribution functions of these two
possible distributions for the test statistic associating head circumference and PCB 18 based
on the DR-IPW estimator. It is clear from this figure that the modified conditional per-
mutation distribution is similar to that of the standard Normal but with variance less than
one. Table 14 presents standard errors for this same estimator based on both the influence
curve as defined in equation (7) and based on 5000 bootstrap samples. The standard error
estimate based on the bootstrap is smaller than that based on the influence curve, suggesting
the latter is overly conservative. Similarly, we see from Table 14 that the bootstrap estimate
of the variance of the test statistic (also based on 5000 samples) is smaller than one.

Table 15 provides an overall summary of the bootstrapped estimates of the variance of
the test statistic for all 120 tests based on both the IPW and DR-IPW estimators. In almost
all cases we see that the standard error estimate based on the influence curve using (6) and
(7) is likely overly conservative. Specifically, for all but one test statistic based on the DR
estimator, the bootstrapped estimate of the variance is less than one.
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Table 1: Unadjusted estimates for associations between birthweight and each exposure (exp),
number of observations nonmissing on exposure and birthweight (N), standard errors (SE),
test statistics (T), raw, Bonferroni (Bon) adjusted, and Quantile Transformation Method
(QTM) adjusted p-values from the simple permutation distribution.

exp N Estimate SE T Raw Bon QTM
18 370 13.005 317.976 0.041 0.767 1 1
28 380 28.418 316.007 0.090 0.523 1 1
44 314 -0.170 344.926 0 0.996 1 1
49 331 7.162 337.755 0.021 0.883 1 1
52 346 4.949 328.513 0.015 0.914 1 1
66 369 -41.358 316.033 -0.131 0.364 1 1
74 361 31.024 326.411 0.095 0.499 1 1
99 348 1.842 327.128 0.006 0.968 1 1
101 320 -30.840 339.483 -0.091 0.527 1 1
118 357 -24.156 323.043 -0.075 0.592 1 1
138 349 13.760 331.318 0.042 0.771 1 1
146 332 51.385 339.956 0.151 0.289 1 1
153 358 38.775 324.686 0.119 0.410 1 1
156 363 12.080 321.566 0.038 0.790 1 1
180 299 78.942 360.732 0.219 0.121 1 1
183 348 -13.530 327.068 -0.041 0.769 1 1
187 301 5.280 349.869 0.015 0.920 1 1
194 352 23.184 325.597 0.071 0.617 1 1
201 364 86.716 327.164 0.265 0.062 1 0.994
BHC 378 -30.137 312.673 -0.096 0.485 1 1
DIE 359 -55.315 317.487 -0.174 0.210 1 1
GHC 374 -41.242 310.737 -0.133 0.344 1 1
HCB 380 10.597 314.626 0.034 0.804 1 1
HPE 363 -99.235 311.674 -0.318 0.024 1 0.874
MIR 379 22.162 315.213 0.070 0.616 1 1
ODT 380 -48.624 310.020 -0.157 0.277 1 1
OXY 358 -21.733 319.736 -0.068 0.633 1 1
PDE 380 2.650 314.704 0.008 0.947 1 1
PDT 380 -41.688 311.300 -0.134 0.338 1 1
TNA 380 1.901 313.407 0.006 0.965 1 1
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Table 2: Unadjusted estimates for associations between gestational age and each exposure
(exp), number of observations nonmissing on exposure and gestational age (N), standard
errors (SE), test statistics (T), raw, Bonferroni (Bon) adjusted, and Quantile Transformation
Method (QTM) adjusted p-values from the simple permutation distribution.

exp N Estimate SE T Raw Bon QTM
18 370 0.138 3.506 0.039 0.318 1 1
28 380 0.013 3.460 0.004 0.909 1 1
44 314 -0.047 3.800 -0.012 0.753 1 1
49 331 0.046 3.707 0.012 0.750 1 1
52 346 0.102 3.618 0.028 0.477 1 1
66 369 -0.212 3.497 -0.061 0.129 1 1
74 361 -0.009 3.552 -0.002 0.945 1 1
99 348 0.072 3.624 0.020 0.626 1 1
101 320 -0.034 3.766 -0.009 0.814 1 1
118 357 -0.093 3.570 -0.026 0.510 1 1
138 349 0.094 3.653 0.026 0.530 1 1
146 332 0.286 3.729 0.077 0.054 1 0.989
153 358 0.123 3.563 0.035 0.393 1 1
156 363 0.127 3.544 0.036 0.358 1 1
180 299 0.084 3.900 0.022 0.586 1 1
183 348 0.333 3.646 0.091 0.019 1 0.808
187 301 0.196 3.879 0.051 0.205 1 1
194 352 0.134 3.606 0.037 0.358 1 1
201 364 0.165 3.551 0.046 0.237 1 1
BHC 378 -0.086 3.451 -0.025 0.535 1 1
DIE 359 0.078 3.559 0.022 0.585 1 1
GHC 374 -0.031 3.472 -0.009 0.817 1 1
HCB 380 0.161 3.474 0.046 0.235 1 1
HPE 363 0.055 3.539 0.016 0.680 1 1
MIR 379 -0.050 3.454 -0.014 0.712 1 1
ODT 380 -0.050 3.457 -0.014 0.727 1 1
OXY 358 0.162 3.564 0.045 0.251 1 1
PDE 380 0.013 3.462 0.004 0.935 1 1
PDT 380 -0.039 3.458 -0.011 0.785 1 1
TNA 380 0.118 3.470 0.034 0.379 1 1
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Table 3: Unadjusted estimates for associations between head circumference and each ex-
posure (exp), number of observations nonmissing on exposure and head circumference (N),
standard errors (SE), test statistics (T), raw, Bonferroni (Bon) adjusted, and Quantile Trans-
formation Method (QTM) adjusted p-values from the simple permutation distribution.

exp N Estimate SE T Raw Bon QTM
18 360 0.119 3.137 0.038 0.381 1 1
28 370 0.157 3.086 0.051 0.242 1 1
44 306 0.169 3.424 0.049 0.250 1 1
49 323 0.106 3.312 0.032 0.461 1 1
52 336 0.104 3.274 0.032 0.473 1 1
66 359 -0.014 3.125 -0.004 0.921 1 1
74 351 0.045 3.163 0.014 0.754 1 1
99 340 -0.159 3.229 -0.049 0.256 1 1
101 311 0.089 3.396 0.026 0.551 1 1
118 347 -0.112 3.168 -0.035 0.420 1 1
138 340 -0.138 3.228 -0.043 0.324 1 1
146 324 -0.077 3.283 -0.023 0.597 1 1
153 348 -0.094 3.171 -0.030 0.497 1 1
156 353 -0.200 3.076 -0.065 0.124 1 1
180 290 0.109 3.455 0.031 0.465 1 1
183 339 -0.253 3.166 -0.080 0.064 1 0.995
187 292 -0.187 3.354 -0.056 0.190 1 1
194 343 -0.056 3.141 -0.018 0.683 1 1
201 354 -0.166 3.123 -0.053 0.213 1 1
BHC 368 -0.152 3.078 -0.050 0.251 1 1
DIE 350 -0.254 3.133 -0.081 0.056 1 0.991
GHC 364 -0.122 3.098 -0.039 0.351 1 1
HCB 370 -0.197 3.077 -0.064 0.136 1 1
HPE 353 -0.483 3.094 -0.156 0 0 0
MIR 369 -0.038 3.024 -0.013 0.768 1 1
ODT 370 -0.236 3.073 -0.077 0.075 1 0.997
OXY 349 -0.259 3.108 -0.083 0.054 1 0.989
PDE 370 -0.021 3.115 -0.007 0.877 1 1
PDT 370 -0.149 3.081 -0.049 0.257 1 1
TNA 370 -0.157 3.036 -0.052 0.226 1 1
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Table 4: Unadjusted estimates for associations between length and each exposure (exp),
number of observations nonmissing on exposure and length (N), standard errors (SE), test
statistics (T), raw, Bonferroni (Bon) adjusted, and Quantile Transformation Method (QTM)
adjusted p-values from the simple permutation distribution.

exp N Estimate SE T Raw Bon QTM
18 366 -0.351 4.501 -0.078 0.122 1 1
28 376 -0.172 4.472 -0.038 0.450 1 1
44 312 -0.270 4.896 -0.055 0.278 1 1
49 328 -0.391 4.766 -0.082 0.106 1 1
52 342 -0.211 4.668 -0.045 0.372 1 1
66 365 -0.228 4.543 -0.050 0.313 1 1
74 357 0.111 4.628 0.024 0.630 1 1
99 344 0.114 4.733 0.024 0.633 1 1
101 316 -0.380 4.857 -0.078 0.117 1 1
118 354 0.061 4.687 0.013 0.785 1 1
138 345 0.269 4.786 0.056 0.272 1 1
146 328 0.276 4.873 0.057 0.260 1 1
153 354 0.218 4.658 0.047 0.360 1 1
156 359 0.092 4.598 0.020 0.694 1 1
180 296 0.538 5.153 0.104 0.037 1 0.956
183 345 0.188 4.714 0.040 0.423 1 1
187 297 0.295 5.035 0.059 0.247 1 1
194 348 0.071 4.696 0.015 0.774 1 1
201 360 0.397 4.622 0.086 0.082 1 0.999
BHC 374 0.052 4.555 0.011 0.826 1 1
DIE 355 -0.212 4.626 -0.046 0.353 1 1
GHC 370 -0.138 4.497 -0.031 0.543 1 1
HCB 376 -0.114 4.478 -0.025 0.609 1 1
HPE 359 -0.313 4.592 -0.068 0.166 1 1
MIR 375 0.145 4.500 0.032 0.518 1 1
ODT 376 0.189 4.539 0.042 0.411 1 1
OXY 354 -0.083 4.599 -0.018 0.724 1 1
PDE 376 0.220 4.605 0.048 0.347 1 1
PDT 376 0.198 4.571 0.043 0.397 1 1
TNA 376 -0.011 4.488 -0.002 0.965 1 1
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Table 5: IPW estimates for associations between birthweight and each exposure (exp), stan-
dard errors (SE), test statistics (T), raw p-values from conditional permutation (CPD) and
standard Normal (Norm) distributions, Bonferroni (Bon) adjusted and Quantile Transfor-
mation Method (QTM) adjusted p-values from both distributions.

Raw Raw Bon Bon QTM QTM
exp Estimate∗∗ SE T CPD Norm CPD Norm CPD Norm

18 13.005 317.976 0.041 0.777 0.967 1 1 1 1
28 29.969 333.390 0.090 0.587 0.928 1 1 1 1
44 -0.170 344.926 0 0.999 1 1 1 1 1
49 7.162 337.755 0.021 0.951 0.983 1 1 1 1
52 4.949 328.513 0.015 0.930 0.988 1 1 1 1
66 -59.061 324.394 -0.182 0.153 0.856 1 1 1 1
74∗ -143.079 340.887 -0.420 0.816 0.675 1 1 1 1
99∗ -342.743 332.709 -1.030 0.281 0.303 1 1 1 1
101 -45.363 350.850 -0.129 0.234 0.897 1 1 1 1
118∗ -25.186 372.911 -0.068 0.651 0.946 1 1 1 1
138∗ -175.488 378.153 -0.464 0.485 0.643 1 1 1 1
146∗ -9.010 390.706 -0.023 0.903 0.982 1 1 1 1
153∗ -257.281 370.378 -0.695 0.775 0.487 1 1 1 1
156∗ -154.631 357.369 -0.433 0.276 0.665 1 1 1 1
180∗ -126.013 431.278 -0.292 0.949 0.770 1 1 1 1
183∗ -293.159 363.023 -0.808 0.219 0.419 1 1 1 1
187∗ -498.049 373.393 -1.334 0.180 0.182 1 1 1 1
194∗ -426.147 338.862 -1.258 0.542 0.209 1 1 1 1
201∗ -259.991 341.214 -0.762 0.767 0.446 1 1 1 1
BHC∗ -458.087 361.062 -1.269 0.142 0.205 1 1 1 1
DIE∗ -84.134 378.626 -0.222 0.669 0.824 1 1 1 1
GHC -5.456 349.569 -0.016 0.919 0.988 1 1 1 1
HCB∗ -726.817 320.020 -2.271 0.240 0.023 1 1 1 0.905
HPE∗ -205.299 348.859 -0.588 0.054 0.556 1 1 0.990 1
MIR∗ -17.829 342.523 -0.052 0.888 0.958 1 1 1 1
ODT -26.123 341.175 -0.077 0.541 0.939 1 1 1 1
OXY∗ -337.933 362.684 -0.932 0.150 0.351 1 1 1 1
PDE 52.237 348.010 0.150 0.339 0.881 1 1 1 1
PDT∗ -35.304 387.776 -0.091 0.722 0.927 1 1 1 1
TNA∗ -337.025 359.918 -0.936 0.569 0.349 1 1 1 1

∗Estimate based on at least one weight ĝ(0|Wi), i = 1, . . . , n truncated to 0.1
∗∗See Tables 1 through 4 for sample sizes (N).
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Table 6: IPW estimates for associations between gestational age and each exposure (exp),
standard errors (SE), test statistics (T), raw p-values from conditional permutation (CPD)
and standard Normal (Norm) distributions, Bonferroni (Bon) adjusted and Quantile Trans-
formation Method (QTM) adjusted p-values from both distributions.

Raw Raw Bon Bon QTM QTM
exp Estimate∗∗ SE T CPD Norm CPD Norm CPD Norm

18 0.138 3.506 0.039 0.150 0.969 1 1 1 1
28 0.188 3.682 0.051 0.846 0.959 1 1 1 1
44 -0.047 3.800 -0.012 0.928 0.990 1 1 1 1
49 0.046 3.707 0.012 0.670 0.990 1 1 1 1
52 0.102 3.618 0.028 0.370 0.978 1 1 1 1
66 -0.186 3.634 -0.051 0.073 0.959 1 1 0.998 1
74∗ -2.092 3.658 -0.572 0.615 0.567 1 1 1 1
99∗ -3.717 3.733 -0.996 0.510 0.319 1 1 1 1
101 0.028 3.944 0.007 0.812 0.994 1 1 1 1
118∗ -0.295 4.078 -0.072 0.425 0.942 1 1 1 1
138∗ -2.054 4.183 -0.491 0.360 0.623 1 1 1 1
146∗ -0.120 4.372 -0.028 0.833 0.978 1 1 1 1
153∗ -2.937 4.131 -0.711 0.707 0.477 1 1 1 1
156∗ -1.581 3.993 -0.396 0.439 0.692 1 1 1 1
180∗ -2.429 4.587 -0.529 0.782 0.596 1 1 1 1
183∗ -2.481 4.117 -0.602 0.425 0.547 1 1 1 1
187∗ -5.280 4.191 -1.260 0.210 0.208 1 1 1 1
194∗ -5.068 3.721 -1.362 0.532 0.173 1 1 1 1
201∗ -3.408 3.761 -0.906 0.664 0.365 1 1 1 1
BHC∗ -4.671 4.124 -1.133 0.516 0.257 1 1 1 1
DIE∗ -0.721 4.158 -0.173 0.709 0.862 1 1 1 1
GHC 0.409 3.912 0.104 0.341 0.917 1 1 1 1
HCB∗ -7.587 3.675 -2.064 0.710 0.039 1 1 1 0.980
HPE∗ -1.219 3.991 -0.306 0.664 0.760 1 1 1 1
MIR∗ -0.666 3.708 -0.180 0.978 0.857 1 1 1 1
ODT 0.012 3.788 0.003 0.935 0.998 1 1 1 1
OXY∗ -3.368 4.059 -0.830 0.156 0.407 1 1 1 1
PDE 0.096 3.778 0.025 0.515 0.980 1 1 1 1
PDT∗ -0.646 4.224 -0.153 0.915 0.878 1 1 1 1
TNA∗ -3.424 4.056 -0.844 0.833 0.399 1 1 1 1

∗Estimate based on at least one weight ĝ(0|Wi), i = 1, . . . , n truncated to 0.1
∗∗See Tables 1 through 4 for sample sizes (N).
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Table 7: IPW estimates for associations between head circumference and each exposure
(exp), standard errors (SE), test statistics (T), raw p-values from conditional permutation
(CPD) and standard Normal (Norm) distributions, Bonferroni (Bon) adjusted and Quantile
Transformation Method (QTM) adjusted p-values from both distributions.

Raw Raw Bon Bon QTM QTM
exp Estimate∗∗ SE T CPD Norm CPD Norm CPD Norm

18 0.119 3.137 0.038 0.161 0.970 1 1 1 1
28 0.157 3.086 0.051 0.255 0.959 1 1 1 1
44 0.169 3.424 0.049 0.243 0.961 1 1 1 1
49 0.106 3.312 0.032 0.262 0.974 1 1 1 1
52 0.104 3.274 0.032 0.337 0.975 1 1 1 1
66 -0.042 3.257 -0.013 0.811 0.990 1 1 1 1
74∗ -1.651 3.316 -0.498 0.756 0.619 1 1 1 1
99∗ -3.274 3.329 -0.983 0.285 0.325 1 1 1 1
101 0.084 3.583 0.023 0.637 0.981 1 1 1 1
118∗ -0.422 3.510 -0.120 0.610 0.904 1 1 1 1
138∗ -4.885 3.520 -1.388 0.584 0.165 1 1 1 1
146∗ -0.668 3.816 -0.175 0.041 0.861 1 1 0.975 1
153∗ -5.498 3.431 -1.603 0.348 0.109 1 1 1 1
156∗ -2.340 3.491 -0.670 0.481 0.503 1 1 1 1
180∗ -3.517 4.025 -0.874 0.818 0.382 1 1 1 1
183∗ -2.478 3.613 -0.686 0.435 0.493 1 1 1 1
187∗ -4.704 3.692 -1.274 0.732 0.203 1 1 1 1
194∗ -5.525 3.255 -1.697 0.631 0.090 1 1 1 1
201∗ -2.358 3.472 -0.679 0.451 0.497 1 1 1 1
BHC∗ -4.190 3.501 -1.197 0.778 0.231 1 1 1 1
DIE∗ -1.811 3.645 -0.497 0.324 0.619 1 1 1 1
GHC -0.053 3.229 -0.016 0.721 0.987 1 1 1 1
HCB∗ -6.653 3.248 -2.048 0.379 0.041 1 1 1 0.983
HPE∗ -1.560 3.749 -0.416 0.055 0.677 1 1 0.992 1
MIR∗ -0.773 3.399 -0.228 0.718 0.820 1 1 1 1
ODT -0.183 3.304 -0.055 0.203 0.956 1 1 1 1
OXY∗ -3.264 3.512 -0.930 0.099 0.353 1 1 1 1
PDE∗ -1.778 3.419 -0.520 0.828 0.603 1 1 1 1
PDT -0.037 3.559 -0.010 0.874 0.992 1 1 1 1
TNA∗ -3.004 3.601 -0.834 0.711 0.404 1 1 1 1

∗Estimate based on at least one weight ĝ(0|Wi), i = 1, . . . , n truncated to 0.1
∗∗See Tables 1 through 4 for sample sizes (N).

19

Hosted by The Berkeley Electronic Press



Table 8: IPW estimates for associations between length and each exposure (exp), standard
errors (SE), test statistics (T), raw p-values from conditional permutation (CPD) and stan-
dard Normal (Norm) distributions, Bonferroni (Bon) adjusted and Quantile Transformation
Method (QTM) adjusted p-values from both distributions.

Raw Raw Bon Bon QTM QTM
exp Estimate∗∗ SE T CPD Norm CPD Norm CPD Norm

18 -0.351 4.501 -0.078 0.496 0.938 1 1 1 1
28 -0.197 4.603 -0.043 0.707 0.966 1 1 1 1
44 -0.270 4.896 -0.055 0.476 0.956 1 1 1 1
49 -0.391 4.766 -0.082 0.250 0.935 1 1 1 1
52 -0.211 4.668 -0.045 0.470 0.964 1 1 1 1
66∗ 0.121 5.087 0.024 0.817 0.981 1 1 1 1
74∗ -2.454 4.809 -0.510 0.731 0.610 1 1 1 1
99∗ -4.685 4.886 -0.959 0.436 0.338 1 1 1 1
101 -0.412 5.238 -0.079 0.752 0.937 1 1 1 1
118∗ -0.889 5.347 -0.166 0.296 0.868 1 1 1 1
138∗ -6.634 5.260 -1.261 0.704 0.207 1 1 1 1
146∗ 0.088 5.871 0.015 0.885 0.988 1 1 1 1
153∗ -3.468 5.419 -0.640 0.767 0.522 1 1 1 1
156∗ -2.023 5.188 -0.390 0.359 0.697 1 1 1 1
180∗ -5.628 5.834 -0.965 0.842 0.335 1 1 1 1
183∗ -2.326 5.310 -0.438 0.789 0.661 1 1 1 1
187∗ -3.795 5.265 -0.721 0.649 0.471 1 1 1 1
194∗ -7.955 4.888 -1.627 0.443 0.104 1 1 1 1
201∗ -0.540 5.088 -0.106 0.675 0.916 1 1 1 1
BHC -0.010 5.798 -0.002 0.993 0.999 1 1 1 1
DIE -0.264 5.126 -0.052 0.298 0.959 1 1 1 1
GHC 0.427 4.838 0.088 0.331 0.930 1 1 1 1
HCB∗ -9.895 4.766 -2.076 0.382 0.038 1 1 1 0.978
HPE∗ -3.558 5.432 -0.655 0.268 0.512 1 1 1 1
MIR∗ -0.424 4.903 -0.087 0.971 0.931 1 1 1 1
ODT 0.315 4.972 0.063 0.172 0.949 1 1 1 1
OXY∗ -2.295 5.580 -0.411 0.557 0.681 1 1 1 1
PDE 0.352 4.999 0.070 0.179 0.944 1 1 1 1
PDT 0.531 5.296 0.100 0.025 0.920 1 1 0.911 1
TNA∗ -4.479 5.262 -0.851 0.731 0.395 1 1 1 1

∗Estimate based on at least one weight ĝ(0|Wi), i = 1, . . . , n truncated to 0.1
∗∗See Tables 1 through 4 for sample sizes (N).
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Table 9: DR-IPW estimates for associations between birthweight and each exposure (exp),
standard errors (SE), test statistics (T), raw p-values from conditional permutation (CPD)
and standard Normal (Norm) distributions, Bonferroni (Bon) adjusted and Quantile Trans-
formation Method (QTM) adjusted p-values from both distributions.

Raw Raw Bon Bon QTM QTM
exp Estimate∗∗ SE T CPD Norm CPD Norm CPD Norm

18 0.040 46.165 0.001 0.999 0.999 1 1 1 1
28 14.313 47.137 0.304 0.695 0.761 1 1 1 1
44 -11.813 50.293 -0.235 0.925 0.814 1 1 1 1
49 7.162 46.031 0.156 0.945 0.876 1 1 1 1
52 -1.311 47.579 -0.028 0.984 0.978 1 1 1 1
66 -59.061 49.707 -1.188 0.160 0.235 1 1 1 1
74∗ 28.732 55.910 0.514 0.541 0.607 1 1 1 1
99∗ -7.170 45.603 -0.157 0.880 0.875 1 1 1 1
101 -48.104 49.721 -0.967 0.171 0.333 1 1 1 1
118∗ -13.949 62.067 -0.225 0.802 0.822 1 1 1 1
138∗ -16.715 52.475 -0.319 0.720 0.750 1 1 1 1
146∗ 18.038 53.847 0.335 0.737 0.738 1 1 1 1
153∗ -27.790 65.033 -0.427 0.709 0.669 1 1 1 1
156∗ -7.903 43.303 -0.182 0.852 0.855 1 1 1 1
180∗ 87.079 63.803 1.365 0.142 0.172 1 1 1 1
183∗ -54.862 50.736 -1.081 0.237 0.280 1 1 1 1
187∗ -33.277 43.122 -0.772 0.355 0.440 1 1 1 1
194∗ 0.134 39.825 0.003 0.998 0.997 1 1 1 1
201∗ 41.021 36.701 1.118 0.236 0.264 1 1 1 1
BHC∗ -24.662 49.647 -0.497 0.610 0.619 1 1 1 1
DIE∗ 7.775 55.984 0.139 0.873 0.890 1 1 1 1
GHC -43.620 44.687 -0.976 0.351 0.329 1 1 1 1
HCB∗ -28.984 41.487 -0.699 0.411 0.485 1 1 1 1
HPE∗ -80.821 41.927 -1.928 0.020 0.054 1 1 0.862 0.993
MIR∗ 33.300 46.303 0.719 0.472 0.472 1 1 1 1
ODT -17.191 48.316 -0.356 0.653 0.722 1 1 1 1
OXY∗ -35.522 53.069 -0.669 0.484 0.503 1 1 1 1
PDE 52.237 45.836 1.140 0.290 0.254 1 1 1 1
PDT∗ 26.038 53.024 0.491 0.649 0.623 1 1 1 1
TNA∗ -36.243 47.960 -0.756 0.398 0.450 1 1 1 1

∗Estimate based on at least one weight ĝ(0|Wi), i = 1, . . . , n truncated to 0.1
∗∗See Tables 1 through 4 for sample sizes (N).
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Table 10: DR-IPW estimates for associations between gestational age and each exposure
(exp), standard errors (SE), test statistics (T), raw p-values from conditional permutation
(CPD) and standard Normal (Norm) distributions, Bonferroni (Bon) adjusted and Quantile
Transformation Method (QTM) adjusted p-values from both distributions.

Raw Raw Bon Bon QTM QTM
exp Estimate∗∗ SE T CPD Norm CPD Norm CPD Norm

18 0.138 0.140 0.987 0.128 0.324 1 1 1 1
28 0.014 0.146 0.095 0.942 0.924 1 1 1 1
44 -0.047 0.158 -0.300 0.928 0.764 1 1 1 1
49 0.046 0.141 0.324 0.624 0.746 1 1 1 1
52 0.112 0.140 0.799 0.290 0.424 1 1 1 1
66 -0.186 0.157 -1.181 0.080 0.238 1 1 1 1
74∗ -0.084 0.164 -0.514 0.531 0.607 1 1 1 1
99∗ 0.035 0.131 0.263 0.765 0.792 1 1 1 1
101 0.028 0.161 0.173 0.807 0.862 1 1 1 1
118∗ -0.169 0.181 -0.936 0.282 0.349 1 1 1 1
138∗ -0.085 0.177 -0.480 0.587 0.631 1 1 1 1
146∗ 0.181 0.152 1.193 0.254 0.233 1 1 1 1
153∗ -0.182 0.203 -0.897 0.422 0.370 1 1 1 1
156∗ 0.051 0.123 0.416 0.675 0.678 1 1 1 1
180∗ -0.135 0.189 -0.717 0.439 0.474 1 1 1 1
183∗ 0.171 0.154 1.109 0.254 0.267 1 1 1 1
187∗ 0.031 0.177 0.177 0.836 0.859 1 1 1 1
194∗ -0.027 0.167 -0.163 0.921 0.870 1 1 1 1
201∗ 0.069 0.162 0.423 0.656 0.673 1 1 1 1
BHC∗ 0.143 0.150 0.954 0.301 0.340 1 1 1 1
DIE∗ 0.047 0.201 0.234 0.777 0.815 1 1 1 1
GHC 0.008 0.141 0.060 0.949 0.952 1 1 1 1
HCB∗ -0.003 0.169 -0.020 0.982 0.984 1 1 1 1
HPE∗ 0.168 0.151 1.110 0.205 0.267 1 1 1 1
MIR∗ -0.096 0.142 -0.676 0.433 0.499 1 1 1 1
ODT 0.012 0.163 0.071 0.936 0.943 1 1 1 1
OXY∗ 0.005 0.144 0.037 0.966 0.971 1 1 1 1
PDE 0.096 0.152 0.630 0.502 0.528 1 1 1 1
PDT∗ 0.108 0.170 0.636 0.535 0.525 1 1 1 1
TNA∗ -0.093 0.165 -0.568 0.543 0.570 1 1 1 1

∗Estimate based on at least one weight ĝ(0|Wi), i = 1, . . . , n truncated to 0.1
∗∗See Tables 1 through 4 for sample sizes (N).
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Table 11: DR-IPW estimates for associations between head circumference and each exposure
(exp), standard errors (SE), test statistics (T), raw p-values from conditional permutation
(CPD) and standard Normal (Norm) distributions, Bonferroni (Bon) adjusted and Quantile
Transformation Method (QTM) adjusted p-values from both distributions.

Raw Raw Bon Bon QTM QTM
exp Estimate∗∗ SE T CPD Norm CPD Norm CPD Norm

18 0.127 0.136 0.935 0.086 0.350 1 1 1 1
28 0.127 0.140 0.908 0.249 0.364 1 1 1 1
44 0.139 0.157 0.888 0.257 0.374 1 1 1 1
49 0.094 0.142 0.661 0.311 0.509 1 1 1 1
52 0.075 0.145 0.515 0.386 0.607 1 1 1 1
66 -0.057 0.158 -0.364 0.608 0.716 1 1 1 1
74∗ 0.079 0.163 0.488 0.546 0.626 1 1 1 1
99∗ -0.084 0.163 -0.514 0.662 0.607 1 1 1 1
101 0.070 0.157 0.445 0.590 0.656 1 1 1 1
118∗ -0.095 0.197 -0.484 0.669 0.629 1 1 1 1
138∗ -0.173 0.195 -0.888 0.336 0.375 1 1 1 1
146∗ -0.240 0.185 -1.300 0.124 0.194 1 1 1 1
153∗ -0.216 0.193 -1.116 0.240 0.265 1 1 1 1
156∗ -0.311 0.169 -1.841 0.040 0.066 1 1 0.977 0.998
180∗ 0.140 0.218 0.642 0.480 0.521 1 1 1 1
183∗ -0.262 0.182 -1.438 0.107 0.150 1 1 1 1
187∗ -0.250 0.190 -1.316 0.131 0.188 1 1 1 1
194∗ -0.153 0.188 -0.814 0.378 0.416 1 1 1 1
201∗ -0.332 0.157 -2.112 0.010 0.035 1 1 0.651 0.962
BHC∗ -0.317 0.150 -2.114 0.078 0.035 1 1 1 0.961
DIE∗ -0.107 0.176 -0.607 0.496 0.544 1 1 1 1
GHC -0.101 0.157 -0.645 0.577 0.519 1 1 1 1
HCB∗ -0.339 0.178 -1.904 0.033 0.057 1 1 0.955 0.995
HPE∗ -0.507 0.172 -2.938 0.001 0.003 0.096 0.396 0.079 0.285
MIR∗ -0.063 0.163 -0.386 0.652 0.700 1 1 1 1
ODT -0.150 0.167 -0.900 0.322 0.368 1 1 1 1
OXY∗ -0.411 0.200 -2.059 0.020 0.039 1 1 0.859 0.974
PDE∗ -0.026 0.151 -0.173 0.851 0.863 1 1 1 1
PDT 0.025 0.171 0.148 0.908 0.882 1 1 1 1
TNA∗ -0.250 0.176 -1.415 0.126 0.157 1 1 1 1

∗Estimate based on at least one weight ĝ(0|Wi), i = 1, . . . , n truncated to 0.1
∗∗See Tables 1 through 4 for sample sizes (N).
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Table 12: DR-IPW estimates for associations between length and each exposure (exp), stan-
dard errors (SE), test statistics (T), raw p-values from conditional permutation (CPD) and
standard Normal (Norm) distributions, Bonferroni (Bon) adjusted and Quantile Transfor-
mation Method (QTM) adjusted p-values from both distributions.

Raw Raw Bon Bon QTM QTM
exp Estimate∗∗ SE T CPD Norm CPD Norm CPD Norm

18 -0.351 0.225 -1.560 0.376 0.119 1 1 1 1
28 -0.197 0.236 -0.832 0.693 0.406 1 1 1 1
44 -0.270 0.270 -1 0.421 0.317 1 1 1 1
49 -0.391 0.238 -1.642 0.145 0.101 1 1 1 1
52 -0.310 0.250 -1.236 0.287 0.217 1 1 1 1
66∗ -0.266 0.272 -0.978 0.228 0.328 1 1 1 1
74∗ 0.101 0.280 0.361 0.649 0.718 1 1 1 1
99∗ 0.117 0.230 0.510 0.684 0.610 1 1 1 1
101 -0.397 0.273 -1.454 0.148 0.146 1 1 1 1
118∗ 0.081 0.325 0.249 0.791 0.803 1 1 1 1
138∗ 0.315 0.314 1.004 0.320 0.316 1 1 1 1
146∗ 0.217 0.329 0.659 0.439 0.510 1 1 1 1
153∗ -0.065 0.320 -0.202 0.848 0.840 1 1 1 1
156∗ 0.008 0.271 0.028 0.979 0.978 1 1 1 1
180∗ 0.635 0.315 2.015 0.023 0.044 1 1 0.895 0.983
183∗ 0.053 0.325 0.162 0.859 0.872 1 1 1 1
187∗ 0.224 0.275 0.812 0.387 0.417 1 1 1 1
194∗ 0.034 0.246 0.138 0.879 0.891 1 1 1 1
201∗ 0.372 0.241 1.542 0.103 0.123 1 1 1 1
BHC 0.114 0.287 0.398 0.651 0.690 1 1 1 1
DIE -0.264 0.301 -0.877 0.350 0.381 1 1 1 1
GHC -0.180 0.235 -0.766 0.381 0.444 1 1 1 1
HCB∗ -0.321 0.266 -1.209 0.175 0.227 1 1 1 1
HPE∗ -0.326 0.287 -1.135 0.213 0.256 1 1 1 1
MIR∗ 0.067 0.267 0.250 0.789 0.802 1 1 1 1
ODT 0.315 0.274 1.151 0.184 0.250 1 1 1 1
OXY∗ -0.134 0.308 -0.435 0.631 0.664 1 1 1 1
PDE 0.352 0.237 1.486 0.137 0.137 1 1 1 1
PDT 0.531 0.283 1.874 0.023 0.061 1 1 0.897 0.997
TNA∗ -0.294 0.298 -0.988 0.294 0.323 1 1 1 1

∗Estimate based on at least one weight ĝ(0|Wi), i = 1, . . . , n truncated to 0.1
∗∗See Tables 1 through 4 for sample sizes (N).
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Table 13: Variables in W selected by the DSA for estimates of gj and Qj,k for estimated
associations between birthweight (k = 1) and each exposure (exp) (j = 1, . . . , 30).

exp gj Qj,k

18 none parity, educ
28 educ, US years none
44 none parity
49 none none
52 none parity, country
66 US years none
74 age educ, parity, BMI, sex
99 age, US years none
101 US years parity, educ
118 age, US years none
138 age, educ educ, parity
146 educ, age none
153 educ, age country, poverty
156 age, marital, educ none
180 educ, age, BMI none
183 educ, age, marital, BMI, US years none
187 age, US years, BMI, poverty, marital, educ country, poverty
194 age, US years, BMI country, parity, BMI, educ, sex, gest age
201 age, US years, BMI educ, parity
BHC country, parity, educ, US years, age country, poverty
DIE US years, age, marital parity, educ, country, BMI
GHC sex, PCB sum country, pooverty
HCB PCB sum, age, parity, US years educ, parity, sex, BMI, country, marital
HPE sex, country, age, PCB sum none
MIR age none
ODT educ, US years educ, parity, sex, BMI, country, marital
OXY age, parity, US years, educ, PCB sum, country, BMI none
PDE country, US years none
PDT age, country educ, parity, sex, BMI, country
TNA PCB sum, US years, age, parity educ, parity, sex, BMI, country, marital
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Table 14: Estimated standard errors (SE) of ψ̂1,3 based on both the influence curve (IC)

and the bootstrap (BS), as well as the bootstrap estimated variance (VAR) of T = ψ̂

se(ψ̂1,3)
,

where se(ψ̂1,3) is obtained using the influence curve for ψ̂1,3 for the association between PCB
18 and head circumference based on the DR-IPW estimator. Bootstrap estimates based on
5000 bootstrap samples of (3).

IC SE(ψ̂1,3) BS SE(ψ̂1,3) BS VAR(T )
0.136 0.116 0.704

Table 15: Overall summary of the bootstrapped (BS) estimates of the variance (VAR) of the
test statistic based on the IPW estimator (Tipw) and and the DR-IPW estimator (Tdr) .

BS VAR(Tipw) BS VAR(Tdr)
Min 0.001 0.454
Median 0.127 0.776
Mean 0.150 0.771
Max 0.660 1.082
> 1∗ 0 1

∗Number of test statistics where bootstrapped estimate of the variance greater than one.
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Figure 1: Plot of the cumulative distribution function of the standard Normal vs. that of the
conditional permutation distribution (CPD) for the test statistic (T ) based on the DR-IPW
estimator of (3) associating head circumference and PCB 18.
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As we can see from Tables 5 through 12, several tests of association which would be
classified as significant or borderline significant (p < 0.1) based solely on raw p-values are
no longer significant after application of a MTP, regardless of type (Bonferroni or Quantile
Transformation Method). Based on the IPW analysis, there were 11 tests of association
with raw p-values (obtained from either a standard Normal or the modified conditional
permutation distribution) less than 0.1. In all cases the respective adjusted p-values were
greater than 0.9. Based on the DR-IPW analysis, there were also 11 tests with raw p-values
less than 0.1. In all but one case (the association between HPE and head circumference)
respective adjusted p-values were greater than 0.6. Notably, the adjusted p-value for the
association between HPE and head circumference based on the DR-IPW estimator remained
borderline significant whether the Bonferroni or QTM approach was used. However, for this
test of association, adjusted p-values based on both MTPs were substantially larger when
the standard Normal was used over the conditional permutation distribution (see Table 11).
This is in line with the results presented in Table 15, indicating that inference based on the
standard Normal tended to be more conservative than that based on the modified conditional
permutation distribution.
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7 Discussion

In summary, we found only one borderline significant association in the CHAMACOS data
set after analysis with the proposed machine learning algorithm; that between HPE and
head circumference. Contrary to expectations, the direction of the estimate in this case
suggests a protective effect of HPE. We consider two explanations. First, there is a violation
of at least one of our identifying assumptions. It is certainly possible that our definition
of W did not include all relevant confounders of the exposure effect, considering how little
is known regarding the effects of organochlorines on human development and the possible
relationships between different OC’s and PCB’s Fenster et al. [2007].

As expected, raw p-values were quite different from adjusted p-values indicating the
importance of adjustment for multiple testing. In this application, conclusions were similar
regardless of what multiple testing method was used (Bonferroni or Quantile Transformation
Method). Also, as expected, results differed depending on whether a standard Normal or
the modified conditional permutation distribution was assumed for the test statistics, with
the standard Normal generally resulting in more conservative inference.

As mentioned in §5.2 and §5.3, due to indeterminately long computing times required for
calls to the DSA algorithm with B = B2 = 5, 000, we did not re-select the forms of g and
Q within each permutation and bootstrap iteration. Failure to re-select these model forms
within each permutation and bootstrap iteration may affect results in an unpredictable direc-
tion. Simulation results suggested that this shortcut does not substantially impact results.
In theory, faster data-adaptive model selection algorithms are available as alternatives to
the DSA algorithm. We attempted to use the R functions polyclass() for selection of gj and
polymars() for selection of Qj,k but found polyclass() too unstable with B = B2 = 5, 000
when called within each iteration. It is possible that repeated calls to the DSA algorithm
may be more feasible with the use of a computer cluster to decrease computation time.

We note that results based on this analysis differ from other reported analyses of the
CHAMACOS data set. In a recently published report of associations between OCs and birth
outcomes in the CHAMACOS data set, Fenster et al. [2007] reported a significant association
between gestational age and HCB and did not find a signficant relationship between HPE
and head circumference. We stress that results reported by Fenster et al. [2007] are not
generally comparable to those reported here beyond differences in approaches to marginal
inference and multiple testing. Specifically:

• our parameter is based on a categorical measure of exposure and represents a marginal
effect over W while their parameter is based on continuous exposure measures and
conditional on variables in W

• we consider a slightly different set of variables in W ;
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• different approaches to model selection were used;

• slightly different exclusionary criteria were used to obtain the final analysis sample.

Thus, the lack of correspondence of other analyses comes from both a different parameter
being estimated as well as a different method used to estimate the parameter. Our method is
most suitable when little existing information is available to choose models/variables a priori
and thus the information for the relative contribution to variability in the outcome comes
almost exclusively from the data itself. In this context, one wants a procedure that produces
a simple, interpretable parameter, uses flexible semi-parametric (machine learning) methods
for models when these are not known a priori (and the dimension is high) and finally returns
trustworthy joint inference. We believe many studies pretend as if knowledge of the model
exists or the exploring of the data for such a model is ignored in the final inference. We
also believe this leads to erroneous estimates (bias due to model misspecification) as well as
erroneous inference (standard errors based on the assumption of a priori known models).
This method is a potential black-box tool that can be used to screen for the variables
with strong evidence of adjusted associations. Traditional ad hoc approaches have served
useful purposes, but the combination of new techniques in causal inference, more powerful
machine learning tools, and fast computation that allows robust, re-sampling based inference
means the practice of exploratory epidemiology should move beyond potentially misleading
approaches appropriate for low dimensional problems and provide more robust results for
high dimensional studies.
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