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Nonparametric population average models:
deriving the form of approximate population
average models estimated using generalized

estimating equations

Alan E. Hubbard and Mark J. van der Laan

Abstract

For estimating regressions for repeated measures outcome data, a popular choice
is the population average models estimated by generalized estimating equations
(GEE). We review in this report the derivation of the robust inference (sandwich-
type estimator of the standard error). In addition, we present formally how the
approximation of a misspecified working population average model relates to the
true model and in turn how to interpret the results of such a misspecified model.



1 Introduction 
 

First, introduce a simple repeated measures data structure.  Let Yij be the outcome 

for sub-unit i within unit j, and associated covariates Xij,  For this paper, the parameter of 

interest I the so-called population average model or E(Yij|Xij), which is modeled as: 

€ 

E(Yij | Xij ) = m(Xij |β) = g[µ(Xij |β)]   (1) 

g is the link function depends on the regression (e.g., linear: g-1(u)=u,   log:g-1(u)=log(u), 

logistic: g-1(u)=log[u/(1-u)]), β are the regression coefficients u is a linear function of 

basis functions constructed from the vector of covariates, Xij.  Typically, a generalized 

estimation equation approach is used to estimated the β (Liang and Zeger, 1986). 

A reasonably parameter one could estimate is an informative approximation of the 

true population average model, 

€ 

g[µ(Xij |β)].  With this approach, one could avoid any 

model specification (i.e., the model is nonparametric) and the parameter of interest would 

be some projection of E[Yij|Xij] onto the proposed class of estimating models (e.g., linear 

with only main effects);  one can define explicitly the parameter of interest as a function 

of the distribution of the observed data (X,Y)  

Below, we first review the generalized estimating equation approach and 

somewhat informally discuss the derivation of the robust inference.   Then, we derive 

parameter of interest as some projection of the working model onto the true population 

average model, where the projection is a function of the so-called working correlation 

model. 
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2 Generalized Estimating Equations 

The general form of this estimating function for regression problems is (see van der Laan 

and Robins, 2003): 

 

€ 

DV (X. j ,Y. j |β) =
∂m(X. j |β)

∂β
V −1 ε. j (β){ }ε. j (β)T

      (2) 

 

where X.j represents the design matrix for all observations in neighborhood j,  Y.j 

represents the vector of outcomes observations corresponding to the rows of X.j, 

m(X.j|β)={m(Xij|β), i=1,...,nj} a vector of regression functions corresponding again to 

each row of X.j, ε.j(β)=Y.j - m(X.j |β) = {Yij-m(Xij|β), i=1,...,nj}, β a px1 vector of 

coefficients and V{ε.j(β)} is the working nj by nj variance-covariance of the residuals, 

consisting of the entries, cov(εij, εi’j), based on the working correlation model.  One can 

show that this is a consistent estimating function, that is, it has mean 0 if the true β’s are 

entered.  The estimator of β is defined by setting the average of these estimating 

functions for each unit (e.g., neighborhood) to 0 and solving for β: 

€ 

0 = D ˆ V 
(X. j ,Y. j |β)

i=1

m

∑ .      (3)
 

Instead, robust or sandwich inference is typically provided (Liang and Zeger, 1986). 

Without going into the technical details, one can show that these estimators are 

asymptotically linear, which means that:  

€ 

βm −β =
1
m

IC(X. j ,Y. j |β)
j=1

m

∑ + op
1
m

 

 
 

 

 
 
      

(4)
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where βn is the estimate based on m observations (neighborhoods); IC is the so-called 

influence curve, is the same dimension as β and is derived from the estimating function 

(2); and the last term,  

€ 

op (1/ m ) , is a second order term that becomes negligible as m 

gets large.  Thus, one can derive the variance estimate of βn and the resulting standard 

errors by simply looking at the empirical variance-covariance of the components of the 

IC.  In this case, the IC, a standardized version of the estimating function, is: 

€ 

IC(X. j ,Y. j |β) = E h(X. j )
∂m(X. j |β)

∂βT

 
 
 

 
 
 

−1

h(X. j )ε. j (β)
T

 

where
 

€ 

h(X. j ) =
∂m
∂β

(X. j |β)pxn j

T V −1 ε. j (β){ }n j x n j
.
 

 
 
3 Definition of Projections Related to GEE regression models 
 
The motivation for defining the parameter of interest as some an approximation of a 

population average model borrows extensively from Neugebauer and van der Laan, 

2007).  The true population average conditional mean is µ*=E(Yij|Xij). Define 

€ 

µ :ℜp →Μ, where 

€ 

µ(X |β)⊂ Μ  is the working model (informative approximation) and 

denote Μ  as the set of possible working models (µ is the proposed approximation of µ*).  

Note that µ* is not necessarily an element of Μ (the class of working models does not 

necessarily contain the true model); we will refer to µ(X|β) as the model approximation. 

The parameter of interest in the context of misspecification of µ* is: 

€ 

β(PX ,Y | A), where 

PX,Y represents the distribution of the data and is a function of some weight matrix, A =V-

1 in which the variance is derived from the mean according to some guessed distribution 

(e.g., var(Yij|Xij)=E(Yij|Xij) if model assumed is log-linear, Poisson model; see Liang and 
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Zeger, 1986 for details).  The estimation function (2) can be derived from solving the 

objective function: 

 

€ 

βA = β(PX ,Y | A) ≡ argmin
β ∈ℜk

EX ε
T (β)Aε(β)[ ],    ε. j (β) =Y. j −µ(X. j |β) .

 

 

This can be shown to be equivalent to: 

€ 

βA = argmin
β ∈ℜk

EX ε*T (β)Aε* (β)[ ],    ε*. j (β) = u* (X. j ) −µ(X. j |β),
 
(5)

  

or the 

€ 

βA  that minimizes the weighted Euclidean distance between the model and the true 

mean.  This can be seen by differentiation product rule, so estimation function derived 

from (5) is (dropping the vector j subscript): 

€ 

d
dβ

EX ε*
T (β)Aε* (β)[ ] = 0→ EX

∂µ(X |β)T

∂β
A[µ* (X) −µ(X |β)]

 
 
 

 
 
 

= 0.
 

 

But, by the law of iterated expectation, one can exchange Y for µ*(X) this is the same as 

solving: 

€ 

EX
∂µ(X |β)T

∂β
A[Y −µ(X |β)]

 
 
 

 
 
 

= EX E
∂µ(X |β)T

∂β
A[Y −µ(X |β)]X

 
 
 

 
 
 

=

EX
∂µ(X |β)T

∂β
A[µ* (X) −µ(X |β)]

 
 
 

 
 
 
.

 

Thus, using the GEE estimating equations to estimate the coefficients, βA, as part of a 

misspecified model, 

€ 

µ(X |β) , is asymptotically equivalent to the βA that minimize the 

weighted Euclidean distance of the model to the true mean, where different weight 

matrices A (working model for the inverse of the variance-covariance matrix of the 
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vector of repeated measures, Y) can result in different coefficients.  Thus, the 

approximation model varies as a function of the working correlation structure chosen by 

the user (e.g., independence, auto-correlation, unstructured, etc), so that the estimate will 

represent estimates of different parameters for different working correlation structures   

Under  misspecification of the population average model,  the typical GEE algorithm will 

provide estimation and proper robust inference for 

€ 

βA .  Thus, in this case, we have 

defined the coefficient parameters that GEE estimates as explicit nonparametric functions 

of the distribution of the data, PX,Y. 
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