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ABSTRACT 

Introduction: There is increasing evidence of an association between individual long-term 

PM2.5 exposure and human health. Mortality and morbidity data collected at the area-level are 

valuable resources for investigating corresponding population-level health effects. However, 

PM2.5 monitoring data are available for limited periods of time and locations, and are not 

adequate for estimating area-level concentrations. We developed a general approach to 

estimate county-average concentrations representative of population exposures for 1980-2010 

in the continental U.S.  

Methods: We predicted annual average PM2.5 concentrations at about 70,000 census tract 

centroids, using a point prediction model previously developed for estimating annual average 

PM2.5 concentrations in the continental U.S. for 1980-2010. We then averaged these predicted 

PM2.5 concentrations in all counties weighted by census tract population. In sensitivity 

analyses, we compared the resulting estimates to four alternative county average estimates 

using MSE-based R2 in order to capture both systematic and random differences in estimates. 

These estimates included crude aggregates of regulatory monitoring data, averages of 

predictions at residential addresses in Southern California, and two sets of averages of census 

tract centroid predictions unweighted by population and interpolated from predictions at 25-

km national grid coordinates. 

Results: The county-average mean PM2.5 was 14.40 (standard deviation=3.94) µg/m3 in 1980 

and decreased to 12.24 (3.24), 10.42 (3.30), and 8.06 (2.06) µg/m3 in 1990, 2000, and 2010, 

respectively. These estimates were moderately related with crude averages in 2000 and 2010 

when monitoring data were available (R2= 0.70-0.82) and almost identical to the unweighted 

averages in all four decennial years. County averages were also consistent with the county 

averages derived from residential estimates in Southern California (0.95-0.96). We found 

grid-based estimates of county-average PM2.5 were more consistent with our estimates when 
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we also included monitoring data (0.95-0.98) than grid-only estimates (0.91-0.96); both had 

slightly lower concentrations than census tract-based estimates. 

Conclusions: Our approach to estimating population representative area-level PM2.5 

concentrations is consistent with averages across residences. These exposure estimates will 

allow us to assess health impacts of ambient PM2.5 concentration in datasets with area-level 

health data.   
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INTRODUCTION 

There has been increasing evidence of the association between individual long-term 

exposures to PM2.5 and human health developed from cohort studies (Beelen et al. 2014; 

Kaufman et al. 2016; Laden et al. 2006; Pope et al. 2004). Mortality and morbidity data 

available at the area level, such as county and district areas, are valuable resources for 

investigating health effects of long-term PM2.5 exposures. Some previous studies performed 

population-level health analyses of air pollution using aggregated PM2.5 data mostly from a 

few regulatory monitoring sites in the areas where monitoring data were available within the 

sampling period (Correia et al. 2011; Eftim et al. 2008; Pope et al. 2009; Zeger et al. 2008). 

Regulatory monitoring data for PM2.5, limited in time and space, may be inadequate 

for estimating area-level PM2.5 concentrations. For example, the nationwide and population-

focused monitoring for PM2.5 in U.S. was established in 1999 (U.S. EPA 2004). Available 

PM2.5 monitoring data are sparse before 1999. For the spatial coverage, only 567 counties 

(18 %) out of 3,109 in the continental U.S. in 2000 had at least one regulatory monitoring site 

where there are sufficient daily measurements to provide representative annual averages 

(Figure S1). Ninety-three percent of these 567 counties contained one to three monitoring 

sites, which may not be sufficient to accurately represent population exposures for the county.  

We recently developed a PM2.5 historical prediction model, which could address the 

limitations of the historical regulatory monitoring data. This pointwise spatio-temporal 

prediction model was developed for estimating annual average concentrations of PM2.5 at 

arbitrary point locations in the continental U.S. for 1980-2010 including the years when 

extensive spatial monitoring data are unavailable (Kim et al. 2016a). In our validation with 

external PM2.5 data that measured before 1999 from the Interagency Monitoring of Protected 

Visual Environments (IMPROVE) network and the Southern California Children’s Health 

Study, the model generally performed well with high R2s over 0.7. 
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We aimed to develop an approach to estimate county averages of annual average 

PM2.5 concentrations representative of population exposures for 1980-2010 in the continental 

U.S. based on our pointwise historical prediction model. For illustration, we report four 

decennial years: 1980, 1990, 2000, and 2010. We focused on counties rather than other 

administrative units because most publicly available health data in U.S. provide aggregated 

attributes at the county level. We also carried out extensive sensitivity analyses in order to 

gain insights into the performance of our approach in comparison with alternatives. 

METHODS 

Locational data 

 We downloaded boundary data for census tracts and counties as shapefiles for 1980, 

1990, 2000, and 2010 from the National Historical Geographic Information System website 

(https://www.nhgis.org/) (Table S1). Given the boundary changes over time, we used 

different boundary maps for each year instead of aggregating to the largest boundary in the 

earliest year. Since census tract boundary data in 1980 were available only for limited areas, 

we replaced these with the 1990 boundaries. Two new counties were established between 

1980 and 1990 as subdivisions of the original. To get accurate county boundaries in 1980, we 

merged these counties, keeping the original county names. Then we created centroids for the 

72,271 2010 census tracts using ArcGIS 10.2 Geographic Information System software 

(Figure S2). For our sensitivity analyses, we obtained locations of 1,466 PM2.5 regulatory 

monitoring sites from the U.S. Environmental Protection Agency (EPA) Air Quality System 

(AQS) database (Figure S3). These sites were from two networks: Federal Reference Method 

(FRM) sites mostly located in largely populated urban areas and IMPROVE sites deployed in 

national parks and rural areas (U.S. EPA 2004; Hand et al. 2011). In addition, we took 

advantage of 12,501 coordinates on a 25-km national grid in the continental U.S. and 3,319 

geocoded residential addresses in Southern California from our previous work.  
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PM2.5 concentration data 

We downloaded daily measurements of PM2.5 at 1,466 FRM and IMPROVE 

monitoring sites from the U.S. EPA AQS database and computed annual averages for sites 

which provided sufficient daily measurements to meet our minimum inclusion criteria. We 

included annual averages from monitoring sites which had daily measurements for more than 

one fourth of the sampling days and no missing measurements for more than 45 consecutive 

days. 

Population data 

We downloaded population in census tracts for 1990, 2000, and 2010 and in counties 

for all four years from the National Historical Geographic Information System website (Table 

S1). These data were generated from the population and housing census carried out in 

decennial years since 1970 (U.S. Census Bureau 2002). Since census tract population was 

unavailable for 1980, we used the data for 1990 multiplied by an adjustment factor (the ratio 

of county population in 1980 to that of 1990). 

Geographic variables 

 We computed about 900 geographic variables at 72,271 census tract centroids, 1,466 

regulatory monitoring sites, 12,501 national grid coordinates, and 3,319 residential addresses. 

The geographic variables represent geographic characteristics representing PM2.5 pollution 

sources such as traffic, land use, population, emissions, vegetation, and elevation (Table S2). 

For example, traffic variables include the distances to the nearest major roads and the sums of 

road lengths within circular buffer areas from the coordinate location, whereas land use 

variables are percentages of areas for land use categories such as residential and commercial 

areas within the areas of circular buffers.  

County-average estimation procedure 

 Using the pointwise historical PM2.5 prediction model we developed (Kim et al. 
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2016a), we estimated PM2.5 annual average concentrations at all 72,271 census tract 

centroids. This spatio-temporal prediction model uses the same PM2.5 prediction model 

framework used in the Multiethnic Study of Atherosclerosis and Air Pollution (Keller et al. 

2015; Sampson et al. 2011; Szipro et al. 2010). Whereas this previous work predicted 2-week 

average concentrations in six U.S. metropolitan cities using monitoring data from both 

regulatory monitoring networks and a cohort-focused monitoring campaign, the historical 

model relied only on regulatory monitoring data to predict annual average concentrations in 

the continental U.S. between 1980 and 2010. In brief, this model consists of three 

components to characterize temporal and spatial patterns of annual average concentrations of 

PM2.5: a spatially-varying long-term mean, a spatially-varying temporal trend, and 

temporally-independent and spatially-dependent spatio-temporal residuals. We estimated the 

single temporal trend using the data for 1999-2010 and extrapolated to the period prior to 

1999. The temporal trend was scaled by a spatially-varying trend coefficient to reflect spatial 

heterogeneity of the temporal trend. We characterized the spatial structures of the long-term 

mean and the trend coefficient in a universal kriging framework with dimension-reduced 

summary predictors. These summary predictors were estimated from hundreds of geographic 

variables by partial least squares (PLS). PLS finds the linear combination of geographic 

variables which is most correlated with PM2.5 annual averages (Sampson et al. 2013).  

 We averaged predicted PM2.5 annual averages in 1980, 1990, 2000, and 2010 at 

72,271 census tract centroids, weighted by census tract populations, to obtain year-specific 

county annual averages. The population weight was the ratio of the year-specific population 

in the census tract to the population of all census tracts in the county for the corresponding 

year. 

Sensitivity analysis 

 We performed four sensitivity analyses to compare to our population-weighted 
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county average estimates. First, we computed county averages using regulatory monitoring 

data only. We restricted this comparison to the two decennial years after 1999 when spatially-

extensive and population-focused regulatory monitoring networks were established. We also 

restricted to the counties containing at least one monitoring site that met our site inclusion 

criteria for computing annual averages. This reduced the number of counties to 567 and 578 

for 2000 and 2010, respectively. Second, we averaged PM2.5 predictions at census tract 

centroids without population weight. Third, to address whether we could reduce the 

computational burden of our approach, we computed county averages from 12,501 grid 

coordinates on the 25-km national grid, roughly one sixth the number of census tract 

centroids. We estimated PM2.5 annual averages at grid coordinates using the historical 

prediction model, interpolated grid predictions to census tract centroids by ordinary kriging, 

and computed county averages. To further determine whether county averages based on the 

grid were underestimated because some grid coordinates fall in non-residential areas, we 

expanded this sensitivity analysis to include regulatory monitoring sites mostly located in 

urban areas. We then compared these two sets of county average estimates based on national 

grid coordinates (only and with regulatory monitoring sites) to our original census tract-based 

estimates. For this comparison, we used county average estimates without population weight 

to focus on the effect of prediction location alone. As with national grid coordinates, census 

tract centroids may also be located in where few people live and may not provide population-

representative exposures. Thus in our fourth sensitivity analysis we explored the population 

representativeness of census tract centroids compared to county-averages developed from 

home addresses. We randomly sampled one cohort address in each census tract, estimated 

historical predictions, and computed residence-based county averages. For feasibility reasons, 

we restricted this comparison to 9 counties in Southern California. In all sensitivity analyses 

we evaluated performance by computing the mean square error-based R-squared statistic 
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(MSE-based R2) to compare the estimate pairs (Keller et al. 2015; Kim et al. 2016b). This 

statistic captures both systematic and random differences between estimates. 

RESULTS 

Mean county-wise annual average PM2.5 concentrations estimated from census tract 

centroid predictions from the historical prediction model were 14.40, 12.24, 10.42, and 8.06 

µg/m3 in 1980, 1990, 2000, and 2010, respectively (Table 1). Variability also decreased over 

time (standard deviation (SD) = 3.94, 3.24, 3.30, and 2.06 µg/m3). County average estimates 

were higher in the East and Southern California than other regions (Figure 1). These high 

concentrations decreased dramatically over time between 1980 and 2010 although there was 

slow improvement in some counties. In 2000 and 2010 respectively, estimated county 

averages from counties with at least one regulatory monitoring site were generally higher and 

more variable (mean=11.73 (SD=3.50) and 8.46 (2.59) µg/m3) than those from counties 

without any regulatory monitoring sites (10.12 (3.19) and 7.97 (1.91) µg/m3) (Table S3). 

Figure 2 to 5 show the four sensitivity analysis comparisons to those based on our 

historical predictions at census tract centroids. Census tract-based county average estimates 

were moderately related to those based on the monitoring data only across counties in 2000 

and 2010 (R2=0.70 and 0.82, respectively) (Figure 2). The R2s were similar when we 

restricted to the counties where more than 10 sites contributed to computing county averages 

(data not shown). Population weighted census tracts gave almost identical county average 

estimates to those without population weight (Figure 3). County average estimates based on 

interpolating the national grid were generally lower than our estimates (R2=0.91-0.96). 

Regression slopes for all four years were less than and significantly different from one 

(slope= 0.97-0.99). However, these estimates became more consistent with our primary 

estimates and were not different from one except for 2000, when we added regulatory 

monitoring sites (R2=0.95-0.98; slope=1.00-1.01) (Figure 4). We found county average 
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estimates based on cohort home addresses in 9 counties in Southern California were generally 

consistent with our primary estimates, suggesting averages based on census tract centroids 

provide good representation of population exposures (Figure 5, Figure S4). In all sensitivity 

analyses, estimates were more consistent in recent than in early years. 

DISCUSSION 

 This study developed an approach for estimating population-representative county 

averages of annual average PM2.5 concentrations in the continental U.S. from 1980 to 2010. 

We averaged pointwise spatio-temporal predictions at census tract centroids to represent 

county-level population exposures; this allowed us to develop high quality estimates across 

the continental U.S. over three decades. Our county average estimates are much more 

comprehensive than simple county-level regulatory monitor averages, and they are consistent 

with those derived directly from residential locations. 

 By expanding the temporal and spatial scales of county-average PM2.5 estimates to 

cover the entire continental U.S back to 1980, this work will allow many new high-quality 

policy-relevant analyses of PM health impacts to be conducted. Mortality and morbidity data 

are often available much earlier than 1999 when the extensive spatial monitoring of PM2.5 

began. These limited data have hampered investigations of the association between PM2.5 and 

health by not allowing all existing health data to be used. Our estimates linked to 

administrative health data will allow the health benefits achieved from the reduction of PM2.5 

over time to be evaluated. In addition, areas where there are no nearby regulatory monitoring 

sites have been shown to have different demographic characteristics than those represented 

by monitors (Bravo et al. 2012). This suggests that it may be inadequate to rely on simpler 

county-level averages computed directly from regulatory monitoring sites to capture county-

level differences in susceptibility. Our estimates allow the 82% of counties without any 

regulatory monitors in 2000 to be included in health analyses; this will provide better insight 
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into PM2.5-attributable health effects in all U.S. sub-populations. 

Our approach is slightly better than and generally consistent with a much less 

computationally demanding alternative approach that averages census tract centroid estimates 

obtained from interpolating (via ordinary kriging) a national grid of predictions supplemented 

with predictions at regulatory monitoring sites. The total number of national grid coordinates 

and regulatory monitoring sites is about 13,000, which is less than one fifth of the 

approximately 70,000 census tract centroids. This reduction in computational burden is 

meaningful since not only are five-fold fewer historical model predictions required, but this 

alternative approach also avoids the burden of computing hundreds of geographic variables 

that accompanies each new location. We used census tracts which are the largest geographic 

units in the census. It would be even more computationally expensive to consider smaller 

units; there are about 0.2 million block groups and 11 million blocks in the continental U.S. 

We believe that the estimates based only on the national grid gave lower county average 

estimates because grid locations do not adequately represent locations where people live. The 

improvement to our predictions after adding monitoring data suggests the regulatory 

monitoring networks provide good population representation. However, regulatory 

monitoring network designs may not sufficiently represent population exposures in all areas.  

County average estimates with and without population weighting gave almost 

identical estimates. Census tracts, as subdivision of counties, were designed to be relatively 

homogeneous units in terms of population characteristics, economic status, and living 

conditions (U.S. Department of Commerce 1994). Our result suggests population weighting 

is not necessary because the relative homogeneity within and heterogeneity across census 

tracts adequately represents county-level population exposures.  

Some previous studies developed approaches for estimating county average estimates 

by combining photochemical model outputs on a grid with monitoring data at points 
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(Barrocal et al. 2009; Brindley et al. 2005; McMillan et al. 2010). The U.S. EPA provides 

PM2.5 annual average concentrations estimated at census tract centroids for 2001-2008 

(https://www.epa.gov/air-research/fused-air-quality-surfaces-using-downscaling-tool-

predicting-daily-air-pollution), using a Bayesian space-time downscaling fusion model 

derived from regulatory monitoring data and Community Multiscale Air Quality model 

output (U.S. EPA 2012). These estimates have been applied to county-level health analyses of 

air pollution (Hao et al. 2015). However, because photochemical models rely on input data 

including emissions and meteorology, the time period for these estimates are limited to the 

period when input data are available. This is much shorter than the three decades we were 

able to capture. 

Our approach, though developed primarily for area-level health analyses, can be 

applied to epidemiological studies that wish to use individual exposures but need to rely on 

area-average estimates for logistical reasons. For instance, several previous cohort studies of 

air pollution assigned an area average air pollution concentration to all individuals residing in 

the area, when addresses were only available at a crude level (Hoek et al. 2013). Typically 

exposure assessment in these studies was based on one or a few monitoring sites in an area 

and restricted to the study regions where regulatory monitoring sites were available. Our 

approach provides population-representative area-average exposures on the national scale for 

an extended time period. 

One limitation of this study is that while our estimates are conceptually preferable, 

validation is challenging. While the sensitivity analysis we performed using available cohort 

data in Southern California indicates that our estimates are representative of population 

exposures, the geographic area of this work was very limited. Future validation studies 

should expand the geographic coverage and consider using residential parcel data. 

CONCLUSIONS 
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Our approach to estimating area-level PM2.5 concentrations will enhance 

epidemiological research using area- and individual-level health data, and allow much more 

extensive policy-relevant assessments of health effects and air quality interventions.  
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Table 1. Summary statistics of county-wide annual average estimates of PM2.5 (ug/m3) in 

1980, 1990, 2000, and 2010 from our primary estimation approach 

Year N Min     Percentile   Max Mean SD 

      10% 25% 50% 75% 90%       

1980 3,109 3.16 8.42 11.90 15.06 17.19 18.66 25.47 14.40 3.94 

1990 3,111 3.03 7.39 10.16 12.76 14.51 15.99 21.70 12.24 3.24 

2000 3,109 1.71 5.77 7.76 10.84 13.08 14.35 19.84 10.42 3.30 

2010 3,109 1.32 4.99 6.71 8.41 9.51 10.49 13.73 8.06 2.06 
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Figure 1. Maps of county-level annual average estimates of PM2.5 in 1980, 1990, 2000, and 

2010 
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Figure 2. Scatter plots of county-level annual averages of PM2.5 (ug/m3) from predictions estimated by the historical exposure prediction 

model and from measurements at regulatory monitoring sites across 567, and 578 counties containing at least one monitoring site in 2000 and 

2010, respectively 
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Figure 3. Scatter plots of county-level annual average estimates of PM2.5 (ug/m3) comparing population weight and no weight for census tracts 

in 1980, 1990, 2000, and 2010 
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Figure 4. Scatter plots of count-level annual average estimates of PM2.5 (ug/m3) comparing predictions directly at census tract (CT) centroids 

vs. predictions at centroids interpolated from national grid coordinates (NGC) (top) and from national grid coordinates and regulatory 

monitoring sites (NGC + AQS) (bottom) in 1980, 1990, 2000, and 2010  
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Figure 5. County-level annual average estimates of PM2.5 (ug/m3) based on census tract centroids and cohort residential addresses across 9 

counties in Southern California in 1980, 1990, 2000, and 2010 
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SUPPLEMENTAL MATERIALS 

 

Table S1. Data availability of GIS boundary and population data in the U.S. continent in 1980, 1990, 2000, and 2010 

  GIS boundary Population 

Year Data source Census tractb County Data source Census tractb County 

1980 2000 TIGER/Linea 42,643 3,109 1980 census 100% data 46,433 3,109 

1990 2000 TIGER/Linea 60,513 3,111 1990 census 100% data 60,803 3,111 

2000 2000 TIGER/Linea 64,866 3,109 2000 census 100% data 64,999 3,109 

2010 2010 TIGER/Line 72,271 3,109 2010 census P & H data 72,539 3,109 

a. NHGIS modified the 2000 TIGER/Line definitions only by erasing coastal water areas. 

b. Some census tracts do not match for the same year-geographic level, typically because those cannot be mapped (like crew-on-vessel 

census tracts) or the coastline clip done to GIS files might has removed a few areas that had no population but were still in the census 

tables.  
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Table S2. List of geographic variables 

Category Measure Variable description 

Traffic Distance to the nearest road Any road, A1, intersection 

 Sum within buffers of 0.05-15 km  A1, A2+A3, truck route, intersections 

Population Sum within buffers of 0.5-3 km  Population in block groups  

Land use  Percent within buffers of 0.05-15 km  Urban or Built-Up land (residential, commercial, industrial, transportation, urban) 

(Urban)  Developed low, medium, and high density 

  Developed open space 

Land use  Percent within buffers of 0.05-15 km  Agricultural land (cropland, groves, feeding) 

(Rural)  Rangeland (herbaceous, shrub) 

  Forest land (deciduous, evergreen, mixed) 

  Water (streams, lakes, reservoirs, bays) 

  Wetland 

  Barren land (beaches, dry salt flats, sand, mines, rock) 

  Tundra 

  Perennial snow or Ice 

Position Coordinates Longitude, latitude 

Source Distance to the nearest source Coastline, Coastline (rough) 

  Commercial area 

24 

 http://biostats.bepress.com/uwbiostat/paper415



 

 Railroad 

  Railyard 

  Airport 

  Major airport 

  Large port 

  City hall 

Emissions Sum within buffers of 3-30 km  PM2.5  

  PM10  

   CO 

  SO2 

  NOx 

Vegetation Quantiles within buffers of 0.5-10 km Normalized Difference Vegetation Index (NDVI) 

Imperviousness Percent within buffers of 0.05-5 km Impervious surface value 

Elevation Elevation above sea levels Elevation value 

  

Counts of points above or below  

  a threshold within buffers of 1-5 km   
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Table S3. Summary statistics of county-level annual average estimates of PM2.5 (ug/m3) from counties with and without regulatory monitoring 

sites in 2000 and 2010 

  Counties with at least one regulatory monitoring site Counties without any regulatory monitoring sites 

Year N Min Median Max Mean SD N Min Median Max Mean SD 

2000 567 1.71 12.25 19.64 11.73 3.50 2,542 2.24 10.47 19.84 10.12 3.19 

2010 578 2.13 9.00 13.73 8.46 2.59 2,531 1.32 8.31 12.53 7.97 1.91 
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Figure S1. Map of 567 counties where there is at least one regulatory monitoring site after applying the minimum inclusion criteria for 

computing annual averages in 2000 
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Figure S2. Maps of 3,109 counties in the continental U.S., and 25-km grid coordinates, regulatory monitoring sites, and census tract centroids 

in Los Angeles county in 2010 
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Figure S3. 72,271 census tract centroids from the year 2010 census, and 3,873 U.S EPA Federal Reference Method (FRM) and 195 

Interagency Monitoring of Protected Visual Environments (IMPROVE) regulatory monitoring sites in the continental U.S. 
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Figure S4. PM2.5 annual average predictions across the year 2010 census tracts based on estimation at census tract centroids and at cohort 

residential addresses in 9 counties of Southern California in 1980, 1990, 2000, and 2010 
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