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Abstract

Heritability is the proportion of phenotypic variance in a population that is at-
tributable to individual genotypes. Heritability is considered an important measure
in both evolutionary biology and in medicine, and is routinely estimated and reported
in genetic epidemiology studies. In population-based genome-wide association stud-
ies (GWAS), mixed models are used to estimate variance components, from which a
heritability estimate is obtained. The estimated heritability is the proportion of the
model’s total variance that is due to the genetic relatedness matrix (kinship measured
from genotypes). Current practice is to use bootstrapping, which is slow, or normal
asymptotic approximation to estimate the precision of the heritability estimate; how-
ever, this approximation fails to hold near the boundaries of the parameter space or
when the sample size is small. In this paper we propose to estimate variance compo-
nents via a Haseman-Elston regression, find the asymptotic distribution of the variance
components and proportions of variance, and use them to construct confidence intervals
(CIs). Our method is further developed to estimate unbiased variance components and
construct ClIs by meta-analyzing information from multiple studies. We demonstrate
our approach on data from the Hispanic Community Health Study/Study of Latinos

(HCHS/SOL).

KEY WORDS: Variance components; proportions of variance; quadratic forms; eigenval-

ues; meta-analysis.
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Introduction

Heritability is the proportion of phenotypic variance that is due to genetic variation among
individuals in a population. Heritability is often estimated using mixed models (Zaitlen
and Kraft, 2012), where the genetic relatedness between any two individuals in a given
study population is estimated (e.g. kinship coefficients may be calculated from GWAS
data, or inferred from pedigrees) and then taken as fixed. Then, a variance component due
to genetic variation is estimated, and the estimated heritability is the ratio between this
variance component and the total variance in the model.

Inference about heritability when estimated from mixed models, and more generally,
about other proportions of variance, usually relies on asymptotic normal approximation to
the distribution of the estimators. However, multiple studies showed (e.g., Burch (2011);
Kruijer et al. (2015)) that such confidence intervals are inaccurate, and may yield values
that are not permissible (e.g. negative values). Recently, Schweiger et al. (2016) proposed
a bootstrap approach for estimating confidence intervals for heritability, and a numerical
approximation that does not require bootstrapping under a specific way of calculating the
genetic relatedness matrix. While they show that their confidence intervals are accurate,
their method is limited by computation time, by requiring a single modeled variance pa-
rameter, and by requiring a specific form for the genetic relatedness matrix when using the
numerical approximation. In addition, current meta-analysis approaches for heritability
estimates rely on the inaccurate normal asymptotic approximation.

In this work we proposes to use Haseman-Elston regression for estimating variance com-

ponents. This approach entails regressing multiplied residuals against entries of covariance
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matrices. We find the asymptotic distribution of the variance component estimators as
well as the distributions of the proportions of variance, in a general model that allows for
multiple sources of variation. We provide an algorithm to estimate the confidence intervals,
and to obtain an unbiased meta-analytic estimator of heritability that accurately combines
information from multiple studies. In the case where genetic relatedness (or kinship) is
the only sources of variation, our algorithm is very quick, with the computationally de-
manding step being the calculation of eigenvalues from a sub-matrix of the kinship matrix.
We demonstrate our method by estimating heritability of height, depression score, sys-
tolic blood pressure, lung function, and dental decay measure in the Hispanics Community

Health Study/Study of Latinos.

The mathematical model

Haseman-Elston regression

Suppose that a quantitative trait Y, measured on n individuals, follows the regression

model

Yi = w! B+bia+...+bi+e=w!B+e, i=1,....n
with 3 a vector of fixed effects of a covariates vector w, b;;,l = a,... ki =1,...,n are
mean-zero random effects with b, = (b;1,...,b,,) and cov(b;) = ofL, so that o2,..., 0}
are variances corresponding to a, ..., k independent sources of variation, and A, ..., K are
nxn matrices with 7, j entries a; ;, .. ., k; ; modeling the correlation between the individuals’
random effects. Also e;,i = 1,...,n are independent errors with variance o2. In genetic

http://biostats.bepress.com/uwbiostat/paper416



association studies one of these matrices, say K, is a kinship, or genetic relatedness, matrix.

Then
Ely;—wiB] = Ele]=0
varle] = 02Lyxp +02A+ ... +0iK =1, and
E[EiEj] = COV(Ei, Ej) = O'?I(i:j) + O'ZaiJ + ...+ U%]{J@j,

where here 02/(02 + ... + 02 + 02) = 02 /02 is the heritability.

Let ,@ be an unbiased estimator of 3, and let €, = y; — wZT,/B\ be an estimator ¢;,7 =

1,...,n. We estimate the variance components in a residual regression, i.e. by taking the

vector of all unique pairs of residuals €;¢;,7 < j (we can do it by taking the upper diagonal

sub-matrix of €&’ that includes the diagonal), denoted by €’ and regressing it according

to the above model. The regression design matrix is given by:

1 a1,1 N ]{1171 1 1
0 1,2 NN k172 0 ai,2
0 a1,n kl,n 0 a1,n
1 as 2 k2,2 1 1
0 CL213 e k273 0 a2,3
X = =
0 ag n, k2,n 0 az.n
1 Up—1n—1 --- kn—l,n—l 1 1
0 An—1,n oo knfl,n 0 Qp—1,n
1MYaek ... Fnn 11
)

kl,n

ka3

kQ,n

knfl,n
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where the second equality is because a; ;, ..., k;; = 1 for all 7. Denote the vector of variance

components estimated from the Haseman-Elston regression by 2 = (62,52,...,5)T

Properties of the variance components and proportions of variance esti-

mators

Complete mathematical derivations are provided in the appendix. Below are statements
of some of the results to provide intuition to the findings and methods.

Lemma 2: Variance component estimators corresponding to the matrices A, ..., K depend
only on the between-observation multiplied residuals of the form €;€; for i # j.

Lemma 3: Denote by 03 = 02+ 02+ ...+ 07. Thenga.= 13" &,

Theorem: We say that two matrices C1 and Ca are orthogonal in the trace inner product,
or “trace orthogonal” if tr(C1Cq) = 0. Let the matriz L™ be the matriz L with all

diagonal values set to 0. If a matrix L™ is trace orthogonal to all other matrices in the set

{A~,..., K}, then
e L ¢
O'l =5 Zl,]qe] _—
Z]>z ©,] >0 L L~ )

and the estimator of the proportion of variance modeled in L is the ratio between two
quadratic forms given by:

/\l B ATL_A

52 Li(prL)Te

The above theorem provides a closed form estimator for a variance component and the
proportion of variance corresponding to a covariance matrix L when it represents either
the only modeled source of variation in the model, or when it is orthogonal to all other

modeled sources of variation. It is straightforward to obtain closed form expressions in the
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more complicated case of multiple modeled sources of variation that are not orthogonal.

Computation

Variance component estimators

While any unbiased estimator of B suffices to generate residuals € and use them to ob-
. . . -1 - . . .
taln variance component estimators as (XTX) XTed, a more efficient estimator iterates

between estimating 3 and o? as follows:
~(0
1. Initialization step: set B( ) (WIw)"twTy,
2. Tteration step:

~(k
(a) Given the kth estimator of 3, ﬁ( ), set € = y — WBH) . Let € denote the
vector of upper diagonal matrix (including the diagonal) of ee”. Set 5> =

Ge™, 5™ ey = (XTX) T X e,

(b) Given the kth estimator of o2, 5’2’(k), let fl(k) = 82’(k)1nxn + 32’(k)A + ...+
82’(k)K with inverse 35", Set B(kH) = (WTﬁ_l’(k)W)AWTi_L(k)y

The iteration step repeats until convergence.

Confidence intervals for the variance components

From Lemma 4 in the appendix, any variance component (or sum of variance components)
is given as a quadratic form. Let Q be the quadratic form corresponding to a variance

component estimate 77, such that 57 = ¢’'Qé. This o7 is distributed as the sum of
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independent X%1) variables in > | )\ix%l), where \q, ..., A, are the eigenvalues of Qcov(€).
In practice, for cov(€) we use the estimated 3(52,...,52). Functions in the R package
CompQuadForm (Duchesne and de Micheaux, 2010) calculate the probability function (or
survival function) of this quadratic form based on Ay,...,\,. While it takes times to
compute the eigenvalues, once they are computed, calculating the probabilities associated
with the quadratic form is quick. We can test the hypothesis Hy : 012 = 0 by calculating
the probability

Pr (eTQe = 0) =1—-Pr (eTQe > 0) )

and calculate two-sided confidence intervals for 612 by calculating the appropriate quantiles
of the survival probability. For example, for a 95% confidence interval we take the values

(c1,¢g) for which

¢; = u:Pr(e'Qe>u)=0.025

cg = u:Pr (eTQe > u) = 0.975.

We find these values using a binary search on the interval [0, 3%].

Computing heritability estimates and their confidence intervals

Suppose that the variance component corresponding to the kinship matrix is a,%, with
quadratic form denoted by Q. We estimate heritability as ﬁk = 8,% /8%. However, we
cannot use the confidence intervals for 0,% to construct confidence intervals for h;. Instead,
we note that the point estimate /ﬁk is given by:

. . al/2 o a1/2
G e'Que  2Tx / QX / x z'Fa
k = n = ~Y = p
%eTIe %wTE:B zT Gz

8
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where x ~ N(0,1), for F = f]l/ZQkf)I/z and G = f]/n Thus, it is a ratio between two
quadratic forms in (what we assume are) normal variables. For the squared root 21/2, we
use the Cholesky decomposition of s

We use the saddlepoint approximation for the distribution of a ratio of quadratic forms
in normal variables, proposed by Lieberman (1994). Complete detailed are provided in the
appendix. In brief, for each potential value of hy, say hj, we can calculate the survival
probability Pr (hj > h}) using the saddlepoint approximation. Each such calculation re-
quires as input dj, . .., d;,, the eigenvalues of the matrix D* = F —h;G. We apply a binary

search on the potential values hy € [0,1] to find end points ¢; and cp for the confidence

intervals, as was done for calculating a confidence intervals for o?.

Fast computation when genetic relatedness is the only modeled source of cor-

relation

If we have only have a single kinship matrix K modeling the phenotypic variance, we can
compute the eigenvalues A1, ..., A, of the matrix K~ once, and then transform these eigen-
values to obtain the eigenvalues dj(hy),...,d} (h;) for each value hy, and save computation
time. To see this, suppose that u is an eigenvector of K~ with an eigenvalue A. Then, by
definition, K~u = Au. Since ¥ = 02(K~ + I) + 021, it is straightforward to see that w is

also an eigenvector of 3:

Su = [op(K™ +1I)+ ol u = (0pA + o} + 02) u.
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Similarly, v is an eigenvector of »/2 with an eigenvalue \/0%)\ + 0,3 + 02, which finally

leads to the transformation between an eigenvalue \; of K~ to an eigenvalue of D*(hj):

1

d;i(hp, Ni) = ——=—5\i
z 23 ici Vi

(Xiok + o7 + 02) — hj(Nioy + o} + 02) /n.

As before, we use the estimated 8,%, o2 instead of the true unknown values.

Meta-analysis across studies when kinship is the only source of correlation

Suppose that there are S studies that we wanted to combine in meta-analysis. We assume
that kinship is the only source of correlation. Each study has a vector of residuals €5 =
(s15-++,6smy)T,8=1,...,8. Consider the Haseman-Elston regression, but incomplete, so
that only the pairs of multiplied residuals within study €s ;€5 ; are regressed against entries
of the kinship covariance matrix, but not € ;¢ ; for s # t. For this, we do not need to
assume that a participant in one study is genetically unrelated of a participant in another

study. The meta-analytic estimator of o2 is given by 5> = ZSS:1 S e/ ZSSZI ns. Let

i=1 “s,i
¢ = (e,... &5)T. The meta-analytic kinship variance component estimator is given by
1
~2 AT r— A~
op=———-€ K é
P w(KgKg) S

where K is the block diagonal matrix that have all the study-specific kinship matrix

(without their diagonal values) arranged diagonally, as

K/ 0
i 0 K; 0
K =
0 0 K;
10
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To see that this meta-analytic estimator of o7 is unbiased, note first that cov(é) = (o2 +
az)I + a,%K‘, where now K~ has kinship coefficients for individuals across studies (and

diagonals set to zero). From characteristics of quadratic forms:

~ 1 T 1 B A
E[Gy] = E [tr(KSKs)ETKSEI = mtr (Kgcov(e))

_ 1 — /2 2 2y —
= KK (KgKg)tr {KS [(U6 +oi)I+ 0K ]}

~ b (Ko?K) =
= tr(K;Kg)tr(KSJkK )—

Let K= = Ky + K, where K is the matrix of cross-study relatedness. Although the
variance components estimates and their ratios depend only on Ky, their distribution of
the depend on K, as well.

Computing the meta-analytic heritability estimator and confidence intervals.
Suppose that each of S independent studies calculated the residuals from a “null model”

(a regression model without genetic fixed effects other than PCs). Each study s reports:

LKs =23, ik,

~2
2. 050
3. 52

€,s?

4. The number of participants in the study ng,

5. The eigenvalues Aj,..., A

5., of its matrix K¢ .

11
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The meta-analysis estimates of the kinship and error variance components, and ¥ are:

S §~2
~2 Zs:lK Jk,s
Uk‘ = 723 ,Cs

s=1

S ~
~2 Zs:l NsO¢ s
O'e = S s

Zs—l s

S
S
k¥ = > K,
s=1

and the eigenvalues of the across-studies matrix K~ (= K under independence between
studies) are taken to be )\%, AL ...,)\f, . ,)\gs. Using these, the central location

nio

calculates heritability estimates and confidence intervals.

The Hispanic Community Health Study/Study of Latinos

The HCHS/SOL (LaVange et al., 2010; Sorlie et al., 2010)) is a community based cohort
study, following self-identified Hispanic individuals from four field centers (Chicago, IL;
Miami, FL; Bronx, NY; and San Diego, CA). Individuals were sampled via a two-stage
sampling scheme, in which households were randomly sampled from sampled community
block units. Almost 13,000 study participants consented for genotyping. Correlation ma-
trices to model environmental variance due to households and community block units were
generated so that the i, j entry of a given matrix was set to 1 if the ¢ and j individuals live
in the same household (or community block unit), and 0 otherwise.

HCHS/SOL individuals were classified into ‘genetic analysis groups’: Central American,
Cuban, Dominican, Mexican, Puerto Rican, and South American. These groups are based
on self reported ethnicities and genetic similarity (Conomos et al., 2016). This study was

approved by the institutional review boards at each field center, where all participants gave

12
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written informed consent.

Genotyping, imputation and quality control

Blood samples from HCHS/SOL individuals were genotyped on a custom array consisting
of Nlumina Omni 2.5M content plus ~150,000 custom markers selected to include ancestry-
informative markers, variants characteristic of Amerindian populations, known GWAS hits
and other candidate gene polymorphisms. Quality control was similar to the procedure de-
scribed in Laurie et al. (2010) and included checks for sample identity, batch effects, miss-
ing call rate, chromosomal anomalies (Laurie et al., 2012), deviation from Hardy-Weinberg
equilibrium, Mendelian errors, and duplicate sample discordance. 12,784 samples passed
quality control, and 2,232,944 SNPs passed quality filters. Pairwise kinship coefficients and
principal components reflecting ancestry were estimated in an iterative procedure which
accounts for admixture (Conomos et al., 2016). All common variants were used to estimate
kinship coefficients. Finally, we removed some individuals at random to generate a set of

10,255 individuals without any pair having kinship coefficient higher than 2711,

Heritability and proportion of variance estimation in the HCHS/SOL

Due to the sampling structure of the HCHS/SOL, the correlation between individuals is
modeled via a kinship matrix, and two matrices modeling environmental effects: household
and community block unit matrices. For each investigated trait we estimated variance com-
ponents corresponding to the three correlation matrices via the Haseman-Elston regression

and estimated 95% confidence intervals.

13
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The considered traits were FEV1 (a measure of lung function), standing height, de-
pression score (CESD10, a sum of ten questionnaire items related to depression in the
week prior to the clinic visit), SBP (systolic blood pressure), and dental caries, a count
of tooth decays and cavities across all participant’s teeth. All regression models were ad-
justed (via the design matrix W) to the 5 first principal components, study center, age,
sex, and genetic analysis group (in the pooled models). For some traits we used additional
covariates.

To study the use of our method for meta-analysis when there are some related individ-
uals across studies, we first generated a restricted data set of 7,848 individuals that none
of them lived in the same household. We then treated each of the genetic analysis groups
as a separate study, and used the proposed procedure for calculating heritability in each of
the genetic analysis group and in meta-analysis. We also compared these analysis to the
pooled analysis that modeled all 7,848 individuals together. Note that for this exercise we
neglected block unit correlation, i.e. assumed that it does not contribute to the phenotypic

variance.

Simulation studies

We study the accuracy of the proposed method for calculating confidence intervals in
simulations. We used correlation matrices from the HCHS/SOL corresponding to kinship,
household, and community block unit, to generate quantitative outcomes with realistic
correlation structures. In any given simulation, data were sampled by first generating

an error vector e from a standard normal distribution. We simulated the covariance

14
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structure

cov(e) = 0’1+ oiK + 0iH + 0’C =%

by taking e = »1/2¢ind  The matrices K,H, and C were the kinship, household, and

community matrices in the HCHS/SOL. The outcomes were simulated by
y =2+ 3PC; + e,

where PCj is the first principal component of the HCHS/SOL data. All simulations were
performed 1,000 times.

In the first simulation study we set o = (02,0%,0%,02) = (100,40, 15,2), and studied
our method in settings of small sample size (n = 1,000) and large sample size (n = 12,784).
In a second simulation study we set o = (02,07, 07,02) = (100, 0%,0,0), with o7 € {0,40}.
Here we also considered settings of small and large sample sizes, and in addition, we
randomly divided the large dataset into 5 subgroups, to generate data mimicking five
different studies with possible genetic relatedness between participants of different studies,
and studied the meta-analysis approach in this setting. We randomly partitioned the data

to subgroups four times, to make sure that results did not depend on a specific partition.

Results

Simulation studies

Figure 1 provides the results from simulations with three modeled sources of variation:
kinship, household, and community block unit, mimicking the HCHS/SOL study. The

coverages of the confidence intervals obtained in the simulations with large sample size

15
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were very close to the nominal value, but a bit lower (92%) for the variance component
corresponding to community block unit (which was simulated to account for 1% proportion
of variance). The confidence intervals obtained from the simulations with small sample size
have larger coverage than nominal value (98%-99%), and are much wider. However, they
are not trivially large (i.e. they are not of the form [0, 1]).

Figure 2 provides the results from simulations in which only the kinship matrix was
modeled as a single source of phenotypic variation between individuals. The coverages
were good, with the tightest confidence intervals estimated in the large sample size, when
all individuals were pooled together as in a single large study, and the estimated genetic
relatedness between all individuals were used. The confidence intervals from the meta-
analysis were wider, and the confidence intervals from the small sample size simulations

were quite wide, as expected.

Heritability estimation in the HCHS/SOL

For each of the investigated traits, Figure 3 provides estimated proportion of variance
(heritability and environmental variance) and 95% confidence intervals from the Full data
set, that included environmentally correlated individuals, and from the restricted data set
that did not include environmentally correlated individuals. We used the restricted data set
to compare a pooled analysis, genetic analysis group specific analyses, and meta-analysis
that ignores the correlation between individuals from different genetic analysis groups, to
mimic meta-analysis across different studies. For all analyses, numerical estimates are

provided Table 1 in the appendix.

16
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In the Full dataset, for most traits (height, SBP, Dental caries, and FEV1), the heri-
tability was larger than the proportion of variance attributed to the modeled environmental
components. However, the proportion of variance of the depression score due to environ-
mental effects was higher than the heritability, and was also statistically significant (p-value
= 0.002), while the heritability was not (p-value = 0.1). The heritability of height was esti-
mated as almost 60%, consistent with other estimates from GWAS, but the 95% confidence
intervals was (0.47,0.69).

Considering the restricted data set, the analyses of specific genetic analysis groups
yielded wide confidence intervals, which often included zero. This is expected due to low
power. In addition, the meta-analyses that did not account for the correlations between
the genetic analysis groups had wider confidence intervals than the corresponding pooled

analyses.

Discussion

In this manuscript we investigate the properties of Haseman-Elston regression estimators of
variance components. We get a closed-form expression for the variance estimators, and use
them to characterize the distribution of the estimated variance components and ratios of
variance, and to compute confidence intervals. Our confidence intervals require normality of
the residuals from the trait regression model after adjusting for covariates. We further show
how to obtain unbiased estimates of the variance components and proportions of variance
by meta-analyzing information from multiple studies. In this case, the heritability estimates

are unbiased even if individuals are related between studies, but the asymptotic distribution

17
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of the estimators depends on the unknown (and non-estimated) kinship coefficients of cross-
study individuals.

We show in simulations based on the HCHS/SOL correlation structure that the coverage
of our confidence intervals is good both in pooled analysis, and in meta-analysis (even when
individuals are related between studies) while being quite conservative when the sample size
is small. More work is needed to study the analytic properties of the confidence intervals

in meta-analysis when individuals are related between studies.

Software

An R code for estimating heritability (or proportion of variances due to other modeled
factors), and their confidence intervals, together with an example script, can be found at
https://github.com/tamartsi/Heritability_CIs.
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A Mathematical derivation

Suppose that a quantitative trait Y, measured on n individuals, follows the regression

model
yl:wlTﬁ_{—elv /L:]-u y 1
where
Ele] = 0 (1)
varle] = 0Lup +02A1+...+0jK=3 (2)
and A, ..., Karenxn matrices modeling correlations between individuals. Let a; j, ..., k; ;
denote the i,j entries of the matrices A,...,K. Assuming that random effects due to

A, ... K are independent, we have that:

E[Gﬁj] = COV(GL', Gj) = UgI(i:j) + agai,j 4+ ...+ U]%ki,j-
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Figure 1: Results from 1,000 simulations estimating the proportion of variation attributed
to community block unit (¢ = 2), household (o7 = 15), and kinship (o7 = 40) out of the
total variance (02 = 02 + 02 + 02 + 02, with 02 = 100), in scenarios with small and large
sample sizes. The points represent the means of the estimated proportions of variance, and
the low and high end points of the intervals represent the means of the low and high end
points of the estimated confidence intervals. The coverages of the estimated confidence
intervals, defined as the proportion of simulations in which the true proportion of variance

22
was in the estimated confidence interval, are written by each line.
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Figure 2: Results from 1,000 simulations estimating the proportion of variation attributed
to kinship (o7 € {0,40}) out of the total variance (0% = of + o2, with 02 = 100), in
scenarios with small and large sample sizes, and when randomly dividing the large data set
to 5 studies and meta-analyzing without accounting for relatedness between individuals in
different studies. The points represent the means of the estimated proportions of variance,
and the low and high end points of the intervals represent the means of the low and high
end points of the estimated confidence intervg?l)s. The coverages of the estimated confidence

intervals, defined as the proportion of simulations in which the true proportion of variance

was in the estimated confidence interval, are written by each line.
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Analysis

Full: Environment, N=10,255 4
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Estimated proportion of variation and 95% CI

Figure 3: Estimated proportions of variance from the various subsets of the HCHS/SOL
data. The Full dataset included 10,255 individuals with mutual kinship coefficient smaller
than 27!, Using Full, we estimated both heritability and the proportion of variance that
is due to modeled environmental effects: the sum of the variance components correspond-
ing to household and community block unit sharing. A restricted data set included 7,848
individuals from separate households and was used to compare meta and pooled analysis
heritability estimates, where the meta-analysis used information from each of the genetic
analysis groups. Dental caries is a measure of teeth damage. Depression score is a summa-
tion of responses to questions related to depressive behavior or feelings in the week prior
to a participant’s clinic visit. FEV1 is a measure of lung function. SBP is systolic blood

pressure.
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Let B be an unbiased estimator of 3, and let €; = y; —wiT,B be an estimator ¢;,i =1,...,n.
We estimate the variance components in a residual regression, i.e. by taking the vector all
unique pairs of residuals €;é;,¢ < j (we can do it by taking the upper diagonal sub-matrix
of €&’ that includes the diagonal), denoted by €? and regressing it according to the above

model. The regression design matrix is given by:

1 a1 e k171 1 1 1 1

0 ay,2 e kLQ 0 ai,2 e ]{1,2
0 Q1n PN kl,n 0 ain e kl,n
1 ag,g e k272 1 1 1 1

0 az.3 PN k'273 0 a3 e ]{3273

X == fd

0 a2 n e k‘gm 0 azn e k2,n
1 n—1,n—-1 --- kn—l,n—l 1 1 1 1

0 an—1,n e kn—l,n 0 an—-1,n --- kn—l,n
1 an,n e Enn 1 1 1 1

(because a;,...,k;; = 1 for all i). Denote, for simplicity of presentation, the vector of

off-diagonal elements of A,..., K by I = (l12,013,---,l1n,023, s ln—12)T, 0 = 1,... K,

and the vector of off-diagonal elements of €€ by €. Then the least squares estimator of
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erYar

02,02,...,02) is given by (XTX)~1XTe?. Clearly, we have that
k

n n+a’a n+a’d ... n+a'k
(XTX) =
n nt+kla n+k'd ... n+k'k
This is most likely a positive definite matrix as (we assume that) the matrices A, ... K

are not highly correlated. In addition, we have that

Y € Y € 0
XTz — Yl € +ale _ > & n alé
Sk e W'

Lemma 1:
1 z z 1
n n
T —1 1 0 . 0 1
(XTX) - & (XTX) -

1 0 0 1

Proof: Because (XTX)is non-singular, and from the properties of the inverse matrix, we
have that (XTX)_1 (XTX) v = v for every v. |
Lemma 2: Variance component estimators corresponding to the matrices A, ..., K depend

only on the between-observation residuals of the form €;e; for i # j and do not depend on

26
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€2,i=1,...,n. Proof: By noting that

77

1 1

0 1
(X'X) = ,

0 1

we get from Lemma 1 that

) 1
Z?:l € Zz 1 z

no 2

| X 0

(XTX) (2 7 _

)

2im1 & 0

which proves that the term > " | €2 contributes only to the estimator 2. [

Lemma 3: Denote by 03 = 02+ 02+ ...+ 07. Theno3. = 23" &

Proof: We show that 62 + 62+ ...+ 57 = = >, é2. In the proof of Lemma 2 we saw
that
L 0
_ 1 0
(x"x)" =
1 0

Since this (XTX)_1 is symmetric, it follows that

(1 1. 1>(XTX)_1=(7{L 0 ... 0)

27
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Therefore

Il
7N
3=
o
o
~_
i
~
o
|
S|
M>
il\.’)

which completes the proof. |
Lemma 4: An estimator of the ratio between any variance component (or sum of variance
components) and the total variance is a ratio between two quadratic forms.
Proof: For L = A, ..., K, a quantity of the form ITe = éTL_f—:/2, where the matrix L™!
is the matrix L with all diagonal values set to 0. An estimator a variance component 012 is
a linear sum of the quadratic forms é7 A€, ..., e' K¢, with coefficients the entries of the
corresponding row of (XTX)~!. Since a weighted sum of quadratic forms is a quadratic
form, any variance component (and a sum of variance components) is also a quadratic
form. Similarly, the total variance estimators is the quadratic form %éTé. |
Theorem: We say that two matrices C1 and Co are orthogonal in the trace inner product,
or “trace orthogonal” if tr(C1Csy) = 0. If a matrix L™ is trace orthogonal to all other
matrices in the set {A~,..., K™}, then
57 = lez > lijéies.
>0 i
Proof: Without loss of generality, assume that A is trace orthogonal to B,...,K.

First note that for the symmetric matrices with diagonal values set to zero A=,..., K™,

28
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tr (A_L_) = 0 if and only if a’l = 0. Then

n n—|—aTa n n
(XTX) = n n n+b'b ... n+b'k
n n n+kTo ... n+kk.

Denote by (XTX)[;h the 4, element in the matrix (X7 X)~!. First, we notice that the

,j =3,...,k+ 1 are all 0, because the (X”X):L entry is a constant

entries (XTX)-!

(2,5]° [3,7]

times the i, j minor of (X7X), which has two identical columns (corresponding to the 1st
and 2nd columns of (X7 X) when removing its 2nd row). Since the sum of the 2nd row of
(XTX)~!is equal to 0, as we saw before, we get that (XT X)[2 0= —(XT X)[2 5

We now argue that

5, = (XX € +(XTX)[22}< e?+aTa)
=1 =1

— (XTX)[Q}HZZ? (XTX)[21}< e?+aTé)

i=1 i=1

T ale )
= —(X X)[2 e @ Z Za”qej,
>1 z,] §>i

where we need to show that equality (4) holds to complete the proof. We need to show that

—(XTX)[_;H ~ ﬁ Consider now the matrix X7X. One can derive its determinant
) 5>i %
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from its second row, as:

IXTX| = (XTX)p M1 — (XTX) o Maz + ...+ (= 1) T HXTX) .1 Moy
= nMy;—(n+ aTa)Mg,z +0+...0

= nXTX|(X"X) 55— (n+aa) XTX|(XTX) Yy

= nX'X|(X"X)p4; — (n+a’a) XTX|(XTX) Y,

= —aTa|XTX|(XTX)[;}1]

Therefore, we get that — (X7 X):

[211} = aTla’ which completes the proof. i

B Computation

B.1 Variance component estimators

While any unbiased estimator of B suffices to generate residuals € and use them to ob-
tain variance component estimators as (XTX)f1 XTe, a more efficient estimator iterates

between estimating B and the variance component estimator as follows:
~(0
1. Initialization step: set B( - (WIw)~twTy,

2. Iteration step:

(k)

(a) Given the kth estimator of 3, B ', set € = y — WBH® and € is the vec-

2,(k)

tor of uppder diagonal matrix (including the diagonal) of eel. Set &

(’\27(k) A27(k) A27(k)) — (XTX)fl XTéd

O S, Gl BERRY, © .
(b) Given the kth estimator of o2, 5’2’(k), let f](k) = 83’(k)1nxn + 33’(k)A + ...+
6'\2’(k)K with inverse f]il’(k). Set B(kﬂ) = (WTflil’(k)W)_leiil’(k)y
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The iteration step repeats until convergence.

B.2 Confidence intervals for the variance components

From Lemma 4, any variance components (or sum of variance components) is given as a
quadratic form. Let Q be the quadratic form corresponding to a variance component esti-
mate 8l2, such that 812 = ¢"Qe. Then this 8l2 is distributed as the sum of independent X%1)
variables in >, )\ix%l), where Aj,..., )\, are the eigenvalues of Qcov(€). In practice, for
cov(€) we use used the estimated 3(52, . .. ,07). Functions in the package CompQuadFrom
calculate the probability function (or survival function) of this quadratic form based on
AL, ..., Ap. While it takes times to compute the eigenvalues, once they are computed, a
calculating the probabilities associated with the quadratic form over a grid is simple and

quick. We can test the hypothesis Hy : 012 = 0 by calculating the probability
Pr (éTQé - o) —1—Pr (éTQé > 0) ,

and calculate two-sided confidence intervals for 812 by calculating the survival probabilities
over a grid, and taking the appropriate quantiles. For example, for a 95% confidence

interval we take the values (c1, ¢2) for which

cp = wu:Pr (eTQe > u) = 0.025

co = wu:Pr (eTQe > u) = 0.975.

We find these values using a binary search on the interval [0, 3%].
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B.3 Computing heritability estimates and their confidence intervals

Suppose that the variance component corresponding to the kinship matrix is a,%, which
quadratic form denoted by Qi. We estimate heritability as /ﬁk = 0:/5%. However, we
cannot use the confidence intervals for J]% to construct confidence intervals for hy. Instead,

we note that the point estimate is Ek is given by:

1/2

u . al/2 L &
7 Qe ' Qx "z 2TFa
k p— = = = — =
%ETIE %wTEa: TGz

where © ~ N (0,1), for F = 21/2Qk§1/2 and G = ﬁ/n Thus, it is a ratio between two
quadratic forms in (what we assume are) normal variables. For the squared root 21/2, we
use the Cholesky decomposition of s

Now, we use the saddlepoint approximation for the distribution of a ratio of quadratic

forms in normal variables, proposed by Lieberman (1994). For a given potential value of

hy, say hy,, we can calculate the survival probability

where ® and ¢ are the standard normal cdf and pdf, and

d*2 1/2
{2 Z (1 —20wd})? }
n 1/2
£ = {Zln(l - QQdf)} sgn(w)
i=1

and dj, ..., d;, are the eigenvalues of the matrix D* = F — h; G, and @ is the corresponding

IS
Il

saddlepoint satisfying
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Confidence intervals are then built, as before, using a binary search to find the values

satisfying the required probabilities at the tails.
B.3.1 A faster algorithm when the kinship matrix is the only source of cor-
relation in the model

Computing the eigenvalues di(h}),...,d; (h}) takes time. However, in the case where we
only have a single kinship matrix, denoted by K we can compute the eigen decomposition of
the matrix K~ once to obtain eigenvalues A1, ..., A, and then transform these eigenvalues
to obtain the eigenvalues dj(h}),...,d;,(h}) for each value hy. To see this, suppose that u

is an eigenvector of K~ with eigenvalues A\. Then, by definition:
K u = \u.
Since ¥ = 07(K~ +1) + 021, it is straightforward to see that w is also an eigenvector of 3:
Su=[0p(K™ +1I)+ 02T u= (0fA+ 0} + 07) w.

Similarly, w is an eigenvector of »1/2 with eigenvalue \/02)\ + a,% + 02, which finally leads

us to the transformation between an eigenvalue A of A to an eigenvalue of D* = F — h;G

given by:

1
5 )\i()\iaz + az + az) — h’,;()\iaz + Uz + aZ,)/n.

di (R As) = By
i<j Vij

As before, we use the estimated 3,3, 72 instead of the true unknown quantities.
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B.3.2 Meta-analysis of across studies when kinship is the only source of cor-

relation

A meta-analytic estimator. Suppose that there are S studies that we wanted to com-
bined in meta-analysis. We assume that kinship is the only source of correlation. Each
study has a vector of residuals €5 = (és1,...,€sn,) ;8 =1,...,5. Consider the Haseman-
Elston regression, but incomplete, so that only the pairs of multiplied residuals within study
are used (i.e. only € ;€és; are regressed against entries of the kinship covariance matrix,
but not €€ ;). Therefore, cross-study kinship estimates are not used in the regression,
however no assumption is made on them. In other words, we do not need to assume that
participant in one study is genetically independent (no alleles shared IBD) of a participant
in another study. It is straightforward to show that the meta-analytic estimator of o5 is

A

given by 72 = ZSS:1 S ¢2. . Let é = (¢1,...,€s)”. Then the meta-analysis kinship

=1 "s,2"

variance component estimator is given by

52 1 rp
oL = o (K;K;)e Kle

where K is the block diagonal matrix that have all the study-specific kinship matrix

(without their diagonal values) arranged diagonally, as

K, 0
\ 0 K, 0
K =

0 o K;

To see that this meta-analytic estimator of o7 is unbiased, note first that cov(é) = (o2 +

O']%)I + JI%K_, where now K™ is the kinship matrix with kinship coefficients between the
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individuals across studies. Now, from characteristics of quadratic forms, we have that

1

1 éT — A _
-~ tr(KyKy)

tr (KiKy)  ° ‘
1 _ _

= mtr (Ks (0'?“‘0']%)1‘1‘0’]%1( )

_ 1 — 9pe\ _ 2

= (KS_KS_) tr (KS 0. K, ) = 0},

E

E [6}] tr (K cov(e))

Computing the meta-analytics heritability estimator and confidence intervals.
The eigenvalues result shows that all we need to calculate heritability estimates and confi-
dence intervals are eigenvalues of the matrix K~ (the kinship matrix without the diagonal),
estimated o2, 07, and the sum of the entries of K~ (23", <j kfj) This result could be used
to extend our methods to meta-analysis of information from multiple studies. Suppose
that each of m independent studies calculated the residuals from a “null model” (i.e. a

regression model without genetic fixed effects other than PCs). Then, each study s reports:

LK =2%,, k%
~2

2. O.s5

3. 52

e,s?

4. The number of participants in the study ng,

5. The eigenvalues Aj,..., A;

5. of the matrix K .

Then, the meta-analysis estimates of the kinship and error variance components, and 1C°
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are given by:

S ~2
~92 25:1 KSJk s
Uk‘ = S ,Cs
Zs:l
S ~
~2 Zs:l NsO¢ s
o, = 5 )
Zs—l s
S
k¥ = > K,
s=1
and the eigenvalues of the cross-study K~ matrix are taken to be Al,. .., )\}Ll, ceey )\13, ceey )\;qls.

Using these, the central location that can calculate heritability estimates and confidence

intervals.

C The Hispanic Community Health Study/Study of Latinos

The HCHS/SOL, (LaVange et al., 2010; Sorlie et al., 2010)) is a community based cohort
study, following self-identified Hispanic individuals from four field centers (Chicago, IL;
Miami, FL; Bronx, NY; and San Diego, CA). Individuals were sampled via a two-stage
sampling scheme, in which households were randomly sampled from sampled community
block units. Almost 13,000 study participants consented for genotyping. HCHS/SOL indi-
viduals are classified into ‘genetic analysis groups’, classes that are based on self reported
ethnicities and genetic similarity (Conomos et al., 2016). The genetic analysis groups
are Central American, Cuban, Dominican, Mexican, Puerto Rican, and South American.
This study was approved by the institutional review boards at each field center, where all

subjects gave written informed consent.
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C.1 Genotyping, imputation and quality control

Blood samples from HCHS/SOL individuals were genotyped on a custom array consisting
of Nlumina Omni 2.5M content plus ~150,000 custom markers selected to include ancestry-
informative markers, variants characteristic of Amerindian populations, known GWAS hits
and other candidate gene polymorphisms. Quality control was similar to the procedure de-
scribed in Laurie et al. (2010) and included checks for sample identity, batch effects, miss-
ing call rate, chromosomal anomalies (Laurie et al., 2012), deviation from Hardy-Weinberg
equilibrium, Mendelian errors, and duplicate sample discordance. 12,803 samples passed
quality control, and 2,232,944 SNPs passed quality filters. Pairwise kinship coefficients and
principal components reflecting ancestry were estimated in an iterative procedure which
accounts for admixture (Conomos et al., 2016). All common variants were used to estimate

kinship coefficients.

C.2 Heritability estimation in the HCHS/SOL

In each group of interest, including all individuals (‘pooled’ analysis), or specific genetic
analysis groups, we randomly removed related individuals, to generate a set of individuals
without any pair having kinship coefficient higher than 27 1'. Due to the sampling structure
of the HCHS/SOL, the correlation between individuals is modeled in a kinship matrix, and
also via matrices corresponding to community block units, and households. We estimated
variance components via the procedure described here, with the three correlation matrices.
We utilized the availability of environmental correlation to also estimate the contribution

of modeled environmental factors (block unit and household) to the phenotypic variance.
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Finally, we also demonstrate the use of our method for meta-analysis by removing individ-
uals from shared household to generate a restricted set in which none of the individuals
live in the same house, and used the proposed procedure for calculating heritability in
meta-analysis. Note that for this purpose we neglected block unit correlation and assume
that there is no correlation due to block unit sharing.

We estimated heritability for the FEV1 (a measure of lung function), standing height,
depression score (CESD10, a sum of ten questionnaire items related to depression in the
past few weeks of filling the form), SBP (systolic blood pressure), and dental caries, a
count of tooth decays and cavities across all teeth of a participant. Finally, all regression
models were adjusted (via the design matrix W) to the 5 first principal components, study
center, age, sex, and genetic analysis group (in the pooled models). For some traits we

used additional covariates. Table 1 provides the various estimates and confidence intervals.
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