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Abstract

Heritability is the proportion of phenotypic variance in a population that is at-

tributable to individual genotypes. Heritability is considered an important measure

in both evolutionary biology and in medicine, and is routinely estimated and reported

in genetic epidemiology studies. In population-based genome-wide association stud-

ies (GWAS), mixed models are used to estimate variance components, from which a

heritability estimate is obtained. The estimated heritability is the proportion of the

model’s total variance that is due to the genetic relatedness matrix (kinship measured

from genotypes). Current practice is to use bootstrapping, which is slow, or normal

asymptotic approximation to estimate the precision of the heritability estimate; how-

ever, this approximation fails to hold near the boundaries of the parameter space or

when the sample size is small. In this paper we propose to estimate variance compo-

nents via a Haseman-Elston regression, find the asymptotic distribution of the variance

components and proportions of variance, and use them to construct confidence intervals

(CIs). Our method is further developed to estimate unbiased variance components and

construct CIs by meta-analyzing information from multiple studies. We demonstrate

our approach on data from the Hispanic Community Health Study/Study of Latinos

(HCHS/SOL).

KEY WORDS: Variance components; proportions of variance; quadratic forms; eigenval-

ues; meta-analysis.
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Introduction

Heritability is the proportion of phenotypic variance that is due to genetic variation among

individuals in a population. Heritability is often estimated using mixed models (Zaitlen

and Kraft, 2012), where the genetic relatedness between any two individuals in a given

study population is estimated (e.g. kinship coefficients may be calculated from GWAS

data, or inferred from pedigrees) and then taken as fixed. Then, a variance component due

to genetic variation is estimated, and the estimated heritability is the ratio between this

variance component and the total variance in the model.

Inference about heritability when estimated from mixed models, and more generally,

about other proportions of variance, usually relies on asymptotic normal approximation to

the distribution of the estimators. However, multiple studies showed (e.g., Burch (2011);

Kruijer et al. (2015)) that such confidence intervals are inaccurate, and may yield values

that are not permissible (e.g. negative values). Recently, Schweiger et al. (2016) proposed

a bootstrap approach for estimating confidence intervals for heritability, and a numerical

approximation that does not require bootstrapping under a specific way of calculating the

genetic relatedness matrix. While they show that their confidence intervals are accurate,

their method is limited by computation time, by requiring a single modeled variance pa-

rameter, and by requiring a specific form for the genetic relatedness matrix when using the

numerical approximation. In addition, current meta-analysis approaches for heritability

estimates rely on the inaccurate normal asymptotic approximation.

In this work we proposes to use Haseman-Elston regression for estimating variance com-

ponents. This approach entails regressing multiplied residuals against entries of covariance
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matrices. We find the asymptotic distribution of the variance component estimators as

well as the distributions of the proportions of variance, in a general model that allows for

multiple sources of variation. We provide an algorithm to estimate the confidence intervals,

and to obtain an unbiased meta-analytic estimator of heritability that accurately combines

information from multiple studies. In the case where genetic relatedness (or kinship) is

the only sources of variation, our algorithm is very quick, with the computationally de-

manding step being the calculation of eigenvalues from a sub-matrix of the kinship matrix.

We demonstrate our method by estimating heritability of height, depression score, sys-

tolic blood pressure, lung function, and dental decay measure in the Hispanics Community

Health Study/Study of Latinos.

The mathematical model

Haseman-Elston regression

Suppose that a quantitative trait Y , measured on n individuals, follows the regression

model

yi = wT
i β + bi,a + . . .+ bi,k + ei = wT

i β + εi, i = 1, . . . , n

with β a vector of fixed effects of a covariates vector w, bi,l, l = a, . . . , k, i = 1, . . . , n are

mean-zero random effects with bl = (bi,1, . . . , bn,l) and cov(bl) = σ2l L, so that σ2a, . . . , σ
2
k

are variances corresponding to a, . . . , k independent sources of variation, and A, . . . ,K are

n×nmatrices with i, j entries ai,j , . . . , ki,j modeling the correlation between the individuals’

random effects. Also ei, i = 1, . . . , n are independent errors with variance σ2e . In genetic
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association studies one of these matrices, say K, is a kinship, or genetic relatedness, matrix.

Then

E[yi −wiβ] = E[ε] = 0

var[ε] = σ2eIn×n + σ2aA + . . .+ σ2kK = Σ, and

E[εiεj ] = cov(εi, εj) = σ2eI(i=j) + σ2aai,j + . . .+ σ2kki,j ,

where here σ2k/(σ
2
a + . . .+ σ2k + σ2e) ≡ σ2k/σ2T is the heritability.

Let β̂ be an unbiased estimator of β, and let ε̂i = yi − wT
i β̂ be an estimator εi, i =

1, . . . , n. We estimate the variance components in a residual regression, i.e. by taking the

vector of all unique pairs of residuals ε̂iε̂j , i ≤ j (we can do it by taking the upper diagonal

sub-matrix of ε̂ε̂T that includes the diagonal), denoted by ε̃d and regressing it according

to the above model. The regression design matrix is given by:

X =



1 a1,1 . . . k1,1

0 a1,2 . . . k1,2

...
...

...
...

0 a1,n . . . k1,n

1 a2,2 . . . k2,2

0 a2,3 . . . k2,3

...
...

...
...

0 a2,n . . . k2,n

...
...

...
...

1 an−1,n−1 . . . kn−1,n−1

0 an−1,n . . . kn−1,n

1 an,n . . . kn,n



=



1 1 1 1

0 a1,2 . . . k1,2

...
...

...
...

0 a1,n . . . k1,n

1 1 1 1

0 a2,3 . . . k2,3

...
...

...
...

0 a2,n . . . k2,n

...
...

...
...

1 1 1 1

0 an−1,n . . . kn−1,n

1 1 1 1
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where the second equality is because ai,i, . . . , ki,i = 1 for all i. Denote the vector of variance

components estimated from the Haseman-Elston regression by σ̂2 = (σ̂2e , σ̂
2
a, . . . , σ̂

2
k)T .

Properties of the variance components and proportions of variance esti-

mators

Complete mathematical derivations are provided in the appendix. Below are statements

of some of the results to provide intuition to the findings and methods.

Lemma 2: Variance component estimators corresponding to the matrices A, . . . ,K depend

only on the between-observation multiplied residuals of the form ε̂iε̂j for i 6= j.

Lemma 3: Denote by σ2T = σ2e + σ2a + . . .+ σ2k. Then σ̂2T = 1
n

∑n
i=1 ε̂

2
i .

Theorem: We say that two matrices C1 and C2 are orthogonal in the trace inner product,

or “trace orthogonal” if tr (C1C2) = 0. Let the matrix L− be the matrix L with all

diagonal values set to 0. If a matrix L− is trace orthogonal to all other matrices in the set

{A−, . . . ,K−}, then

σ̂2l =
1∑

j>i l
2
i,j

∑
j>i

li,j ε̂iε̂j =
ε̂TL−ε̂

tr(L−L−)
,

and the estimator of the proportion of variance modeled in L is the ratio between two

quadratic forms given by:

σ̂2l
σ̂2T

=
ε̂TL−ε̂

1
n tr(L

−L−)ε̂T ε̂
.

The above theorem provides a closed form estimator for a variance component and the

proportion of variance corresponding to a covariance matrix L when it represents either

the only modeled source of variation in the model, or when it is orthogonal to all other

modeled sources of variation. It is straightforward to obtain closed form expressions in the

6

http://biostats.bepress.com/uwbiostat/paper416



more complicated case of multiple modeled sources of variation that are not orthogonal.

Computation

Variance component estimators

While any unbiased estimator of β̂ suffices to generate residuals ε̂ and use them to ob-

tain variance component estimators as
(
XTX

)−1
XT ε̃d, a more efficient estimator iterates

between estimating β and σ2 as follows:

1. Initialization step: set β̂
(0)

= (WTW)−1WTy.

2. Iteration step:

(a) Given the kth estimator of β, β̂
(k)

, set ε̂ = y −Wβ(k). Let ε̃ denote the

vector of upper diagonal matrix (including the diagonal) of ε̂ε̂T . Set σ̂2,(k) =

(σ̂
2,(k)
e , σ̂

2,(k)
a , . . . , σ̂

2,(k)
k ) =

(
XTX

)−1
XT ε̃.

(b) Given the kth estimator of σ2, σ̂2,(k), let Σ̂
(k)

= σ̂
2,(k)
e In×n + σ̂

2,(k)
a A + . . . +

σ̂
2,(k)
k K with inverse Σ̂

−1,(k)
. Set β̂

(k+1)
= (WT Σ̂

−1,(k)
W)−1WT Σ̂

−1,(k)
y

The iteration step repeats until convergence.

Confidence intervals for the variance components

From Lemma 4 in the appendix, any variance component (or sum of variance components)

is given as a quadratic form. Let Q be the quadratic form corresponding to a variance

component estimate σ̂2l , such that σ̂2l = ε̂TQε̂. This σ̂2l is distributed as the sum of
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independent χ2
(1) variables in

∑n
i=1 λiχ

2
(1), where λ1, . . . , λn are the eigenvalues of Qcov(ε̂).

In practice, for cov(ε̂) we use the estimated Σ̂(σ̂2e , . . . , σ̂
2
k). Functions in the R package

CompQuadForm (Duchesne and de Micheaux, 2010) calculate the probability function (or

survival function) of this quadratic form based on λ1, . . . , λn. While it takes times to

compute the eigenvalues, once they are computed, calculating the probabilities associated

with the quadratic form is quick. We can test the hypothesis H0 : σ2l = 0 by calculating

the probability

Pr
(
εTQε = 0

)
= 1− Pr

(
εTQε > 0

)
,

and calculate two-sided confidence intervals for σ̂2l by calculating the appropriate quantiles

of the survival probability. For example, for a 95% confidence interval we take the values

(c1, c2) for which

c1 = u : Pr
(
εTQε > u

)
= 0.025

c2 = u : Pr
(
εTQε > u

)
= 0.975.

We find these values using a binary search on the interval [0, σ̂2T ].

Computing heritability estimates and their confidence intervals

Suppose that the variance component corresponding to the kinship matrix is σ2k, with

quadratic form denoted by Qk. We estimate heritability as ĥk = σ̂2k/σ̂
2
T . However, we

cannot use the confidence intervals for σ2k to construct confidence intervals for hk. Instead,

we note that the point estimate ĥk is given by:

ĥk =
ε̂TQkε̂
1
n ε̂

T Iε̂
∼ x

T Σ̂
1/2

QkΣ̂
1/2
x

1
nx

T Σ̂x
=
xTFx

xTGx
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where x ∼ N (0, I), for F = Σ̂
1/2

QkΣ̂
1/2

and G = Σ̂/n. Thus, it is a ratio between two

quadratic forms in (what we assume are) normal variables. For the squared root Σ̂
1/2

, we

use the Cholesky decomposition of Σ̂.

We use the saddlepoint approximation for the distribution of a ratio of quadratic forms

in normal variables, proposed by Lieberman (1994). Complete detailed are provided in the

appendix. In brief, for each potential value of hk, say h∗k, we can calculate the survival

probability Pr (hk ≥ h∗k) using the saddlepoint approximation. Each such calculation re-

quires as input d∗1, . . . , d
∗
n, the eigenvalues of the matrix D∗ = F−h∗kG. We apply a binary

search on the potential values h∗k ∈ [0, 1] to find end points c1 and c2 for the confidence

intervals, as was done for calculating a confidence intervals for σ2k.

Fast computation when genetic relatedness is the only modeled source of cor-

relation

If we have only have a single kinship matrix K modeling the phenotypic variance, we can

compute the eigenvalues λ1, . . . , λn of the matrix K− once, and then transform these eigen-

values to obtain the eigenvalues d∗1(h
∗
k), . . . , d∗n(h∗k) for each value h∗k, and save computation

time. To see this, suppose that u is an eigenvector of K− with an eigenvalue λ. Then, by

definition, K−u = λu. Since Σ = σ2k(K− + I) + σ2eI, it is straightforward to see that u is

also an eigenvector of Σ:

Σu =
[
σ2k(K− + I) + σ2eI

]
u =

(
σ2kλ+ σ2k + σ2e

)
u.
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Similarly, u is an eigenvector of Σ1/2 with an eigenvalue
√
σ2kλ+ σ2k + σ2e , which finally

leads to the transformation between an eigenvalue λi of K− to an eigenvalue of D∗(h∗k):

d∗i (h
∗
k, λi) =

1

2
∑

i<j v
2
ij

λi(λiσ
2
k + σ2k + σ2e)− h∗k(λiσ

2
k + σ2k + σ2e)/n.

As before, we use the estimated σ̂2k, σ̂
2
e instead of the true unknown values.

Meta-analysis across studies when kinship is the only source of correlation

Suppose that there are S studies that we wanted to combine in meta-analysis. We assume

that kinship is the only source of correlation. Each study has a vector of residuals ε̂s =

(ε̂s,1, . . . , ε̂s,ns)
T , s = 1, . . . , S. Consider the Haseman-Elston regression, but incomplete, so

that only the pairs of multiplied residuals within study ε̂s,iε̂s,j are regressed against entries

of the kinship covariance matrix, but not ε̂s,iε̂t,j for s 6= t. For this, we do not need to

assume that a participant in one study is genetically unrelated of a participant in another

study. The meta-analytic estimator of σ2e is given by σ̂2e =
∑S

s=1

∑ns
i=1 ε̂

2
s,i/
∑S

s=1 ns. Let

ε̂ = (ε̂T1 , . . . , ε̂S)T . The meta-analytic kinship variance component estimator is given by

σ̂2k =
1

tr
(
K−

S K−
S

) ε̂TK−
S ε̂

where K−
S is the block diagonal matrix that have all the study-specific kinship matrix

(without their diagonal values) arranged diagonally, as

K−
S =



K−
1 0 . . . . . .

0 K−
2 0

...
. . .

... 0 0 K−
s


10

http://biostats.bepress.com/uwbiostat/paper416



To see that this meta-analytic estimator of σ2k is unbiased, note first that cov(ε̂) = (σ2e +

σ2k)I + σ2kK
−, where now K− has kinship coefficients for individuals across studies (and

diagonals set to zero). From characteristics of quadratic forms:

E
[
σ̂2k
]

= E

[
1

tr
(
K−

S K−
S

) ε̂TK−
S ε̂

]
=

1

tr
(
K−

S K−
S

)tr
(
K−

S cov(ε̂)
)

=
1

tr
(
K−

S K−
S

)tr
{
K−

S

[
(σ2e + σ2k)I + σ2kK

−]}
=

1

tr
(
K−

S K−
S

)tr
(
K−

S σ
2
kK

−) =
1

tr
(
K−

S K−
S

)tr
(
K−

S σ
2
kK

−
S

)
= σ2k.

Let K− = K−
S + K−

C , where K−
C is the matrix of cross-study relatedness. Although the

variance components estimates and their ratios depend only on K−
S , their distribution of

the depend on K−
C as well.

Computing the meta-analytic heritability estimator and confidence intervals.

Suppose that each of S independent studies calculated the residuals from a “null model”

(a regression model without genetic fixed effects other than PCs). Each study s reports:

1. Ks = 2
∑

i<j k
2
ij ,

2. σ̂2k,s,

3. σ̂2e,s,

4. The number of participants in the study ns,

5. The eigenvalues λs1, . . . , λ
s
ns

of its matrix K−
s .
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The meta-analysis estimates of the kinship and error variance components, and KS are:

σ̂2k =

∑S
s=1Ksσ̂2k,s∑S

s=1Ks

σ̂2e =

∑S
s=1 nsσ̂

2
e,s∑S

s=1 ns
,

KS =
S∑

s=1

Ks,

and the eigenvalues of the across-studies matrix K− (= K−
S under independence between

studies) are taken to be λ11, . . . , λ
1
n1
, . . . , λS1 , . . . , λ

S
nS

. Using these, the central location

calculates heritability estimates and confidence intervals.

The Hispanic Community Health Study/Study of Latinos

The HCHS/SOL (LaVange et al., 2010; Sorlie et al., 2010)) is a community based cohort

study, following self-identified Hispanic individuals from four field centers (Chicago, IL;

Miami, FL; Bronx, NY; and San Diego, CA). Individuals were sampled via a two-stage

sampling scheme, in which households were randomly sampled from sampled community

block units. Almost 13,000 study participants consented for genotyping. Correlation ma-

trices to model environmental variance due to households and community block units were

generated so that the i, j entry of a given matrix was set to 1 if the i and j individuals live

in the same household (or community block unit), and 0 otherwise.

HCHS/SOL individuals were classified into ‘genetic analysis groups’: Central American,

Cuban, Dominican, Mexican, Puerto Rican, and South American. These groups are based

on self reported ethnicities and genetic similarity (Conomos et al., 2016). This study was

approved by the institutional review boards at each field center, where all participants gave
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written informed consent.

Genotyping, imputation and quality control

Blood samples from HCHS/SOL individuals were genotyped on a custom array consisting

of Illumina Omni 2.5M content plus ∼150,000 custom markers selected to include ancestry-

informative markers, variants characteristic of Amerindian populations, known GWAS hits

and other candidate gene polymorphisms. Quality control was similar to the procedure de-

scribed in Laurie et al. (2010) and included checks for sample identity, batch effects, miss-

ing call rate, chromosomal anomalies (Laurie et al., 2012), deviation from Hardy-Weinberg

equilibrium, Mendelian errors, and duplicate sample discordance. 12,784 samples passed

quality control, and 2,232,944 SNPs passed quality filters. Pairwise kinship coefficients and

principal components reflecting ancestry were estimated in an iterative procedure which

accounts for admixture (Conomos et al., 2016). All common variants were used to estimate

kinship coefficients. Finally, we removed some individuals at random to generate a set of

10,255 individuals without any pair having kinship coefficient higher than 2−11.

Heritability and proportion of variance estimation in the HCHS/SOL

Due to the sampling structure of the HCHS/SOL, the correlation between individuals is

modeled via a kinship matrix, and two matrices modeling environmental effects: household

and community block unit matrices. For each investigated trait we estimated variance com-

ponents corresponding to the three correlation matrices via the Haseman-Elston regression

and estimated 95% confidence intervals.
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The considered traits were FEV1 (a measure of lung function), standing height, de-

pression score (CESD10, a sum of ten questionnaire items related to depression in the

week prior to the clinic visit), SBP (systolic blood pressure), and dental caries, a count

of tooth decays and cavities across all participant’s teeth. All regression models were ad-

justed (via the design matrix W) to the 5 first principal components, study center, age,

sex, and genetic analysis group (in the pooled models). For some traits we used additional

covariates.

To study the use of our method for meta-analysis when there are some related individ-

uals across studies, we first generated a restricted data set of 7,848 individuals that none

of them lived in the same household. We then treated each of the genetic analysis groups

as a separate study, and used the proposed procedure for calculating heritability in each of

the genetic analysis group and in meta-analysis. We also compared these analysis to the

pooled analysis that modeled all 7,848 individuals together. Note that for this exercise we

neglected block unit correlation, i.e. assumed that it does not contribute to the phenotypic

variance.

Simulation studies

We study the accuracy of the proposed method for calculating confidence intervals in

simulations. We used correlation matrices from the HCHS/SOL corresponding to kinship,

household, and community block unit, to generate quantitative outcomes with realistic

correlation structures. In any given simulation, data were sampled by first generating

an error vector eind from a standard normal distribution. We simulated the covariance
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structure

cov(e) = σ2eI + σ2kK + σ2hH + σ2cC = Σ

by taking e = Σ1/2eind. The matrices K,H, and C were the kinship, household, and

community matrices in the HCHS/SOL. The outcomes were simulated by

y = 2 + 3PC1 + e,

where PC1 is the first principal component of the HCHS/SOL data. All simulations were

performed 1,000 times.

In the first simulation study we set σ = (σ2e , σ
2
k, σ

2
h, σ

2
c ) = (100, 40, 15, 2), and studied

our method in settings of small sample size (n = 1, 000) and large sample size (n = 12, 784).

In a second simulation study we set σ = (σ2e , σ
2
k, σ

2
h, σ

2
c ) = (100, σ2k, 0, 0), with σ2k ∈ {0, 40}.

Here we also considered settings of small and large sample sizes, and in addition, we

randomly divided the large dataset into 5 subgroups, to generate data mimicking five

different studies with possible genetic relatedness between participants of different studies,

and studied the meta-analysis approach in this setting. We randomly partitioned the data

to subgroups four times, to make sure that results did not depend on a specific partition.

Results

Simulation studies

Figure 1 provides the results from simulations with three modeled sources of variation:

kinship, household, and community block unit, mimicking the HCHS/SOL study. The

coverages of the confidence intervals obtained in the simulations with large sample size

15
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were very close to the nominal value, but a bit lower (92%) for the variance component

corresponding to community block unit (which was simulated to account for 1% proportion

of variance). The confidence intervals obtained from the simulations with small sample size

have larger coverage than nominal value (98%-99%), and are much wider. However, they

are not trivially large (i.e. they are not of the form [0, 1]).

Figure 2 provides the results from simulations in which only the kinship matrix was

modeled as a single source of phenotypic variation between individuals. The coverages

were good, with the tightest confidence intervals estimated in the large sample size, when

all individuals were pooled together as in a single large study, and the estimated genetic

relatedness between all individuals were used. The confidence intervals from the meta-

analysis were wider, and the confidence intervals from the small sample size simulations

were quite wide, as expected.

Heritability estimation in the HCHS/SOL

For each of the investigated traits, Figure 3 provides estimated proportion of variance

(heritability and environmental variance) and 95% confidence intervals from the Full data

set, that included environmentally correlated individuals, and from the restricted data set

that did not include environmentally correlated individuals. We used the restricted data set

to compare a pooled analysis, genetic analysis group specific analyses, and meta-analysis

that ignores the correlation between individuals from different genetic analysis groups, to

mimic meta-analysis across different studies. For all analyses, numerical estimates are

provided Table 1 in the appendix.
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In the Full dataset, for most traits (height, SBP, Dental caries, and FEV1), the heri-

tability was larger than the proportion of variance attributed to the modeled environmental

components. However, the proportion of variance of the depression score due to environ-

mental effects was higher than the heritability, and was also statistically significant (p-value

= 0.002), while the heritability was not (p-value = 0.1). The heritability of height was esti-

mated as almost 60%, consistent with other estimates from GWAS, but the 95% confidence

intervals was (0.47, 0.69).

Considering the restricted data set, the analyses of specific genetic analysis groups

yielded wide confidence intervals, which often included zero. This is expected due to low

power. In addition, the meta-analyses that did not account for the correlations between

the genetic analysis groups had wider confidence intervals than the corresponding pooled

analyses.

Discussion

In this manuscript we investigate the properties of Haseman-Elston regression estimators of

variance components. We get a closed-form expression for the variance estimators, and use

them to characterize the distribution of the estimated variance components and ratios of

variance, and to compute confidence intervals. Our confidence intervals require normality of

the residuals from the trait regression model after adjusting for covariates. We further show

how to obtain unbiased estimates of the variance components and proportions of variance

by meta-analyzing information from multiple studies. In this case, the heritability estimates

are unbiased even if individuals are related between studies, but the asymptotic distribution
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of the estimators depends on the unknown (and non-estimated) kinship coefficients of cross-

study individuals.

We show in simulations based on the HCHS/SOL correlation structure that the coverage

of our confidence intervals is good both in pooled analysis, and in meta-analysis (even when

individuals are related between studies) while being quite conservative when the sample size

is small. More work is needed to study the analytic properties of the confidence intervals

in meta-analysis when individuals are related between studies.

Software

An R code for estimating heritability (or proportion of variances due to other modeled

factors), and their confidence intervals, together with an example script, can be found at

https://github.com/tamartsi/Heritability_CIs.
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A Mathematical derivation

Suppose that a quantitative trait Y , measured on n individuals, follows the regression

model

yi = wT
i β + εi, i = 1, . . . , n

where

E[ε] = 0 (1)

var[ε] = σ2eIn×n + σ2aA1 + . . .+ σ2kK = Σ (2)

and A, . . . ,K are n×n matrices modeling correlations between individuals. Let ai,j , . . . , ki,j

denote the i, j entries of the matrices A, . . . ,K. Assuming that random effects due to

A, . . . ,K are independent, we have that:

E[εiεj ] = cov(εi, εj) = σ2eI(i=j) + σ2aai,j + . . .+ σ2kki,j .
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Figure 1: Results from 1,000 simulations estimating the proportion of variation attributed

to community block unit (σ2c = 2), household (σ2h = 15), and kinship (σ2k = 40) out of the

total variance (σ2T = σ2c + σ2h + σ2k + σ2e , with σ2e = 100), in scenarios with small and large

sample sizes. The points represent the means of the estimated proportions of variance, and

the low and high end points of the intervals represent the means of the low and high end

points of the estimated confidence intervals. The coverages of the estimated confidence

intervals, defined as the proportion of simulations in which the true proportion of variance

was in the estimated confidence interval, are written by each line.
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Figure 2: Results from 1,000 simulations estimating the proportion of variation attributed

to kinship (σ2k ∈ {0, 40}) out of the total variance (σ2T = σ2k + σ2e , with σ2e = 100), in

scenarios with small and large sample sizes, and when randomly dividing the large data set

to 5 studies and meta-analyzing without accounting for relatedness between individuals in

different studies. The points represent the means of the estimated proportions of variance,

and the low and high end points of the intervals represent the means of the low and high

end points of the estimated confidence intervals. The coverages of the estimated confidence

intervals, defined as the proportion of simulations in which the true proportion of variance

was in the estimated confidence interval, are written by each line.
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Figure 3: Estimated proportions of variance from the various subsets of the HCHS/SOL

data. The Full dataset included 10,255 individuals with mutual kinship coefficient smaller

than 2−11. Using Full, we estimated both heritability and the proportion of variance that

is due to modeled environmental effects: the sum of the variance components correspond-

ing to household and community block unit sharing. A restricted data set included 7,848

individuals from separate households and was used to compare meta and pooled analysis

heritability estimates, where the meta-analysis used information from each of the genetic

analysis groups. Dental caries is a measure of teeth damage. Depression score is a summa-

tion of responses to questions related to depressive behavior or feelings in the week prior

to a participant’s clinic visit. FEV1 is a measure of lung function. SBP is systolic blood

pressure.

24

http://biostats.bepress.com/uwbiostat/paper416



Let β̂ be an unbiased estimator of β, and let ε̂i = yi−wT
i β̂ be an estimator εi, i = 1, . . . , n.

We estimate the variance components in a residual regression, i.e. by taking the vector all

unique pairs of residuals ε̂iε̂j , i ≤ j (we can do it by taking the upper diagonal sub-matrix

of ε̂ε̂T that includes the diagonal), denoted by ε̃d and regressing it according to the above

model. The regression design matrix is given by:

X =



1 a1,1 . . . k1,1

0 a1,2 . . . k1,2

...
...

...
...

0 a1,n . . . k1,n

1 a2,2 . . . k2,2

0 a2,3 . . . k2,3

...
...

...
...

0 a2,n . . . k2,n

...
...

...
...

1 an−1,n−1 . . . kn−1,n−1

0 an−1,n . . . kn−1,n

1 an,n . . . kn,n



=



1 1 1 1

0 a1,2 . . . k1,2

...
...

...
...

0 a1,n . . . k1,n

1 1 1 1

0 a2,3 . . . k2,3

...
...

...
...

0 a2,n . . . k2,n

...
...

...
...

1 1 1 1

0 an−1,n . . . kn−1,n

1 1 1 1


(because ai,i, . . . , ki,i = 1 for all i). Denote, for simplicity of presentation, the vector of

off-diagonal elements of A, . . . ,K by l = (l1,2, l1,3, . . . , l1,n, l2,3, . . . , ln−1,n)T , l = 1, . . . , k,

and the vector of off-diagonal elements of ε̂ε̂T by ε̃. Then the least squares estimator of
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(σ2e , σ
2
a, . . . , σ

2
k) is given by (XTX)−1XT ε̃d. Clearly, we have that

(XTX) =



n n n . . . n

n n+ aTa n+ aTb . . . n+ aTk

...
...

n n+ kTa n+ kTb . . . n+ kTk


.

This is most likely a positive definite matrix as (we assume that) the matrices A, . . . ,K

are not highly correlated. In addition, we have that

XT ε̃ =



∑n
i=1 ε̂

2
i∑n

i=1 ε̂
2
i + aT ε̃

...∑n
i=1 ε̂

2
i + kT ε̃


=



∑n
i=1 ε̂

2
i∑n

i=1 ε̂
2
i

...∑n
i=1 ε̂

2
i


+



0

aT ε̃

...

kT ε̃


.

Lemma 1:

(
XTX

)−1



1

1

...

1


=



1
n

0

...

0


⇔
(
XTX

)


1
n

0

...

0


=



1

1

...

1


Proof: Because

(
XTX

)
is non-singular, and from the properties of the inverse matrix, we

have that
(
XTX

)−1 (
XTX

)
v = v for every v.

Lemma 2: Variance component estimators corresponding to the matrices A, . . . ,K depend

only on the between-observation residuals of the form εiεj for i 6= j and do not depend on
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ε2i , i = 1, . . . , n. Proof: By noting that

(
XTX

)


1
n

0

...

0


=



1

1

...

1


,

we get from Lemma 1 that

(
XTX

)−1



∑n
i=1 ε̂

2
i∑n

i=1 ε̂
2
i

...∑n
i=1 ε̂

2
i


=



1
n

∑n
i=1 ε̂

2
i

0

...

0


which proves that the term

∑n
i=1 ε̂

2
i contributes only to the estimator σ̂2e .

Lemma 3: Denote by σ2T = σ2e + σ2a + . . .+ σ2k. Then σ̂2T = 1
n

∑n
i=1 ε̂

2
i .

Proof: We show that σ̂2e + σ̂2a + . . . + σ̂2k = 1
n

∑n
i=1 ε̂

2
i . In the proof of Lemma 2 we saw

that

(
XTX

)−1



1

1

...

1


=



1
n

0

...

0


.

Since this
(
XTX

)−1
is symmetric, it follows that

(
1 1 . . . 1

)(
XTX

)−1
=

(
1
n 0 . . . 0

)

27

Hosted by The Berkeley Electronic Press



Therefore

σ̂2e + σ̂2a + . . .+ σ̂2k ≡
(

1 1 . . . 1

)(
XTX

)−1
(XT ε̃)

=

(
1
n 0 . . . 0

)
(XT ε̃) =

1

n

n∑
i=1

ε̂2i ,

which completes the proof.

Lemma 4: An estimator of the ratio between any variance component (or sum of variance

components) and the total variance is a ratio between two quadratic forms.

Proof: For L = A, . . . ,K, a quantity of the form lT ε̃ = ε̂TL−ε̂/2, where the matrix L−1

is the matrix L with all diagonal values set to 0. An estimator a variance component σ2l is

a linear sum of the quadratic forms ε̂TA−ε̂, . . . , ε̂TK−ε̂, with coefficients the entries of the

corresponding row of (XTX)−1. Since a weighted sum of quadratic forms is a quadratic

form, any variance component (and a sum of variance components) is also a quadratic

form. Similarly, the total variance estimators is the quadratic form 1
n ε̂

T ε̂.

Theorem: We say that two matrices C1 and C2 are orthogonal in the trace inner product,

or “trace orthogonal” if tr (C1C2) = 0. If a matrix L− is trace orthogonal to all other

matrices in the set {A−, . . . ,K−}, then

σ̂2l =
1∑

j>i l
2
i,j

∑
j>i

li,j ε̂iε̂j .

Proof: Without loss of generality, assume that A is trace orthogonal to B, . . . ,K.

First note that for the symmetric matrices with diagonal values set to zero A−, . . . ,K−,
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tr
(
A−L−) = 0 if and only if aT l = 0. Then

(XTX) =



n n n . . . n

n n+ aTa n . . . n

n n n+ bTb . . . n+ bTk

...
...

...
...

n n n+ kTb . . . n+ kTk.


Denote by (XTX)−1

[i,j] the i, j element in the matrix (XTX)−1. First, we notice that the

entries (XTX)−1
[2,j], j = 3, . . . , k + 1 are all 0, because the (XTX)−1

[i,j] entry is a constant

times the i, j minor of (XTX), which has two identical columns (corresponding to the 1st

and 2nd columns of (XTX) when removing its 2nd row). Since the sum of the 2nd row of

(XTX)−1 is equal to 0, as we saw before, we get that (XTX)−1
[2,1] = −(XTX)−1

[2,2].

We now argue that

σ̂2a ≡ (XTX)−1
[2,1]

n∑
i=1

ε2i + (XTX)−1
[2,2]

(
n∑

i=1

ε2i + aT ε̃

)

= (XTX)−1
[2,1]

n∑
i=1

ε2i − (XTX)−1
[2,1]

(
n∑

i=1

ε2i + aT ε̃

)

= −(XTX)−1
[2,1]a

T ε̃
(4)
=

1∑
j>i a

2
i,j

∑
j>i

ai,jεiεj ,

where we need to show that equality (4) holds to complete the proof. We need to show that

−(XTX)−1
[2,1] = 1∑

j>i a
2
i,j

. Consider now the matrix XTX. One can derive its determinant
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from its second row, as:

|XTX| = (XTX)[2,1]M2,1 − (XTX)[2,2]M2,2 + . . .+ (−1)k+1(XTX)[2,1k]M2,k

= nM2,1 − (n+ aTa)M2,2 + 0 + . . . 0

= n|XTX|(XTX)−1
[2,1] − (n+ aTa)|XTX|(XTX)−1

[2,2]

= n|XTX|(XTX)−1
[2,1] − (n+ aTa)|XTX|(XTX)−1

[2,1]

= −aTa|XTX|(XTX)−1
[2,1]

Therefore, we get that −(XTX)−1
[2,1] = 1

aTa , which completes the proof.

B Computation

B.1 Variance component estimators

While any unbiased estimator of β̂ suffices to generate residuals ε̂ and use them to ob-

tain variance component estimators as
(
XTX

)−1
XT ε̃d, a more efficient estimator iterates

between estimating β and the variance component estimator as follows:

1. Initialization step: set β̂
(0)

= (WTW)−1WTy.

2. Iteration step:

(a) Given the kth estimator of β, β̂
(k)

, set ε̂ = y − Wβ(k) and ε̃ is the vec-

tor of uppder diagonal matrix (including the diagonal) of ε̂ε̂T . Set σ̂2,(k) =

(σ̂
2,(k)
e , σ̂

2,(k)
a , . . . , σ̂

2,(k)
k ) =

(
XTX

)−1
XT ε̃d.

(b) Given the kth estimator of σ2, σ̂2,(k), let Σ̂
(k)

= σ̂
2,(k)
e In×n + σ̂

2,(k)
a A + . . . +

σ̂
2,(k)
k K with inverse Σ̂

−1,(k)
. Set β̂

(k+1)
= (WT Σ̂

−1,(k)
W)−1WT Σ̂

−1,(k)
y
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The iteration step repeats until convergence.

B.2 Confidence intervals for the variance components

From Lemma 4, any variance components (or sum of variance components) is given as a

quadratic form. Let Q be the quadratic form corresponding to a variance component esti-

mate σ̂2l , such that σ̂2l = ε̂TQε̂. Then this σ̂2l is distributed as the sum of independent χ2
(1)

variables in
∑n

i=1 λiχ
2
(1), where λ1, . . . , λn are the eigenvalues of Qcov(ε̂). In practice, for

cov(ε̂) we use used the estimated Σ̂(σ̂2e , . . . , σ̂
2
k). Functions in the package CompQuadFrom

calculate the probability function (or survival function) of this quadratic form based on

λ1, . . . , λn. While it takes times to compute the eigenvalues, once they are computed, a

calculating the probabilities associated with the quadratic form over a grid is simple and

quick. We can test the hypothesis H0 : σ2l = 0 by calculating the probability

Pr
(
ε̂TQε̂ = 0

)
= 1− Pr

(
ε̂TQε̂ > 0

)
,

and calculate two-sided confidence intervals for σ̂2l by calculating the survival probabilities

over a grid, and taking the appropriate quantiles. For example, for a 95% confidence

interval we take the values (c1, c2) for which

c1 = u : Pr
(
εTQε > u

)
= 0.025

c2 = u : Pr
(
εTQε > u

)
= 0.975.

We find these values using a binary search on the interval [0, σ̂2T ].
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B.3 Computing heritability estimates and their confidence intervals

Suppose that the variance component corresponding to the kinship matrix is σ2k, which

quadratic form denoted by Qk. We estimate heritability as ĥk = σ̂2k/σ̂
2
T . However, we

cannot use the confidence intervals for σ2k to construct confidence intervals for hk. Instead,

we note that the point estimate is ĥk is given by:

ĥk =
ε̂TQkε̂
1
n ε̂

T Iε̂
=
xT Σ̂

1/2
QkΣ̂

1/2
x

1
nx

T Σ̂x
=
xTFx

xTGx

where x ∼ N (0, I), for F = Σ̂
1/2

QkΣ̂
1/2

and G = Σ̂/n. Thus, it is a ratio between two

quadratic forms in (what we assume are) normal variables. For the squared root Σ̂
1/2

, we

use the Cholesky decomposition of Σ̂.

Now, we use the saddlepoint approximation for the distribution of a ratio of quadratic

forms in normal variables, proposed by Lieberman (1994). For a given potential value of

hk, say h∗k, we can calculate the survival probability

Pr (hk ≥ h∗k) ∼= 1− Φ(ξ̂) + φ(ξ̂)

[
1

ẑ
− 1

ξ̂

]
where Φ and φ are the standard normal cdf and pdf, and

ẑ = ω̂

{
2

n∑
i=1

d∗2i
(1− 2ω̂d∗i )

2

}1/2

ξ̂ =

{
n∑

i=1

ln(1− 2ω̂d∗i )

}1/2

sgn(ω̂)

and d∗1, . . . , d
∗
n are the eigenvalues of the matrix D∗ = F−h∗kG, and ω̂ is the corresponding

saddlepoint satisfying
n∑

i=1

d∗i
1− 2ω̂d∗i

= 0.
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Confidence intervals are then built, as before, using a binary search to find the values

satisfying the required probabilities at the tails.

B.3.1 A faster algorithm when the kinship matrix is the only source of cor-

relation in the model

Computing the eigenvalues d∗1(h
∗
k), . . . , d∗n(h∗k) takes time. However, in the case where we

only have a single kinship matrix, denoted by K we can compute the eigen decomposition of

the matrix K− once to obtain eigenvalues λ1, . . . , λn, and then transform these eigenvalues

to obtain the eigenvalues d∗1(h
∗
k), . . . , d∗n(h∗k) for each value h∗k. To see this, suppose that u

is an eigenvector of K− with eigenvalues λ. Then, by definition:

K−u = λu.

Since Σ = σ2k(K− + I) +σ2eI, it is straightforward to see that u is also an eigenvector of Σ:

Σu =
[
σ2k(K− + I) + σ2eI

]
u =

(
σ2kλ+ σ2k + σ2e

)
u.

Similarly, u is an eigenvector of Σ1/2 with eigenvalue
√
σ2kλ+ σ2k + σ2e , which finally leads

us to the transformation between an eigenvalue λ of Λ to an eigenvalue of D∗ = F− h∗kG

given by:

d∗i (h
∗
k, λi) =

1

2
∑

i<j v
2
ij

λi(λiσ
2
k + σ2k + σ2e)− h∗k(λiσ

2
k + σ2k + σ2e)/n.

As before, we use the estimated σ̂2k, σ̂
2
e instead of the true unknown quantities.
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B.3.2 Meta-analysis of across studies when kinship is the only source of cor-

relation

A meta-analytic estimator. Suppose that there are S studies that we wanted to com-

bined in meta-analysis. We assume that kinship is the only source of correlation. Each

study has a vector of residuals ε̂s = (ε̂s,1, . . . , ε̂s,ns)
T , s = 1, . . . , S. Consider the Haseman-

Elston regression, but incomplete, so that only the pairs of multiplied residuals within study

are used (i.e. only ε̂s,iε̂s,j are regressed against entries of the kinship covariance matrix,

but not ε̂s,iε̂t,j). Therefore, cross-study kinship estimates are not used in the regression,

however no assumption is made on them. In other words, we do not need to assume that

participant in one study is genetically independent (no alleles shared IBD) of a participant

in another study. It is straightforward to show that the meta-analytic estimator of σe2 is

given by σ̂2e =
∑S

s=1

∑ns
i=1 ε̂

2
s,i. Let ε̂ = (ε̂T1 , . . . , ε̂S)T . Then the meta-analysis kinship

variance component estimator is given by

σ̂2k =
1

tr
(
K−

s K−
s

) ε̂TK−
s ε̂

where K−
s is the block diagonal matrix that have all the study-specific kinship matrix

(without their diagonal values) arranged diagonally, as

Ks =



K−
1 0 . . . . . .

0 K−
2 0

...
. . .

... 0 0 K−
S


To see that this meta-analytic estimator of σ2k is unbiased, note first that cov(ε̂) = (σ2e +

σ2k)I + σ2kK
−, where now K− is the kinship matrix with kinship coefficients between the
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individuals across studies. Now, from characteristics of quadratic forms, we have that

E
[
σ̂2k
]

= E

[
1

tr
(
K−

s K−
s

) ε̂TK−
s ε̂

]
=

1

tr
(
K−

s K−
s

)tr
(
K−

s cov(ε̂)
)

=
1

tr
(
K−

s K−
s

)tr
(
K−

s (σ2e + σ2k)I + σ2kK
−)

=
1

tr
(
K−

s K−
s

)tr
(
K−

s σ
2
kK

−
s

)
= σ2k.

Computing the meta-analytics heritability estimator and confidence intervals.

The eigenvalues result shows that all we need to calculate heritability estimates and confi-

dence intervals are eigenvalues of the matrix K− (the kinship matrix without the diagonal),

estimated σ2e , σ2k, and the sum of the entries of K− (2
∑

i<j k
2
ij). This result could be used

to extend our methods to meta-analysis of information from multiple studies. Suppose

that each of m independent studies calculated the residuals from a “null model” (i.e. a

regression model without genetic fixed effects other than PCs). Then, each study s reports:

1. Ks = 2
∑

i<j k
2
ij ,

2. σ̂2k,s,

3. σ̂2e,s,

4. The number of participants in the study ns,

5. The eigenvalues λs1, . . . , λ
s
ns

of the matrix K−
s .

Then, the meta-analysis estimates of the kinship and error variance components, and KS
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are given by:

σ̂2k =

∑S
s=1Ksσ̂2k,s∑S

s=1Ks

σ̂2e =

∑S
s=1 nsσ̂

2
e,s∑S

s=1 ns
,

KS =
S∑

s=1

Ks,

and the eigenvalues of the cross-study K− matrix are taken to be λ11, . . . , λ
1
n1
, . . . , λS1 , . . . , λ

S
nS

.

Using these, the central location that can calculate heritability estimates and confidence

intervals.

C The Hispanic Community Health Study/Study of Latinos

The HCHS/SOL, (LaVange et al., 2010; Sorlie et al., 2010)) is a community based cohort

study, following self-identified Hispanic individuals from four field centers (Chicago, IL;

Miami, FL; Bronx, NY; and San Diego, CA). Individuals were sampled via a two-stage

sampling scheme, in which households were randomly sampled from sampled community

block units. Almost 13,000 study participants consented for genotyping. HCHS/SOL indi-

viduals are classified into ‘genetic analysis groups’, classes that are based on self reported

ethnicities and genetic similarity (Conomos et al., 2016). The genetic analysis groups

are Central American, Cuban, Dominican, Mexican, Puerto Rican, and South American.

This study was approved by the institutional review boards at each field center, where all

subjects gave written informed consent.
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C.1 Genotyping, imputation and quality control

Blood samples from HCHS/SOL individuals were genotyped on a custom array consisting

of Illumina Omni 2.5M content plus ∼150,000 custom markers selected to include ancestry-

informative markers, variants characteristic of Amerindian populations, known GWAS hits

and other candidate gene polymorphisms. Quality control was similar to the procedure de-

scribed in Laurie et al. (2010) and included checks for sample identity, batch effects, miss-

ing call rate, chromosomal anomalies (Laurie et al., 2012), deviation from Hardy-Weinberg

equilibrium, Mendelian errors, and duplicate sample discordance. 12,803 samples passed

quality control, and 2,232,944 SNPs passed quality filters. Pairwise kinship coefficients and

principal components reflecting ancestry were estimated in an iterative procedure which

accounts for admixture (Conomos et al., 2016). All common variants were used to estimate

kinship coefficients.

C.2 Heritability estimation in the HCHS/SOL

In each group of interest, including all individuals (‘pooled’ analysis), or specific genetic

analysis groups, we randomly removed related individuals, to generate a set of individuals

without any pair having kinship coefficient higher than 2−11. Due to the sampling structure

of the HCHS/SOL, the correlation between individuals is modeled in a kinship matrix, and

also via matrices corresponding to community block units, and households. We estimated

variance components via the procedure described here, with the three correlation matrices.

We utilized the availability of environmental correlation to also estimate the contribution

of modeled environmental factors (block unit and household) to the phenotypic variance.
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Finally, we also demonstrate the use of our method for meta-analysis by removing individ-

uals from shared household to generate a restricted set in which none of the individuals

live in the same house, and used the proposed procedure for calculating heritability in

meta-analysis. Note that for this purpose we neglected block unit correlation and assume

that there is no correlation due to block unit sharing.

We estimated heritability for the FEV1 (a measure of lung function), standing height,

depression score (CESD10, a sum of ten questionnaire items related to depression in the

past few weeks of filling the form), SBP (systolic blood pressure), and dental caries, a

count of tooth decays and cavities across all teeth of a participant. Finally, all regression

models were adjusted (via the design matrix W) to the 5 first principal components, study

center, age, sex, and genetic analysis group (in the pooled models). For some traits we

used additional covariates. Table 1 provides the various estimates and confidence intervals.
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