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Trial Designs that Simultaneously Optimize the

Population Enrolled and the Treatment Allocation

Probabilities

Brandon S. Luber ∗, Michael Rosenblum†, and Antoine Chambaz‡

June 18, 2013

Abstract

Standard randomized trials may have lower than desired power when the treatment

effect is only strong in certain subpopulations. This may occur, for example, in popula-

tions with varying disease severities or when subpopulations carry distinct biomarkers

and only those who are biomarker positive respond to treatment. To address such

situations, we develop a new trial design that combines two types of preplanned rules

for updating how the trial is conducted based on data accrued during the trial. The

aim is a design with greater overall power and that can better determine subpopulation

specific treatment effects, while maintaining strong control of the familywise Type I er-

ror rate. The first component of our design involves response-adaptive randomization,

in which the probability of being assigned to the treatment or control arm is updated

during the trial to target an optimal allocation. The second component of our design

involves enrichment, where the criteria for patient enrollment may be modified to help

learn which subpopulations benefit from the treatment. We do a simulation study to

compare the power of our design, which we call a response-adaptive enrichment de-

sign, to three simpler designs: a standard randomized trial design, a response-adaptive

design, and an enrichment design. Our simulation study compares these designs in

scenarios that arise from the problem of testing the effectiveness of a hypothetical new

antidepressant.
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1 Introduction

In 2006, the Critical Path Opportunities List was released by the U.S. Food and Drug Ad-

ministration (FDA), outlining 76 projects aimed at improving the success rate of bringing

new medical discoveries from the lab to the patient. One set of projects involved improving

methods for the use of adaptive designs in clinical trials (Chow and Corey, 2011). The goals

of adaptive designs include designing a study that (1) is more efficient, (2) increases the

success rate of the study objective, or (3) yields a better understanding of the treatment’s

results (FDA, 2010). We propose a new adaptive design that combines features of an en-

richment design and a response-adaptive design. To the best of our knowledge, this is the

first design combining these features. Our goal is to determine how these features interact,

in terms of power to detect treatment benefits in different subpopulations.

Enrichment designs allow pre-planned rules for changing the population enrolled, and

may be helpful when the results of a treatment may substantially vary in predefined sub-

populations. An adaptive randomization, or response-adaptive design, uses the responses of

part participants to adjust the probabilities of treatment assignments for future participants.

This can potentially increase power through the adjustment of probabilities of treatment as-

signments in each subpopulation to target an optimal allocation ratio, such as the Neyman

allocation (defined below). Response-adaptive designs may be useful when it is believed

that a treatment or intervention not only shifts the mean of the outcomes distribution, but

also alters the variance of the outcomes. The approach may only be reasonable for a trial

with a short duration between enrollment and observation of the primary outcome, since the

randomization probability is dependent upon the observed outcomes of the previous partic-

ipants (Chow and Chang, 2008). To take advantage of the benefits that adaptive designs

can potentially offer, rapid data collection and speedy application are required (Gallo et al.,

2006).

The motivation for combining enrichment and response-adaptive randomization into a

single design is the potential for synergy. This could arise, for example, if response-adaptive

randomization generates more relevant information not only for use in the final analysis,

but also for use in interim analyses. If better information is available at interim analyses,

this may lead to better interim decisions regarding which populations to continue enrolling

from and which to stop, i.e., this may improve the enrichment component of the design.

Our analysis aims to determine if such synergy is present for a particular response-adaptive

enrichment design, and if so to determine how useful such a design could be in practice.

According to (FDA, 2010), both response-adaptive and enrichment designs are “less

well understood, pose challenges in avoiding introduction of bias, and generally call for
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statistical adjustment to avoid increasing the Type I error rate.” In Section 3, with the

above considerations in mind, we aim to extend the theoretical framework of a two-stage

enrichment design of (Rosenblum and van der Laan, 2011) to incorporate response-adaptive

randomization, while maintaining strong control of the familywise Type I error rate, defined

as the probability of rejecting at least one true null hypothesis.

In addition to results for our response-adaptive enrichment design, we extend the results

of (Rosenblum and van der Laan, 2011) to trial designs with fixed randomization ratios that

are not 1:1, and that may even be different across subpopulations. In Section 4 we show a

power simulation that compares our response-adaptive enrichment design to the enrichment

design from (Rosenblum and van der Laan, 2011), a response-adaptive design, and a standard

fixed design. We consider settings where the variance of the outcome under assignment to

control is different than that under assignment to treatment, since it is under such scenarios

that adapting the randomization probabilities has the most potential to increase power. We

also explore how the different designs perform in terms of the average number of patients

assigned to the superior versus inferior treatment arm.

2 Related Work

Our motivation for considering response-adaptive enrichment designs is to improve power

and the ability to distinguish subpopulation treatment effects, compared to standard designs.

We base our design on the enrichment design of (Rosenblum and van der Laan, 2011),

and augment it with response-adaptive randomization for each subpopulation. They give

a method for constructing randomized trial designs that allow changes to the population

enrolled based on interim data using a prespecified decision rule, while maintaing strong

control of the asymptotic, familywise Type I error rate at a specified level α. They only

consider designs that have rules to potentially change which population is enrolled, and do

not modify other design parameters such as the total sample size or the randomization ratios.

However, they do conjecture that their general method may be extended to designs such as

the one here that also involve adapting the randomization probabilities; this is the open

problem we tackle.

According to (Karrison et al., 2003), although there has been substantial statistical liter-

ature in the area of response-adaptive designs, there has been little use of them in practice.

They point to several reasons why response-adaptive designs are not commonly used, in-

cluding the logistical challenges of implementing an adaptive assignment scheme, and “the

potential for bias due to selection effects, ’drift’ in patient characteristics or risk factors

over time, and other sources”. There is also great debate as to the usefulness of response-
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adaptive designs. (Korn and Freidlin, 2011) found only a small benefit in using these designs

over standard fixed designs, although the context of their simulations was different from the

one here. These important limitations should be kept in mind when considering designs in-

volving response-adaptive randomization. To be useful in practice, response-adaptive designs

should offer substantial benefits in order to outweigh these limitations.

Our proposed design allows for preplanned changes to the population enrolled, and is

potentially useful when it is thought there may be differing treatment effects across sub-

populations. Such differences by subpopulation were observed, for example, in the study

from (Gunnarsdottir et al., 2010), whose aim was to investigate TOP2A gene copy number

changes as a means to identify groups of breast cancer patients who benefit from anthracy-

cline treatment. In this trial, patients were randomly assigned to receive intravenous CMF

(cyclophosphamide, methotrexate and fluorouracil) or CEF (cyclophosphamide, epirubicin

and fluorouracil). Subgroup analyses supported that superiority of CEF over CMF may be

limited to patients with TOP2A mutations, whose tumors have TOP2A ratios below 0.8 or

above 2.0 (Gunnarsdottir et al., 2010). In another example, which we describe below, there

is suggestive evidence that the efficacy of certain antidepressants may depend on the initial

severity of depression (Kirsch et al., 2008).

3 Response-Adaptive Enrichment Design

3.1 Overview

There is suggestive evidence from the meta-analysis in (Kirsch et al., 2008) that certain

antidepressants may only be superior to a control, on average, for the population with severe

pre-treatment depression. We present a response-adaptive enrichment design motivated by

this work, where we consider planning a future trial of a new hypothetical antidepressant

treatment. Using (Kirsch et al., 2008) as a motivation, we will have a Hamilton Rating Scale

of Depression (HRSD) score recorded at baseline for each participant, along with his/her

corresponding HRSD score after the trial. Define each participant’s improvement to be the

difference between baseline HRSD score and HRSD score at end of follow-up. A negative

value of this difference means the participant got worse.

Define subpopulation 1 to be those with moderate pre-treatment depression at baseline,

and subpopulation 2 to be those with severe pre-treatment depression at baseline. Define the

total population to be the union of these disjoint subpopulations. We assume the proportions

of the total population that correspond to subpopulations 1 and 2 remain unchanged over

the trial duration.
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Define H02 to be the null hypothesis that the mean improvement corresponding to treat-

ment is no more than that corresponding to control in subpopulation 2. In a similar manner,

define the null hypothesis H00 corresponding to the total population. For each null hy-

pothesis, define the alternative hypothesis to be that the mean improvement under the new

anti-depressant drug is greater than under control. We focus on these null hypotheses, since

the meta-analysis of (Kirsch et al., 2008) suggests there will be a treatment benefit for the

total population, for only subpopulation 2, or for no population. It is an area of future

research to additionally consider the null hypothesis for subpopulation 1.

We now introduce our response-adaptive enrichment design, depicted in Figure 1. We first

present the overall idea, and then formally define the design in Section 3.2. The response-

adaptive enrichment design consists of two main stages, separated by a decision step. Each

main stage has two parts. The total number of participants to be enrolled in the first and

second stages are pre-specified, and cannot be modified.

Stage 1.1 (first part of stage 1) Participants are drawn from the total population. Each

enrolled participant is randomly assigned to either the treatment arm or the control

arm with a 50% chance. Using a stratified block randomization, we can ensure that

approximately 50% of the participants in subpopulations 1 and 2 are assigned to each

arm.

Stage 1.2 (second part of stage 1) Participants are drawn from the total population.

Each enrolled participant is randomly assigned either to the treatment arm or to the

control arm with differing probabilities, determined by targeting the Neyman allocation

of treatment and control for each subpopulation separately.

The purpose of having two parts to stage 1 is to allow enough information to accrue about

differences in the outcome variances under treatment versus control in stage 1.1, in order

to adequately modify the randomization probabilities in stage 1.2. This also ensures that a

minimum number of participants are assigned to each arm.

At the conclusion of stage 1, when all stage 1 data is available for interim analysis,

we compute three z-statistics, T
(1)
0 , T

(1)
1 , T

(1)
2 , which correspond to the total population,

subpopulation 1, and subpopulation 2, respectively. The (1) superscript is a reminder that

these statistics are computed at the end of stage 1. Each of these z-statistics represents the

standardized difference between the mean change in outcome under treatment and under

control. They are defined in Section 3.2.

Decision step We decide to keep enrolling from the total population during stage 2 if

5
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T
(1)
1 > T

(1)
2 or T

(1)
1 > 0.3. Otherwise, we decide to enroll only from subpopulation 2

during stage 2.

In words, we continue to enroll from both subpopulations in stage 2 if we see either a

greater estimated, standardized treatment effect in subpopulation 1 than in subpopulation 2

(case T
(1)
1 > T

(1)
2 ) or a non-negligible positive signal for subpopulation 1 (case T

(1)
1 > 0.3). If

we see neither of these, then we essentially give up on subpopulation 1, and enroll in stage 2

only from subpopulation 2. This only allows for potential enrichment of subpopulation 2.

Such a decision rule was used in (Rosenblum and van der Laan, 2011), where the threshold

0.3 was computed to be a value that gives a favorable power tradeoff in the simulation

scenarios we consider below.

Stage 2.1 (first part of stage 2) Each enrolled participant is randomly assigned to either

the treatment arm or the control arm with a 50% chance.

Stage 2.2 (second part of stage 2) Each enrolled participant is randomly assigned ei-

ther to the treatment arm or the control arm with differing probabilities, determined,

again, by targeting the Neyman allocation of treatment and control for each subpop-

ulation separately.

In both stages 1.2 and 2.2, the targeting is performed to reduce the asymptotic variance of

our final estimator (Chambaz and van der Laan, 2011). In estimating the Neyman allocation

in stage 2, we ignore all stage 1 data. This ensures that the data generated in stage 2 is

conditionally independent from the data generated in stage 1, given the enrollment decision

at the end of stage 1. This conditional independence is used in our proof of strong control of

the familywise Type I error rate for our design. We explore the impact of sharing information

between stages in determining the Neyman allocation in stage 2, in Section 4.4.

Hypothesis Test We compute a final test statistic, Tfinal, as a weighted combination of

T
(1)
0 and the stage 2 statistic T (2), defined below, that incorporates all stage two data.

If Tfinal > Φ−1(0.95) then we reject H0s, where s = 0 if we enrolled from the total

population in stage 2 and s = 2 otherwise.

3.2 Formal Definition of Response-Adaptive Enrichment Design

We now formally define the statistics that will be used in the above decision rule and testing

procedure. For ease of comparability, we use the same notation as in (Rosenblum and van

der Laan, 2011).
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Stage 1.1

Enrollment Procedure of Response-Adaptive Enrichment Design

Enroll ω par-
ticipants, using
1:1 random-
ization, from:

Subpopulation 1 and
Subpopulation 2

Stage 1.2

Enroll n1 − ω
participants tar-
geting the Ney-
man allocation,
based on stage 1

data, from:

Decision step

If T
(1)
1 > T

(1)
2

or T
(1)
1 > .3

Else,

Stage 2.1

Enroll ω par-
ticipants, using
1:1 random-
ization, from:

Subpopulation 1 and
Subpopulation 2

Subpopulation 2

Stage 2.2

Enroll n2 − ω
participants tar-
geting the Ney-
man allocation,
based on stage 2

data, from:

Figure 1: A flow chart of the proposed response-adaptive enrichment design,
where enrollment after the first ω patients targets the Neyman allocation for
each stage, and where enrollment for stage two is based on our pre-defined
decision rule.

Every participant m contributes the data (Im, Sm, Am, Ym) where Im ∈ {1, 2} indicates in

which stage the participant entered, Sm ∈ {1, 2} indicates the participant’s subpopulation,

Am ∈ {0, 1} indicates whether the participant was assigned to the treatment arm (Am = 1)

or control arm (Am = 0), and Ym ∈ R is the outcome of interest.

For fixed M1,M2, τ that do not depend on sample size, define Q to be the class of

distributions Q on R such that supQ∈Q{EQ[|Y −µ(Q)|3/σ2(Q)3/2]} ≤M1 <∞, and for each

s ∈ {1, 2}, a ∈ {0, 1} we have τ ≤ σ2(Q) ≤ M2. These properties are used in our proofs

of strong control of the familywise Type I error rate, which rely on uniform, multivariate

central limit theorems.

Let µ(Q) and σ2(Q) denote the mean and variance of Q ∈ Q. For each s ∈ {1, 2},
a ∈ {0, 1}, let Qsa ∈ Q denote the (unknown) distribution of the outcome of interest

for subpopulation s under treatment arm assignment a. The probability φs of assignment

to the treatment arm that minimizes the asymptotic variance of the maximum likelihood

estimator of the mean treatment effect, the so-called Neyman allocation, is given by φs =

σ(Qs1)/[σ(Qs1) + σ(Qs0)] for each s ∈ {1, 2} (Rosenberger and Hu, 2004).

Let p1 and p2 denote the probabilities that a participant uniformly drawn from the total

population belongs to subpopulation 1 and subpopulation 2, respectively. We assume p1 and

p2 are known and fixed throughout the trial. Let n1 and n2 denote the pre-specified numbers

of participants in stage 1 and stage 2. These are chosen such that 0.05 ≤ n1/(n1+n2) ≤ 0.95.

In each stage where participants are enrolled from the total population (i.e., for stage 1,
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and possibly for stage 2, depending on the decision made after completion of stage 1), the

proportions of enrolled participants from subpopulations 1 and 2 are assumed to equal p1

and p2, respectively; more precisely, we assume in this case that the set of participants with

Sm = 1 enrolled in stage i ∈ {1, 2} is a uniformly drawn random subset of p1ni out of the ni

total sample size in that stage. We assume that for each participant m, conditioned on Im,

Sm = s, Am = a, and all the data of previously enrolled participants, the outcome Ym is a

random draw from Qsa.

The two null hypotheses are defined as:

H02 : µ(Q21)− µ(Q20) ≤ 0 and H00 : p1[µ(Q11)− µ(Q10)] + p2[µ(Q21)− µ(Q20)] ≤ 0.

Stage 1.1 Enroll ω participants from the total population. Each participant is assigned to

the treatment arm or to the control arm with a 50% chance.

Stage 1.2 Compute σ̂2(Q11), σ̂2(Q10), σ̂2(Q21), σ̂2(Q20), the sample variances in the ω pa-

tients enrolled in stage 1.1, which are unbiased estimators of σ2(Q11), σ2(Q10), σ2(Q21),

σ2(Q20), respectively. This allows us to compute initial estimators φ̂1 and φ̂2 of the

Neyman allocations φ1 and φ2.

Enroll n1−ω participants from the total population. The estimators σ̂2(Q11), σ̂2(Q10),

σ̂2(Q21), σ̂2(Q20) are updated after each enrolled participant, with each update yield-

ing updated estimators φ̂1 and φ̂2. Participants from subpopulation 1 are randomly

assigned to the treatment arm with probability φ̂1, the current estimator of φ1, while

participants from subpopulation 2 are randomly assigned to the treatment arm with

probability φ̂2, the current estimator of φ2.

Decision step Define for each i ∈ {1, 2} and s ∈ {1, 2} the statistics

se(i)
s =

 σ̂2(Qs1)∑
m:Im=i,Sm=s

Am

+
σ̂2(Qs0)∑

m:Im=i,Sm=s

(1− Am)


1/2

,

T (i)
s =


∑

m:Im=i,Sm=s

YmAm∑
m:Im=i,Sm=s

Am

−

∑
m:Im=i,Sm=s

Ym(1− Am)∑
m:Im=i,Sm=s

(1− Am)

 /se(i)
s , (1)
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se
(i)
0 =

(
p2

1(se
(i)
1 )2 + p2

2(se
(i)
2 )2

)1/2

,

T
(i)
0 =

(
p1se

(i)
1 T

(i)
1 + p2se

(i)
2 T

(i)
2

)
/se

(i)
0 . (2)

The statistics se
(1)
1 , se

(1)
2 , and se

(1)
0 should be thought of as estimators of the standard

errors of the numerators in the definitions of T
(1)
1 , T

(1)
2 , T

(1)
0 , respectively.

Compute the above statistics at i = 1. We decide to keep enrolling from the total

population during stage 2 if T
(1)
1 > T

(1)
2 or T

(1)
1 > 0.3. Otherwise, we decide to enroll

only from subpopulation 2 during stage 2.

Stage 2.1 Enroll ω participants from the selected population. Each participant is assigned

to the treatment arm or control arm with a 50% chance.

Stage 2.2 Compute the sample variances σ̂2(Q21) and σ̂2(Q20) based on the ω patients

enrolled in stage 2.1. If the selected population includes subpopulation 1, similarly

compute σ̂2(Q11) and σ̂2(Q10). This allows computing a new initial estimator φ̂2 of the

Neyman allocations φ2, and if the selected population includes subpopulation 1, a new

initial estimator φ̂1 of the Neyman allocations φ1.

Enroll n2 − ω participants from the selected population. The estimators σ̂2(Q21),

σ̂2(Q20), and possibly σ̂2(Q11), σ̂2(Q10) if the selected population includes subpopula-

tion 1, are updated based on stage 2 data only, each update yielding updated estimators

φ̂1 and φ̂2. Participants from subpopulation 2 are randomly assigned to the treatment

arm with probability φ̂2. If the selected population includes subpopulation 1, then

stage 2.2 participants from subpopulation 1 are randomly assigned to the treatment

arm with probability φ̂1.

Hypothesis Test Define T (2) = T
(2)
0 if the selected population is the total population;

otherwise, set T (2) = T
(2)
2 . The final test statistic is the weighted combination of the

test statistics from stages 1 and 2 given by

Tfinal =

(
n1

n1 + n2

)1/2

T
(1)
0 +

(
n2

n1 + n2

)1/2

T (2).

If Tfinal > Φ−1(0.95) then we reject the null hypothesis corresponding to the selected

population enrolled from in stage 2, i.e. either H00 or H02 depending on whether the

9
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selected population is the total population or subpopulation 2, respectively; otherwise

we fail to reject any null hypothesis.

3.3 Control of Familywise Type I Error Rate for Response-Adaptive Enrich-

ment Design

Consider the statistic T = (T
(1)
0 , T

(1)
1 , T

(1)
2 , T (2)), whose joint distribution we denote Pn with

n = n1+n2. Define the class of 4-tuples of distributionsQ4 = {(Q11, Q10, Q21, Q20): each Qsa ∈
Q}. As in (Rosenblum and van der Laan, 2011), we define strong control of the (asymptotic)

familywise Type I error rate at level α to be:

lim sup
n1,n2→∞

sup
Q∈Q4

PQ,n(At least one true null hypothesis is rejected) ≤ α.

Consider the case where the variances Qsa are known. Then the true Neyman alloca-

tions φ1, φ2 can be computed exactly. We prove in the Supplementary Material that if the

true Neyman allocations are used in place of estimated Neyman allocations throughout the

response-adaptive enrichment design, it strongly controls the familywise Type I error rate

at level 0.05. We conjecture that this result holds for the more realistic case of estimated

variances and estimated Neyman allocations. The plausibility of this conjecture is supported

by Theorem 2 from Section 4 of Chambaz and van der Laan (2011), which, roughly speaking,

states that in the limit as sample size goes to infinity, the statistics in the response-adaptive

design using estimated Neyman allocations behave as if the true Neyman allocations were

known and used from the start.

We conducted simulations, described in Section 4.6, comparing the performance of the

response-adaptive enrichment design (which uses estimated variances and estimated Ney-

man allocations) to the counterpart using known variances and true Neyman allocations, at

n = 488. The resulting power and Type I error were nearly identical in all scenarios we

considered. However, it remains an area of future work to prove strong control of the fam-

ilywise Type I error rate for the response-adaptive enrichment design. The main difficulty

in showing this is handling the dependence induced by the response-adaptive component of

our design. Martingale arguments such as those in (Rosenberger and Lachin, 2002, Chapter

13) or (Chambaz and van der Laan, 2013) could potentially be used to show this. Instead of

investigating this issue, we focus our energy on simulations that investigate the finite sample

performance of our design. However, we note that in all our simulations (except those in

Section 4.6), variances are estimated rather than assumed known.
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4 Comparison of Designs in Terms of Power and Number Assigned to Superior

Study Arm

4.1 Definition of Designs

Our simulations are motivated by (Kirsch et al., 2008). We compare our response-adaptive

enrichment design to a standard fixed design, a response-adaptive design (with no enrich-

ment), and an enrichment design (with no response-adaptive randomization). All designs

have the same total sample size n = n1 + n2 = 488.

The standard fixed design enrolls from the total population and uses 1:1 randomization to

treatment and control throughout the trial. The response-adaptive design uses the response-

adaptive procedure as described in Sections 3.1 and 3.2, but does not include the enrichment

design component; enrollment is from the total population in both stages. For these designs,

the null hypothesis H00 is rejected if Tfinal > Φ−1(0.95) at the end of the trial. The enrichment

design is the same as the response-adaptive enrichment design defined in Sections 3.1 and

3.2, except randomization is 1:1 throughout the trial.

We augment all of the above designs, including the response-adaptive enrichment design,

to allow additional testing of H02 whenever H00 is rejected. This is based on the idea

of a fixed sequence testing procedure as in (Maurer et al., 1995). Whenever one of the

above designs rejects H00, the following test is carried out: if the z-statistic combining all

the subpopulation 2 data from both stages exceeds a certain threshold, reject H02. This

threshold is set to be Φ−1(0.95) for the standard fixed design and the response-adaptive

design. It follows from the results of (Maurer et al., 1995) that strong control of familywise

Type I error rate is maintained at level 0.05 for the standard fixed design and the response-

adaptive design. The threshold is slightly increased to Φ−1(0.95) + 0.055 for the enrichment

and response-adaptive enrichment designs. It is shown in the Supplemental Material of

(Rosenblum and van der Laan, 2011) that this augmented procedure controls the asymptotic,

worst-case familywise Type I error at 0.05 for the enrichment design. We prove the same

for the response-adaptive enrichment design in the Supplementary Material, in the case in

which the variances are assumed known.

4.2 Definition of Scenarios

We compare the power of our response-adaptive enrichment design to the other designs under

six scenarios, numbered 1A, 1B, 1C, 2A, 2B, 2C. Each of the six scenarios is defined exactly

as in (Rosenblum and van der Laan, 2011) for ease of comparison. In particular, Q11, Q10,

Q21 and Q20 are Gaussian distributions.

11
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In scenarios 1A, 1B, 1C, we set p1 = p2 = 1/2 and n1 = n2 = 244. In scenarios 2A,

2B, 2C, we set p1 = 0.75, p2 = 0.25 and n1 = (0.3)(488) = 146, n2 = (0.7)(488) = 342.

Each of ‘A’, ‘B’, and ‘C’ corresponds to a different setting of the outcome means µ(Qsa)

under treatment and control for each subpopulation. These are defined next, motivated by

scenarios observed in (Kirsch et al., 2008).

In the meta-analysis of (Kirsch et al., 2008), the average change in HRSD points, com-

paring each participant’s final score to baseline score, was 7.8 in the placebo arm for those

with moderate depression; it was 6.6 HRSD points in the placebo arm for those with se-

vere depression. The point estimate for the treatment effect comparing change in HRSD

between treatment and placebo was approximately 0 HRSD points for those with moderate

depression (though this was based on a single study), 1.8 points in those with severe initial

depression, and 3.0 points for those with very severe initial depression.

For scenarios 1A and 1B, we set the data generating distributions to mimic what was

seen in (Kirsch et al., 2008): zero treatment effect for those with moderate pre-treatment

depression (µ(Q10) = µ(Q11) = 7.8) and a positive treatment effect for those with severe

pre-treatment depression. We set this positive treatment effect to be 1.8 points in scenario

1A (µ(Q20) = 7.8, µ(Q21) = 9.6), and 3.0 points in scenario 1B (µ(Q20) = 6.6, µ(Q21) = 9.6).

In scenario 1C, the data generating distributions are set to reflect a 1.8 point, positive

treatment effect for both those with moderate pre-treatment depression and those with

severe pre-treatment depression (µ(Q10) = µ(Q20) = 7.8, µ(Q11) = µ(Q21) = 9.6). For

scenarios 2A, 2B, and 2C, we assume the same values for the means µ(Qsa) as in 1A, 1B,

and 1C, respectively.

The results of (Kirsch et al., 2008) include estimates of the total population standard

deviation being approximately 8.0 HRSD points, both under treatment and under control.

In our data generating distributions, we set the variance under treatment to be the same

for each subpopulation; similarly we will set the variance under control (which can differ

from that under treatment) to be the same for each subpopulation. We define the ratio

of outcome standard deviations under treatment and control in each subpopulation to be

r = σ(Q11)/σ(Q10) = σ(Q21)/σ(Q20). Below, we set r to various values, and examine the

impact on the different designs. At r = 1, we have equal standard deviations under treatment

and under control; in this case 1:1 randomization is the optimal Neyman allocation, so we

do not expect any benefit of response-adaptive randomization. At values of r farther from 1,

we expect more benefit from the response-adaptive randomization on power. Our goal is to

see how the possible benefits of the response-adaptive component interact with enrichment.

So as to hone in on the effect of the response-adaptive component in our simulations, we
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construct our data generating distributions so that the power of the standard fixed design in

each scenario is unchanged as we vary the ratio r. To achieve this, it suffices that the non-

centrality parameters for the z-statistics defined in Section 3.2 be invariant to r under the

standard fixed design, which occurs if σ2(Qs0) + σ2(Qs1) is a constant; we set this constant

to be 8 HRSD points, so that at r = 1 the variances equal those derived from (Kirsch et

al., 2008). This leads us to set, for each r > 0 and each s ∈ {1, 2}, the subpopulation

standard deviation σ(Qs0) = 8
√

2/(1 + r2) and σ(Qs1) = rσ(Qs0). Under this definition,

changing the value of r affects neither the power of the standard fixed design nor the power of

the enrichment design, but does affect the power of the designs involving response-adaptive

randomizaiton.

We ran simulations for each r ∈ {1, 1.5, 2, 2.5}. Table 1 shows the standard deviations

under treatment and control for these values of r. In all six of our scenarios, the total sample

size for the trial remains the same, at n = 488 participants. This sample size was chosen

such so that the power of the standard, fixed design to reject H00 in scenarios 1C and 2C

is 80%. For the response-adaptive enrichment design, we set ω = 50. For each scenario,

100,000 simulated trials were run under each design. The R code used for the simulations is

included in the Supplementary Material.

Table 1: Standard Deviation Values for r ∈ {1, 1.5, 2, 2.5}

r σ(Qs1) σ(Qs0)

1 8 8

1.5 9.414 6.276

2 10.119 5.060

2.5 10.505 4.202

4.3 Summary of Simulation Results

Define the overall power of a design in a given scenario to be the probability of rejecting at

least one false null hypothesis. We next summarize the power of different designs under the

scenarios defined above; complete details are then given in Section 4.4. All power comparisons

are given as absolute differences, and values are rounded to the nearest percent.

Across all the values of r we explored, under each scenario, the response-adaptive en-

richment design has at least as great overall power as any of the other three designs. When

r = 1, across scenarios 1A, 1B, 2A, and 2B, each design with enrichment has 14 - 42% more

overall power compared to the corresponding design without enrichment.
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Recall that the power of the fixed design and the enrichment design do not change with

r. As r is increased from 1 to 2.5, the response-adaptive design gains up to 7% more overall

power and the response-adaptive enrichment design gains up to 6% more power. Over all

scenarios, the gains in power comparing the response-adaptive design to the fixed design

were similar to the power gains comparing the response-adaptive enrichment design to the

enrichment design. Though there were small differences in the magnitudes of these gains,

with the most prominent being the comparison of r = 2.5 to r = 1 in scenarios 1A and 2A,

there does not appear to be a strong synergistic effect across all scenarios of response-adaptive

randomization and enrichment.

In Section 4.5, we examine the impact of enrichment and response-adaptive random-

ization on the expected number Nsup of participants assigned to the superior study arm.

Enrichment always improves or leaves unchanged Nsup compared to the analogous design

without enrichment. In contrast, response-adaptive randomization, which was tailored to

maximize power through the Neyman allocation, can increase or decrease Nsup, compared

to the analogous design using 1:1 randomization. In cases where response-adaptive random-

ization decreases Nsup compared to the fixed design, this was partially mitigated by adding

enrichment to the design.

4.4 Detailed Simulation Results: Power Comparison

Figures 2, 3, 4, 5 show, for each scenario, side-by-side bar plots of the proportion of simulated

trial in which each null hypothesis is rejected, when r = 1, 1.5, 2, 2.5. In each of the six

scenarios, the first bar is for the fixed design, the second bar is for the response-adaptive

design, the third bar is for the enrichment design, and the fourth bar is for the response-

adaptive enrichment design. The height of each bar represents overall power, and this is

decomposed into the proportion of simulated trials in which only H02 is rejected, only H00

is rejected, and both are rejected.

At r = 1 (Figure 2), the standard deviations under treatment and control are equal.

This implies that the Neyman allocations for subpopulations 1 and 2, φ1 and φ2, both equal

1/2. The response-adaptive design behaves almost identically as the fixed design, and the

response-adaptive enrichment design behaves almost identically as the enrichment design.

Therefore, at r = 1, we only summarize the differences between the enrichment design and

the fixed design, which were also given in Section 4 of (Rosenblum and van der Laan, 2011).

In scenarios 1A and 1B, the true treatment effect is zero for subpopulation 1 and positive

(beneficial) for subpopulation 2. In scenario 1A, the enrichment design has 14% more overall

power than the fixed design. In scenario 1B, the enrichment design has 21% more overall
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power than the fixed design. In scenario 1C, where the true treatment effect is positive for

both subpopulations, all designs have 80% overall power. In scenario 2A, the enrichment

design has 23% more overall power than the fixed design. In scenario 2B, the enrichment

design has 42% more overall power than the fixed design. In scenario 2C, the overall power

is identical to scenario 1C.

At r = 1.5 (Figure 3), the standard deviation σ(Qsa) under assignment to the treatment

arm (a = 1) is 1.5 times that under assignment to control (a = 0). In all scenarios, the

absolute difference in overall power between the response-adaptive design and fixed design

was 1%. The same holds when comparing the response-adaptive enrichment design and

enrichment design.

At r = 2 (Figure 4), the standard deviation σ(Qsa) under assignment to the treatment

arm is twice that under assignment to control. In scenarios 1A, 1B, and 1C, the response-

adaptive design and the response-adaptive enrichment design have 2-3% more overall power

than the fixed design and the enrichment design, respectively. In scenarios 2A and 2B, there

is a gain of 1-2% in overall power comparing the response-adaptive design to the fixed design

and a gain of 2% comparing the response-adaptive enrichment design to the enrichment

design. In scenario 2C, the overall power is similar to scenario 1C.

At r = 2.5 (Figure 5), the standard deviation σ(Qsa) under assignment to the treatment

arm is 2.5 times that under assignment to control. In scenario 1A the response-adaptive

design has 4% more overall power than the fixed design and the response-adaptive enrichment

design has 6% more overall power than the enrichment design. In scenario 1B, the response-

adaptive design has 7% more overall power than the fixed design and the response-adaptive

enrichment design has 6% more overall power than the enrichment design. In scenario 1C,

each design involving response-adaptive randomization has 6% more overall power than the

corresponding design without this. In scenario 2A, the response-adaptive design has 2%

more overall power than the fixed design and the response-adaptive enrichment design has

5% more overall power than the enrichment design. In scenario 2B, the response-adaptive

design has 3% more overall power than the fixed design and the response-adaptive enrichment

design has 4% more overall power than the enrichment design. The overall power in scenario

2C is similar scenario 1C.

We explored the impact of using both stage 1 and stage 2 data to estimate the Neyman

allocations during stage 2.2. The power and Type I error were nearly identical to the results

above (in which only stage 2 data is used in stage 2.2 to estimate Neyman allocations).
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r = 1: Probabilities of Rejecting Null Hypotheses: H00, H02, or Both H00 and H02, Comparing the Fixed
Design, Response−Adaptive Design, Enrichment Design, and the Response−Adaptive Enrichment Design

Figure 2: Power simulation with standard deviation ratio r = 1. Across
the six scenarios, we compare the fixed design, abbreviated F, the response-
adaptive design, abbreviated RA, the enrichment design, abbreviated E, and
the response-adaptive enrichment design, abbreviated RAE.
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r = 1.5: Probabilities of Rejecting Null Hypotheses: H00, H02, or Both H00 and H02, Comparing the Fixed
Design, Response−Adaptive Design, Enrichment Design, and the Response−Adaptive Enrichment Design

Figure 3: Power simulation with standard deviation ratio, r, set to 1.5.
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Scenario 1A Scenario 1B Scenario 1C Scenario 2A Scenario 2B Scenario 2C

0

.2

.4

.6

.8

1

F RA E RAE F RA E RAE F RA E RAE F RA E RAE F RA E RAE F RA E RAE

Trial Design

P
ro

ba
bi

lit
y 

of
 R

ej
ec

tio
n

Null Hypothesis:
Reject H00 and H02
Reject H00
Reject H02

r = 2: Probabilities of Rejecting Null Hypotheses: H00, H02, or Both H00 and H02, Comparing the Fixed
Design, Response−Adaptive Design, Enrichment Design, and the Response−Adaptive Enrichment Design

Figure 4: Power simulation with standard deviation ratio, r, set to 2.
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r = 2.5: Probabilities of Rejecting Null Hypotheses: H00, H02, or Both H00 and H02, Comparing the Fixed
Design, Response−Adaptive Design, Enrichment Design, and the Response−Adaptive Enrichment Design

Figure 5: Power simulation with standard deviation ratio, r, set to 2.5.
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4.5 Detailed Simulation Results: Assignment to Superior versus Inferior Study

Arm

Our response-adaptive enrichment design targets the Neyman allocation, with the goal of

maximizing power. Response-adaptive randomization also impacts patient exposure to the

inferior versus superior study arm, as described by (Rosenberger and Hu, 2004).

We compare the different designs in each scenario, in terms of the expected number of

participants assigned to a superior arm, i.e., an arm for which the mean outcome is strictly

greater than under assignment to control for that participant’s subpopulation. Because for

all scenarios and subpopulations s, we have µ(Qs1) ≥ µ(Qs0), no participant assigned to

control is ever assigned to a superior arm. The expected number of participants assigned to

a superior arm, which we denote by Nsup, is equivalent to the expected number of participants

who receive a better treatment than if all participants had been assigned to control.

The top of Table 2 gives Nsup for the different designs, for each r ∈ {1, 1.5, 2, 2.5} and each

scenario. The value of Nsup is substantially greater in the enrichment design compared to the

fixed design in scenarios 1A, 1B, 2A, 2B; this is because only one subpopulation benefits in

these scenarios, and the enrichment design enrolls more of these participants (who are then

assigned to the superior arm with probability 50%) with non-negligible probability. The

values of Nsup are equal in the enrichment and fixed designs in scenarios 1C and 2C, since

both subpopulations benefit from treatment in these scenarios.

The value of Nsup is greater in the response-adaptive design compared to the fixed design

for all scenarios when r > 1, since the response-adaptive design generally assigns more

participants to treatment in these cases.

Under scenarios 2A and 2B there is a synergistic effect of enrichment and response-

adaptive components, in terms of the difference in Nsup due to enrichment and due to

response-adaptive randomization. This is most pronounced at r = 2.5, where the differ-

ence in Nsup comparing the response-adaptive enrichment design to the enrichment design

is nearly double the difference in Nsup comparing the response-adaptive design to the fixed

design.

We also considered simulations where for each subpopulation, σ2(Qs1) < σ2(Qs0). The

bottom of Table 2 compares the different designs, for each r ∈ {1, 1/1.5, 1/2, 1/2.5} and each

scenario. Similar results as above hold comparing the enrichment design to the fixed design in

terms of Nsup. However, adding response-adaptive randomization now decreases the number

of participants receiving superior treatment, because the Neyman allocation assigns more

participants to control. This decrease is partially mitigated by combining enrichment (which

always increases or does not change Nsup) with response-adaptive randomization.
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Table 2: Exposure to Superior Study Arm Assignment, r ∈ {1, 1.5, 2, 2.5}
(top) and r ∈ {1, 1/1.5, 1/2, 1/2.5} (bottom)

r = 1 r = 1.5

1a 1b 1c 2a 2b 2c 1a 1b 1c 2a 2b 2c

Fixed 122 122 244 61 61 244 122 122 244 61 61 244

Response-Adaptive 123 123 244 61 61 244 145 145 288 72 72 288

Enrichment 158 159 244 129 135 244 158 159 244 129 134 244

Response-Adaptive Enrichment 158 160 244 129 134 244 184 185 283 151 157 283

r = 2 r = 2.5

1a 1b 1c 2a 2b 2c 1a 1b 1c 2a 2b 2c

Fixed 122 122 244 61 61 244 122 122 244 61 61 244

Response-Adaptive 159 159 317 80 80 317 170 170 338 85 85 338

Enrichment 157 159 244 129 134 244 157 159 244 129 135 244

Response-Adaptive Enrichment 200 203 309 165 172 309 213 215 328 176 183 327

r = 1 r = 1⁄1.5
1a 1b 1c 2a 2b 2c 1a 1b 1c 2a 2b 2c

Fixed 122 122 244 61 61 244 122 122 244 61 61 244

Response-Adaptive 123 123 244 61 61 244 100 100 200 50 50 200

Enrichment 158 159 244 129 135 244 158 159 244 129 134 244

Response-Adaptive Enrichment 158 160 244 129 134 244 133 134 205 107 112 205

r = 1⁄2 r = 1⁄2.5
1a 1b 1c 2a 2b 2c 1a 1b 1c 2a 2b 2c

Fixed 122 122 244 61 61 244 122 122 244 61 61 244

Response-Adaptive 86 86 171 42 42 171 75 75 150 37 37 150

Enrichment 157 159 244 129 135 244 158 159 244 129 135 244

Response-Adaptive Enrichment 116 118 179 93 97 179 105 106 161 83 87 160

The table provides the expected number of patients (rounded to the nearest integer)
assigned to a superior study arm out of 488 total patients.

19

Hosted by The Berkeley Electronic Press



4.6 Response-Adaptive Enrichment Design using True Neyman Allocations

We consider the case where the true Neyman allocations are used in the response-adaptive

enrichment design. We conducted 100,000 simulations at n = 488 and compared the per-

formance to the response-adaptive enrichment design with estimated variances. Across all

scenarios, 1A-2C, and for each value r ∈ {1, 1.5, 2, 2.5}, the overall power was nearly identi-

cal between the two designs. The largest difference in overall power between the two designs

was 0.5%, under scenario 2B, at r = 2.

5 Type I Error Analysis

We ran simulations where we computed the familywise Type I error rate for the four designs

involved in the power analysis of Section 4, using 500,000 simulations per design per scenario.

We considered sample sizes n ∈ {244, 488}.
We first used Gaussian distributions Q11, Q10, Q21, Q20, all with zero mean. Across all

six scenarios above, 1A, 1B, 1C, 2A, 2B, 2C, the largest familywise Type I error for the fixed

design was 0.053, for the response-adaptive design was 0.052, for the enrichment design was

0.053, and for the response-adaptive enrichment design was 0.053.

We also considered heavy tailed and skewed data generating distributions. To investigate

the case of heavy tailed distributions, we set Q11, Q10, Q21, Q20 to be identical, centered log-

normal distributions, which is the distribution of exp(tZ)− exp(t2/2), where Z is standard

normal; we considered each t ∈ {0.01, 0.1, 1, 2, 4}. To investigate the case of skewed distri-

butions, we set Q11, Q10, Q21, Q20 to be identical, centered negative binomial distributions

with added Gaussian noise, i.e., the distribution of Y −E(Y ) + 0.01Z, where Z is standard

normal and Y is a negative binomial distribution with parameters c ∈ {0.01, 0.1, 1, 2, 4} and

p = c/(c+ 1).

Under the log-normal distributions, the familywise Type I error for the response-adaptive

enrichment design was always less than for the standard fixed design, except under a few

scenarios that the fixed design had type I error of zero. When t ∈ {0.01, 0.1}, for all

r ∈ {1, 1.5, 2, 2.5}, the standard fixed design had type I error of zero, and under these

scenarios, the largest familywise Type I error for the response-adaptive enrichment design

was 0.054. Under the negative binomial simulations, the familywise Type I error for the

response-adaptive enrichment design was always less than for the standard fixed design.
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6 Discussion

In our simulated scenarios, relatively large differences in the variances under treatment and

control are needed before a substantial power improvement (e.g. more than 5%) occurs

for the response-adaptive design and response-adaptive enrichment design, compared to the

standard fixed design and enrichment-only design, respectively. Due to this negative finding,

the situations in which such designs using response-adaptive randomization will have a large

impact on power may be limited. However, it was not known before our simulation study

whether there would be a synergistic effect on power of combining response-adaptive ran-

domization and enrichment; a contribution of our work has been to explore this possibility.

We did observe a synergistic relationship between enrichment and response-adaptive ran-

domization, not in power, but in terms of the number of participants assigned to the superior

study arm.

An open research question is to explore alternative adaptive randomization allocations

and determine after what proportion of enrolled participants one should schedule an interim

analysis, to optimize power and Nsup. A related issue is to determine how the ratios ω/n1

and ω/n2 affect the overall power estimates.

(Berry, 2010) argues that the advantage of response-adaptive designs is greater for

comparisons of more than two treatment arms. It is an area of future work to consider

response-adaptive enrichment designs for more than two treatment arms.
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