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Abstract

We extend the Cox proportional hazards model to cases when the exposure is a densely sampled

functional process, measured at baseline. The fundamental idea is to combine penalized signal

regression with methods developed for mixed effects proportional hazards models. The model

is fit by maximizing the penalized partial likelihood, with smoothing parameters estimated by a

likelihood-based criterion such as AIC or EPIC. The model may be extended to allow for multiple

functional predictors, time varying coefficients, and missing or unequally-spaced data. Methods

were inspired by and applied to a study of the association between time to death after hospital

discharge and daily measures of disease severity collected in the intensive care unit, among

survivors of acute respiratory distress syndrome.
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1 Introduction

We introduce the proportional hazard functional regression model for data where the outcome

is the possibly censored time to event and the exposure is a densely sampled functional process

measured at baseline. The methodology was inspired by and applied to a study of the association

between survival time after hospital discharge of survivors of acute respiratory distress syndrome

(ARDS), and daily measures of organ failure during hospitalization.

The main innovation of our approach is to provide a fast and easy to use Cox model for func-

tional regression based on modern developments in nonparametric smoothing, survival analysis

methods and software, and functional data analytic concepts. More precisely, the method we

propose has three important characteristics: 1) it employs penalized splines (Eilers and Marx,

1996; O’sullivan et al., 1986; Ruppert et al., 2003) to model the functional coefficient(s); 2) it

treats the proportional hazards model that incorporates the functional parameter as a hazard rate

with a mixed effects format on the log scale and uses modern survival data fitting techniques

that incorporate nonparametric smoothing and frailty regression (Gray, 1992; Verweij and Van

Houwelingen, 1993; Therneau and Grambsch, 1998); and 3) it estimates the amount of smoothing

of the functional parameter using a likelihood-based information criterion such as AIC (Verweij

and Houwelingen, 1994; Therneau et al., 2003), and thus avoids the use of principal component

truncation, which may lead to highly unstable coefficient shapes.

Functional data regression is under intense methodological development (Marx and Eilers,

1999; Cardot et al., 1999, 2003; James, 2002; Müller and Stadtmüller, 2005; Cardot and Sarda,

2005; Ferraty and Vieu, 2006; Reiss and Ogden, 2007; Ramsay et al., 2009; James et al., 2009;

Goldsmith et al., 2011; Harezlak and Randolph, 2011; Ferraty, 2011; McLean et al., 2012),

though there are only a few modeling attempts in the case when outcome is time-to-event

data. Probably the first paper to consider this topic was James (2002), who used a functional

generalized linear model to model right-censored life expectancy, where censored outcomes are

handled using the procedure of Schmee and Hahn (1979). The procedure has two steps: 1)
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use a truncated normal distribution to estimate the unobserved failure times; and 2) incorporate

these estimates in standard least squares equations. The entire procedure is then iterated using

the EM algorithm. This method for accounting for censored survival times is similar in spirit

to the better known Buckley-James estimator (Buckley and James, 1979; Miller and Halpern,

1982). Müller and Zhang (2005) developed an alternative model for the mean remaining lifetime

given a longitudinal covariate up to a given time, though their model does not allow for censored

outcomes. Chiou and Müller (2009) incorporate the ideas of functional data analysis by modeling

hazard rates as random functions, but they do not allow for functional predictors.

In parallel with these efforts in functional data analysis, important developments have been

achieved by researchers in survival data analysis. Specifically, non-parametric smoothing ap-

proaches have been introduced to account for the possibly nonlinear effects of scalar covariates

in a proportional hazards model. Therneau and Grambsch (1998) showed how to fit a model

with a smooth covariate effect using penalized splines, and how this model was closely related

to the more well-studied gaussian frailty model. Kneib and Fahrmeir (2007) developed an ex-

panded mixed model that allows for non-parametric effects of scalar covariates, spatial effects,

time-varying covariates, and frailties. Strasak et al. (2009) allowed for smooth effects of time-

varying covariates. These techniques have now matured, are accompanied by high quality software

(Belitz et al., 2013; Therneau, 2012, 2014), and continue to be developed. Our approach will

take advantage of decades of development in survival data analysis, functional data analysis, and

nonparametric smoothing. In particular, we will identify the most robust, easiest to use combi-

nation of approaches to achieve our goal: modeling survival data with nonparametric functional

regression parameters.

Thus, we take advantage of these methods in order to model the effect of a functional

covariate on a (possibly censored) survival time, by including the functional covariate as a term

in a Cox proportional hazards model (Cox, 1972). This approach has several advantages. First,

the proportional hazards model is one of the most popular regression models ever, has been

well-studied, and has a form that is familiar to a general audience. Second, the Cox model is
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widely considered to be the standard in regression for survival data due to its interpretability,

applicability, and inferential flexibility. Third, it allows simple extensions of the fitting procedure

to incorporate functional covariates. These properties allowed us to develop a model that is easy

to implement and computationally efficient. Indeed, our software will be made publicly available

as part of the pcox package in R (R Development Core Team, 2011), and fitting the model

requires only one line of code.

We now briefly review some of the existing functional regression techniques that are relevant to

this article. Scalar-on-function regression models the relationship between a scalar outcome and

a functional covariate. Suppose that {Yi} are a set of scalar outcomes, {Xi(t)} are functional

covariates defined on the interval [0, 1], and {Zi} are non-functional covariates, where i ∈

{1, 2, . . . , N}. Then the generalized functional linear model that relates Yi to Zi and Xi(t) is

g(µi) = α+Ziγ+
∫ 1

0
Xi(t)β(t) dt, where Yi follows an exponential family distribution with mean

µi, and g(·) is an appropriate link function (McCullagh and Nelder, 1989; James, 2002; Müller

and Stadtmüller, 2005). The key feature of this model that differentiates it from a standard

(non-functional) generalized linear model is the integral term,
∫ 1

0
Xi(t)β(t) dt, which captures

the contribution of the functional covariate Xi(t) towards g(µi). The integration essentially serves

as a weighting mechanism for Xi(t), where the weights are given by the coefficient function β(t).

Thus, we think of β(t) as the optimal weight function to express the contribution of Xi(t) towards

g(µi).

In the next section, we propose an extension of the Cox proportional hazards model that

incorporates a similar integral term for functional covariates, and describe how the parameters

in such a model may be estimated. Section 3 describes a number of extensions to the model

that allow for added flexibility. Section 4 assesses the performance of our model in a simulation

study. In Section 5, we apply our model to our application of interest, and we conclude with a

discussion of our findings in Section 6. Additional details regarding our software implementation

using R’s pcox package may be found in the supplemental material.
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2 Cox Model with Functional Covariates

2.1 Proportional Hazards Model

Let Ti be the survival time for subject i, and Ci the corresponding censoring time. Assume that

we observe only Yi = min(Ti, Ci), and let δi = I(Ti ≤ Ci). We also assume that for each subject,

we have a collection of covariates Zi = {Zi1, Zi1, . . . , Zip}. The Cox proportional hazards model

(Cox, 1972) for this data is given by log hi(t;γ) = log h0(t)+Ziγ, where hi(t;γ) is the hazard at

time t given covariates Zi and h0(t) is a non-parametric baseline hazard function. The parameter

vector exp(γ) is commonly referred to as the vector of hazard ratios, because it represents the

multiplicative change in the hazard function for a one-unit increase in Zi.

Suppose now that in addition to Zi, we have also collected a functional covariate, Xi(s) ∈

L2[0, 1], for each subject. Without loss of generality, we assume that Xi(s) is centered by

subtracting an estimator of the population mean function from the observed data. We propose

the following functional proportional hazards model

log hi [t;γ, β(·)] = log h0(t) +Ziγ +

∫ 1

0

Xi(s)β(s) ds (1)

The functional parameter, β(s), is slightly more difficult to interpret than its non-functional

counterpart, γ. One interpretation is that the term exp
{∫ 1

0
β(s) ds

}
corresponds to the mul-

tiplicative increase in one’s hazard of death if the entire covariate function, Xi(s), was shifted

upwards by 1 unit (with Zi held constant). In this context, one can refer to β(s) as a functional

log hazard ratio. More generally, β(s) serves as a weight function for Xi(s) to obtain its overall

contribution towards one’s hazard of mortality. The model assumes proportional hazards; i.e.,

this contribution is the same over the entire domain t of the hazard function.

We note in particular the the domain of the functional predictor, s, is not the same as the

time domain t over which the event is followed. We assume that Xi(s) is fully available at

baseline, before the event can occur. If the functional predictor is measured concurrently with
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the event, then this predictor is a time-varying covariate. Alternative methods exist for this

scenario, ranging from traditional approaches (Cox, 1972) to more modern developments in joint

modeling of longitudinal and survival data (Tsiatis and Davidian, 2004; Ibrahim et al., 2010;

Rizopoulos, 2012).

As proposed above, (1) is under-determined unless we make assumptions on the form of the

functional coefficient β(s). We will take the common approach of approximating β(s) using

a spline basis (Marx and Eilers, 1999; Cardot and Sarda, 2005; Ramsay and Silverman, 2005;

Goldsmith et al., 2011). Let φ(s) = {φ1(s), φ2(s), . . . , φKb
(s)} be a spline basis over the s-

domain, so that β(s) =
∑Kb

k=1 bkφk(s). Then (1) becomes

log hi(t;γ, b) = log h0(t) +Ziγ +

∫ 1

0

Xi(s)φ(s)b ds

= log h0(t) +Ziγ + c′ib (2)

where b = {b1, b2, . . . , bKb
} and ci is a vector of length Kb with kth element

∫ 1

0
Xi(s)φk(s) ds.

Note that this integral is based only on the covariate function and the (known) basis functions,

and may be calculated using numerical integration.

As a choice of basis, we prefer penalized B-splines (Eilers and Marx, 1996), also known as P-

splines. B-splines adapt flexibly to the data, have no boundary effects, and are fast to compute.

In addition, by using a large number of knots and applying a roughness penalty, we prevent

overfitting while eliminating the necessity to choose the number and precise location of the knots

(O’sullivan et al., 1986; O’Sullivan, 1988). We have fit the model using other penalized bases,

with minimal change to the estimated coefficient function.

2.2 Estimation via Penalized Partial Likelihood

For notational convenience, let θ =
[
γ b

]
and ηi(θ) = Ziγ+c

′
ib. Then the partial likelihood

for this model is L(p)(θ) =
∏

i:δi=1

[
exp{ηi(θ)}

/∑
j:Yj≥Yi exp{ηj(θ)}

]
. In order to ensure the

smoothness of the coefficient function β(t), we will impose a penalty on the spline coefficients,
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b. Based on the above partial likelihood, we define the penalized partial log-likelihood (PPL) as

`
(p)
λ (θ) =

∑
i:δi=1

ηi(θ)− log

 ∑
j:Yj≥Yi

exp{ηj(θ)}

− λP (b)
where P (b) is an appropriate penalty term for the spline coefficients b, and λ is parameter that

controls the smoothness of the resulting coefficient function.

The use of a penalized partial likelihood function in Cox models is not new. Gray (1992)

introduced the function to allow for smooth effects of scalar covariates in a Cox model, and this

method was extended and implemented in R by Therneau and Grambsch (1998). Verweij and

Houwelingen (1994) and Therneau et al. (2003) exploited the well-known connection between

mixed effects models and penalized splines to estimate frailty models via the penalized partial

likelihood. Here, we follow a similar procedure to incorporate functional predictors into the Cox

model.

We will assume that we can express the penalty term as P (b) = 1
2
λθ′Dθ, where D is a

symmetric, non-negative definite penalty matrix. Also, let W i =
[
Zi c′i

]
be the row of the

design matrix corresponding to subject i, such that ηi(θ) =W
′
iθ. Then for a given λ, the first

and second derivatives (i.e., the gradient and hessian matrix) of `
(p)
λ (θ) may be easily computed.

We can estimate the regression coefficients θ by maximizing the partial log-likelihood (for a

given λ) using a Newton-Raphson procedure. In the results presented in Sections 4 and 5, we

use a second-order difference penalty. This penalty is a discrete approximation to the integrated

second derivative penalty, is computationally efficient, and is commonly used in P-splines (Eilers

and Marx, 1996).

2.3 Optimization of the smoothing parameter

An essential step in the algorithm is the optimization of the smoothing parameter, λ. Unfor-

tunately, typical optimization criteria, such as Allen’s PRESS (cross-validated residual sum of

squares) and Mallow’s Cp, are not appropriate for Cox models. Verweij and Van Houwelin-
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gen (1993) proposed the cross-validated log likelihood (CVL) for the purpose of optimizing the

smoothing parameter of a penalized partial likelihood. Let θ̂
λ

(−i) be the value of θ that maximizes

`
(p)
λ,(−i)(θ), the penalized partial log-likelihood when observation i is left out. Then the CVL for a

given value of λ is given by CVL{λ} =
∑n

i=1 `
(p)
λ,i

{
θ̂
λ

(−i)

}
, where `

(p)
λ,i(·) = `

(p)
λ (·) − `(p)λ,(−i)(·) is

the contribution of subject i to the penalized partial log-likelihood.

This expression is quite computationally intensive, as it requires calculating `
(p)
λ,i(θ̂

λ

(−i)) for

each i. In practice, a computationally efficient alternative is the penalized version of the AIC,

AIC(λ) = `
(p)
λ (θ̂

λ
) − e(λ), where e(λ) = tr

[
Hλ(θ̂

λ
)−1H(θ̂

λ
)
]

is the effective dimension and

H(·) is the unpenalized portion of the Hessian matrix. Although the AIC does not approximate

the CVL directly, it is known that the changes in AIC or CVL from the null model are approximately

equal, making the AIC a useful surrogate (Verweij and Houwelingen, 1994). pcox makes the AIC

available, as well as two related criteria: the corrected AIC (AICc) of Hurvich et al. (1998), and

the EPIC criterion of Shinohara et al. (2011). The AICc criterion has been recommended in

cases with small n or large number of parameters to avoid overfitting (Burnham and Anderson,

2002), while the EPIC criterion corresponds to a likelihood ratio test at the α = 0.05 level for

testing the significance of one additional parameter in two nested models. Practically, the three

optimization methods offer three different levels of smoothness for the functional coefficient, with

AIC resulting in the least smooth and EPIC the smoothest estimate.

2.4 Inference

There have been at least two proposals for the variance-covariance estimate of the parameter esti-

mates in penalized partial likelihood models. Gray (1992) suggested using V 1 =Hλ(θ̂
λ
)−1I(θ̂

λ
)Hλ(θ̂

λ
)−1.

On the other hand, Verweij and Houwelingen (1994) use V 2 =Hλ(θ̂
λ
)−1, and refer to the square

root of the diagonal elements of this matrix as “pseudo-standard errors”. Therneau et al. (2003)

make both of these estimates available in their implementation, and we choose to take the same

approach. For either choice of V , a pointwise 95% confidence interval for β(s0) = φ(s0)b may

be constructed as β̂(s0)± 1.96
√
φ(s0)V 22φ(s0), where V 22 is the lower-right Kb ×Kb matrix
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of V .

Nonetheless, both proposals above for the variance-covariance matrix V are only valid when

the smoothing parameter λ is fixed. When λ is optimized using one of the methods discussed

in Section 2.3, these proposals may underestimate the true standard error. Thus, in addition

to these two methods we propose to use a bootstrap of subjects (Crainiceanu et al., 2012) to

calculate the pointwise and joint confidence intervals for the model parameters. The performance

of these four types of confidence intervals will be compared via simulation in Section 4.

3 Extensions

3.1 Additional penalized model covariates

An advantage of using penalized splines is that they are modular (Ruppert et al., 2003), making

it very easy to extend Model (1) to include additional penalized terms. This makes the inclusion

of additional functional predictors, smooth effects of scalar covariates, or frailty terms straight-

forward. Time-varying coefficients for scalar covariates, Xiβ(t), may also be included by applying

a penalized spline basis to the coefficient function, allowing for non-proportional hazards (Zucker

and Karr, 1990; Grambsch and Therneau, 1994). Each of these terms requires a corresponding

penalty term in the penalized partial likelihood, with a separate smoothing parameter for each

one. The pcox software package allows for each of these specialized terms in the model formula.

3.2 Full Likelihood Approach

An alternative estimation procedure may be employed by assuming a spline basis for the baseline

hazard, and maximizing the penalized full data log likelihood (PFL). Such an approach was

originally proposed by Cai et al. (2002) using a linear spline basis for the baseline hazard without

any penalized covariates, and has been further extended to include penalized predictors including

smooth covariate effects, spatial effects, and frailties by Kneib and Fahrmeir (2007); Strasak et al.

(2009).
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Since our model treats functional predictors as penalized regression terms, the PFL approach

may be used to fit (2). Let ψ(t) = {ψ1(t), ψ2(t), . . . , ψK0(t)} be a spline basis over the time

domain t, such that log h0(t) = g0(t) =
∑K0

k=1 b0kψk(t) is a spline approximation of the log

baseline hazard, with spline coefficient b0 = {b01, b02, . . . , b0K0}. Then the PFL is

`
(f)
λ (θ) =

n∑
i=1

{
δiηi(Ti,θ)−

∫ Ti

0

eηi(u,θ) du

}
− λ0

2
b′0D0b0 −

λ1
2
b′Db

where ηi(t,θ) = Ziγ + b0ψ(t) + c
′
ib, and λ0 and D0 are the smoothing parameter and penalty

matrix for the baseline hazard, respectively. The full likelihood approach has been shown to have

advantages over the partial likelihood approach in cases where data is interval-censored (Cai and

Betensky, 2003). However, in our application we do not have interval-censored data and we

expect minimal benefit to using the PFL approach over the PPL approach. Due to the increased

computational demand of using the PFL approach, we have chosen to use the PPL approach

throughout this paper. The PFL approach will be offered in our software package.

3.3 Missing and unequally-spaced data

A common complication in functional regression occurs when the observed functional predictors

are observed at widely spaced, unequal time intervals. This could occur for example when the

functional predictor is measured at follow-up times that are not the same for each subject, or

when there is substantial missingness in these observations. Goldsmith et al. (2011) showed how

a functional principal components (FPCA) basis could be used to pre-smooth the observed data

in a functional regression context, with minimal loss of information. We follow this approach

in our modeling strategy. We perform FPCA by smoothing the empirical covariance matrix,

as described in Staniswalis and Lee (1998) and Yao et al. (2003), and implemented using the

fpca.sc() function in the R package refund (Crainiceanu et al., 2012).
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4 Simulation Study

4.1 Simulation design

In order to assess the performance of our model under a variety of conditions, we conducted

an extensive simulation study. Of interest was our model’s ability to accurately identify the

coefficient function β(s). For simplicity, we consider only the scenario where there are no non-

functional covariates Z, and only a single functional predictor Xi(s), of fixed domain. Let

{sj = j/100 : j = 0, 1, . . . , J = 100} be our grid of time points over the interval [0, 1]. For each

subject i ∈ 0, . . . , N , we generate the survival time Ti and functional predictor Xi(s) based on

the model hi(t) = h0(t) exp(ηi), where ηi =
1
J

∑J
j=1Xi(sj)β(sj) and Xi(sj) = ui1 + ui2sj +∑10

k=1 {vik1 sin (2πksj) + vik2 cos (2πk10sj)}. Here, hi(t) is the hazard of T for subject i, h0(t)

is the baseline hazard, ui1 ∼ N(0, 25), ui2 ∼ N(0, 4), and vik1, vik2 ∼ N(0, 1/k2). This model

for simulating our functional predictors is based on the procedure employed by Goldsmith et al.

(2011), which was in turn adapted from Müller and Stadtmüller (2005). We generated random

survival times according to this proportional hazards model by following Bender et al. (2005).

The baseline hazard was chosen to follow a Weibull distribution with shape parameter 0.75 and

mean 600, where time is assumed measured in days. All subjects are censored at Ci = 730 days.

These values were chosen to approximate the data that was used in our application. Based on

the baseline hazard and censoring mechanism, we expect approximately 27% of subjects to be

censored.

We apply three data-generating coefficient functions: β1(s) = 2 sin
(
πs
5

)
, β2(s) = 2(s/10)2,

and β3(s) = −2φ(s|2, 0.3) + 6φ(s|5, 0.4) + 2φ(s|7.5, 0.5), where φ(·|µ, σ) is the density of

a normal distribution with mean µ and standard variance σ2. The three coefficient functions

appear in the top row of Figure 1.

We consider three different sample sizes, N ∈ {100, 200, 500} subjects. We are also interested

in the amount of information that is lost when there is a large amount of missing data in the
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covariate measurements. In order to address this issue, we generate an “incomplete” version

of the full covariate dataset as follows. First, for each subject we randomly select the number

of measured values Ji as a random integer between 10 and 51, with equal probability. We

then randomly select Ji of the J = 100 observations that are to be included in the incomplete

dataset, again with equal probability. The result constitutes the observed, incomplete dataset.

The incomplete coefficient functions are then smoothed using a functional principal components

basis that retains enough principal components to explain 99% of the variability in the covariate

functions.

For each combination of sample size, true coefficient function, and level of missingess (full

vs. incomplete dataset), we generate R = 1000 simulated datasets and apply our model for Cox

regression with a single functional predictor. The three versions each use a different criterion for

selecting the smoothing parameter: AIC, AICc, or EPIC. In all cases, we use penalized B-splines

to model the coefficient function (Marx and Eilers, 1999), using the difference penalty of Eilers

and Marx (1996).

4.2 Evaluation criteria

The primary measure of model performance is its ability to estimate the true coefficient func-

tion. This is assessed by the average mean squared error (AMSE), defined as AMSE
(
β̂(s)

)
=

1
J+1

∑J
j=0

{
β̂(sj)− β(sj)

}2

, where β̂(sj) is the estimated coefficient function at s = sj and

β(sj) is the value of the true coefficient function at this location. A secondary measure of model

performance is its predictive ability, which we measure with the cross-validated concordance prob-

ability, or C-Index (Harrell et al., 1996; van Houwelingen and Putter, 2012). The C-Index is the

proportion of all pairs of observations for which the order of survival times are concordant with

the model-based linear predictor; we use a 10-fold cross validated version of this statistic.

We also evaluated the coverage probability of four different pointwise 95% confidence intervals.

The first two confidence intervals are formed using the two model-based estimates of the variance,

as described in Section 2.4. The second two are bootstrap estimates based on 100 bootstrapped
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samples. One of these is a Wald-type confidence interval based on the bootstrap estimate of the

variance, and the other is based on 2.5% and 97.5% quantiles of the bootstrap distribution of

the estimates.

4.3 Simulation results

Box plots of the AMSE and cross-validated C-Index appear in Figure 1, along with the coefficient

function estimates that had median AMSE for the scenario when N = 200. Overall, there is very

little difference in the performance between the three optimization criteria. The EPIC criterion

tends to have slightly better performance under β2(s), as this coefficient function is very smooth

and EPIC favors smoother estimates, but these gains are minimal.

β3(s), with its sharp peaks and valleys, is by far the most difficult coefficient function to

estimate, especially in the incomplete data case. Interestingly, despite its estimation resulting in

the highest AMSE measurements, the models under this coefficient perform fairly well in terms

of predictive ability, with median cross-validated C-indices near 90%. This observation reflects

that this coefficient function’s peaks, while difficult to estimate precisely, are relatively high in

magnitude, which causes the model to “target” certain predictor functions as being more strongly

or weakly associated with mortality. On the other hand, β1(s) is relatively easy to estimate, but

is much less strongly associated with survival. This result is due to the fact that the sine wave

contains an equal amount of area that is positive and negative, causing subjects with relatively

flat Xi(s) to not be clearly identified as either “high-risk” or “low-risk” for mortality. Only

subjects who display a clear increasing or decreasing trajectory (high to low or low to high) in

their predictor functions will be easily separable.

As expected, estimation of the coefficient functions is more difficult with low sample size and

in the incomplete case, resulting in higher AMSE measurements. However, the model still seems

to be useful in these cases. Interestingly, lower sample sizes and incomplete data do not seem

to cause a very large drop in the C-Index measurements, indicating that these more challenging

scenarios do not cause the model to lose much in terms of predictive ability. In order to assess
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Figure 1: Simulation results. In all plots, color indicates the method for optimizing the smoothing parameter: red
(AIC), green (AICc), or blue (EPIC). The top row displays the true coefficient functions (black), as well as the
estimates with median AMSE when N = 200. The estimates based on the full data are given by the solid lines,
and those based on the incomplete dataset are dashed. The second and third rows contain Tufte box plots of the
distributions of AMSE and cross-validated concordance probability (C-Index) respectively, over the 1000 simulated
datasets, stratified by sample size and missingness. The median value is indicated by a dot, the interquartile range
by white space around the dot, and the smallest and largest non-outlying values by the endpoints of the colored
bars. Outliers are defined to be data points more than 1.5 times the interquartile range from the nearest quartile.
Lower AMSE and higher C-Index are indicative of better model performance.

whether differences in AMSE between the incomplete and full data scenarios were due the missing

data in the incomplete case or the FPCA step that this data requires, we fit the same models to

a version of the full data that was pre-smoothed by FPCA. The results (supplemental material)

show very similar performance to those corresponding to the unsmoothed full dataset, indicating
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Table 1: Mean coverage probability of each of the four pointwise 95% confidence intervals (averaged across s),
under each scenario. V1 and V2 are Wald-type confidence intervals based on the model-based estimates of the
variance V1 and V2, defined in Section 2.4. B-V is a Wald-type confidence interval based on the variance of the
bootstrap estimates, and B-Q is constructed from the 2.5% and 97.5% quantiles of the boostrap distribution.

N Dataset
Opt. β1(s) β2(s) β3(s)

Method V1 V2 B-V B-Q V1 V2 B-V B-Q V1 V2 B-V B-Q

100

Full
AIC 90 83 100 99 88 82 100 99 76 64 100 99
AICc 87 81 100 98 86 82 100 98 70 58 99 95
EPIC 68 63 96 94 82 80 100 96 56 46 93 86

Inomplete
AIC 63 54 98 98 88 81 100 98 66 41 85 82
AICc 60 52 98 98 87 80 100 98 64 40 85 81
EPIC 50 44 96 96 84 79 100 97 55 36 82 77

200

Full
AIC 95 89 100 98 86 81 100 99 80 68 100 97
AICc 95 88 100 98 86 81 100 98 76 64 99 95
EPIC 89 80 97 94 79 76 100 96 61 50 86 82

Inomplete
AIC 78 65 95 98 86 80 99 98 64 37 73 71
AICc 76 64 95 98 85 79 100 98 63 36 72 70
EPIC 65 56 91 96 78 75 100 97 53 33 69 67

500

Full
AIC 97 91 100 98 88 83 100 99 83 72 99 96
AICc 97 92 100 98 88 82 100 99 82 71 99 95
EPIC 95 87 98 94 79 75 99 96 63 51 80 81

Inomplete
AIC 92 68 93 97 87 79 99 98 66 27 62 63
AICc 92 68 93 97 87 79 99 98 66 27 61 63
EPIC 88 65 90 96 80 74 98 96 56 25 59 60

that it is the lack of information due to the missing data, and not the FPCA step, that causes

the decreased model performance.

Coverage probabilities of the confidence intervals are shown in Table 1. The two model-based

confidence intervals (V1 and V2) perform well in moderate-to-large sample size (N ≥ 200) with no

missing data, for β1(s) and β2(s). However, when N is small or missing data is present, both tend

to underestimate the variance of the estimates. This underestimation can be quite severe, with

coverages as low as 25% in the most difficult scenarios. V1 tends to be more conservative than

V2. The two bootstrap-based confidence intervals maintain coverage probabilities above 95%,

except under β3(s). However, in scenarios that are easier to estimate (full dataset, large N , and

β2(s)) these coverages seem to be overly conservative, especially B-V. Under β3(s), which is the

most difficult coefficient function to estimate, the bootstrap-based confidence intervals perform

well when there is no missing data, but perform much more poorly on the incomplete datasets.

Interestingly, this problem is exacerbated in larger sample sizes. We suspect that coverage may
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be improved by taking more than 100 bootstrap samples, which is what was chosen for these

simulations. In all scenarios, coverage probabilities were highest when using the AIC criterion to

optimize smoothness, and lowest with EPIC. These results are emphasized when examining plots

of the pointwise coverage probability as a function of the domain s (supplemental material).

5 Effect of SOFA Score on Post-ICU Mortality

5.1 Data description

The Improving Care of Acute Lung Injury Patients (ICAP) study (Needham et al., 2006) is a

prospective cohort study that investigates the long-term outcomes of patients who suffer from

acute lung injury/acute respiratory distress syndrome (ALI/ARDS). ALI/ARDS is a severe con-

dition characterized by inflammation of the lung tissue. It can be triggered by a wide variety of

causes, including pneumonia, sepsis, or trauma. Treatment consists of supported care, including

mechanical ventilation in the intensive care unit (ICU), until the patient’s condition stabilizes.

Short-term mortality from ARDS can exceed 40% (Zambon and Vincent, 2008), and those that

do survive are at increased risk for physical, cognitive, and emotional impairments, as well as

death.

The ICAP study enrolled 520 subjects, with 237 (46%) dying in the ICU. We are concerned

with long-term survival among the 283 survivors, once they are discharged from the hospital. Out

of the 283 survivors, 16 subjects (5.7%) did not consent to follow-up, their mortality status was

unknown after hospital discharge, and they were excluded from the analysis. Thus, our analysis

is based on the remaining 267 subjects. All patients in the ICAP study who are discharged alive

from the hospital and consented to follow-up were followed for up to two years from their date

of enrollment in the study. If the subject died, mortality information was recorded to the nearest

day, based on family report or publicly available records.

In the ICAP study, data recording starting upon enrollment in the study, and then daily

thereafter during the patient’s ICU stay. One measurement recorded daily during each subject’s
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ICU stay is the Sequential Organ Failure Assessment (SOFA) score, which is a composite score

of a patient’s overall organ function status in the ICU. It consists of six physiological components

(respiratory, cardiovascular, coagulation, liver, renal, and neurological), each measured on a scale

of 0-4, with higher scores indicative of poorer organ function. The total SOFA score is the sum

of these six subscores, ranging from 0-24. We consider each subject’s history of measured SOFA

scores, over time, to be a functional covariate, Xi(u), where u is the ICU day. These functions

are depicted in the left panel of Figure 2 as a lasagna plot (Swihart et al., 2010).

5.2 Analysis plan

Our goal will be to estimate the association between post-hospital mortality and a patient’s

SOFA function. In addition to the SOFA function, our model also includes three non-functional

covariates, which are meant to control for a subject’s baseline risk of post-hospital mortality: age,

gender, and Charlson co-morbidity index (Charlson et al., 1987). We consider “time zero”, the
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Figure 2: SOFA functions, before and after domain-standardization, depicted as lasagna plots. Each row corre-
sponds to a subject, with color indicating the SOFA score at each time point. Subjects are ordered by domain
width of the untransformed functions, Ui, within each outcome category (event vs. censored), in both plots.
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first day the subject is eligible for our event of interest, to be the day the subject is discharged

from the hospital following ALI/ARDS, and subjects are censored at two years following their ALI

diagnosis.

There are two features of the data that raise compilations in our analysis. The first complica-

tion occurs because some subjects are discharged from the ICU (due to an improvement in their

condition) to a hospital ward, only to be readmitted to the ICU later during their hospitalization.

Since SOFA measurements are only recorded in the ICU, these subjects will have gaps in their

SOFA functions (indicated by gray space in Figure 2). Of the 267 subjects, 20 (7.5%) had gaps of

this type, for a total of 4.4% of missing patient days. Based on clinical advice, we complete these

gaps using a last observation carried forward (LOCF) imputation, though we test the sensitivity

and sensibility of this approach by using alternative imputation approaches and by comparing to

the complete case only analysis. As differences were found to be minimal, we present results for

the LOCF imputation only.

The second, more significant complication is that each subject remains in the ICU for a

different length of time, Ui. Since we use time as the domain of our functional covariate,

this means that each function, Xi(u), will be measured over a different domain, [0, Ui]. The

distribution of Ui up to 35 days can be seen in Figure 2, and overall ranges from as short as 2

days to as long as 157 days. Gellar et al. (2014) have proposed methods for accounting for this

type of data in the context of classical functional regression using domain-dependent functional

parameters. These approaches could be incorporated here, but we focus on a more traditional

approach here to keep presentation simple. More precisely, we apply the subject-specific domain

transformation s := gi(u) = u/Ui to each function. This allows us to define new SOFA functions,

X̃i(s) = Xi(sUi), that are each defined over [0, 1]. The new SOFA functions defined over the s

domain are a linearly compressed version of the original SOFA functions (Figure 2, right panel),

and s, has the interpretation of being the proportion of the way through one’s ICU stay that

the measurement was taken. For example, X̃i(0.5) represents a subject’s SOFA score half way

through his ICU stay, and X̃i(1) is the SOFA score on the subject’s last day in the ICU. We

17



4

6

8

0.00 0.25 0.50 0.75 1.00
s

S
O

FA
Event

4

6

8

0.00 0.25 0.50 0.75 1.00
s

S
O

FA

Censored

−1

0

1

0.00 0.25 0.50 0.75 1.00
s

S
O

FA

Event − Censored

Ui Quartile

[2,8]

(8,13]

(13,24]

(24,157]

Mean Standardized SOFA Functions

Figure 3: Mean domain-standardized SOFA functions, stratified by Ui and event status, as well as the difference
in mean functions between those who did and did not experience the event. All curves are smoothed using a
lowess smoother.

evaluate X̃i(s) at J = maxi(Ui) = 157 time points for each function.

Standardizing each subject’s SOFA curve to a common domain may cause us to lose some

potentially valuable information; specifically, we lose information regarding the original domain

width, Ui. However, we note (Figure 3) that the average domain-standardized SOFA trajectory

tends to be markably consistent across different strata of Ui. In particular, we do not observe

any strong patterns in the functions across these strata, and Ui does not appear to affect the

difference in curves between those who do and do not experience the event. These observations

support our decision to standardize the SOFA functions to a common domain. In addition, since

Ui itself could be a strong predictor of long-term mortality, we incorporate it into our model using

a smooth effect on the log scale. The resulting model is

log hi(t;γ, β(·)) = log h0(t) +Ziγ +

∫ 1

0

X̃i(s)β(s) ds+ f{log(Ui)} (3)

where the the scalar covariates Zi include subject age, gender, and Charlson Co-morbidity Index.

The Charlson Index (Charlson et al., 1987) is a commonly used measure of baseline health, with

each existing clinical conditions assigned a score from 1-6 based on severity. In ICAP, total

Charlson scores range from 0 to 15. A P-spline basis is used to approximate both the functional

coefficient β(·) and the additive term f(·).
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Figure 4: Estimated associations between one’s log hazard of mortality and their ICU length of stay (top row
of figures) and the standardized SOFA functions (bottom row), under each of the three methods for optimizing
λ. Pointwise 95% confidence intervals are formed by one of four methods. The first two (V1 and V2) are from
model-based estimates of the variance. The second two are based on 10,000 bootstrapped samples of the dataset,
one (B-V) which uses the pointwise bootstrap variance, and the other (B-Q) which uses the pointwise quantiles.

5.3 Results

We plot the estimated additive function f̂{log(Ui)} and coefficient function β̂(s) based on (3)

in Figure 4, under each of the three optimization criteria. Overall, we see very little functional

association between one’s SOFA function and time to death after hospital discharge, as the 95%

confidence interval covers the horizontal line β(s) = 0 throughout the entire domain s. This

implies that the integral term of the model,
∫ 1

0
X̃i(s)β(s) du, will be close to zero for all subjects,

so X̃i(s) offers little contribution towards one’s hazard of death. There seems to be a positive

association with length of stay for lengths of stay less than 5 days, but not for those greater than

or equal to 5. On the other hand, two of the non-functional covariates, age and Charlson co-

morbidity index, are highly associated with an increased hazard of death. According to the model
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optimized using AICc and the confidence interval calculated from the quantiles of the bootstrap

distribution, we found that one’s hazard of mortality increases by 5% (95% CI 4%-9%, p < 0.001)

for every 1-year increase in age, and it increases by 12% (95% CI 6% - 36%, p = 0.001) for every

1-point increase in Charlson Index.

We see that the EPIC criterion imposes a stronger degree of smoothness in both f̂(·) and

β̂(·) than the other two smoothing criteria, to the extent that very little functional signal can

be detected for either estimate. The widely-varying bootstrap confidence intervals, especially

for β(s), is likely due to a flat likelihood, without much information contributed by Xi(s). By

imposing a higher degree of smoothness, the EPIC criterion results in more reasonable intervals.

In order to compare the three sets of estimates, we calculate the N -fold cross-validated C-

Index for each one (Table 2, top 3 rows), as a measure of how well each model would predict

mortality when applied to an independent dataset. The model fit with EPIC had the highest

predictive ability. This observation reinforces the conclusion that there is not a very strong

functional relationship between SOFA score in the ICU and long-term mortality among patients

surviving their hospitalization, as EPIC favors estimates closer to the zero line.

5.4 Follow-up Models

While often functional regression models are viewed as the final part of the inference, here we use

them as exploratory tools. Indeed, a more careful examination of Figure 4 reveals some potentially

important patterns; in this section we investigate those patterns further. First, we note that the

plots for f̂{log(LOS)} obtained using the AIC and AICc criteria indicate that the function may

be appropriately modeled by a linear spline with one knot at 5 days. There is a visually striking

effect after 100 days, as well, but as only three survivors had a length of stay longer than 100

days, we have decided to ignore it. Additionally, we note a number of regions over the s-domain

of β̂(s) with relatively large magnitude, even if the point-wise confidence intervals cover 0. These

regions occur around s =0, 0.15, 0.3, and 1.

Using these observations as a guide, we fit a series of follow-up parametric models, and
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Table 2: Predictive ability of each model, measured by the N -fold cross-validated C-Index. All models are adjusted
for the scalar covariates age, gender, and CCI, and they differ in the way they model the length of stay Ui and
the SOFA function Xi(s), as well as the method for optimizing any smoothing parameters. M1-M4 refer to the
mean SOFA scores in the regions [0, 0.05], [0.05, 0.2], [0.2, 0.4], and [0.85, 1] of the s-domain, respectively. S1-S3
refer to the slopes of a regression line through the SOFA scores in the regions [0, 0.15], [0.15, 0.3], and [0.3, 0.45].

Ui SOFA λ-Opt C-Index
P-Spline Functional Effect AIC 0.700
P-Spline Functional Effect AICc 0.714
P-Spline Functional Effect EPIC 0.715

Linear Spline Functional Effect AIC 0.702
Linear Spline Functional Effect AICc 0.730
Linear Spline Functional Effect EPIC 0.733
Linear Spline M1 + M2 + M3 + M4 0.737
Linear Spline M1 + M2 + M4 0.738
Linear Spline M1 + M4 0.736
Linear Spline M1 0.735
Linear Spline M4 0.739
Linear Spline S1 + S2 + S3 0.729
Linear Spline None 0.733

None None 0.739

investigate their predictive ability via the N -fold cross-validated C-Index (Table 2). These models

differed in their treatment of the functional predictor and the Ui variable. We also investigated

whether or not incorporating the age covariate as a smooth term improved model fit, but in each

case it did not so we only present results that treat age linearly. Interestingly, we have found that

parameterizing the additive and functional effects resulted in superior predictive performance. In

particular, we observed that removing the SOFA scores from the model completely resulted in a

higher cross-validated C-Index than including them as functional effects; this seems to indicate

that there is not a strong functional relationship between SOFA score and long-term mortality in

this subset of patients.

The best-performing model included the scalar covariates Zi, a linear spline for log(Ui), and

the mean SOFA score over the region s ∈ [0.85, 1] (M4 in Table 2). The mean SOFA over

s ∈ [0, 0.05] (M1) also shows a potentially important association. Investigating the effects in

these regions further, Figure 5 depicts the Kaplan-Meier estimates of the survival curve, stratified

by high vs. low values of M1 and M4. Based on these findings, we think that more exploration of

functional approaches followed by aggressive thresholding of functional parameter estimates may
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actually lead to improved prediction and interpretation. This is likely to be the case in applications

with a small to moderate number of subjects and weak functional effects.

6 Discussion

We develop new methodology to account for functional covariates in a Cox proportional hazards

model. We use a spline basis to approximate the functional coefficient, and estimation is accom-

plished by maximizing the penalized partial likelihood, with the degree of smoothness determined

by optimizing one of three presented information criteria. The model is flexible and modular, in

that it can be easily extended to incorporate a number of advances both in the fields of survival

analysis and in functional data analysis. We have developed easy to use and computationally

efficient software to implement this model.

We demonstrate through simulations that this model does a good job of estimating the

true coefficient function even in cases with a moderate amount of missing data, except when

the true coefficient function is especially complicated. Model-based estimates of the standard

error resulted in pointwise confidence intervals that tended to be too narrow, and we therefore
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recommend bootstrap-based confidence intervals as a more conservative alternative.

We applied this model to estimate the functional association between SOFA score and post-

hospital mortality among patients with ARDS. We found that this association is quite close to

zero, throughout the domain of our functional predictor. Despite the null result, this observation

is potentially quite clinically meaningful. It tells us that, among this patient population, one’s

survival after leaving the hospital does not appear to depend heavily on patterns of organ failure

in the ICU, after accounting for age, gender, comorbidity status, and ICU length of stay. It was

previously hypothesized by our collaborators that we may observe different patterns in mortality

based on one’s SOFA pattern. This analysis does not support that hypothesis.

Another possibility is that this model is mis-specified. Recall that we modified our original

SOFA functions X(u) by collapsing them to X̃(s). While this conveniently allowed us to avoid

the problem of each function falling on a different domain, [0, Ui], it may have caused us to

lose important information that was present in the original functions. A more appropriate model

would allow for the coefficient function to change with Ui, resulting in a variable domain functional

regression model with bivariate coefficient function β(u, Ui), similar to that proposed by Gellar

et al. (2014). Another alternative is to allow for a time-varying effect of the SOFA functions,

which would involve replacing the coefficient function β(s) in (3) with the bivariate coefficient

function β(s, t). We do not explore these models in this paper, and leave them to future work.

Even though our analysis suggested a very weak functional relationship between SOFA and

mortality, we were able to use our functional estimates to guide the design of simpler models that

parameterize this association. These simpler models proved to demonstrate better predictive

accuracy than the full functional approach, as measured by the cross-validated C-Index. This

process shows the strength of functional regression techniques as an exploratory tool for under-

standing the relationship between a functional predictor and an outcome. In some cases the full

functional model may be most appropriate, but more often than not this association may be

simplified to a more parsimonious and interpretable relationship.
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