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Abstract

Adaptive enrichment designs involve preplanned rules for modifying enrollment cri-

teria based on accruing data in a randomized trial. We focus on designs where the

overall population is partitioned into two predefined subpopulations, e.g., based on a

biomarker or risk score measured at baseline. The goal is to learn which populations

benefit from an experimental treatment. Two critical components of adaptive enrich-

ment designs are the decision rule for modifying enrollment, and the multiple testing

procedure. We provide a general method for simultaneously optimizing these compo-

nents for two stage, adaptive enrichment designs. We minimize the expected sample

size under constraints on power and the familywise Type I error rate. It is computa-

tionally infeasible to directly solve this optimization problem due to its nonconvexity.

The key to our approach is a novel, discrete representation of this optimization prob-

lem as a sparse linear program, which is large but computationally feasible to solve

using modern optimization techniques. Applications of our approach produce new,

approximately optimal designs.
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Pennsylvania State University
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1 Introduction

Consider the problem of planning a randomized trial of a new treatment versus control,

when the population of interest is partitioned into two subpopulations. The subpopulations

could be defined in terms of a biomarker or risk score measured at baseline. Our goal is to

test the null hypotheses of no average treatment benefit for each subpopulation and for the

combined population. Standard randomized trial designs may have low power to detect a

treatment effect if the treatment only benefits one subpopulation.

Adaptive enrichment designs have been proposed for this problem, e.g., Follmann (1997),

Russek-Cohen and Simon (1997), Jennison and Turnbull (2007), Wang et al. (2007), Wang

et al. (2009), Brannath et al. (2009), Rosenblum and van der Laan (2011), Jenkins et al.

(2011), Friede et al. (2012), Boessen et al. (2013), Stallard et al. (2014), Graf et al. (2015),

Krisam and Kieser (2015), Götte et al. (2015). This related work either does not involve

optimization, or optimizes over designs that depend on a few, real-valued parameters. In

contrast, we simultaneously optimize over a very large class of designs and multiple testing

procedures, described below. Wason and Jaki (2012) and Hampson and Jennison (2015)

consider the related problem of optimizing adaptive designs involving multiple treatments

for a single population. Their approaches do not apply to our problem, as we show in

Section 6.

A two-stage, adaptive enrichment design consists of a decision rule for potentially modi-

fying enrollment at the end of stage 1, and a multiple testing procedure at the end of stage 2.

The decision rule is a function from the stage 1 data to a finite set of possible enrollment

choices for stage 2. The multiple testing procedure is a function from the stage 1 and 2 data

to the set of null hypotheses that are rejected. We put no restrictions on these functions

except that they are measurable and discretized, as described below. The resulting class of

possible designs is quite large. Our goal is to construct new adaptive enrichment designs

that minimize expected sample size under constraints on power and Type I error, over this

class of possible designs. This is a nonconvex optimization problem that is computationally

infeasible to solve directly.

Our approach is to approximate the original optimization problem by a sparse linear

program. This idea was applied to standard designs, which do not have an enrollment

modification rule, by Rosenblum et al. (2014); they optimized power over different multiple

testing procedures. We tackle the substantially more challenging problem of simultaneously
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optimizing the decision rule and multiple testing procedure in two stage, adaptive enrichment

designs. The added difficulty of the latter problem is twofold: it is harder to construct a

representation as a sparse, linear program, and the resulting linear program is harder to

solve computationally. Another difference between Rosenblum et al. (2014) and our problem

is that we consider not only power, but also expected sample size. In practice, both are

important in trial planning.

We show that our designs control the familywise Type I error rate in the strong sense

defined by Hochberg and Tamhane (1987, pg. 3). Control of the familywise Type I error rate

in confirmatory trials is generally required by regulators such as the U.S. Food and Drug

Administration and the European Medicines Agency (FDA and EMEA, 1998).

As in all of the above related work, we require the subpopulations to be defined before the

trial starts. Such a definition could be based on prior trial data and scientific understanding

of the disease being treated. Designs exist that try to solve the more challenging problem of

defining a subpopulation based on accruing data and then testing for a treatment effect in

that subpopulation, e.g., Freidlin and Simon (2005); Lai et al. (2014).

In our examples, the optimized designs substantially improve power compared to stan-

dard designs and some existing adaptive designs. A limitation of our approach is that it

becomes computationally difficult or infeasible for more than 2 stages or subpopulations,

as described in Section 8. Also, our approach requires that each participant’s outcome is

measured relatively soon after her/his enrollment. We focus on designs where the only al-

lowed adaptation is to modify enrollment for stage 2. We do not consider other types of

adaptation such as modifying randomization probabilities, or modifying the treatment for

each individual in response to his/her outcomes over time.

In Section 2, we define our optimization problem. We prove that it suffices to consider

decision rules and multiple testing procedures that depend on the data only through minimal

sufficient statistics, in Section 3. In Section 4, we discretize the optimization problem and

then tranform it into a sparse, linear program. The discretization involves partitioning the

sample space of the sufficient statistics into small rectangles; we then restrict to decision

rules and multiple testing procedures that depend on the data only through the rectangle

that contains the sufficient statistics. The sparse linear program in solved in two examples,

in Section 5. In Section 6, we describe the structure of the sparse linear program. We present

our method for verifying strong control of the familywise Type I error rate, in Section 7.

Limitations and open problems are discussed in Section 8.
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2 Problem Definition

2.1 Null Hypotheses

We assume that the population is partitioned into two subpopulations, defined in terms of

variables measured before randomization. Let ps denote the proportion of the population

in subpopulation s ∈ {1, 2}, which we assume to be known; p1 + p2 = 1. Each enrolled

participant is assigned to treatment (a = 1) or control (a = 0) with probability 1/2.

For each subpopulation s ∈ {1, 2} and stage k ∈ {1, 2}, we assume exactly half the

participants are assigned to each study arm a ∈ {0, 1}. This can be approximately achieved

by using block randomization stratified by subpopulation. For each participant i from sub-

population s ∈ {1, 2} enrolled in stage k ∈ {1, 2}, denote her/his study arm assignment by

A
(k)
s,i ∈ {0, 1} and outcome by Y

(k)
s,i ∈ R. Throughout, the subpopulation indicator s is in the

subscript, and the stage number k is in the superscript.

For clarity, we focus on normally distributed outcomes with known variances. Under

regularity conditions, our results can be extended to different outcome distributions as long

as one uses asymptotically linear statistics, e.g., the difference between sample means or

the estimated coefficient in a proportional hazards model. We assume that conditioned on

study arm A
(k)
s,i = a, the outcome Y

(k)
s,i ∼ N(µsa, σ

2
sa) and is independent of the data from all

previously enrolled participants. Let σ2 = (σ2
10, σ

2
11, σ

2
20, σ

2
21), which we assume is known; we

also assume σ2
s0 = σ2

s1 for each s ∈ {1, 2}. Let X(k) denote all the data from stage k, and let

X = X(1) ∪X(2) denote the cumulative data at the end of stage 2. Let X (k) and X denote

the sample spaces of X(k) and X, respectively. We assume that each participant’s outcome

is observed relatively soon after enrollment, so that all stage 1 outcome data are available

at the interim analysis.

Denote the average treatment effect for each subpopulation s ∈ {1, 2} by ∆s = µs1−µs0,

and for the combined population by ∆C = p1∆1 + p2∆2. Let ∆ = (∆1,∆2). We do not

assume any relationships among the subpopulation-specific treatment effects ∆1,∆2; their

magnitudes and signs can differ arbitrarily. For simplicity, we assume µs1 = ∆s/2 and

µs0 = −∆s/2 for each subpopulation s ∈ {1, 2}, so that the only unknown parameters in our

problem are the subpopulation-specific treatment effects (∆1,∆2).

Define H01, H02, H0C , to be the null hypotheses of no average treatment benefit in
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subpopulation 1, subpopulation 2, and the combined population, respectively, i.e.,

H01 : ∆1 ≤ 0; H02 : ∆2 ≤ 0; H0C : ∆C ≤ 0.

Let H = {H01, H02, H0C}, and let S denote the power set of H. For any ∆ ∈ R2, define

HTRUE(∆) to be the set of true null hypotheses at ∆. For each s ∈ {1, 2}, this set contains

H0s if ∆s ≤ 0; it contains H0C if p1∆1 + p2∆2 ≤ 0.

2.2 Two Stage, Adaptive Enrichment Designs

In stage 1, n
(1)
s participants are enrolled from each subpopulation s. At the interim analysis

following stage 1, a decision rule D determines the number of participants to enroll from

each subpopulation in stage 2, based on the stage 1 data. At the end of stage 2, a multiple

testing procedure M determines which subset (if any) of the null hypotheses to reject, based

on the data from stages 1 and 2. A two stage, adaptive enrichment design is defined by the

following quantities, which must be specified before the trial starts:

i. The stage 1 sample sizes n
(1)
1 , n

(1)
2 for subpopulations 1 and 2, respectively.

ii. The number K < ∞ of possible stage 2 decisions, and for each decision d ∈ E =

{1, . . . , K} the stage 2 sample sizes n
(2),d
1 , n

(2),d
2 for subpopulations 1 and 2, respectively.

iii. A decision rule D mapping the stage 1 data X(1) to an enrollment decision in E .

iv. A multiple testing procedure M mapping the stage 1 and 2 data X to a (possibly

empty) subset of null hypotheses H ⊆ H to reject.

In our examples, we set the stage 1 sample sizes n
(1)
1 , n

(1)
2 proportional to the subpopulation

sizes p1, p2; however, our general method does not require this.

Define an adaptive design template, denoted by n, to be the quantities in (i)-(ii), i.e., the

set of possible decisions and corresponding sample sizes n = (E , n(1)
1 , n

(1)
2 , {n(2),d

1 , n
(2),d
2 }d∈E). A

generic adaptive design template is depicted in Figure 1a. A specific example for p1 = 1/2 is

given in Figure 1b, where for a given n > 0, the stage 1 sample sizes satisfy n
(1)
1 = n

(1)
2 = n/4,

and there are four choices for stage 2 enrollment: D = 1: stop the trial, i.e., n
(2),1
1 = n

(2),1
2 = 0;

D = 2: enroll exactly as in stage 1, i.e., n
(2),2
1 = n

(2),2
2 = n/4; D = 3: only enroll from

subpopulation 1, i.e., n
(2),3
1 = 3n/4, n

(2),3
2 = 0; D = 4: only enroll from subpopulation 2, i.e.,

n
(2),4
1 = 0, n

(2),4
2 = 3n/4. This adaptive design template, denoted n(1b), is used in Section 5.

5
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Figure 1: (a) Generic adaptive enrichment design template; (b) Example of an adaptive

enrichment design template, denoted n(1b), with four possible stage 2 decisions, parametrized

by n.
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It allows enrichment of subpopulation 1 (D = 3) or subpopulation 2 (D = 4), in which case

the total enrolled from the enriched subpopulation is n (n/4 from stage 1 plus 3n/4 from

stage 2). This choice of sample sizes was motivated by the problems in Section 5.

For a given adaptive design template n (which we consider fixed), we aim to simul-

taneously optimize the decision rule D and multiple testing procedure M , as described in

Section 2.3. For reasons given in Section 4.4, we consider randomized decision rules and mul-

tiple testing procedures, i.e., we allow D and M to additionally take as input a uniformly

distributed random variable U on [0, 1] that is independent of the data. For conciseness, we

sometimes suppress dependence on U in our notation, and omit the word “randomized” when

referring to “randomized decision rules” and “randomized multiple testing procedures”.

Define the class of decision rules D∗ to be all measurable functions from the stage 1

sample space X (1) and the support [0, 1] of U to E . Define the class of multiple testing

procedures M∗ to be all measurable functions from X × E and the support [0, 1] of U to

the power set S of null hypotheses. The importance of measurability in adaptive designs is

discussed by Liu et al. (2002, Section 5).

For a given adaptive design template n, an adaptive enrichment design is defined as a

pair (D,M) ∈ D∗ ×M∗. For a given (p1,n, D,M,∆,σ), let P∆ denote the corresponding

distribution of the data X and let E∆ denote expectation with respect to this distribution

(where we suppress dependence on the other parameters p1,n, D,M,σ for clarity).

2.3 General Optimization Problem

Our optimization problem is represented using the decision theory framework. We define

the quantity to be minimized, called the objective function, in terms of a loss function

L and a distribution Λ on the subpopulation treatment effects ∆ ∈ R2. This allows a

variety of choices for what to optimize, including power, expected sample size, and other

possibilities as described below. The loss function L can be any bounded, integrable function

of the treatment effect ∆, the enrollment decision D, and the set of hypotheses rejected

M . For a given loss function L, the risk at treatment effect vector ∆ ∈ R2 is defined

as RL(∆) = E∆L[M{X,D(X(1))}, D(X(1)),∆]. The objective function is the Bayes risk∫
RL(∆)dΛ(∆).

By selecting an appropriate loss function L, the objective function can be made to repre-

sent, e.g., power, expected sample size, expected number assigned to an ineffective treatment

7
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(or weighted combinations of these). For example, the loss function could be set as the total

number of enrolled participants (sample size) LSS = n
(1)
1 +n

(1)
2 +n

(2),D(X(1))
1 +n

(2),D(X(1))
2 ; the

corresponding risk at ∆ ∈ R2 is the expected sample size under treatment effect vector ∆.

Alternatively, one can encode one minus power for different null hypotheses using the

following loss functions (where 1[B] is the indicator function taking value 1 if B is true and

0 otherwise):

L(s) = 1[H0s /∈M{X,D(X(1))},∆s ≥ ∆min], for each s ∈ {1, 2}; (1)

L(C) = 1[H0C /∈M{X,D(X(1))},∆1 ≥ ∆min,∆2 ≥ ∆min]; (2)

where ∆min represents the minimum, clinically meaningful treatment effect, which is user-

specified. The loss function L(s) penalizes 1 unit for failing to reject H0s when the true

treatment effect for subpopulation s is at least the clinically meaningful level ∆min; the loss

function L(C) penalizes 1 unit for failing to reject H0C when both subpopulation treatment

effects are at least ∆min. For each subpopulation s ∈ {1, 2}, if its treatment effect ∆s is

at least ∆min, then the risk RL(s)(∆) equals one minus the power to reject H0s. Similarly,

if both treatment effects ∆1,∆2 are at least ∆min, the risk RL(C)(∆) equals one minus the

power to reject H0C . In both cases, minimizing risk corresponds to maximizing power.

We aim to minimize the Bayes risk, i.e., the risk integrated with respect to a distribution

Λ on the treatment effect vector ∆ ∈ R2. For example, we could let Λ denote a weighted

sum of the four point masses in the set Q = {(0, 0), (∆min, 0), (0,∆min), (∆min,∆min)}, which

correspond to no treatment effect, only subpopulation 1 benefiting at the minimum level,

only subpopulation 2 benefiting at the minimum level, and both subpopulations benefiting

at the minimum level, respectively. Let Λpm denote this distribution with weight 1/4 on

each point mass. Then the Bayes risk corresponding to the pair (L,Λ) = (LSS,Λpm) is the

expected sample size under ∆, averaged over the four scenarios ∆ ∈ Q. As another example,

let Λmix denote the mixture of four bivariate normal distributions with one centered at each

point in Q, and each having covariance matrix σ2
ΛI2 for I2 the 2 × 2 identity matrix and

σ2
Λ > 0.

Our optimization problem has two types of constraints. The first are familywise Type I er-

ror constraints. The second are encoded similarly as the objective function; these constraints

are represented by triples (Lj,Λj, βj), for j = 1, . . . , J , of loss function Lj, distribution Λj

on ∆ ∈ R2, and threshold βj ∈ R defined below.
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Constrained Bayes Optimization Problem: For a given vector of inputs:(
p1,n,σ

2, α, {(Lj,Λj, βj) : j = 0, . . . , J}
)
, (3)

find the adaptive enrichment design (D,M) ∈ (D∗ ×M∗) minimizing Bayes risk:∫
E∆L0[M{X,D(X(1))}, D(X(1)),∆]dΛ0(∆), (4)

under the familywise Type I error constraints:

P∆ {M rejects any null hypotheses in HTRUE(∆)} ≤ α, for any ∆ ∈ R2, (5)

and additional constraints: for each j ∈ {1, . . . , J}:∫
E∆Lj[M{X,D(X(1))}, D(X(1)),∆]dΛj(∆) ≤ βj. (6)

The constraints (5) represent strong control of the familywise Type I error rate, i.e.,

for any pair of treatment effects ∆1,∆2, the probability of rejecting one or more true null

hypotheses is at most α. This is more stringent than Type I error control at the global null

hypothesis (∆1,∆2) = (0, 0). We say an adaptive enrichment design (D,M) ∈ (D∗ ×M∗)

is feasible if it satisfies all of the constraints (5) and (6).

Consider the special case where J = 0, i.e., there are no additional constraints (6). Then

the constrained Bayes optimization problem is to minimize the Bayes risk subject to strong

control on the familywise Type I error rate at level α. The additional constraints (6) allow

one to define a broader set of problems, such as optimizing expected sample size subject to

power and Type I error constraints, as described next.

The only role of the distributions {Λj, j = 0, 1, . . . , J} on ∆ is in defining the objective

function (4) and constraints (6). The familywise Type I error constraints (5) are over all ∆ ∈
R2 and do not involve these distributions. We refer to the distributions {Λj, j = 0, 1, . . . , J}
as priors, with the understanding that our optimization problem uses the decision theory

framework. Our general approach can also be used to solve a minimax version of the above

optimization problem where the outer integral in the objective function (4) is replaced by

the maximum over ∆ in a finite set P ⊆ R2.

2.4 Example Optimization Problems

We solve the following two example optimization problems in Section 5, for values of p1,n,

σ2, α, β, ∆min defined there:

9
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Example 2.1. Consider the problem of minimizing expected sample size averaged over the

four point masses in Q, under the Type I error constraints (5) and the following power

constraints for given Type II error β > 0:

P1. At (∆1,∆2) = (∆min, 0), the power to reject H01 is at least 1− β.

P2. At (∆1,∆2) = (0,∆min), the power to reject H02 is at least 1− β.

P3. At (∆1,∆2) = (∆min,∆min), the power to reject H0C is at least 1− β.

This problem can be represented by setting (L0,Λ0) = (LSS,Λpm) and the following J = 3

additional constraints of the form (Lj,Λj, βj):

(L(1), δ(∆min,0), β); (L(2), δ(0,∆min), β); (L(C), δ(∆min,∆min), β),

where δ(x,y) denotes a point mass at ∆ = (x, y).

Example 2.2. We modify the above example by replacing the four point mass prior Λpm

by the the mixture of Gaussian prior Λmix (defined above). We set the variance of each

component of the Gaussian mixture prior to be σ2
Λ = ∆2

min. This modified problem is encoded

as above, except setting Λ0 = Λmix.

3 Reducing Problem Complexity through Sufficient Statis-

tics

We show that it suffices to consider decision rules D and multiple testing procedures M that

depend only on sufficient statistics defined below. This dramatically reduces the problem

complexity from having to search over arbitrarily complex functions of the data X, to the

easier (but still very challenging) problem of searching over functions of the 2-dimensional

sufficient statistics at each stage. Let N
(k)
s denote the number enrolled from subpopulation

s ∈ {1, 2} during stage k ∈ {1, 2}. The stage 1 sample sizes are set in advance, while

the stage 2 sample sizes are functions of the stage 1 data; specifically, N
(1)
s = n

(1)
s and

N
(2)
s = n

(2),D(X(1))
s for each s ∈ {1, 2}.

For each subpopulation s ∈ {1, 2} and stage k ∈ {1, 2}, define the z-statistic

Z(k)
s =


∑N

(k)
s

i=1 Y
(k)
s,i A

(k)
s,i∑N

(k)
s

i=1 A
(k)
s,i

−
∑N

(k)
s

i=1 Y
(k)
s,i (1− A(k)

s,i )∑N
(k)
s

i=1 (1− A(k)
s,i )


{
σ2
s1 + σ2

s0

N
(k)
s /2

}−1/2

, (7)

10
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where the quantity inside curly braces on the right is the variance of the difference between

sample means on the left. Define the final (cumulative) z-statistic based on pooling all

stage 1 and 2 data for subpopulation s by

Z(F )
s =


∑2

k=1

∑N
(k)
s

i=1 Y
(k)
s,i A

(k)
s,i∑2

k=1

∑N
(k)
s

i=1 A
(k)
s,i

−
∑2

k=1

∑N
(k)
s

i=1 Y
(k)
s,i (1− A(k)

s,i )∑2
k=1

∑N
(k)
s

i=1 (1− A(k)
s,i )


{

σ2
s1 + σ2

s0

(N
(1)
s +N

(2)
s )/2

}−1/2

.

(8)

Let Z(k) = (Z
(k)
1 , Z

(k)
2 ) for each stage k ∈ {1, 2}, and Z(F ) = (Z

(F )
1 , Z

(F )
2 ). The joint distribu-

tion of these random vectors is given in Section A of the Supplementary Materials. The first

stage z-statistics Z(1) are bivariate normal, as are the second stage statistics Z(2) conditional

on the decision D for stage 2 enrollment; the final z-statistic Z
(F )
s for subpopulation s is a

weighted combination of the corresponding first and second stage statistics, with each sub-

population s participant contributing equal information. We prove the following in Section E

of the Supplementary Materials:

Theorem 3.1. If the constrained Bayes optimization problem in Section 2.3 over D∗ ×M∗

is feasible, then there exists an optimal solution (D,M) such that D depends on the data

only through Z(1), and M depends on the data only through Z(F ) and the decision D.

The proof involves showing that Z(1) is a minimal sufficient statistic at the end of stage 1,

and (Z(F ), D) is a minimal sufficient statistic at the end of stage 2.

By the above theorem, it suffices to consider decision rules D that depend on the data only

through Z(1), and multiple testing procedures M that depend on the data only through Z(F )

and D. Let D denote the class of all measurable functions D from R2 × [0, 1]
(
representing

all possible values of (Z(1), U)
)

to the set of stage 2 enrollment decisions E . Let M denote

the class of all measurable functions from R2 × E × [0, 1] to S; the domain represents all

possible values of (Z(F ), D(Z(1), U), U) and the range represents all possible subsets of null

hypotheses. For conciseness, we let D = D(Z(1), U) and M = M{Z(F ), D(Z(1), U), U} for

the rest of the paper. Let ASUFF = {(D,M) : D ∈ D,M ∈ M}, i.e., the class of adaptive

enrichment designs that only use the data through Z(1) at the end of stage 1 and (Z(F ), D)

at the end of stage 2. This is a subclass of the adaptive enrichment designs D∗×M∗ defined

in Section 2.2.
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Hosted by The Berkeley Electronic Press



4 Discretization of Constrained Bayes Optimization Prob-

lem and Transformation into Sparse Linear Program

4.1 Overview

Even after simplifying the constrained Bayes optimization problem by using sufficient statis-

tics as in the previous section, the problem is still extremely difficult or impossible to solve

directly. This is because the optimization is over the very large class of decision rules D
and multiple testing procedures M, and involves infinitely many familywise Type I error

constraints (5).

We propose a novel approach to solving a discretized version of the above problem,

involving four steps. We first discretize the decision rule, multiple testing procedure, and

familywise Type I error constraints in Section 4.2. The resulting discretized problem can be

naturally represented in terms of a finite set of [0, 1]-valued variables, as shown in Section 4.3.

However, this representation is nonconvex and so is still extremely difficult to solve. Step two,

handled in Section 4.4, involves reparametrizing this problem so that it can be represented

as a sparse, linear program, a class of problems that is much easier to solve than nonconvex

problems. The third step, handled in Section 6, is to apply large-scale optimization methods

to solve the sparse, linear program. Lastly, we verify strong control of the familywise Type

I error rate, i.e., that (5) holds for all ∆ ∈ R2, using the method in Section 7.

4.2 Definition of Discretized Problem and Class of Designs ADISC

The first of the above steps is to discretize the constrained Bayes optimization problem.

This involves partitioning R2 into a finite set of rectangles. One way to construct such a

partition is to start with a box B = [−b, b]× [−b, b] for a given integer b > 0. Let τ = (τ1, τ2)

be such that b/τs is an integer for each s ∈ {1, 2}. For each j, j′ ∈ Z, define the rectangle

Rj,j′ = [jτ1, (j + 1)τ1) × [j′τ2, (j
′ + 1)τ2). Let RB denote the set of such rectangles in the

bounded region B, i.e., {Rj,j′ : j, j′ ∈ Z, Rj,j′ ⊂ B}. Define the following partition of R2:

R = RB ∪ {R2 \ B}. Though R2 \ B is not a rectangle, we still refer to R as a partition of

rectangles, with a slight abuse of notation.

Let Rdec denote a partition of R2 into rectangles. We restrict to the subclass of decision

rules D ∈ D that only depend on the data through the rectangle that contains the first stage
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z-statistics, i.e., decision rules D ∈ D such that for any rectangle r ∈ Rdec and u ∈ [0, 1],

D(z(1), u) = D(z(1)′ , u) for any z(1) ∈ r, z(1)′ ∈ r. (9)

For each d ∈ E , letRmtp,d denote a partition of R2 into rectangles. We restrict to multiple

testing procedures M ∈ M that only depend on the data through the enrollment decision

D and the rectangle that contains the cumulative statistics Z(F ) at the end of stage 2; that

is, we restrict to M ∈M such that for any d ∈ E , r ∈ Rmtp,d, and u ∈ [0, 1],

M(z(F ), d, u) = M(z(F )′ , d, u) for any z(F ) ∈ r, z(F )′ ∈ r. (10)

It remains to discretize the set ∆ ∈ R2 in the Type I error constraints (5) by selecting

a finite subset G ⊆ R2. Define the boundaries of the null spaces for H01, H02, H0C to be

{(0,∆2) : ∆2 ∈ R}, {(∆1, 0) : ∆1 ∈ R}, {(∆1,∆2) ∈ R2 : p1∆1 + p2∆2 = 0}, respectively.

Let G denote a grid of points on the union of these boundaries; an example is given in

Section 6. The motivation for this choice of G is based on the conjecture that the active

constraints among (5) will be on the boundaries of the null spaces. We will demonstrate that

by a careful selection of G, the solutions to the discretized problem in our examples satisfy

(5) at all ∆ ∈ R2, if we solve the discretized problem using a value of α slightly lower than

the required value in (5).

Define the classADISC of discretized adaptive enrichment designs to be all pairs (D,M) ∈
ASUFF that satisfy (9) and (10). The discretized version of the constrained Bayes opti-

mization problem from Section 2.3 is defined as that problem optimized over the class of

discretized adaptive enrichment designs ADISC instead of the larger class of adaptive enrich-

ment designs D∗×M∗, and involving only Type I error constraints (5) for ∆ ∈ G. Through-

out the remainder of the paper we fix the discretization defined by Rdec, {Rmtp,d : d ∈ E}
and focus on solving the discretized problem.

4.3 (Nonconvex) Representation of Discretized Problem Using

Finitely Many [0, 1]-Valued Variables

We show that the discretized problem can be equivalently represented in terms of a finite

set of variables xrd, yrdr′s, called the design variables, each taking values in [0, 1]. This

involves first showing that each design in (D,M) ∈ ADISC can be represented in terms of

these variables. Next, we show that the objective function and constraints (4)-(6) can each

13
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be represented in terms of xrd, yrdr′s and probabilities that can be computed based on the

problem inputs (3). The benefit of this representation is that optimizing over such designs

is equivalent to optimizing over a finite set of variables, which is a key step in making the

problem computationally feasible.

Consider an arbitrary design (D,M) ∈ ADISC . We show how to equivalently represent it

in terms of variables xrd, yrdr′s. For each r ∈ Rdec and d ∈ E , define xrd to be the probability

that decision d is made conditioned on Z(1) ∈ r, i.e.,

xrd = P
{
D(Z(1), U) = d|Z(1) ∈ r

}
. (11)

For each r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S, define yrdr′s to be the probability that precisely

the subset s is rejected conditioned on Z(1) ∈ r, D(Z(1), U) = d,Z(F ) ∈ r′, i.e.,

yrdr′s = P
{
M(Z(F ), d, U) = s|Z(1) ∈ r,D(Z(1), U) = d,Z(F ) ∈ r′

}
. (12)

By (9) and (10), the variables xrd, yrdr′s do not depend on the unknown population parameter

∆; that is why we omit the subscript ∆ on P in (11) and (12).

Next, we represent (4)-(6), which define the constrained Bayes optimization problem, in

terms of xrd, yrdr′s. Summations over indices r, d, r′, s are with respect to the sets

Rdec, E ,Rmtp,d,S, respectively, unless otherwise stated.

The initial step toward representing (4) in terms of xrd, yrdr′s is to do this for the prob-

ability P∆ of making enrollment decision d ∈ E and then rejecting precisely the subset

s ∈ S:

P∆

[
D(Z(1), U) = d,M{Z(F ), D(Z(1), U), U} = s

]
(13)

=
∑
r,r′

P∆

{
M(Z(F ), d, U) = s,Z(F ) ∈ r′, D(Z(1), U) = d,Z(1) ∈ r

}
=

∑
r,r′

[
P∆

{
M(Z(F ), d, U) = s|Z(F ) ∈ r′, D(Z(1), U) = d,Z(1) ∈ r

}
×

P∆

{
Z(F ) ∈ r′|D(Z(1), U) = d,Z(1) ∈ r

}
P∆

{
D(Z(1), U) = d|Z(1) ∈ r

}
P∆

{
Z(1) ∈ r

}]
=

∑
r,r′

xrdyrdr′sp(∆, r, d, r′), (14)

where (14) follows from (11) and (12), and we let

p(∆, r, d, r′) = P∆

{
Z(F ) ∈ r′|D(Z(1), U) = d,Z(1) ∈ r

}
P∆

{
Z(1) ∈ r

}
. (15)
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The value of p(∆, r, d, r′) depends on neither D nor M , which follows from (9). It equals

the probability of (Z(1),Z(F )) ∈ (r× r′) under P∆ and the (non-adaptive) decision rule that

always makes enrollment choice d at the end of stage 1. This probability can be computed

using the multivariate normal distribution function with mean and covariance that depend

only on ∆, d,n,σ2 as shown in Section B of the Supplementary Material.

We can express the objective function (4) of the constrained Bayes optimization problem

in terms of the variables xrd, yrdr′s, since for any ∆ ∈ R2 the expectation inside the integral

in (4) satisfies

E∆ {L0(M,D,∆)} =
∑
s,d

L0(s, d,∆)P∆

{
D(Z(1), U) = d,M(Z(F ), D(Z(1), U), U) = s

}
=

∑
s,d

L0(s, d,∆)
∑
r,r′

xrdyrdr′sp(∆, r, d, r′)

=
∑
r,d,r′,s

xrdyrdr′s {L0(s, d,∆)p(∆, r, d, r′)} ,

where the second line follows from the equality of (13) and (14). Since the variables xrd, yrdr′s

do not depend on ∆, the above display implies that the objective function (4) equals∫
E∆L0(M,D,∆)dΛ0(∆) =

∑
r,d,r′,s

xrdyrdr′s

{∫
L0(s, d,∆)p(∆, r, d, r′)dΛ0(∆)

}
.

The quantity in curly braces in the above display does not depend on (D,M), and can be

computed from the problem inputs (3). The familywise Type I error constraints (5) and

additional constraints (6) can similarly be expressed as a function of xrd, yrdr′s, as shown in

Section D of the Supplementary Materials.

Recall that the discretized version of the constrained Bayes optimization problem from

Section 2.3 is defined as that problem optimized over the class of discretized adaptive en-

richment designs ADISC instead of the larger class of adaptive enrichment designs D∗×M∗,

and involving only Type I error constraints (5) for ∆ ∈ G. The above arguments show that

this discretized problem can be equivalently represented in terms of an optimization problem

over the finite set of variables {xrd, yrdr′s} as follows:
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Discretized Problem:

min
∑
r,d,r′,s

xrdyrdr′s

∫
L0(s, d,∆)p(∆, r, d, r′)dΛ0(∆) (16)

over the variables xrd, yrdr′s, under the following constraints:

for each ∆ ∈ G,
∑
r,d,r′

∑
{s∈S:s∩HTRUE(∆)6=∅}

xrdyrdr′sp(∆, r, d, r′) ≤ α; (17)

for each j ∈ {1, . . . , J},
∑
r,d,r′,s

xrdyrdr′s

∫
Lj(s, d,∆)p(∆, r, d, r′)dΛj(∆) ≤ βj; (18)

for each r ∈ Rdec,
∑
d∈E

xrd = 1; (19)

for each r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d,
∑
s∈S

yrdr′s = 1; (20)

for each r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S : xrd ≥ 0, yrdr′s ≥ 0, (21)

where the sum
∑

r,d,r′,s in (16) and (18) is taken over r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S.

The objective function (16) represents (4). The constraints (17) and (18) represent the

familywise Type I error constraints (5) and additional constraints (6), respectively. The

remaining constraints encode properties of xrd and yrdr′s that follow from their definitions

(11)-(12) as conditional probabilities; the constraints (19) and (20) follow from the law of

total probability, and the constraints (21) follow from probabilities being nonnegative. The

values of p(∆, r, d, r′) and the integrals in (16) and (18), can be computed using numerical

integration based on the inputs (3) to the constrained Bayes optimization problem from

Section 2.3.

4.4 Transformation of (Nonconvex) Discretized Problem into Sparse

Linear Program

The discretized problem from Section 4.3 is not linear (and not convex) in the variables

{xrd, yrdr′s}. Therefore, this problem is generally computationally intractable to solve, since

only ad hoc methods exist for solving nonconvex optimization problems and even if a local

minimum is found there is no general way to determine if it is the global minimum. We

transform this problem into a sparse, linear program by defining the new variables:

vrdr′s = xrdyrdr′s, for all r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S. (22)
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For each d ∈ E , let r′d denote an arbitrary element in Rmtp,d, e.g., the first element under a

fixed ordering of Rmtp,d. The discretized problem (16)-(21) can be equivalently represented

in terms of the variables vrdr′s as follows:

Sparse linear program:

min
∑
r,d,r′,s

vrdr′s

∫
L0(s, d,∆)p(∆, r, d, r′)dΛ0(∆) (23)

under the constraints:

for each ∆ ∈ G,
∑
r,d,r′

∑
s∈S:s∩HTRUE(∆)6=∅

vrdr′sp(∆, r, d, r′) ≤ α; (24)

for each j ∈ {1, . . . , J},
∑
r,d,r′,s

vrdr′s

∫
Lj(s, d,∆)p(∆, r, d, r′)dΛj(∆) ≤ βj; (25)

for each r ∈ Rdec,
∑
d∈E

∑
s∈S

vrdr′ds = 1; (26)

for each r ∈ Rdec, d ∈ E , r̃′ ∈ Rmtp,d,
∑
s∈S

vrdr′ds =
∑
s∈S

vrdr̃′s; (27)

for each r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S : vrdr′s ≥ 0. (28)

We call the above linear program “sparse” since the vast majority of elements of the cor-

responding constraint matrix are 0, as described in Section 6. The discretized problem’s

objective function (16) and constraints (17)-(18) are equivalent to (23)-(25), respectively, of

the sparse linear program. The discretized problem’s constraints (19)-(21) are equivalent to

the constraints (26)-(28) of the sparse linear program. This claim and the following theorem

are proved in Section F of the Supplementary Material:

Theorem 4.1. i. (Equivalence of discretized problem and sparse linear program) The opti-

mum value of the sparse linear program equals the optimum value of the discretized problem.

ii. (Map from solution of sparse linear program to solution of discretized problem) For any

optimal solution {vrdr′s : r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S} to the sparse linear program,

define the variables {xrd, yrdr′s} by the transformation:

xrd =
∑
s∈S

vrdr′s; yrdr′s =

{
vrdr′s/xrd, if xrd > 0

1/|S|, otherwise.
(29)

Then {xrd, yrdr′s} is a well-defined, feasible, optimal solution to the discretized problem.

The importance of Theorem 4.1 is that we have derived a computationally feasible ap-

proximation (23)-(28) of the original constrained Bayes optimization problem (4)-(6). This
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relies on the fact that even very large, sparse linear programs are computationally feasible

to solve; we defer presentation of the method used to solve the above sparse linear program

to Section 6.

The reason we consider randomized decision rules and multiple testing procedures is

that these correspond to the variables xrd, yrdr′s (and therefore vrdr′s) being in the interval

[0, 1], rather than being integer-valued. Solving the above sparse linear program (where the

variables are [0, 1] valued) is much easier, computationally, than the corresponding problem

in which variables are required to be integer-valued. Fortunately, the solutions to the linear

programs for our example problems turn out to be mostly integer-valued, as shown below.

5 Solutions to Examples 2.1 and 2.2: Minimizing Ex-

pected Sample Size under Power and Type I Error

Constraints

5.1 Problem Definition

We solve the optimization problems in Examples 2.1 and 2.2 from Section 2.4 over the class

of discretized adaptive enrichment designs ADISC . These problems involve the power con-

straints (P1)-(P3) defined in Section 2.4. The problem inputs depend on p1,n,σ
2, α, β,∆min,

which we specify next. Let p1 = 1/2, α = 0.05, and let each σ2
sa equal a common value σ2 > 0.

We use the adaptive design template n(1b) defined in Section 2.2 and depicted in Figure 1b;

the corresponding sample sizes are functions of n, i.e., the total sample size under D = 2

(where both subpopulations are enrolled during stage 2). This adaptive design template

allows enrichment of subpopulation 1 (D = 3) or subpopulation 2 (D = 4), in which case the

total enrolled from the enriched subpopulation is n. We next describe the intuition for this

choice of sample sizes. The constraints (P1)-(P3) require the same power (1 − β) to reject

H0C when ∆1 = ∆2 = ∆min as to reject H0s when ∆s = ∆min,∆s′ = 0, for s, s′ ∈ {1, 2},
s 6= s′. We chose the stage 2 sample sizes in n(1b) so that the information at the end of stage

2 for ∆C under D = 2 equals the information for ∆s under D = 2 + s, for each s ∈ {1, 2};
that is, it’s possible to generate the same information for the parameter of interest in each

of (P1)-(P3) by a corresponding choice for stage 2 enrollment. Our choice of sample sizes

in n(1b) is not necessarily optimal in any sense; it is an area of future research to solve the
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above optimization problems using different stage 2 enrollment choices.

For each of Examples 2.1 and 2.2, the optimal solution to the constrained Bayes opti-

mization problem depends on the inputs (σ2,∆min, n) only through the non-centrality pa-

rameter (n/8)1/2∆min/σ, as proved in Section G of the Supplementary Material. We set

(n/8)1/2∆min/σ = 21/2Φ−1(1− 0.05), where Φ is the cumulative distribution function of the

standard normal; this is equivalent to setting, for any given σ2 > 0,∆min > 0,

n = 16σ2{Φ−1(1− 0.05)}2(∆min)−2, (30)

We use n in (30) as a benchmark sample size, since it is the smallest n such that in a

standard (non-adaptive) design enrolling n/2 from each subpopulation, the uniformly most

powerful test of H0C at level α = 0.05 has power 0.95 at the alternative ∆ = (∆min,∆min);

this power constraint is identical to (P3) at 1−β = 0.95. In contrast, our optimization prob-

lem has the more stringent set of power constraints (P1)-(P3), which involve null hypotheses

for subpopulations as well as the combined population. We therefore expect our optimiza-

tion problems to be solvable only if we set the required power in constraints (P1)-(P3) to

be lower than 1− β = 0.95. Below, we determine the greatest value of 1− β for which our

optimization problems can be solved; for this and smaller values of 1− β, we determine the

minimum expected sample size averaged over the distributions Λ0 = Λpm and Λ0 = Λmix

for Examples 2.1 and 2.2, respectively.

5.2 Optimal Solutions to Examples 2.1 and 2.2 over Adaptive En-

richment Design Class ADISC

We applied the method from Section 4.4 to construct the sparse linear program correspond-

ing to each of the two problems in Section 5.1, for the class of discretized adaptive enrichment

designs ADISC . Details of the sparse linear programs, including the fineness of the discretiza-

tion, are given in Section 6. We separately solved each sparse linear program at every power

constraint threshold β ∈ {0.01, . . . , 0.99}. The value of 1− β represents the required power

in each constraint (P1)-(P3). Larger values of 1− β correspond to stricter constraints. Our

results show the problems are feasible, i.e., the Type I error and power constraints (P1)-(P3)

can be simultaneously satisfied, if and only if 1− β < 0.83.

For the case of 1 − β = 0.82, Figure 2 depicts the optimal solution (D∗,M∗) ∈ ADISC

to Example 2.2. We first focus on the top plot (Figure 2a), which represents the decision
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Figure 2: Optimal design (D∗,M∗) for discretized problem in Example 2.2 at 1− β = 0.82.

Stage 2 enrollment choices STOP, ALL, ONLY 1, ONLY 2 correspond to D∗ = 1, 2, 3, 4.

a. Decision Rule D∗ for Stage 2 Enrollment (z-statistics correspond to Z(1)):
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rule D∗. The different regions correspond to the four possible stage 2 enrollment choices

from the adaptive design template n(1b). The top right and bottom left regions (in red)

of this plot correspond to stopping the trial after stage 1 (i.e., D∗ = 1, marked STOP in

the plot). Intuitively, the top right region represents stopping early for efficacy (since, as

described below, at least one null hypothesis is rejected whenever the first stage statistic

Z(1) is in this region), while the bottom left region represents stopping early for futility

(since no null hypothesis is rejected if Z(1) is in this region). This pattern, just as those

below, naturally emerged as the solution to the optimization problem, and was not imposed

a priori. The black region marked ALL represents the choice D∗ = 2 to continue enrollment

from both subpopulations in stage 2. Intuitively, this occurs when the stage 1 z-statistics for

each subpopulation both indicate a non-neglible, positive signal that is not strong enough

to allow outright rejection of any null hypothesis; this motivates the investment of stage 2

enrollment from both subpopulations, in order to determine which (if any) null hypotheses

to reject. The green and blue regions marked ONLY 1 (representing D∗ = 3), ONLY 2

(representing D∗ = 4), respectively, represent choosing stage 2 enrollment to be only from

the corresponding subpopulation.

The four plots in Figure 2b represent the multiple testing procedure M∗ that is used after

each of the four enrollment choices, respectively. For each possible value of the enrollment

decision D∗, the corresponding plot shows the mapping from the final z-statistics Z(F ) to the

set of null hypotheses that are rejected. The top left, top right, bottom left, bottom right

plots of M∗ correspond to D∗ = 1, 2, 3, 4, respectively; equivalently, these correspond to D∗ =

STOP, ALL, ONLY 1, ONLY 2, respectively. Each plot has a white region (corresponding

to not rejecting any null hypothesis) and colored regions where the specified null hypotheses

are rejected.

The plot ofM∗ forD∗ = STOP has colored regions whose union is approximately identical

to the red STOP region in the upper right of Figure 2a. This means that when the first

stage z-statistics are in the red STOP region in the upper right of Figure 2a, at least one null

hypothesis will be rejected by M∗ (since when D∗ = STOP, the first stage z-statistics Z(1)

are identical to the final z-statistics Z(F )). Intuitively, this corresponds to stopping early for

efficacy. (The match between the aforementioned regions is only approximate since a coarser

level of discretization was used for M∗ compared to D∗, a choice we made in order to reduce

the computational requirements for solving the optimization problem.)

Next, consider the plot of M∗ for D∗ = ALL. This is qualitatively similar to the plot of
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M∗ for D∗ = STOP, except for two important differences. First, the rejection thresholds

are generally lower (i.e., the rejection regions are larger), which makes sense since the final

z-statistics after the enrollment decision D∗ = ALL incorporate twice as much data as under

D∗ = STOP and therefore more information is available. This property is analogous to

what occurs in standard group sequential designs, e.g., using efficacy stopping boundaries

of O’Brien and Fleming (1979), which decrease (on the z-statistic scale) at each stage due

to more information being available. The second difference is that there are white areas to

the left of the H02 region and under the H01 region in the plot of M∗ for D∗ = ALL where

one might have expected red and black (i.e., extensions of the these regions), respectively.

We conjecture that this is due to the very small probability of D∗(Z(1)) = ALL and M∗

being in these white areas; these very small probabilities would not contribute enough to the

objective function or constraints to lead to added value in rejecting null hypotheses in these

areas, up to the precision used in solving the sparse linear program.

Consider the plot of M∗ for D∗ = ONLY 1. An interesting feature is that no null

hypothesis is rejected when Z
(F )
2 > 1.25. In fact, it is not possible to have both D∗(Z(1)) =

ONLY 1 and Z
(F )
2 > 1.25. This is a consequence of the green ONLY 1 region in Figure 2a

being below the horizontal line Z
(1)
2 = 1.25, as explained next. Since the enrollment decision

D∗ = ONLY 1 occurs precisely when Z(1) is in the green ONLY 1 region in Figure 2a, and

since Z
(1)
2 = Z

(F )
2 whenever D∗ = ONLY 1 (due to no new subpopulation 2 data being

collected in stage 2), it is not possible to have D∗(Z(1)) = ONLY 1 and Z
(F )
2 > 1.25. The

plot of M∗ for D∗ = ONLY 2 is (approximately) a symmetric version of the plot for D∗ =

ONLY 1.

We did the same as above for Example 2.1, whose optimal solution looks qualitatively

similar to Example 2.2.

5.3 Comparison to Standard (Non-adaptive) Designs and Adap-

tive Designs using p-value Combination Approach

The comparator design classes defined below are based on simpler decision rules and multiple

testing procedures than the class ADISC . We compare the performance of the optimal

design from each of the simpler classes to the optimal design (computed by sparse linear

programming) over ADISC , for each problem in Section 5.1. All of the designs below use the

adaptive design template defined in Section 5.1, i.e., n(1b) with n defined in (30).
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Let DSTD ∈ D denote the decision rule corresponding to the standard (non-adaptive)

design that always enrolls from both subpopulations in stage 2, i.e., DSTD = 2 for all values

of the stage 1 statistics. This is equivalent to a design with no interim analysis that enrolls

n participants, with psn from each subpopulation (where each ps = 1/2 in our case). Define

the class of standard (non-adaptive) designs to be ASTD = {(DSTD,M) : M ∈M}.
We next define a class ACOMB of adaptive enrichment designs based on the p-value

combination approach of Bauer (1989), Bauer and Köhne (1994), Lehmacher and Wassmer

(1999), with the closed testing principle of Marcus et al. (1976); this approach has been used

to construct adaptive enrichment designs by, e.g., Bretz et al. (2006); Schmidli et al. (2006);

Jennison and Turnbull (2007); Brannath et al. (2009); Jenkins et al. (2011); Boessen et al.

(2013). Since it is an open problem how to optimize over the class of all possible designs

that can be constructed using this approach, we instead define a low-dimensional, simple

class ACOMB of such designs. The full description of ACOMB is given in Section H of the

Supplementary Material, but we summarize the key features. The multiple testing procedure,

denoted Mpv, uses the Dunnett intersection test (Dunnett, 1955; Jennison and Turnbull,

2007), with p-values combined across stages using the weighted inverse normal rule with

equal weights for each stage. We slightly modified this approach to incorporate early stopping

for efficacy after stage 1 as in, e.g., Jennison and Turnbull (2007), using the equivalent of the

boundaries of O’Brien and Fleming (1979) for the stage 1 p-values. We consider a class of

decision rules that involve two thresholds tc and ti. Define the decision rule D(tc,ti)(Z(1)) as

follows: If the multiple testing procedure Mpv rejects any null hypothesis at the end of stage

1, stop the entire trial; else, if the combined population statistic (Z
(1)
1 +Z

(1)
2 )/
√

2 > tc, enroll

both subpopulations in stage 2; else, enroll in stage 2 from each subpopulation s for which

Z
(1)
s > ti. Let ACOMB = {(D(tc,ti),Mpv) : (tc, ti) ∈ (−3,−2.9, . . . , 3) × (−3,−2.9, . . . , 3)}.

Each design in ACOMB strongly controls the familywise Type I error rate at level 0.05. An

example of the decision rule D(tc,ti) is depicted in Figure 3.

We next compare the expected sample size of the optimal design in each of the three

classes ADISC , ACOMB, ASTD, as we vary the power constraint 1− β. Let ESS denote the

value of the objective function (4), which represents the expected sample size with respect

to the corresponding prior. For each of Examples 2.1 and 2.2 and each value of 1− β in the

top row of Table 1, we solved the constrained Bayes optimization problem from Section 5.1

over each class of designs ADISC , ACOMB, ASTD. For the first and third classes, we used

the sparse linear programming method from Section 4.4. For ACOMB, we did an exhaustive
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Figure 3: Enrollment decision rule D(tc,ti) for (tc, ti) = (1.6, 0.6), which corresponds to the

optimal design over ACOMB for the problem in Example 2.2 under the power constraints

(P1)-(P3) at 1 − β = 0.74. The z-statistics in the plot correspond to first stage statistics

Z(1). Stage 2 enrollment choices “STOP”, “ALL”, “ONLY 1”, “ONLY 2” correspond to

decisions 1, 2, 3, 4, respectively, from the adaptive design template n(1b). The red areas in

the lower left and upper right corners correspond to stopping the trial at the end of stage 1.
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Table 1: Optimal solution values (representing ESS ) for the constrained Bayes optimization

problems in Examples 2.1 and 2.2, comparing the two classes of adaptive designs ADISC and

ACOMB. The symbol × indicates that no design in the class satisfies the Type I error

constraints and power constraints (P1)-(P3) at the required power threshold 1− β.

Power Constraint (1− β) 58% 62% 66% 70% 74% 78% 82%

Example 2.1

Min. ESS over ADISC 0.65n 0.69n 0.73n 0.79n 0.84n 0.92n 1.03n

Min. ESS over ACOMB 0.86n 0.89n 0.92n 0.97n 1.01n × ×

Example 2.2

Min. ESS over ADISC 0.75n 0.75n 0.76n 0.80n 0.84n 0.90n 0.99n

Min. ESS over ACOMB 0.89n 0.92n 0.95n 0.98n 1.01n × ×

search over the set of thresholds (tc, ti) given above.

Table 1 gives the optimal solution values (representing ESS) for the constrained Bayes

optimization problems in Examples 2.1 and 2.2, comparing the two classes of adaptive designs

ADISC and ACOMB. At all values of 1 − β we considered, the minimum value of ESS was

substantially lower for the optimal design over ADISC (computed based on our sparse linear

programming approach) compared to the optimal design over ACOMB (which use the p-value

combination approach). E.g., in Example 2.1 at power constraint 1 − β = 0.74, the value

of ESS for the latter is 20% larger than for the former. The optimization problems are

infeasible for the p-value combination designs ACOMB at 1− β ≥ 0.78, i.e., it is not possible

to simultaneously satisfy the Type I error constraints and power constraints (P1)-(P3); in

contrast, the problem is feasible for the class ADISC up to power threshold 1 − β = 0.82.

Our sparse linear programming method made it possible to compute the optimal design over

ADISC . The results in Table 1 should not be taken to mean that our approach outperforms

any possible design using the p-value combination approach; we only showed that substantial

improvements are possible when comparing to the simple class of adaptive designs ACOMB.

We next compare the optimal designs over ADISC versus the class of standard designs

ASTD, which have fixed sample size n. The problems in Examples 2.1 and 2.2 are infeasible
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for the class ASTD whenever the power constraint 1 − β > 0.65, i.e., it is not possible

to simultaneously satisfy the Type I error constraints and power constraints (P1)-(P3); in

contrast, the problem is feasible for the class ADISC up to power threshold 1−β = 0.82. We

similarly considered the above optimization problems over the class of standard designs with

total sample size 5n/4, i.e., the maximum total sample size that can occur in any adaptive

enrichment design in ADISC (which uses adaptive design template n(1b)); these problems

are infeasible for any such standard design when 1 − β > 0.73. This shows that there is a

substantial advantage in using adaptive enrichment designs versus the standard designs for

the problems in Examples 2.1 and 2.2.

6 General Form of Sparse Linear Program

We describe the general form of the sparse linear program from Section 4.4. Let v denote

the column vector consisting of all variables vrdr′s for r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S
in lexicographic order. Define ψ =

∑
d∈E |Rmtp,d| and w = |Rdec| × ψ × |S|, where |Q|

denotes the number of elements in the set Q. Then v has w components. Let R+ denote the

nonnegative reals. The general form of the sparse linear program from Section 4.4 is

min
v∈Rw

+

cTv s.t. A(1)v ≤ a(1),A(2)v = a(2); (31)

for matrices A(1),A(2) and vectors c, a(1), a(2). The matrix A(1) has dimensions (|G|+J)×w
and encodes the Type I error constraints (24) and additional constraints (25), which in

Examples 2.1 and 2.2 are power constraints. The matrix A(2) has dimensions (1+ψ)|Rdec|×w
and encodes the equality constraints (26) and (27). The matrix A(1) is dense (most entries

are non-zero), while the matrix A(2) is sparse (most entries are 0) and has the form:

A(2) =

[
|Rdec| rows, each with |E| × |S| entries with 1 and the rest 0’s.

ψ|Rdec| rows, each with |S| entries = 1, |S| entries = -1, and the rest 0’s.

]
.

Though the matrix A(2) is typically much larger than A(1), the former does not dramatically

impact the computational difficulty since it is sparse.

The vector c represents the objective function (23) and is dense, and the vectors a(1), a(2)
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have the following forms:

a(1)T =

(
|G| entries J entries

α, . . . , α, β1, . . . , βJ

)
, a(2)T =

(
|Rdec| entries ψ|Rdec| entries

1, . . . 1, 0, . . . , 0

)
.

We next describe the discretization and two step approach to solving the optimization

problem in Example 2.2 of Section 5; the problem in Example 2.1 had a similar structure

and was solved analogously. In step one, a sparse linear program was constructed using the

following discretization: the decision region partition Rdec consisted of length 0.5 squares

covering the region [−3, 3] × [−3, 3] and unit squares covering [−6, 6] × [−6, 6] \ ([−3, 3] ×
[−3, 3]); for each possible decision d, the multiple testing procedure partitionRmtp,d consisted

of unit squares covering [−6, 7] × [−6, 7] except that for d 6= STOP we replaced all squares

in the lower left quadrant [−6, 0]× [−6, 0] by a single large square. (Recall that the units in

Rdec and Rmtp,d are on the z-scale.) We defined G to be the 541 Type I error constraints

corresponding to the pairs of non-centrality parameters (∆1{n/8}1/2/σ,∆2{n/8}1/2/σ) in

the set {(x, y) : [x ∈ {−9,−8.9, . . . , 9}, y = 0] or [x = 0, y ∈ {−9,−8.9, . . . , 9}] or [x ∈
{−9,−8.9, . . . , 9}, y = −x]}, which are grids along the boundaries of the null spaces for the

null hypotheses in H. This resulted in w ≈ 106 variables in v and ≈ 105 equality constraints

in A(2). We call the solution to the above sparse linear program the “step one” solution.

In step two, we used features of the step one solution to refine the choice of G and the

discretization in Rdec and Rmtp,d; we then solved the resulting discretized problem, and

iterated this refinement process. The refinement of G involved using the dual of the step one

solution to approximately identify the active Type I error constraints; we then augmented

G by points ∆ concentrated in small neighborhoods of these active constraints. Further

augmentation of G was done as described in Section 7. A finer discretization was obtained

by iteratively breaking some rectangles in Rdec into smaller rectangles; this was done for

rectangles near the decision region boundary of the current solution, i.e., rectangles for

which an adjacent rectangle made a different decision for stage 2 enrollment. To offset the

computational cost of adding such rectangles, we merged rectangles that were far from the

boundary. A similar process was applied to refine each Rmtp,d. We incorporated additional

constraints as described in Section I of the Supplementary Materials to produce an easier to

visualize solution, as long as this did not affect the value of the optimization problem.

The resulting solution after several iterations of step two is the design in Figure 2. The so-

lution’s active Type I error constraints correspond to the following pairs of non-centrality pa-
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rameters (∆1{n/8}1/2/σ,∆2{n/8}1/2/σ) : (0, 0), (0, 1.91), (0, 1.96), (1.91, 0), (1.96, 0). That

is, the familywise Type I error equals α for each such pair of non-centrality parameters.

Hampson and Jennison (2015) solve a two stage optimization problem related to ours,

but involving multiple treatments instead of multiple populations. If applied to our example

problems and class of designs, their method would not work since it requires the solution

to the optimization problem that only constrains Type I error at the global null hypothesis

∆ = (0, 0) to also control the familywise Type I error constraints at all other values of ∆;

the approach of Wason and Jaki (2012) has a similar requirement. This requirement does

not hold for our example problems, whose optimal solutions have more active Type I error

constraints than just the global null hypothesis (e.g., as listed in the previous paragraph).

To solve each sparse linear programming problem, we used the IBM CPLEX solver,

version 12.4. To take advantage of the extreme sparse structure of the problem, we used

an interior point algorithm. To achieve high precision, we set the tolerance of the relative

duality gap to be 10−10. The solution v to Example 2.2 (Figure 2) had 97% of its components

equal to 0 or 1, with the remaining components in (0, 1). This means that the corresponding

adaptive enrichment design (D∗,M∗) is deterministic (non-randomized) except on a small

fraction of rectangles; for the few such rectangles in Figure 2, we set their colors based on

rounding the corresponding probabilities.

7 Augmenting G and Verifying Strong Control of the

Familywise Type I Error Rate

The sparse linear program in Section 4.4 is an approximation to the original, constrained

Bayes optimization problem in Section 2.3. The familywise Type I error constraints (5)

in the latter are approximated by the finite set G of constraints (24) in the former. By

construction, the solution to the sparse linear program controls the familywise Type I error

rate at each ∆ ∈ G.

Below, we describe an iterative procedure that we used to construct the set G for the

optimization problem in Section 5.2 corresponding to Example 2.2 and 1 − β = 0.82, i.e.,

the problem whose optimal solution is the design in Figure 2. We were able to verify the

familywise Type I error constraints (5) hold for all ∆ ∈ R2 for this design, as described

below. If the procedure below terminates, as it did for this example problem, the result is a
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verification of strong control of the familywise Type I error rate. The procedure should be

viewed as heuristic, since it is unknown whether it will terminate for arbitrary problems.

The procedure involves iteratively augmenting an initial set G and solving the corre-

sponding sparse linear program until we can verify strong control of the familywise Type

I error rate. The verification is based on a combination of analytic bounds and numerical

checking at values ∆ in a grid G̃ (defined below) that covers a larger area than G.

Step 1 of the procedure is to solve the sparse linear program with the Type I error

threshold α slightly lower than required, i.e., with α = 0.05− 10−4 in the familywise Type I

error constraints (24) over ∆ ∈ G. Second, we conduct a search over a grid G̃ of points ∆ in

the square B̃ = ([−b̃, b̃]× [−b̃, b̃]) for b̃ > b, where we use numerical integration to compute

the familywise Type I error (5) at each such point; let ᾱ denote the maximum such value

over the grid points G̃. Let w denote the maximum distance between adjacent grid points

in G̃. In Section C of the Supplementary Material, we use a second-order Taylor expansion

of (5) to prove an analytic bound ε(w) on the maximum difference between the familywise

Type I error at any point in B̃ and its closest point in the grid G̃; this bound is a decreasing

function of the distance w between adjacent grid points. If ᾱ+ ε(w) ≤ 0.05, this implies the

familywise Type I error rate is at most 0.05 for all points ∆ ∈ B̃. If ᾱ + ε(w) > 0.05, then

we either augment the grid G̃ so as to decrease w, or else we augment the set G of familywise

Type I error constraints; in either case, we iterate the above procedure. Augmenting the grid

G̃ decreases the bound ε(w), while adding more points to G forces the sparse linear program

to control Type I error at more points ∆. (One strategy is to augment G by all the points

in the grid G̃ where the familywise Type I error exceeds 0.05− 10−4.) The above procedure

is iterated until ᾱ + ε(w) ≤ 0.05. Lastly, we show analytically that the familywise Type I

error rate is at most 0.05 for all points ∆ /∈ B̃; the value of b̃ was initially set large enough

to allow such a proof as described in Section C of the Supplementary Material.

8 Discussion

Our approach optimizes the decision rule and multiple testing procedure for a given adaptive

design template n (which includes the first stage sample size and the set of possible stage

2 decisions). An area of future work is to incorporate larger numbers of stage 2 decisions.

The size of the search space for the discretized optimization problem is linear in the number

K of stage 2 decisions, and we conjecture that it is computationally feasible to set K = 20.
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The output of such a procedure would be challenging to visualize, unless the optimal rule

concentrates on a small subset of the stage 2 decisions.

Another area of future work is to investigate the tradeoff between expected sample size

and maximum sample size of two stage, adaptive enrichment designs. This could be done

by solving optimization problems such as in Section 5 but using different sets of stage 2

enrollment choices, and plotting the expected and maximum sample sizes achieved by each

design. It also may be of interest to explore the impact of the interim analysis timing, e.g.,

to solve an optimization separately using different stage 1 sample sizes, to determine the

best time to make the decision regarding an enrollment change.

A limitation of our approach is that it becomes computationally difficult or infeasible for

more than two subpopulations or stages. This is because the discretized search space grows

exponentially in the number of subpopulations and the number of stages.

We conjecture that for finer discretizations, the optimal value for the discretized problem

will be closer to that of the original constrained Bayes optimization problem from Section 2.3.

It is an open problem to bound the difference between these optima as a function of the level

of discretization.

The adaptive enrichment designs generated by our approach are probably too complex to

be directly used in practice. However, these optimal designs could be used as a benchmark

to determine how much can be gained, in principle, from adaptive enrichment for a given

adaptive design template n. When the added value is substantial, the designs generated

by our approach could later be approximated by simpler designs, e.g., by replacing the

discretized regions in Figure 2 by simpler curves.
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A Distribution of Sufficient Statistics

The distribution of Z is characterized as follows:

a. Z(1) is bivariate normal with mean vector

(
∆1

{
n
(1)
1

2(σ2
11+σ2

10)

}1/2

,∆2

{
n
(1)
2

2(σ2
21+σ2

20)

}1/2
)

and covariance matrix I2, i.e., the 2× 2 identity matrix.
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b. Z(2), which uses only stage 2 data, is conditionally independent of Z(1) given the decision

D(Z(1), U). The conditional distribution of Z(2) given D(Z(1), U) = d is bivariate

normal with mean vector

(
∆1

{
n
(2),d
1

2(σ2
11+σ2

10)

}1/2

,∆2

{
n
(2),d
2

2(σ2
21+σ2

20)

}1/2
)

and covariance

matrix I2.

c. For each subpopulation s ∈ {1, 2}, for D = D(Z(1), U), we have the following relation-

ship between the final (cumulative) z-statistic and the stagewise z-statistics:

Z(F )
s =

{
n

(1)
s

n
(1)
s + n

(2),D
s

}1/2

Z(1)
s +

{
n

(2),D
s

n
(1)
s + n

(2),D
s

}1/2

Z(2)
s . (S-1)

B Evaluating p(∆, r, d, r′)

We show that the quantity p(∆, r, d, r′) defined in (15) equals the probability that a mul-

tivariate normal distribution (with mean vector and covariance matrix given below, which

depend on ∆, d,n,σ2) is in the rectangle r × r′.
Consider any ∆ ∈ R2, r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d. Let D(d) denote the decision rule

defined to equal d regardless of the stage 1 data. It follows from (9) and U being independent

of the data that the quantity p(∆, r, d, r′) equals the probability under P∆ and decision rule

D(d) that Z = (Z
(1)
1 , Z

(1)
2 , Z

(F )
1 , Z

(F )
2 ) ∈ r×r′. It follows from Section A of the Supplementary

Material that under decision rule D(d) and P∆, the vector Z has a multivariate Gaussian

distribution with covariance matrix

Σd =


1 0 γ1 0

0 1 0 γ2

γ1 0 1 0

0 γ2 0 1

 ,

where for each s ∈ {1, 2}, we have γs =

√
n

(1)
s /

(
n

(1)
s + n

(2),d
s

)
, i.e., the correlation between

Z
(1)
s , Z

(F )
s . The mean of Z under P∆ and decision rule D(d) is νd(∆) = 2−1/2×∆1

{
n

(1)
1

(σ2
11 + σ2

10)

}1/2

,∆2

{
n

(1)
2

(σ2
21 + σ2

20)

}1/2

,∆1

{
n

(1)
1 + n

(2),d
1

(σ2
11 + σ2

10)

}1/2

,∆2

{
n

(1)
2 + n

(2),d
2

(σ2
21 + σ2

20)

}1/2
 .
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In computing the coefficients for the sparse linear program (which are functions of p(∆, r, d, r′)),

we computed the above probability using the multivariate normal distribution function im-

plemented in the R package mvtnorm.

The vector νd(∆) can equivalently be expressed as the row vector ∆ = (∆1,∆2) multi-

plied by the matrix:

Nd = 2−1/2


{

n
(1)
1

(σ2
11+σ2

10)

}1/2

0

{
n
(1)
1 +n

(2),d
1

(σ2
11+σ2

10)

}1/2

0

0

{
n
(1)
2

(σ2
21+σ2

20)

}1/2

0

{
n
(1)
2 +n

(2),d
2

(σ2
21+σ2

20)

}1/2

 . (S-2)

We will use in Section C of the Supplementary Material that

Σ−1
d =


(1− γ2

1)−1 0 −γ1(1− γ2
1)−1 0

0 (1− γ2
2)−1 0 −γ2(1− γ2

2)−1

−γ1(1− γ2
1)−1 0 (1− γ2

1)−1 0

0 −γ2(1− γ2
2)−1 0 (1− γ2

2)−1

 ,

and

NdΣ
−1
d NT

d =

 n
(1)
1 +n

(2),d
1

2(σ2
11+σ2

10)
0

0
n
(1)
2 +n

(2),d
2

2(σ2
21+σ2

20)

 . (S-3)

C Analytic Bounds Used in Verification of Strong Con-

trol of the Familywise Type I Error Rate

Denote the familywise Type I error rate of an adaptive design (D,M) ∈ ADISC at a given

∆ ∈ R2 by

FD,M(∆) = P∆[M{Z(F ), D(Z(1), U), U} ∩ HTRUE(∆) 6= ∅]. (S-4)

Let νd(∆) and Σd denote the mean vector and covariance matrix, respectively, of the z-

statistics Z under the decision rule D(d) and treatment effects ∆ as defined in Section B of

the Supplementary Material. Note that Σd does not depend on ∆. Recall that νd(∆) equals

the matrix product ∆Nd for Nd the matrix defined in (S-2).

For any ∆,∆′ ∈ R2 and λ ∈ [0, 1], define the convex combination of ∆ and ∆′ as

∆̃(λ) = λ∆ + (1 − λ)∆′. The next lemma bounds the difference between the familywise

Type I error at ∆ and ∆′.

3
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Lemma C.1. Assume there exists a set H ⊂ H such that for all λ ∈ [0, 1], HTRUE(∆̃(λ)) =

H. Then for any (D,M) ∈ ADISC, we have

FD,M(∆) ≤ FD,M(∆′) +
d

dλ
FD,M(∆̃(λ))|λ=0 +

2∑
s=1

(∆s −∆′s)
2

σ2
s1 + σ2

s0

∑
d∈E

(
n(1)
s + n(2),d

s

)
,

where d
dλ
FD,M(∆̃(λ))|λ=0 is given by the formula (S-5) below.

Proof. A second order Taylor expansion of FD,M(∆̃(λ)) gives:

FD,M(∆)− FD,M(∆′) =
d

dλ
FD,M(∆̃(λ))|λ=0 +

d2

dλ2
FD,M(∆̃(λ))|λ=λ̄,

for some λ̄ ∈ [0, 1]. We next bound the terms on the right side of the above display.

Let z = (z
(1)
1 , z

(1)
2 , z

(F )
1 , z

(F )
2 ). Let ηd denote the multivariate normal density with covari-

ance matrix Σd and mean vector 0. Unless indicated otherwise, the integrals below are each

4
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over u ∈ [0, 1], z ∈ R4. We have

d

dλ
FD,M(∆̃(λ))

=
d

dλ
P∆[M{Z(F ), D(Z(1), U), U} ∩ HTRUE(∆) 6= ∅]

=
d

dλ

∑
d∈E

P∆[D(Z(1), U) = d,M{Z(F ), d, U), U} ∩ HTRUE(∆) 6= ∅]

=
d

dλ

∑
d∈E

∫
1
[
D(z(1), u) = d,M{z(F ), d, u} ∩H 6= ∅

]
ηd[z− νd{∆̃(λ)}]dzdu

=
∑
d∈E

∫
1
[
D(z(1), u) = d,M{z(F ), d, u} ∩H 6= ∅

] d
dλ

(
ηd[z− νd{∆̃(λ)}]

)
dzdu

=
∑
d∈E

∫
1
[
D(z(1), u) = d,M{z(F ), d, u} ∩H 6= ∅

]
(z− νd{∆̃(λ)})Σ−1

d

d

dλ
νd{∆̃(λ)}

ηd[z− νd{∆̃(λ)}]dzdu

=
∑
d∈E

∫
1
[
D(z(1), u) = d,M{z(F ), d, u} ∩H 6= ∅

]
(z− νd{∆̃(λ)})Σ−1

d νd(∆−∆′)T

ηd[z− νd{∆̃(λ)}]dzdu

=
∑
d∈E

νd(∆−∆′)Σ−1
d∫

(z− νd{∆̃(λ)})T1
[
D(z(1), u) = d,M{z(F ), d, u} ∩H 6= ∅

]
ηd[z− νd{∆̃(λ)}]dzdu

=
∑
d∈E

(∆−∆′)NdΣ
−1
d∫

(z− νd{∆̃(λ)})T1
[
D(z(1), u) = d,M{z(F ), d, u} ∩H 6= ∅

]
ηd[z− νd{∆̃(λ)}]dzdu.

(S-5)

where the last line follows from (S-2).

5
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We next consider the second derivative of the familywise Type I error with respect to λ:∣∣∣ d2

dλ2
FD,M(∆̃(λ))

∣∣∣
=
∣∣∣ d2

dλ2

∑
d∈E

∫
1
[
D(z(1), u) = d,M{z(F ), d, u} ∩H 6= ∅

]
ηd[z− νd{∆̃(λ)}]dzdu

∣∣∣
=
∣∣∣∑
d∈E

∫
1
[
D(z(1), u) = d,M{z(F ), d, u} ∩H 6= ∅

] d2

dλ2

(
ηd[z− νd{∆̃(λ)}]

)
dzdu

∣∣∣
≤
∑
d∈E

∫ ∣∣∣1 [D(z(1), u) = d,M{z(F ), d, u} ∩H 6= ∅
] d2

dλ2

(
ηd[z− νd{∆̃(λ)}]

) ∣∣∣dzdu
≤
∑
d∈E

∫ ∣∣∣ d2

dλ2
ηd[z− νd{∆̃(λ)}]

∣∣∣dzdu
=
∑
d∈E

∫ ∣∣∣ d
dλ

(
(z− ∆̃(λ))Σ−1

d νd(∆−∆′)Tηd[z− νd{∆̃(λ)}]
) ∣∣∣dzdu

≤
∑
d∈E

∫ ∣∣∣νd(∆−∆′)Σ−1
d νd(∆−∆′)T

∣∣∣ηd[z− νd{∆̃(λ)}]dzdu

+
∑
d∈E

∫
|(z− νd{∆̃(λ)})Σ−1

d νd(∆−∆′)T |2ηd[z− νd{∆̃(λ)}]dzdu (S-6)

=
∑
d∈E

νd(∆−∆′)Σ−1
d νd(∆−∆′)T +

∑
d∈E

νd(∆−∆′)Σ−1
d νd(∆−∆′)T (S-7)

=2(∆−∆′)

(∑
d∈E

NdΣ
−1
d NT

d

)
(∆−∆′)T , (S-8)

=2(∆−∆′)


∑

d∈E n
(1)
1 +n

(2),d
1

2(σ2
11+σ2

10)
0

0
∑

d∈E n
(1)
2 +n

(2),d
2

2(σ2
21+σ2

20)

 (∆−∆′)T , (S-9)

=
2∑
s=1

(∆s −∆′s)
2

σ2
s1 + σ2

s0

∑
d∈E

(
n(1)
s + n(2),d

s

)
,

where (S-7) follows from the integral in (S-6) being equal to the expected value of the squared

magnitude of a multivariate normal distribution with mean 0 and variance

νd(∆−∆′)Σ−1
d ΣdΣ

−1
d νd(∆−∆′)T = νd(∆−∆′)Σ−1

d νd(∆−∆′)T ; (S-8) follows from the

definitions of νd and Nd in Section B of the Supplementary Material; (S-9) follows from

(S-3). This completes the proof of the above lemma.

Since by the constraint (9), the first stage decision only depends on the rectangle r where

the first stage z-statistics Z(1) falls in. Given ∆ and d, the quantity p(∆, r, d, r′) in (15)

6
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is the probability that a multivariate Gaussian distribution with covariance matrix Σ and

mean ν falls in the rectangle r × r′, which can be computed efficiently using the function

pmvnorm in the R package mvtnorm.

We claimed in Section 7 that b̃ can be selected such that the familywise Type I er-

ror rate of each solution to our example problems from Section 5 is at most 0.05 for

all ∆ /∈ [−b̃, b̃] × [−b̃, b̃]. To show this, it is simpler to use the non-centrality parame-

ter scale, where for a given ∆ ∈ R2 the corresponding non-centrality parameter vector is

(υ1, υ2) = (∆1{n/8}1/2/σ,∆2{n/8}1/2/σ). This vector equals the mean of Z(F ) under P∆

for the decision rule D(2) that always makes enrollment decision 2 (using adaptive design

template n), which follows from Section A of the Supplementary Material. By construction

of the partition of rectangles for the multiple testing procedure described in Section 6, no

null hypothesis is rejected when Z(F ) /∈ ([−6, 7] × [−6, 7]). Therefore, the probability of

D = 2 and M 6= ∅ is at most Φ(−3) < 0.002 when any component of the non-centrality

parameter vector is outside [−9, 10] × [−9, 10]. By a similar argument (and using that the

mean of Z(F ) under P∆ for the decision rule D(d) that always makes enrollment decision d

is (υ1/
√

2, υ2/
√

2) for d = 1, (υ1, υ2) for d = 2, (υ1

√
2, υ2/

√
2) for d = 3, (υ1/

√
2, υ2

√
2)

for d = 4), it follows that for any d ∈ E the probability of D = d and M 6= ∅ is at

most Φ(−3) < 0.002 when any component of the non-centrality parameter vector is out-

side [−9
√

2, 10
√

2] × [−9
√

2, 10
√

2]. Therefore, the familywise Type I error rate is at most

4(0.002) = 0.008 < 0.05 for any ∆ for which the corresponding non-centrality parameter

(υ1, υ2) /∈ [−9
√

2, 10
√

2]× [−9
√

2, 10
√

2].

D Representation of Familywise Type I Error Con-

straints and Additional Constraints Using xrd, yrdr′s

Consider any vector ∆ ∈ R2 and any discretized adaptive enrichment design (D,M) ∈
ADISC . We show how to equivalently express the corresponding familywise Type I error

constraint (5) from the constrained Bayes optimization problem as the constraint (17) in the

discretized problem. The quantity on the left side of the familywise Type I error constraint

7
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(5) is

P∆ {M rejects any null hypotheses in HTRUE(∆)}

=
∑

s∈S:s∩HTRUE(∆)6=∅

P∆ {M rejects precisely the set of null hypotheses s}

=
∑

s∈S:s∩HTRUE(∆)6=∅

∑
r,d,r′

xrdyrdr′sp(∆, r, d, r′), (S-10)

where the last line, which is identical to (17), follows from (13)-(14).

The additional constraints (6) are equivalently represented in terms of the variables

xrd, yrdr′s by (18), which follows from analogous argument as in Section 4.3 for the equivalence

of the objective function (4) and its discretized counterpart (16).

E Proof of Theorem 3.1

We first prove the following lemma:

Lemma E.1. At the interim analysis, Z(1) is a minimal sufficient statistic. At the end of

the trial, (D(Z(1)),Z(F )) is a minimal sufficient statistic.

Proof. Let n
(k)
sa denote the number of participants from subpopulation s with arm assignment

a enrolled during stage k. Define σs = σs0 = σs1. Let µ̂
(k)
sa denote the sample mean of the

outcomes in participants from subpopulation s, arm a, and stage k. At the interim analysis,

the likelihood function is (for a constant C that does not depend on the parameter ∆):

L(∆;X(1)) = C
2∏
s=1

(
2πσ2

s

)−n(1)
s /2

exp

−
n
(1)
s∑
i=1

(
Y

(1)
s,i − µs,A(1)

s,i

)2

2σ2

s,A
(1)
s,i


= C

2∏
s=1

(
2πσ2

s

)−n(1)
s /2

1∏
a=0

exp

−
n

(1)
sa

(
µsa − µ̂(1)

sa

)2

+
∑

i:A
(1)
s,i =a

(
Y

(1)
s,i − µ̂

(1)
sa

)2

2σ2
s


= C

2∏
s=1

(
2πσ2

s

)−n(1)
s /2

exp

−n(1)
s

{
∆s − (µ̂

(1)
s1 − µ̂

(1)
s0 )
}2

+ n
(1)
s

(
µ̂

(1)
s1 + µ̂

(1)
s0

)2

8σ2
s

×
1∏

a=0

exp

−
∑

i:A
(1)
s,i =a

(
Y

(1)
s,i − µ̂

(1)
sa

)2

2σ2
s

 ,

8
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where the last equality holds by the assumption from Section 2.1 that µs1 = ∆s/2 and

µs0 = −∆s/2 for each subpopulation s ∈ {1, 2}. The Fisher-Neyman factorization theorem

implies that
(
µ̂

(1)
11 − µ̂

(1)
10 , µ̂

(1)
21 − µ̂

(1)
20

)
is a sufficient statistic at the end of stage 1. By (7), we

have

Z(1) =

(
µ̂

(1)
11 − µ̂

(1)
10

(4σ2
1/n

(1)
1 )1/2

,
µ̂

(1)
21 − µ̂

(1)
20

(4σ2
2/n

(1)
2 )1/2

)
. (S-11)

This impliesZ(1) is a sufficient statistic at the end of stage 1, since we assumed σ2
1, σ

2
2, n

(1)
1 , n

(1)
2

are known.

To prove the minimal sufficiency, let X̃(1) be an independent set of stage 1 outcomes,

i.e., the data collected in stage 1 of a separate, independent trial. Let µ̃
(1)
sa denote the

corresponding sample mean for participants from subpopulation s and arm a enrolled during

stage 1, which is a function of X̃(1). It follows from the above derivation of L(∆;X(1)) that

the likelihood ratio is (where C1 is a function of the data and not of the parameter ∆):

L(∆;X(1))

L(∆; X̃(1))
= C1

(
X(1), X̃(1)

) 2∏
s=1

exp

−n(1)
s

{
∆s − (µ̂

(1)
s1 − µ̂

(1)
s0 )
}2
− n(1)

s

{
∆s − (µ̃

(1)
s1 − µ̃

(1)
s0 )
}2

8σ2
s

 .
It follows that the likelihood ratio does not depend on (∆1,∆2) if and only if for each

s ∈ {1, 2}, µ̂s1 − µ̂s0 = µ̃s1 − µ̃s0, by Lehmann-Scheffé Theorem (Lehmann and Scheffé,

1950). By (S-11), this implies the z-statistic Z(1) is minimal sufficient at the end of stage 1.

We next prove that at the end of the trial, the statistic
(
D(Z(1)),Z(F )

)
is minimal suf-

ficent. Let µ̂sa denote the sample mean from subpopulation s and arm a pooling across

participants in both stages. By a similar derivation as for the case of stage 1 data only, at

the end of stage 2 the likelihood function is (for C2 a function of the data and not of the

parameter ∆):

L(∆;X)

= C2(X)
2∏
s=1

(
2πσ2

s

)−(n
(1)
s +N

(2)
s )/2

exp

[
−(n

(1)
s +N

(2)
s ) {∆s − (µ̂s1 − µ̂s0)}2

8σ2
s

]
×

exp

[
−(n

(1)
s +N

(2)
s ) (µ̂s1 + µ̂s0)2

8σ2
s

]
1∏

a=0

2∏
k=1

exp

−
∑

i:A
(k)
s,i =a

(
Y

(k)
s,i − µ̂

(k)
sa

)2

2σ2
s

 .

By the Fisher-Neyman factorization theorem and (S-11), the enrollment decision D (which is

equivalent to knowing n
(1)
s +N

(2)
s for each s ∈ {1, 2}) together with the cumulative z-statistics

Z(F ) are sufficient statistics.

9
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To prove minimal sufficiency, let X̃ be an independent set of outcomes, i.e., the data

collected in a separate, independent trial, with corresponding quantities denoted by .̃ Let

µ̃sa denote the corresponding sample mean for participants from subpopulation s and arm a

(from both stages), which is a function of X̃. By similar arguments as above, the likelihood

ratio is (for a function C3 that depends on the data but not on the parameter ∆):

L(∆;X)

L(∆; X̃)
= C3

(
X, X̃

)
×

2∏
s=1

exp

[
−(n

(1)
s +N

(2)
s ) {∆s − (µ̂s1 − µ̂s0)}2 − (n

(1)
s +N

(2)
s ) {∆s − (µ̃s1 − µ̃s0)}2

8σ2
s

]
.

The likelihood ratio does not depend on (∆1,∆2) if and only if for each s ∈ {1, 2}, µ̂s1−µ̂s0 =

µ̃s1 − µ̃s0 and n
(1)
s +N

(2)
s = ñ

(1)
s + Ñ

(2)
s . This implies the minimal sufficiency of the statistic(

Z(F ), D(Z(1), U)
)
, by the Lehmann-Scheffé Theorem (Lehmann and Scheffé, 1950).

Next, we prove Theorem 3.1.

Proof. Let P∆,D denote the distribution on X under treatment effect ∆ and using the

adaptive enrichment design with decision rule D. For any d ∈ E , let P∆,d denote the

distribution on X under treatment effect ∆ and using the adaptive enrichment design that

always makes the enrollment choice d for stage 2 enrollment.

Consider any adaptive enrichment design (D,M) ∈ D∗ ×M∗. We will prove that there

exists an adaptive enrichment design (D′,M ′) ∈ ASUFF with identical risk for any bounded

loss function L and any ∆ ∈ R2, i.e., we will prove

E∆,DL(M,D,∆) = E∆,D′L(M ′, D′,∆). (S-12)

Let U,U ′ be independent, uniformly distributed random variables on [0, 1] that are

exogenous, i.e., independent of the data X, and define Ũ = (U,U ′). It follows from

Lemma E.1 that the conditional distribution of X given (Z(F ), D = d, U) does not de-

pend on ∆. Therefore, there exists a function f2 : R2 × E × [0, 1]2 → X such that

f2(Z(F ), d, U, U ′) and X have the same conditional distribution given (Z(F ), D = d, U). It fol-

lows that M(f2(Z(F ), d, U, U ′), d, U) and M(X, d, U) have the same conditional distribution

given (Z(F ), D = d, U). Define

M ′(Z(F ), d, U, U ′) = M{f2(Z(F ), d, U, U ′), d, U},

10
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for any d ∈ E . By construction, M ′(Z(F ), D, Ũ) and M(X,D,U) have the same conditional

distribution given (Z(F ), D = d, U).

For any bounded loss function L and ∆ ∈ R2, we have (where D = D(X(1), U)) that

E∆,DL(M,D,∆) (S-13)

= E∆,DL [M{X,D,U}, D,∆]

=
∑
d∈E

E∆,d1(D = d)L [M{X, d, U}, d,∆]

=
∑
d∈E

E∆,d1(D = d)E∆,d

(
L [M{X, d, U}, d,∆]

∣∣Z(F ), D = d, U
)

=
∑
d∈E

E∆,d1(D = d)E∆,d

(
L
[
M ′{Z(F ), d, Ũ}, d,∆

] ∣∣Z(F ), D = d, U
)

=
∑
d∈E

E∆,d1(D = d)L
[
M ′{Z(F ), d, Ũ}, d,∆

]
=

∑
d∈E

E∆,D1(D = d)L
[
M ′{Z(F ), D, Ũ}, D,∆

]
= E∆,DL

[
M ′{Z(F ), D, Ũ}, D,∆

]
= E∆,DL(M ′, D,∆). (S-14)

It remains to show that (S-14) equals the right side of (S-12). It follows from the argu-

ments in Lemma E.1 that the first stage data X(1) can be expressed as a function (denoted

by f1) of the minimal sufficient statistic Z(1) and an ancillary part R with the following

property: R is independent of (Z(1),Z(F )) under P∆,d for any d ∈ E . Define R̃ to be an

exogenous random vector with the same distribution as R and independent of U,U ′. Define

the decision rule D′(Z(1), R̃, U) = D(f1(Z(1), R̃), U). It follows that for any d ∈ E , we have

E∆,d1{D(X(1), U) = d}L(M ′{Z(F ), d, Ũ}, d,∆)

= E∆,d1{D(f1(Z(1), R), U) = d}L(M ′{Z(F ), d, Ũ}, d,∆)

= E∆,d1{D(f1(Z(1), R̃), U) = d}L(M ′{Z(F ), d, Ũ}, d,∆)

= E∆,d1{D′(Z(1), R̃, U) = d}L(M ′{Z(F ), d, Ũ}, d,∆).
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Therefore,

E∆,DL(M ′, D,∆)

= E∆,DL
[
M ′{Z(F ), D(X(1), U), Ũ}, D(X(1), U),∆

]
=

∑
d∈E

E∆,d1{D(X(1), U) = d}L
[
M ′{Z(F ), d, Ũ}, d,∆

]
=

∑
d∈E

E∆,d1{D′(Z(1), R̃, U) = d}L
[
M ′{Z(F ), d, Ũ}, d,∆

]
= E∆,D′L

[
M ′{Z(F ), D′, Ũ}, D′,∆

]
= E∆,D′L(M ′, D′,∆).

The above display shows that (S-14) equals the right side of (S-12), which by the equality of

(S-13) and (S-14) proves (S-12). The exogenous part (R̃, Ũ) can be expressed as a function of

a single, exogenous, uniformly distributed random variable V on [0, 1], which implies that the

exogenous parts in each of M ′ and D′ can be written as functions of V . Since the definitions

of D′ and M ′ do not depend on ∆ or L, this completes the proof of Theorem 3.1

F Proof of Theorem 4.1

For any {vrdr′s}, define the corresponding variables for the discretized problem {xrd, yrdr′s}
by (29). This mapping is well defined, since by (27) we have

∑
s∈S vrdr′s does not depend

on r′. Similarly, for any {xrd, yrdr′s}, define the corresponding variables for the sparse linear

program {vrdr′s} by (22). We prove the following lemma:

Lemma F.1. The discretized problem’s constraints (19)-(21) on the variables {xrd, yrdr′s}
are equivalent to the sparse linear program’s constraints (26)-(28) on the variables {vrdr′s}.

Proof. First, consider any {vrdr′s} that satisfy (26)-(28). Define the corresponding {xrd, yrdr′s}
using the mapping (29) in part (ii) of Theorem 4.1. The nonnegativity constraint (28) for the

sparse linear program implies the analogous constraint (21) from the discretized problem.

The formula (29) for xrd and the constraint (26) imply (19). The formula (29) for yrdr′s

implies (20). We have shown that the constraints (26)-(28) from the sparse linear program

imply the constraints (19)-(21) from the discretized problem. We next show the reverse

implication.
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Consider any {xrd, yrdr′s} that satisfies the constraints (19)-(21). Define the correspond-

ing {vrdr′s} using the mapping (22). The nonnegativity constraint (21) from the discretized

problem implies the analogous constraint (28) for the sparse linear program. For any

r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, we have by (22) and (20) that∑
s∈S

vrdr′s =
∑
s∈S

xrdyrdr′s = xrd
∑
s∈S

yrdr′s = xrd. (S-15)

For each r ∈ Rdec, d ∈ E , and any two rectangles r′, r̃′ ∈ Rmtp,d, we have∑
s∈S

vrdr′s =
∑
s∈S

vrdr̃′s, (S-16)

since the left and right sides of the above display both equal xrd by (S-15). The above display

implies (27). For each r ∈ Rdec,∑
d∈E

∑
s∈S

vrdr′ds =
∑
d∈E

xrd = 1, (S-17)

where the first equality follows from (S-15) and the second follows from (19). The above

display implies (26). We have shown that the constraints (19)-(21) from the discretized

problem imply the constraints (26)-(28) for the sparse linear program. This completes the

proof of Lemma F.1.

Proof of Theorem 4.1. Consider any feasible solution v (the vector representation of {vrdr′s})
to the sparse linear program. Define the corresponding solution (x,y) (the vector represen-

tation of {xrd, yrdr′s}) to the discretized problem from Section 4 through the mapping (29).

The equations (29) imply (22) holds. The solution x,y is feasible for the discretized prob-

lem since (24) and (22) imply (17); (25) and (22) imply (18); Lemma F.1 implies (19)-(21).

The value of the objective function (16) of the discretized problem from Section 4 equals

the value of the objective function (23) of the sparse linear program, which follows by (22).

This shows x,y is a feasible solution to the discretized problem with the same value (of the

objective function) as the corresponding solution to the sparse linear program evaluated at

v. Therefore, the value of the optimal solution to the sparse linear program is an upper

bound on the value of the optimal solution to the discretized problem.

Next, consider any feasible solution x,y to the discretized problem from Section 4, and

define the corresponding solution v to the sparse linear program using the transformation

(22). We next show that v is a feasible solution to the sparse linear program with the same
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value (of the objective function) as the corresponding discretized problem evaluated at x,y.

The solution v is feasible for the discretized problem since (17) and (22) imply (24); (18)

and (22) imply (25); Lemma F.1 implies (26)-(28). The value of the objective function (23)

equals (16). We have shown v is a feasible solution to the sparse linear program with the

same value (of the objective function) as the corresponding discretized problem evaluated

at x,y. Therefore, the value of the optimal solution to the discretized problem is an upper

bound on the value of the optimal solution to the sparse linear program.

The results of the above two paragraphs prove the claim (i) in the theorem. Claim (ii)

then follows from the result in the first paragraph. This completes the proof of Theorem 4.1.

As a side note, the set of constraints (27) is equivalent to:

for each r ∈ Rdec, d ∈ E , and each pair r′, r̃′ ∈ Rmtp,d,
∑
s∈S

vrdr′s =
∑
s∈S

vrdr̃′s. (S-18)

The reason we use (27) instead of the constraints in the above display is that the former has

fewer constraints, which makes the corresponding linear program smaller.

G Proof that for each of Examples 2.1 and 2.2, the op-

timal solution depends on (σ2,∆min, n) only through

the non-centrality parameter

Proof. Consider the constrained Bayes optimization problems corresponding to Examples

2.1 and 2.2 with inputs as specified in Section 5.1, which uses adaptive design template n(1b).

By Theorem 3.1, it suffices to consider decision rules and multiple testing procedures that

depend on the data only through the sufficient statistics given in that theorem. Denote the

non-centrality parameter by υ = (n/8)1/2∆min/σ. We will show that the solutions to the

optimization problems depend on (n,∆min, σ2) only through υ.

We reparametrize the optimization problems in terms of (∆1/∆min,∆2/∆min) in place

of (∆1,∆2). Denote ∆̃ = (∆̃1, ∆̃2) = (∆1/∆min,∆2/∆min). Let P∆̃ = P∆/∆min
and E∆̃ =

E∆/∆min
. It follows from Section A of the Supplementary Material that the distribution of

Z under P∆̃ and adaptive design template n(1b) is characterized in terms of υ as follows:

a. Z(1) is bivariate normal with mean vector (υ/21/2)∆̃ and covariance matrix I2.
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b. Z(2) is conditionally independent of Z(1) given D. We next give the conditional dis-

tribution of Z(2) given D = d for each d ∈ E . For d = 1, we have Z(2) = 0. Given

D = 2, we have Z(2) is bivariate normal with mean vector (υ/21/2)∆̃ and covariance

matrix I2. Given D = 3, the distribution of Z
(2)
1 is normal with mean υ(3/2)1/2∆̃1 and

variance 1, and Z
(2)
2 = 0. Given D = 4, the distribution of Z

(2)
2 is normal with mean

υ(3/2)1/2∆̃2 and variance 1, and Z
(2)
1 = 0.

c. For each subpopulation s ∈ {1, 2}, for D = D(Z(1), U), we have the following relation-

ship between the final (cumulative) z-statistic and the stagewise z-statistics:

Z(F )
s = {f(D, s)}1/2 Z(1)

s + {1− f(D, s)}1/2 Z(2)
s , (S-19)

where we define

f(d, s) = 1(d = 1) + 1(d = 2)(1/2) + 1(d = 3, s = 1)(1/4) + 1(d = 3, s = 2)

+1(d = 4, s = 1) + 1(d = 4, s = 2)(1/4).

It follows that the distribution of the statistics (Z(1), D(Z(1), U),Z(F )) under P∆̃ does not

depend on the problem inputs (n,∆min, σ2) except through υ. We next show that the con-

straints (5)-(6) and objective function (4) can be represented in terms of P∆̃, E∆̃, and that

the resulting optimization problem does not depend on (n,∆min, σ2) except through υ.

The set of familywise Type I error constraints (5), which is over ∆ ∈ R2, is equivalent

to the reparametrized set of constraints replacing P∆ by P∆̃ over the set ∆̃ ∈ R2, i.e.,

P∆̃

{
M rejects any null hypotheses in HTRUE(∆̃)

}
≤ α, for any ∆̃ ∈ R2, (S-20)

The loss functions (1)-(2) in the additional constraints (6) can be equivalently represented

in terms of ∆̃ as

L̃(s)(M,D, ∆̃) = 1
(
H0s 6∈M ; ∆̃s ≥ 1

)
, for each s ∈ {1, 2};

L̃(C)(M,D, ∆̃) = 1
(
H0C 6∈M ; ∆̃1 ≥ 1, ∆̃2 ≥ 1

)
.

The additional constraints (6) in the context of the problems from Examples 2.1 and 2.2 can

be expressed as follows:

For ∆̃ = (1, 0), E∆̃L̃
(1)(M,D, ∆̃) ≤ β;

For ∆̃ = (0, 1), E∆̃L̃
(2)(M,D, ∆̃) ≤ β;

For ∆̃ = (1, 1), E∆̃L̃
(C)(M,D, ∆̃) ≤ β,
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where the above lines are equivalent to (P1)-(P3), respectively, from Section 2.4.

We next reparametrize the objective function (4) in terms of ∆̃. The loss function

L0 = LSS depends on M,D,∆ only through D (which depends on the data only through

Z(1)) and equals

LSS = n
(1)
1 + n

(1)
2 + n

(2),D
1 + n

(2),D
2 = (n/2) + 1(D = 2)(n/2) + 1(D ∈ {3, 4})(3n/4).

The optimal solution is unchanged if the objective function is multiplied by a positive con-

stant; therefore, we can replace LSS by L̃SS = (1/2) + 1(D = 2)(1/2) + 1(D ∈ {3, 4})(3/4)

and the optimal solution will not change. (Though the value attained by the optimal solution

will be changed, this value as a fraction of n–which is reported in Table 1–is not changed).

In Example 2.1, the objective function (4) is equivalent to:

1

4

∑
∆̃∈Q′

E∆̃L̃
SS(D), (S-21)

for Q′ = {(0, 0), (1, 0), (0, 1), (1, 1)}. In Example 2.2, the objective function (4) is equivalent

to: ∫
∆̃∈R2

E∆̃L̃
SS(D)dΛmix(∆̃)

for Λmix the distribution on ∆̃ that is a mixture of four bivariate normal distributions with

mean vectors in Q′ and each having covariance matrix I2 (from our assumption in Section 2.4

that σ2
Λ = ∆2

min).

The above reparametrization removed all dependence on the problem inputs (σ2,∆min, n)

except through υ. We have shown that the constrained Bayes optimization problems in

Examples 2.1 and 2.2 with inputs as specified in Section 5.1 are functions of the inputs

(σ2,∆min, n) only through υ.

H Multiple Testing Procedure Based on P-Value Com-

bination Approach Used in ACOMB

We define the class of adaptive enrichment designs ACOMB used in Section 5.3, which are

based on the p-value combination approach and the closed testing principle. The set of

elementary null hypotheses is H = {H01, H02, H0C}. We consider subsets of null hypotheses
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indexed by I ⊆ {1, 2, C}. For each subset I of null hypotheses, we define a first stage p-value

p1,I , a second stage p-value p2,I (under every possible decision for stage 2 enrollment), and

a combination test CI(p1,I , p2,I). In order to apply the closure principle, the requirements

that must be satisfied are, for each I ⊆ {1, 2, C}: [Note: the phrase “under the intersection

null hypothesis
⋂
i∈I H0i” means “assuming H0i is true for each i ∈ I”.]

i. The distribution of first stage p-value p1,I must stochastically dominate the distribution

U [0, 1] under the intersection null hypothesis
⋂
i∈I H0i.

ii. Conditioned on the first stage statistics and enrollment decision, the second stage p-

value p2,I must stochastically dominate the distribution U [0, 1] under the intersection

null hypothesis
⋂
i∈I H0i.

iii. The combination test CI(p1,I , p2,I) is a mapping from [0, 1]×[0, 1] to {0, 1} where 1 indi-

cates rejection of the intersection
⋂
i∈I H0i, and 0 indicates failure to reject

⋂
i∈I H0i. We

require
∫

(x,y)∈[0,1]×[0,1]
CI(x, y)dxdy ≤ 0.05, and that for any x′ ≤ x, y′ ≤ y, CI(x

′, y′) ≥
CI(x, y) (called monotonicity).

The above conditions imply for each I ⊆ {1, 2, C} that the probability of CI(p1,I , p2,I) = 1

is at most 0.05 under the intersection null hypothesis
⋂
i∈I H0i. (Note that the combination

test is the same regardless of the decision as to stage 2 enrollment, e.g., if the inverse-normal

combination test is used, the weights must be set in advance and cannot depend on the

decision for stage 2 enrollment.)

For each null hypothesis i ∈ {1, 2, C}, let Z
(k)
i denote the z-statistic based on stage k

data for population i defined as Z
(k)
i if i ∈ {1, 2} and otherwise Z

(k)
C = p

1/2
1 Z

(k)
1 + p

1/2
2 Z

(k)
2 .

For each I ⊆ {1, 2, C}, we describe our choices for p1,I , p2,I , and CI , each of which

satisfies the above requirements. For stage 1, we set p1,I to be the p-value corresponding

to the Dunnett test based on the maximum of {Z(1)
i , i ∈ I}. We set CI to be the inverse-

weighted normal combination function, using weights w1 = w2 = 1/
√

2, i.e., CI(x, y) = 1 if

1− Φ{w1Φ−1(1− x) + w2Φ−1(1− y)} < 0.05, and equals 0 otherwise. For stage 2, for each

I ⊆ {1, 2, C}, we define p2,I under each possible enrollment decision:

• If both subpopulations are enrolled in stage 2, we set p2,I to be the p-value correspond-

ing to the Dunnett test based on the maximum of stage 2 z-statistics {Z(2)
i , i ∈ I}.

• If the trial is stopped completely after stage 1, we set p2,I = 1.
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• If only subpopulation s ∈ {1, 2} is enrolled in stage 2, we set p2,I to be 1− Φ(Z
(2)
s ) if

s ∈ I, else we set p2,I = 1.

For each I ⊆ {1, 2, C}, the corresponding intersection null hypothesis
⋂
i∈I H0i is rejected

at the end of the trial if and only if CI(p1,I , p2,I) = 1. By the closure principle, for each

elementary null hypothesis H ∈ H, it is rejected at the end of the trial if and only if for each

I ⊆ {1, 2, C} containing the index of H, the intersection null hypothesis
⋂
i∈I H0i is rejected.

The closure principle ensures the familywise Type I error rate is at most 0.05.

For example, if the decision was to enroll only subpopulation 1 in stage 2, then the stage

2 p-values are computed as follows: p2,I = 1 − Φ(Z
(2)
1 ) for each I ⊆ {1, 2, C} for which

1 ∈ I, and p2,I = 1 otherwise. I.e., p2,{H01} = p2,{H01,H0C} = p2,{H01,H02} = p2,{H01,H02,H0C} =

1 − Φ(Z
(2)
1 ), and all other stage 2 p-values equal 1. The elementary null hypothesis H01 is

rejected if CI(p1,I , p2,I) = 1 for each I ⊆ {1, 2, C} for which 1 ∈ I; i.e., we need CI(p1,I , p2,I) =

1 for the case of I being the indices corresponding to {H01}, {H01, H0C}, {H01, H02}, and

{H01, H02, H0C}. (Note: each such I has identical stage 2 p-values in this case, but the stage

1 p-values may differ, so it is necessary to compute all four values and check CI(p1,I , p2,I) = 1

in each case.)

To allow early stopping for efficacy, we also consider a modified combination test moti-

vated by the O’Brien-Fleming group sequential test, and a modified decision rule for stage

2 enrollment. Let C ′I(x, y) = 1 if x < 1−Φ(2.37) or 1−Φ{w1Φ−1(1− x) +w2Φ−1(1− y)} <
1 − Φ(1.68), and equal 0 otherwise. This modified combination test satisfies assumption

(iii) above, and allows rejection of null hypotheses for efficacy after stage 1. This occurs for

a hypothesis H ∈ H if for all intersection tests involving H, the corresponding first stage

p-value is at most 1 − Φ(2.37) (since this guarantees that this intersection test would be

rejected at the end of stage 2, regardless of the stage 2 statistics). We modify the decision

rule to stop the entire trial early if any elementary null hypothesis is rejected in stage 1.

More generally, for any u1 ≥ Φ−1(1− α), define u2 to be the unique solution to

P{(V1 > u1) or (w1V1 + w2V2 > u2)} = α,

for V1, V2 independent, standard normal random variables. Define the modified combination

test C
(u1)
I (x, y) = 1 if x < 1 − Φ(u1) or 1 − Φ{w1Φ−1(1 − x) + w2Φ−1(1 − y)} < 1 − Φ(u2),

and equal 0 otherwise. For the special case that u1 = 2.37 and w1 = w2 = 1/
√

2, we have

u2 = 1.68 and therefore the combination test C
(u1)
I (x, y) is identical to C ′I(x, y). Throughout,

we used u1 = 1.68 and u2 = 2.37.
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I Additional Constraints

I.1 Constraints that Aim to Remove the Dependence of yrdr′s on r

The set of constraints below was conjectured to be satisfied at the optimum solution to our

example problems. This was verified by solving the optimization problems without these

constraints, and then with them, and checking that the value of the optimal solutions are

equal to high precision. The motivation for these constraints was to produce a solution that

can be more easily visualized.

We added new, sparse linear constraints to the sparse linear program that, in some cases,

force yrdr′s to depend only on dr′s and not on r. To give the intuition behind these constraints,

consider any solution {xrd, yrdr′s} to the discretized problem such that the variables yrdr′s do

not depend on r, i.e., for which yr1dr′s = yr2dr′s for all r1, r2 ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S.

Let {vrdr′s} denote the corresponding solution to the sparse linear program defined by the

mapping (22). By the arguments in the proof of Theorem 4.1, {vrdr′s} is a solution to the

corresponding sparse linear program. Consider any r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S. Let

wdr′s denote the value of yrdr′s, which by our choice above does not depend on r; it follows

from (20) that
∑

s∈S wdr′s = 1. We have

wdr′s = yrdr′s

= xrdyrdr′s + (1− xrd)yrdr′s
= vrdr′s + (1− xrd)yrdr′s (S-22)

≤ vrdr′s + (1− xrd) (S-23)

= vrdr′s +
∑

d̃∈E\{d}

xrd̃ (S-24)

= vrdr′s +
∑

d̃∈E\{d}

∑
s′∈S

vrd̃r′
d̃
s′ ,

where (S-22) follows from (22); (S-23) follows from xrd, yrdr′s ∈ [0, 1]; (S-24) follows from

(19); and, the last line follows from (20) and (22). The above arguments imply that if there

is an optimal solution {xrd, yrdr′s} to the discretized problem such that the variables yrdr′s

do not depend on r, then the corresponding optimal solution {vrdr′s} to the sparse linear

program satisfies the following additional set of constraints:
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for each r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d, s ∈ S, wdr′s ≤ vrdr′s +
∑

d̃∈E\{d}

∑
s′∈S

vrd̃r′
d̃
s′ ;

for each d ∈ E , r′ ∈ Rmtp,d,
∑
s∈S

wdr′s = 1.

We introduced the new variables wdr′s and added the above, new constraints to our sparse

linear programs.

I.2 Monotonicity Constraints

The set of monotonicity constraints below was conjectured to be satisfied at the optimum

solution to our example problems. This was verified by solving the optimization problems

without these constraints, and then with them, and checking that the value of the optimal

solutions are equal to high precision. For each r′ ∈ Rmtp,d,, let r′R, r
′
A denote the rectangle

immediately to its right, and the rectangle immediately above it, respectively (if one exists).

The set of constraints below encodes that the probability of rejecting H01 is a non-

decreasing function of Z
(F )
1 in the following sense: the conditional probability of rejecting

H01 given Z(1) ∈ r,D(Z(1), U) = d,Z(F ) ∈ r′ is at most the the conditional probability of

rejecting H01 given Z(1) ∈ r,D(Z(1), U) = d,Z(F ) ∈ r′R. This is encoded as follows:

For each r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d,
∑

s∈S:H01∈s

vrdr′s ≤
∑

s∈S:H01∈s

vrdr′Rs. (S-25)

The analogous set of monotonicity constraints with respect to H02 is the following:

For each r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d,
∑

s∈S:H02∈s

vrdr′s ≤
∑

s∈S:H02∈s

vrdr′As. (S-26)

The following set of constraints encodes that the conditional probability of rejecting H0C

given Z(1) ∈ r,D(Z(1), U) = d,Z(F ) ∈ r′ is at most the the conditional probability of rejecting

H0C given Z(1) ∈ r,D(Z(1), U) = d,Z(F ) ∈ r′ for r′ = r′R and similarly for r′ = r′A:

For each r ∈ Rdec, d ∈ E , r′ ∈ Rmtp,d :∑
s∈S:H0C∈s

vrdr′s ≤
∑

s∈S:H0C∈s

vrdr′Rs and
∑

s∈S:H0C∈s

vrdr′s ≤
∑

s∈S:H0C∈s

vrdr′As. (S-27)

The design in Figure 2 corresponds to the solution where we included the above sets of

monotonicity constraints.
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