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Summary

The Pneumonia Etiology Research for Child Health (PERCH) study seeks to use modern mea-

surement technology to infer the causes of pneumonia for which gold-standard evidence is un-

available. The paper describes a latent variable model designed to infer from case-control data

the etiology distribution for the population of cases, and for an individual case given his or

her measurements. We assume each observation is drawn from a mixture model for which each

component represents one cause or disease class. The model addresses a major limitation of the

traditional latent class approach by taking account of residual dependence among multivariate

binary outcome given disease class, hence reduces estimation bias, retains efficiency and offers

more valid inference. Such “local dependence” on a single subject is induced in the model by

nesting latent subclasses within each disease class. Measurement precision and covariation can

be estimated using the control sample for whom the class is known. In a Bayesian framework, we

use stick-breaking priors on the subclass indicators for model-averaged inference across different
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2 Z. Wu and others

numbers of subclasses. Assessment of model fit and individual diagnosis are done using posterior

samples drawn by Gibbs sampling. We demonstrate the utility of the method on simulated and

on the motivating PERCH data.

Key words: Bayesian methods; Case-control studies; Local dependence; Latent class model; Measurement

error; Model-based clustering; Partially-identified models; Pneumonia etiology.

1. Introduction

Clinicians routinely use measurements to differentially diagnose a patient’s unknown disease etiol-

ogy and then choose a treatment from among those available. More often than not, the differential

diagnosis is a qualitative process based on judgment and experience. As clinical measurements

become more precise and complex and as the number of possible known etiologies grows, such

qualitative processes are less likely to be optimal. An important question therefore is whether

formal probabalistic calculations can improve clinical decisions when the relevant information

is quantitative. For example, in the Pneumonia Etiology Research for Child Health (PERCH)

study of childhood pneumonia (Levine and others, 2012), a vector of presence/absence indicators

for a large number of pathogens is measured on each child by polymerase chain reaction (PCR)

using specimens from the nasopharyngeal cavity. A clinical goal is to use the multivariate binary

response to infer the pathogen in the child’s lung causing pneumonia.

In addition, public health researchers are interested in estimating the population fraction

of cases caused by each pathogen, referred to as the etiologic fractions or population etiology

distribution (Feikin and others, 2014). Knowledge of the etiology distribution is essential for

planning prevention and treatment programs. Because the lung cannot be directly sampled,

except in cases of critical illness, imperfect measurements from the periphery are used to infer

the latent state of the disease.

http://biostats.bepress.com/jhubiostat/paper276



Nested Partially-Latent Class Models for Dependent Data 3

Figure 1 summarizes the relations among measurements, covariates and lung infection for an

individual case. PERCH intends to infer her latent lung infection status (Ii, the latent state)

by collecting multivariate binary measurements Mi from the periphery. The joint distribution

for Mi is characterized by the true- and false- positive rates and the distribution of the latent

disease-causing infection. Covariates such as age and HIV status can also influence the chance

for each pathogen causing her disease.

In general terms, the PERCH scientific questions require inference about latent random vari-

ables (e.g. Bollen, 2002). The same is true for many other problems, for example, biomarkers for

disease diagnosis (e.g. Jokinen and Scott, 2010), words for learning topics of a text (e.g. Hofmann,

2001), and questionnaire items for evaluating severity of depression (e.g. Kroenke and Spitzer,

2002). One way of classifying latent variable models is by the discrete or continuous nature of

their latent and manifest (observed) variables. Among them, “latent class” models (LCM) for

discrete latent and discrete manifest variables were developed and widely applied since the 1950s

(e.g. Lazarsfeld, 1950; Anderson, 1954; Lazarsfeld and others, 1968; Goodman, 1974).

LCMs constitute a family of distributions for correlated discrete measurements. The con-

ventional LCM generally makes local independence (LI) assumption that manifest variables are

independent of one another given the latent class (Lord, 1952; Lazarsfeld, 1959; McDonald, 1981;

Bartholomew and others, 2011). In the multivariate binary case, individual i’s measurement vec-

tor, Mi = (Mi1, ...,MiJ)′, is linked to her latent class (Ii) by the simple product likelihood

P(Mi | Ii = `,θ) =
∏J

j=1 P(Mij | Ii = `,θ), where θ represents the collection of measurement

parameters — sensitivities and specificities. We then obtain the observed likelihood by summing

over all the possible values of Ii, i.e., P(Mi | θ,π) =
∑L

`=1 π`
∏J

j=1 P(Mij | Ii = `,θ), where π is

a vector of mixing weights of length L. The LI assumption implies that the latent memberships Ii

completely explains the marginal dependence in Mi. Under local identifiability conditions (Jones

and others, 2010), we can estimate π and θ by the values that optimally reduce the observed
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4 Z. Wu and others

dependence among measurements given latent class. The expectation-maximization (EM) algo-

rithm (Goodman, 1974) is one popular approach. Individual classification can then proceed by

applying Bayes rule using the estimated parameters.

When classes are observed for some subjects, for example, motivated by the known control in-

fection status Ii = 0, Wu and others (2015) introduced a “partially-latent” class model (pLCM).

The control sample provides the requisite information to estimate the specificities of the measure-

ments. In the original formulation, they assumed LI for the multivariate binary measurements

within each class. However, within cases or controls, several pairs of pathogens had observed log

odds ratios that are inconsistent with their model-based predictive distributions. To address this

lack of fit in the covariances, one approach is to extend pLCM by introducing dependence among

measurements for persons within the same class. These associations have scientific value in their

own right, for example, to study patterns of pathogen-pathogen stimulation or inhibition.

Deviations from LI, or “local dependence” (LD) can occur in many applications, for example,

in medical diagnostic tests when most severely diseased patients and the healthiest patients are

easiest to correctly classify (Albert and others, 2001), or when tests target on similar genetic

molecules (Qu and Hadgu, 1998). Many authors have noted that not accounting for LD can bias

estimates of model parameters (e.g. Vacek, 1985; Torrance-Rynard and Walter, 1997; Pepe and

Janes, 2007). Therefore, in many applications where the LI model for [Mi | Ii] is assumed, model

adequacy is studied to ensure valid model-based conclusions (e.g. Garrett and Zeger, 2000; Wu

and others, 2015).

Ideas for relaxing LI can be distinguished by whether or not extra latent variables are intro-

duced. Without doing so, Harper (1972) modeled associations between pairs, triples, and higher

order combinations of variables given latent class. Haberman (1979) and Espeland and Handel-

man (1989) used log-linear models to extend LCM viewing the latent class as one of the category

variables. See also Hagenaars (1988) and Yang and Becker (1997).

http://biostats.bepress.com/jhubiostat/paper276



Nested Partially-Latent Class Models for Dependent Data 5

The second approach allows for dependence by using extra latent variables of continuous or

discrete types or a mixture. For example, Qu and others (1996) used Gaussian random intercepts

to induce within-subject symmetric and positive correlations among multiple diagnostic tests.

Xu and Craig (2009) used probit latent class models for more complex LD structures. Albert

and others (2001) proposed to nest one extra unobserved subclass within each of two latent

classes (diseased or non-diseased) to represent subjects measured without error. Dendukuri and

others (2009) hierarchically layered extra mixed latent variables in a Bayesian framework. Adding

extra latent variables can account for LD because any multivariate discrete distribution can be

represented by a locally independent LCM with sufficiently many latent classes (Dunson and Xing,

2009, Corollary 1). However, when a satisfactory fit requires many classes — especially when the

dimension of manifest variables is high — interpreting inferred classes remains a difficult task.

In this paper, we build on the second strategy and develop a novel latent variable model for

multivariate binary data obtained from a case-control study. Using control data with a known

class and assuming the covariation among control measurements is shared among the other latent

classes for cases, we extend the traditional latent class approach to avoid the LI assumption. The

proposed model is a natural extension of pLCM (Wu and others, 2015) and can be used to test

its LI assumption.

We assume each child’s measurements comprise an observation from a mixture model with

component classes that represent the L different pathogens that can cause her pneumonia. One

primary goal of analysis is to estimate the probability distribution for these classes. To allow for

LD, we introduce latent subclasses nested within each of the L + 1 (L case, 1 control) disease

classes. Measurements within a subclass are assumed independent. We refer to the model as a

“nested partially-latent class model” or npLCM and use a Bayesian penalty to encourage small

but variable numbers of subclasses that parsimoniously approximate the multivariate discrete

dependence and avoid overfitting (Section 2.5).
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6 Z. Wu and others

We show that the proposed model is partially-identifiable (Gustafson, 2015) and incorporate

prior knowledge about measurement sensitivities to facilitate Bayesian estimation of the etiologic

fractions. The npLCM model is estimated via Markov chain Monte Carlo (MCMC) with designed

precision to approximate the posterior distributions of the population etiologic fractions, individ-

ual latent state, as well as functions of them, such as the fraction of pneumonia cases caused by

bacteria.

In Section 2, we formulate our model and discuss its statistical properties. Section 3 provides

details on the posterior sampling algorithm to draw inference based on our model. Section 4

illustrates through asymptotic evaluations and finite-sample simulations the benefits of the new

model relative to a version that ignores LD. Section 5 applies the proposed method to PERCH

study data. Section 6 concludes with remarks on the method’s advantages, limitations, and future

extensions.

2. Nested Partially-Latent Class Model

In this section, we specify the nested partially-latent class model (npLCM) and consider its

statistical properties using the PERCH study example to make the ideas concrete. Let Mi =

(Mi1, ...,MiJ)′ comprise a J-dimensional multivariate binary measurement collected for subjects

i = 1, ..., n1 + n0, where the first n1 subjects are cases and the remaining n0 are controls. Let

Yi = 1 denote a case and Yi = 0 denote a control.

2.1 Measurement Likelihood

Figure 2 pictures the general structure of the npLCM with J = 5 measurements, one pathogen

per row in the matrix. With 5 pathogens, there are 6 classes: one for the control state (pathogen-

free) on the left of the dashed vertical line; and L = 5 case states, one for each possible cause on

the right. In the figure, the control measurements have joint distribution that is approximated

http://biostats.bepress.com/jhubiostat/paper276



Nested Partially-Latent Class Models for Dependent Data 7

by a mixture of K = 2 subclasses, with K-dimensional mixing weights ν = (ν1, ..., νK)′. Here

ψk = {ψ(j)
k }1≤j≤J is the column vector of false positive rates for measurements j = 1, ..., J , for

subclass k = 1, ...,K. The mixing weights of the K subclasses in the case population (right of

dashed line) are assumed to be η = (η1, ..., ηK)′. The etiologic fractions are the mixing weights

for the L(= J) classes in the case population, denoted π = (π1, ..., πL)′ with
∑L

`=1 π` = 1.

Throughout the paper, we rely on the scientific assumption that each child’s pneumonia is

caused by a single primary pathogen. The more general case where disease can be attributed to

multiple pathogens is a natural extension (Section 6).

2.2 Control Likelihood

The control measurement distribution is assumed to take the form in Goodman (1974). Mutual

dependence is induced by the existence of multiple subclasses, with each subclass having pos-

sibly distinct positive rate profiles. Given an unobserved subclass, measurements are assumed

to be mutually independent. Marginalizing over the latent subclasses produces dependence for

pathogens with different rates across subclasses. The formulation is natural for PERCH given the

heterogeneity in the health status of controls.

For control i, we introduce subclass indicator Zi that takes value in {1, ...,K} and let

sample subclass indicator : Zi ∼ Multinomial({1, ...,K},ν) (2.1)

generate measurements : Mij | Zi = k ∼ Bernoulli(ψ
(j)
k ), independently for j = 1, ..., J, (2.2)

where νk = P(Zi = k | Yi = 0) and ψ
(j)
k = P(Mij = 1 | Zi = k, Yi = 0). Here ν comprises of the

probabilities of a control falling in the subclasses; ψ
(j)
k is the probability of a positive response

within subclass k viewed as an event of false detection for controls and hence is termed the false

positive rate (FPR); the FPRs for subclass k are collected in the FPR profile vector ψk which

is then combined by column into the matrix Ψ = [ψ1|...|ψK ] for all subclasses. The control
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8 Z. Wu and others

distribution of the 2J measurement patterns (∀m ∈ {0, 1}J) are then given by

P 0(m) = P(Mi = m | ν,Ψ, Yi = 0) =
K∑

k=1

νk

J∏
j=1

{
ψ
(j)
k

}mj
{

1− ψ(j)
k

}1−mj

. (2.3)

2.3 Case Likelihood

For a case with known cause, her vector of binary measurements is again assumed to be generated

from a latent K-subclass model as for the controls. In PERCH context, motivated by the obser-

vation that cases and controls have similar correlation patterns for many pathogen pairs (e.g.,

Appendix Figure 2), we let the cases share controls’ measurement characteristics. To be more

precise, given a case’s disease class Ii = `0 ∈ {1, . . . , L}, with L = J , she falls into subclass k with

probability ηk, for k = 1, ...,K. Then subclass k’s response probabilities are assumed equal to

ψ
(j)
k as in controls for j 6= `0, and equal to a new parameter θ

(j)
k for j = `0. That is, an infection

by pathogen j may alter the response probabilities in the j-th dimension but not others. Since

the disease for cases i is in fact unknown, her measurement distribution is a mixture across all L

states given by P 1(m) = P(Mi = m | π,η,Θ,Ψ, Yi = 1), ∀m ∈ {0, 1}J ,

P 1(m) =
L∑

`=1

π`

K∑
k=1

ηk {θ(`)k

}m`
{

1− θ(`k
}1−m` ∏

j 6=`

{
ψ
(j)
k

}mj
{

1− ψ(j)
k

}1−mj

 , (2.4)

where Θ is a parameter matrix with (j, k)-th element θ
(j)
k .

We can reformulate (2.4) by a three-stage generative process similar to (2.1-2.2) by indicators

of case disease classes Ii and the nested subclasses Zi:

sample class indicator : Ii | Yi = 1 ∼ Multinomial({1, ..., L},π), (2.5)

sample subclass indicator : Zi | Ii = ` ∼ Multinomial({1, ...,K},η), ` = 1, ..., L (2.6)

generate measurements : Mij | Zi = k, Ii ∼ Bernoulli
(
θ
(j)
k 1{Ii=j} + ψ

(j)
k 1{Ii 6=j}

)
, (2.7)

independently for 1 ≤ j ≤ J . At the first stage, the vector π comprises probabilities of a case in

class 1 to L and is the primary target of inference in this paper. Then, the cases’ subclass mixing

http://biostats.bepress.com/jhubiostat/paper276



Nested Partially-Latent Class Models for Dependent Data 9

weights η = (η1, . . . , ηK)′ determines the probability of a case falling into each subclass. The

final stage generates the measurement at the j-th dimension: positive with probability θ
(j)
k or

ψ
(j)
k according as the realized values of Ii and Zi in previous steps. Because θ

(j)
k is the probability

of true detection for infections caused by pathogen j, we term it true positive rate (TPR) and

collect them in θk = (θ
(1)
k , . . . , θ

(J)
k )′ for subclass k.

Importantly, case and controls’ subclass mixing weights (η and ν) need not be identical. This

admits a measurement dependence structure for cases different from that in controls, such as

pathogen increased or reduced interactions due to the former’s lung infection. We refer to the

special case of η = ν (element-wise equality) as non-interference submodels, under which controls

and cases of class j have identical distributions of the leave-one-dimension-out measurement

vector Mi[−j]. Further setting η1 = ν1 = 1, or K = 1, gives the pLCM.

We have assumed cases’ latent states categories take value from a complete list of J measured

pathogens (i.e., L = J). The case likelihood (2.4) can be extended to account for other causes

by adding an extra term: πJ+1

∑K
k=1 ηk

(∏J
j=1{ψ

(j)
k }mj{1− ψ(j)

k }1−mj

)
, where πJ+1 = P(Ii =

J + 1) is the total etiology fraction of other causes. For a clinically-confirmed pneumonia case,

the negative responses on J pathogens by highly-sensitive assays indicate the possibility of other

etiologic pathogens.

Combining (2.3) and (2.4), the joint likelihood across independent subjects is given by

L(π,Θ,Ψ,ν,η;D) =
∏

i:Yi=0

P 0(Mi)
∏

i:Yi′=1

P 1(Mi′), (2.8)

where D collects all the measurement data.

2.4 Properties

The proposed model extends pLCM in Wu and others (2015) by adding (3J+1)(K−1) additional

parameters compared to the original formulation with the total number of parameters linear in J

when K � J providing a parsimonious approximation to the case and control joint distributions

Hosted by The Berkeley Electronic Press



10 Z. Wu and others

that require 2(2J − 1) parameters in a saturated model. We further reduce the effective number

of parameters using a penalty prior (Section 2.5).

We assumed that the LD of measurements within each case class can be explained by allowing

the same number of LI subclasses as in the controls, so that the case subclass measurement

parameters can be partly informed by their control counterparts (see (2.7)). Additional case

subclasses can be included once Ii is directly observed for some cases.

In Appendix A, we provide expressions of the marginal means and pairwise associations

for multivariate binary measurements given the npLCM likelihood. These formulas are used to

study the magnitude of dependence given true parameters and to generate marginal posterior

distributions for observables used in model checking, as illustrated in Section 4.1 and 5.

2.5 Prior Specifications

For the npLCM, we specify the prior distributions on unknown parameters as follows:

π ∼ Dirichlet(a1, . . . , aL), (2.9)

ψ
(j)
k ∼ Beta(b1kj , b2kj), j = 1, ..., J ; k = 1, ...,∞, (2.10)

θ
(j)
k ∼ Beta(c1kj , c2kj), j = 1, ..., J ; k = 1, ...,∞, (2.11)

Zi | Yi = 1 ∼
∞∑
k=1

Uk

∏
s<k

[1− Us] δk, Uk ∼ Beta(1, α1), i = 1, ..., n1, (2.12)

Zi | Yi = 0 ∼
∞∑
k=1

Vk
∏
s<k

[1− Vs]δk, Vk ∼ Beta(1, α0), i = n1 + 1, ..., n1 + n0, (2.13)

α0, α1 ∼ Gamma(0.25, 0.25), (2.14)

where δk is a point mass on k, and prior independence is also assumed among these parameters.

As discussed in more detail by Wu and others (2015), the npLCM is partially identified (Jones

and others, 2010). Specifically, the TPRs Θ are not fully identified by the model likelihood

(2.8). Therefore, we choose (c1kj , c2kj),∀k, j, so that the 2.5% and 97.5% quantiles of the Beta

distribution with parameters (c1kj , c2kj) match the prior minimum and maximum TPR values

http://biostats.bepress.com/jhubiostat/paper276



Nested Partially-Latent Class Models for Dependent Data 11

elicited from pneumonia experts (Section 5). Otherwise, we use the default value of 1s for the

Beta hyperparameters. Hyperparameters for the etiology prior, (a1, ..., aJ)′, are usually 1s to

denote equal and non-informative prior weights for each pathogen if expert prior knowledge is

unavailable.

Because our goal is to estimate the etiology fractions, π, after marginalizing over subclass in-

dicators (Zi), the parameters for the dependence structure within each disease class are nuisance

parameters. Therefore, rather than fixing K, we let K be a random positive integer and perform

model averaging using a prior that encourages small values of K to incorporate its uncertainty

into the inference about π in a parsimonious way. This prevents model overfitting in finite sam-

ples when the observed contingency table for the multivariate binary PERCH measurements has

mostly empty cells. In (2.12) and (2.13), we have actually specified stick-breaking priors for both

η =
{
Uk

∏
s<k [1− Us]

}
k=1,2,...

and ν =
{
Vk
∏

s<k[1− Vs]
}
k=1,2,...

that on average place decreas-

ing weights on the kth subclass as k increases (Sethuraman, 1994). Appendix B further discusses

the use of stick-breaking prior in our model. The priors above are conjugate to the likelihood of

unknown parameters, making the Gibbs sampler in Section 3 conveniently constructed.

3. Posterior Computations

The posterior distributions of the population etiology fraction vector (π), TPRs (Θ) and FPRs

(Ψ) can be estimated by simulating approximating samples from the joint posterior via Markov

chain Monte Carlo (MCMC) algorithms (Brooks and others, 2011). Appendix Figure 1 presents

the directed acyclic graph (DAG) for the model structure with observed and latent variables in

the npLCM. For posterior computation involving stick-breaking priors, without truncation on the

number of stick segments, Walker (2007) and Papaspiliopoulos and Roberts (2008) proposed the

slice sampler and retrospective MCMC, respectively. In the following, we develop a simple and

efficient blocked Gibbs sampler relying on truncation approximation to the stick-breaking prior
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12 Z. Wu and others

distribution (e.g., Ishwaran and James, 2001; Gelfand and Kottas, 2002). We also include in the

sampling algorithms two sets of auxiliary variables, the partially-latent individual class indicator

(Ii) the nested subclass indicator (Zi). Appendix C shows the algorithm step-by-step.

All model estimations are performed by the R package “baker” (https://github.com/zhenkewu/baker)

that interfaces with freely available software JAGS 3.4.0 (http://mcmc-jags.sourceforge.net/).

Convergence was monitored via MCMC chain histories, auto-correlations, kernel density plots,

and Brooks-Gelman-Rubin statistics (Brooks and Gelman, 1998). The statistical results below

are based on 10, 000 iterations of burn-in followed by 50, 000 production samples from each of

three parallel chains. Samples from every 50 iterations are retained for inference.

4. Asymptotic and Simulation Studies of Nested Partially-Latent Class Models

This section presents asymptotic and simulation studies to show that for cases like PERCH 1)

when the LI assumption is incorrect, a working LI model will estimate π with asymptotic bias;

2) fitting the LD model to data generated with LI does not lose too much efficiency using sparse

priors on subclass indicators; and 3) compared to the LI model, the LD model produces 95%

credible intervals for π with better actual coverage rates.

4.1 Asymptotic Bias Evaluations

We first evaluate the asymptotic bias of using a working LI model (pLCM) in the estimation of π

for J causes, i.e., L = J . Under the LI assumption, let the maximum likelihood estimator be π̂N =

(π̂N,1, . . . , π̂N,J−1, π̂N,J)′, where the J-th etiologic fraction is estimated as π̂N,J = 1−
∑

`6=J π̂N,`

and N = n1 + n0 is the total sample size. The estimator {π̂N,`}1≤`≤J−1 will converge to the

first L − 1 components of the parameter vector ω∗ = (π∗1 , . . . ,π
∗
J−1,ψ

∗M)′ that minimizes the

http://biostats.bepress.com/jhubiostat/paper276
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Nested Partially-Latent Class Models for Dependent Data 13

Kullback-Leibler information criterion, or equivalently, to the ω∗ that satisfies

EΩ0

{
∂

∂ω
logPω(Mi | Yi)

∣∣∣
ω∗

}
= 0, (4.15)

where Ωo = (πo,Ψo,Θo) is the collection of etiologic fractions, FPRs and TPRs in the true data

generating mechanism, and Pω(Mi | Yi) is the likelihood of the pLCM given by

(4.16)
∑
` 6=J

π` · f`(Mi,ψ
M) +

1−
∑
`6=J

π`

 · fJ(Mi,ψ
M),

where f`(m,ψM) = (θM` )mj (1 − θM` )1−mj
∏

j 6=`(ψ
M
j )mj (1 − ψM

j )1−mj for cases Yi = 1; and∏J
j=1(ψM

j )mij (1 − ψM
j )1−mij for controls Yi = 0. We also fix at the true values the marginal

sensitivities θMj =
∑K

k=1 θ
(j)
o,kηk, j = 1, . . . , J , to eliminate the partial-identifiability issue and to

focus on asymptotic bias evaluations. Our calculation of the expectation in (4.15) assumed equal

case and control sample sizes, and could be easily modified for other sampling ratios. Further,

White (1982) also established the asymptotic normality of the estimator:
√
N(ω̂N − ω∗)

d→

N
(
0, A(ω∗)−1B(ω∗)A(ω∗)−1

)
, where

A(ω∗) = −EΩ0

{
∂2

∂ω2
logPω(Mi | Yi)

∣∣∣
ω∗

}
, B(ω∗) = VΩ0

{
∂

∂ω
logPω(Mi | Yi)

∣∣∣
ω∗

}
. (4.17)

The robust variance of ω̂N is calculated as V ∗R = N−1A−1(ω∗)B(ω∗)A−1(ω∗) by approximating

the variance operator in B(ω∗) using empirical samples. We use Monte Carlo method with 107

samples from [Mi | Yi = y], for y = 0, 1, to evaluate the expectation in (4.15) and then numerically

solve it for its root to obtain ω∗. We then calculate (4.17) by plugging in ω∗ and evaluating the

expectation using 107 Monte Carlo samples.

The strength of LD given disease class determines the estimation bias. When the true data

generating mechanism is close to independence, the working LI model estimates of π are close

to being asymptotically unbiased. To illustrate, we quantify the asymptotic bias for J = 5

binary measures (pathogens A, B, C, D and E). We generate Monte Carlo samples from the

true data generating mechanisms with varying degrees of LD, while fixing the etiologic fraction
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14 Z. Wu and others

πo = (0.5, 0.2, 0.15, 0.1, 0.05)′ to mimic what is seen in PERCH. We create associations among

measurements by defining two subclasses (K = 2) for each of the 6 disease states (controls plus 5

disease classes for cases). We consider two scenarios of measurement parameters (Ψ,Θ): (I) little

LD — small between-subclass differences in positive rates; (II) substantial LD — large differences

(see Appendix F).

The subclass weights characterize the degree of LD. We assume controls and cases fall into

the first subclass with probability νo = 0.5 and ηo ∈ [0, 1], respectively. Row (a) of Figure 3

summarizes both the marginal and within-class dependence for Scenario I and II. The marginal

associations are stronger in Scenario II (solid curves). Note that the within-class odds ratio curves

leave and return to 1 and remain above or below 1 as ηo increases from 0 to 1 (non-solid lines

labelled by A-E in small panels), because when all the weight is on one of the two subclasses, the

true data generating mechanism satisfies LI. In particular, the equality ηo = νo(= 0.5) represents

identical LD structures (non-interference submodels) for cases and controls, with deviations from

it indicating differential dependence patterns.

Row (b) of Figure 3 summarizes the results by the percent relative asymptotic bias (PRAB)

at all ηo values for each etiologic fraction, (π∗` −πo,`)/πo,`×100%. The working LI model produces

PRABs less than 13% in magnitude in Scenario I. Given small asymptotic biases, we also obtain

good estimates of precision produced by the working LI model with the ratios for model-based

variance V ∗M = N−1A−1(ω∗) versus the robust variance V ∗R between 0.972 and 1.052 for A-E.

The two variances are mathematically identical at arbitrary parameter values if marginal FPRs

(ψM) are known.

The asymptotic bias is large under strong LD as in Scenario II. For example, the working LI

model overestimates πoC with 121.3% relative bias at ηo = 0 for its failure to account for the

strong LD among controls. When the case LD is more similar to controls at ηo = 0.5, the PRAB

is 40.5%. This is because the measurement on C is negatively associated with the measurements
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on B, D, or E given disease class B, D, or E, i.e. mutual inhibition (see shaded cells in Figure

3, a-II), leading to the case pattern Mi = (1, 0, 1, 1, 0)′ observed twice as frequently as expected

by a working LI model. When they are further assigned with the highest likelihood to cause C

under the working LI model, the upward bias results.

4.2 Bayesian Fitting in Finite Samples

In finite samples, one can fit the larger LD model that a priori encourages a small number of

subclasses. Extra subclasses can be used if the measurements have rich multivariate associations.

Through simulations, we compare Bayes estimates of etiologic fractions obtained from the npLCM

and pLCM. We generate T = 1, 000 datasets with sample size n1 = n0 = 500 under Scenario I

and II. We fit the npLCM (truncation level K∗ = 5 subclasses) and pLCM (K = 1) to each data

set using informative Beta priors on the true positive rates ({θ(j)k }) with 0.5 and 0.99 as the 2.5%

and 97.5% quantiles mimicing PERCH study.

We view the Bayes estimates as functionals of data and assess their frequentist properties,

such as bias and variance (e.g. Efron, 2015). We define the repeated-sampling bias of the poste-

rior mean and its mean squared error (MSE) respectively as limT T
−1∑T

t=1

{
π
(t)
` − πo,`

}
, and

limT T
−1∑T

t=1(π
(t)
` − πo,`)2, ` = A, . . . , E, where π

(t)
` = E{π` | D(t),M} is the posterior mean

taken with respect to the posterior distribution of π given the t-th simulated data set D(t) and

model M.

The top panel of Table 1 compares the estimation bias by posterior means obtained from

the two models. For a data set with finite sample size, estimation bias can arise from random

sampling, model mis-specification or the prior, for which the first is averaged out by replication.

The non-zero biases seen here reflect likelihood mis-specification and the influence of the prior.

When the likelihood is correctly specified, only biases from priors remain. In Scenario II with

strong LD, the npLCM performs much better. For example, the LI assumption (pLCM) results
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in an upward bias of 26.2% for C at ηo = 0, as well as other highlighted biases greater than 10%

in magnitude. In Scenario I with weak LD, the biases from both models are negligible (−1.9% ∼

1.9%).

When the truth is close to LI, the npLCM is comprablely efficient to pLCM for almost all

settings. The bottom panel of Table 1 shows the the ratio of MSEs for pLCM versus npLCM. In

Scenario I, the ratios are close to 1 indicating the npLCM has efficiently used stick-breaking to

strike the balance between estimation bias and variance. In Scenario II, compared to the pLCM,

the npLCM produced smaller MSEs for C at all ηo values, where the advantage is largely explained

by smaller biases.

The npLCM also produces 95% credible intervals (CI) with near-nominal empirical coverage

rates. For example, Appendix Table 1 highlights that the substantial under-coverages (< 80%)

only occurred when assuming LI. Because of the extra variability from the informative priors

on the TPRs, the CIs are conservative in Scenario I for both models. The over-coverage of both

models is largely due to the assumed variances in the TPR parameters.

5. Analysis of PERCH Data

The Pneumonia Etiology Research for Child Health (PERCH) study is a standardized and com-

prehensive case-control study that has enrolled over 4, 000 patients hospitalized for severe or very

severe pneumonia and over 5, 000 controls selected randomly from the community, frequency-

matched on age in each month. Its objective is to evaluate etiologic agents causing severe and

very severe pneumonia among hospitalized children aged 1-59 months in seven low and middle

income countries with a significant burden of childhood pneumonia and a range of epidemiologic

characteristics (Levine and others, 2012). More details about the PERCH design can be found

in Deloria-Knoll and others (2012).

Using preliminary PERCH data from one site, we focus on PCR assays on nasopharyngeal
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(NP) specimens for cases and controls. We illustrate the advantage of the npLCM in account-

ing for measurement LD, with improved efficiency, better empirical fit, and more valid etiology

estimation. Results for all seven countries will be reported elsewhere upon study completion.

Included in the current illustrative analysis are NPPCR data for 592 cases and 613 controls on 6

species of pathogens (abbreviations and full names in Appendix F).

We have compared the population etiology fractions, π, estimated separately by two methods:

the pLCM and the npLCM with subclass truncation levelK∗ = 10. The npLCM results are similar

when larger values of K∗s are used. As discussed in Section 2.5, we need expert prior knowledge

on the sensitivities for posterior inference by both methods; we used elicited sensitivity priors

from laboratory experts with range 50 ∼ 99.5%. Given our focus on 6 leading pathogens, we

include the “other” cause for completeness as discussed in Section 2.3.

Strong LD is present in the analyzed data, with statistically significant log odds ratios observed

for 6 out of 30 pathogen pairs among cases and controls, ranging from −2.47 (s.e.: 1.01) to

1.67 (s.e.: 0.39), and also by noting that under LI assumption we expect 0.05 × 30 = 1.5(±2.4)

such pairs. In addition, as noted in Berger and Sellke (1987) and Dunson and Xing (2009), the

interval null hypothesis H0 : maxk ηk > 1 − ε, is useful for detecting deviations from the point

null of exact LI. We choose ε = 0.05 based on experience in simulation studies and to permit

deviations from LI so small as to be non-significant in our application. The largest subclass

weight is estimated with 95% CI (0.65, 0.89) for the cases and (0.27, 0.75) for the controls, again

suggesting non-negligible LD in the data.

Figure 4(a) compares the results obtained from the pLCM (left boxes) and npLCM (right

boxes). Each vertical box-and-whisker shows the marginal posterior mean (solid dot) and median

(segment within box), with 95% credible interval (CI; between whisker endpoints) and 50%

CI (between top and bottom box edges) of the etiologic fraction for each pathogen listed on

the horizontal bar. The two approaches produce differences in the posterior means of etiologic
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18 Z. Wu and others

fractions between −9.9% and 9.5%. Half of the largest increase in RHINO, from 5.2 (95% CI: 0.3 ∼

17.9)% to 15.1 (5.9 ∼ 27.5)% is explained by its increase in predicted individual etiologies for

cases with the NPPCR data 000010 (Figure 5, bottom left).

The npLCM also provides a better empirical fit. We have compared the posterior predictive

distributions (Gelman and others, 1996) of the frequencies of common NP measurement patterns

to the observed values separately in the cases and the controls. Among cases (left panel in Figure

4(b)), for example, the npLCM adequately predicts the observed frequencies of the 2nd and

6th most common case patterns (000001: 12.5%; 000100: 5.4%) by accounting for the negative

associations of RSV with other pathogens with the log odds ratios ranging from −3.37 to −0.12

(3 out of 5 statistically significant).

We also examine the pairwise associations by calculating the standardized LOR difference

(SLORD) defined to be the observed LOR for a pair of measurements minus the mean LOR

for the predictive distribution value from each method divided by the standard deviation of the

LOR predictive distribution. Appendix Figure 3 shows 9 pairs of pathogens that have statistically

significant deviations of model predicted LORs from the observed ones for the pLCM and only

3 pairs for the npLCM. A blank cell indicates a good model prediction for the observed pairwise

LOR (| SLORD |< 2). The npLCM achieves a better fit by noting that, for a well-fitting model,

we expect 1.5(±2.4) non-blank cells. The associations between pairs of measurements (HMPV-

A/B,RSV) and (PARA-1,RSV) are not expected in either model, although npLCM does better. In

the PERCH study, we observed that seasonal variation in the rate of detection for RSV, HMPV-

A/B and PARA-1 were out of phase and seasonal regression adjustment, discussed elsewhere, can

sensibly account for this negative association.
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6. Discussion

In this paper, we derived and tested a nested pLCM to allow for local dependence among bi-

nary observations given class membership. We compare this new model with a special case that

depends on local independence in terms of asymptotic and finite sample size properties. The

npLCM reduces large-sample estimation bias, retains the estimation efficiency and gives more

valid inferences about π than the pLCM. The npLCM family also makes it possible to study the

sensitivity of scientific findings to the LI assumption when pLCM is used.

The model first approximates the probability distribution for the control measurements by

a mixture of product Bernoulli distributions with mixing weights penalized towards a mixture

with few components. The estimated control dependence structure is then applied to the case

model with modifications that represent the influence of the latent disease state. This valuable

information from controls may help distinguish competing models for the local dependence among

measurements and warrant further studies (e.g. Albert and others, 2001).

In the analysis of 6 leading pathogens from the PERCH study, RSV is estimated to be the most

prevalent infectious cause of childhood pneumonia except the “other” category. That evidence is

robust to the LD assumption. Accounting for LD structure leads to notable increases in etiologic

fraction estimates of two pathogens and decrease in another. The npLCM can also integrate

extra measurements of better qualities, for example, blood culture tests for bacteria that have

near-perfect specificities to inform TPRs and improve efficiency (Hammitt and others, 2012).

In this paper, we assumed a single primary cause for each pneumonia case in the npLCM.

This framework can be extended from a single to multiple causes by using a latent vector for

case i, Ii ∈ {0, 1}J , where Iij = 1 indicates pathogen j is a component cause. For example, Hoff

(2005) used Dirichlet process mixture models to identify multiple abnormal genomic locations

that are jointly responsible for each case’s disease, but using case-only data with LI assumption.

Alternatively, one can place an exponential penalty on the number of causes (e.g., Zhang and Liu,
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2007), or use conditionally specified models [Iij = 1 | Ii[−j],Xij ] to characterize the interactions

among pathogens (Besag, 1974), where Xij is a vector of covariates predictive for pathogen

j being a cause in case i. The computational cost to fit these models increases substantially

because the search space for the latent vector Ii expands exponentially in J . Development of

efficient and reliable posterior sampling algorithms can allow investigators to assess the evidence

of multiple-pathogen etiologies as more measurements accrue.

A second extension of the npLCM family motivated by PERCH is to allow the etiology

distribution and false positive rates to depend upon covariates. For example, season, child’s age

and HIV status. Regression versions for npLCM have been implemented and are the subject of

current study.

Finally, Wu and others (2015) derived the pLCM model to be used with a combination of

direct measurements of cases’ lungs without error and peripheral measures of cases and controls

with error. With gold-standard data, this analyses is an example of supervised learning. The

npLCM can be used in the same way. In the PERCH application, we rely entirely on peripheral

samples, so the analyses is largely unsupervised. Robustness of inferences to model assumptions

is critical.

Supplementary Material

The reader is referred to the on-line Supplementary Materials for technical appendices, additional 

simulations referenced in Sections 2, 3, 4 and 5.
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Fig. 1: Schematic of PERCH problem for an individual case i. Ii for latent state; Mi for mul-
tivariate binary measurements; Θ and Ψ for true- and false-positive rates; Xi for covariates.
Quantities in rectangles are observed and those in ovals are unknown.

Fig. 2: Borrowing measurement characteristics from controls to cases using K = 2 subclasses for
each disease class. Five pathogens (A to E) are measured in this example.
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Table 1: Comparison of Bayes estimates of etiology fractions obtained from npLCM ( sf np) and
pLCM (p). Top: direct bias of the posterior mean (π`−πo,`); Bottom: ratio of mean squared errors
(MSE) for pLCM vs npLCM. All numbers are averaged across 1, 000 replications and multiplied
by 100.

Truth: Cases’ First Subclass Weight (ηo)

Model 0 0.25 0.5 0.75 1

Class 100×Bias( Standard Error)

I

A
np -0.8( 0.1) -0.5( 0.1) -0.2( 0.1) 0.1( 0.1) 0.4( 0.1)

p -1.1( 0.1) -0.7( 0.1) -0.3( 0.1) -0.1( 0.1) 0.0( 0.1)

B
np -0.6( 0.1) -0.5( 0.1) -0.4( 0.1) -0.5( 0.1) -0.4( 0.1)

p -0.6( 0.1) -0.5( 0.1) -0.6( 0.1) -0.5( 0.1) -0.3( 0.1)

C
np 1.4( 0.1) 0.7( 0.1) -0.1( 0.1) -0.9( 0.1) -1.7( 0.1)

p 1.9( 0.1) 0.8( 0.1) -0.1( 0.1) -0.9( 0.1) -1.9( 0.1)

D
np -0.1( 0.1) 0.1( 0.1) 0.4( 0.1) 0.6( 0.1) 0.9( 0.1)

p -0.2( 0.1) 0.3( 0.1) 0.5( 0.1) 0.7( 0.1) 1.1( 0.1)

E
np 0.0( 0.1) 0.2( 0.1) 0.3( 0.1) 0.6( 0.1) 0.7( 0.1)

p 0.0( 0.0) 0.2( 0.1) 0.5( 0.1) 0.8( 0.1) 1.0( 0.1)

II

A
np 4.5( 0.1) 5.7( 0.1) 5.5( 0.1) 3.5( 0.1) 0.5( 0.1)

p -3.6( 0.1) 0.2( 0.1) 3.0( 0.1) 5.0( 0.1) 5.5( 0.1)

B
np -5.7( 0.1) -6.1( 0.1) -4.9( 0.1) -2.1( 0.1) 1.9( 0.1)

p -13.5( 0.1) -8.5( 0.1) -4.3( 0.1) -0.3( 0.1) 4.1( 0.1)

C
np 4.5( 0.1) 4.1( 0.1) 2.1( 0.1) -1.0( 0.1) -6.2( 0.1)

p 26.2( 0.1) 13.6( 0.1) 3.7( 0.1) -4.8( 0.1) -12.5( 0.0)

D
np -2.4( 0.1) -2.5( 0.1) -1.7( 0.1) -0.4( 0.1) 2.1( 0.1)

p -5.8( 0.0) -3.3( 0.1) -1.6( 0.1) -0.2( 0.1) 1.3( 0.1)

E
np -1.0( 0.0) -1.3( 0.0) -1.0( 0.0) -0.1( 0.1) 1.6( 0.1)

p -3.2( 0.0) -1.9( 0.0) -0.8( 0.1) 0.4( 0.1) 1.7( 0.1)

Class 100×Ratio of MSE( Standard Error)

I

A 94( 6) 115( 7) 100( 6) 92( 6) 91( 6)

B 105( 6) 94( 6) 98( 6) 96( 6) 91( 6)

C 114( 7) 101( 6) 93( 5) 93( 5) 90( 5)

D 104( 6) 105( 6) 96( 6) 97( 6) 108( 7)

E 97( 4) 96( 6) 124( 7) 98( 6) 119( 7)

II

A 82( 4) 25( 1) 47( 2) 115( 6) 221( 12)

B 516( 11) 177( 5) 80( 3) 62( 4) 140( 8)

C 2379( 77) 711( 26) 131( 7) 268( 13) 357( 8)

D 397( 14) 152( 6) 94( 5) 79( 4) 60( 4)

E 357( 13) 151( 6) 102( 5) 95( 6) 82( 5)
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Fig. 4: Top: Comparison of the posterior distributions of π between the pLCM (left) and npLCM
(right); The numbers above are the posterior means (×100). Bottom: Posterior predictive distri-
butions (PPD) for 10 most frequent multivariate binary patterns separately for cases (left panel)
and controls (right panel). The observed frequencies are overlayed as short segments across pairs
of box-and-whiskers; the means of the PPDs (×100) are shown above them in actual numbers.
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Fig. 5: Individual etiology distribution estimated by the empirical distribution of MCMC samples
of the disease class indicator. Here four NPPCR data patterns are represented by the binary codes
at the top (no measurements on “other” causes hence left as “-”), with its observed frequency
marked beneath. The height of a bar represents the probability of a case caused by each of the
7 causes labelled on the horizontal axis. For each cause, paired bars compare the estimates from
the pLCM (left) and the npLCM (right); Extra predictions are in Appendix Figure 4.
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Appendix A. Mean and Covariance Structure

In this section, we present and discuss formulas for the model-based marginal observation rates

and pairwise log odds ratios among cases and controls. They can be readily modified to accom-

modate “other” causes as discussed in Section 2.3 of the main text.

Appendix A.1 Marginal Observation Rate

The marginal observation rates are given by

P(Mi′j = 1 | Yi′ = 1) = πj

K∑
k=1

θ
(j)
k ηk + (1− πj)

{
K∑
k=1

ψ
(j)
k ηk

}
, (A1)

P(Mij = 1 | Yi = 0) =
K∑
k=1

ψ
(j)
k νk. (A2)

In the context of childhood pneumonia problem, Equation (A1) indicates that the observed

rate of pathogen j among cases comprises of two parts: cases whose disease is caused by pathogen

∗To whom correspondence should be addressed.
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2 Z. Wu and others

j for which the observation is a true positive event, and those whose disease is caused by another

pathogen for which the observation is a false positive.

The case and control mean observation rates for pathogen j are equal (i.e., non-interference

submodel; Section 2.3 of main text) when either of Condition (I) or (II) below holds.

(I) ψ
(j)
1 = · · · = ψ

(j)
K = ψ(j) and

K∑
k=1

θ
(j)
k ηk = ψ(j);

(II) η = ν, and

K∑
k=1

[
θ
(j)
k ηk − ψ(j)

k νk

]
= 0.

The first part of Condition (I) says that the binary response on dimension j is constant across

subclasses among controls, which implies independence of j-th dimension’s measurement to other

dimensions. The second part says, within the jth disease class, the marginal observation rate of

dimension j equals the control rate.

Condition (II) means case and control subclass weights are equal and the observation rate in

the jth case class equals that in the controls.

Appendix A.2 Marginal Pairwise Log Odds Ratios

The marginal pairwise log odds ratio ωj` for pathogen pair (j, `) among cases is given by:

ωj` = log

{
P(Mij = 1,Mi` = 1)P(Mij = 0,Mi` = 0)

P(Mij = 1,Mi` = 0)P(Mij = 0,Mi` = 1)

}
= log

(
J∑
c=1

πc

[
K∑
k=1

{
θ
(j)
k

}1{c=j} {
ψ
(j)
k

}1{c6=j} {
θ
(`)
k

}1{c=`} {
ψ
(`)
k

}1{c6=`}
ηk

])

− log

(
J∑
c=1

πc

[
K∑
k=1

{
1− θ(j)k

}1{c=j} {
1− ψ(j)

k

}1{c 6=j} {
θ
(`)
k

}1{c=`} {
ψ
(`)
k

}1{c 6=`}
ηk

])

+ log

(
J∑
c=1

πc

[
K∑
k=1

{
1− θ(j)k

}1{c=j} {
1− ψ(j)

k

}1{c 6=j} {
1− θ(`)k

}1{c=`} {
1− ψ(`)

k

}1{c 6=`}
ηk

])

− log

(
J∑
c=1

πc

[
K∑
k=1

{
θ
(j)
k

}1{c=j} {
ψ
(j)
k

}1{c6=j} {
1− θ(`)k

}1{c=`} {
1− ψ(`)

k

}1{c 6=`}
ηk

])
. (A3)

Setting K = 1 in the formula gives log odds ratios for a locally independent model (Wu and
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others, 2015). When K > 1, suppose nearly all of pneumonia is caused by pathogen j: πj ≈ 1,

we calculate ωj` under two scenarios:

a) If the true positive rates for pathogen j across subclasses, i.e. θ
(j)
k , k = 1, ...,K, are equal,

then ωj` ≈ 0, that is, we have approximate marginal independence between measurements

on the jth pathogen and the rest among the cases;

b) If the number of subclasses K = 2 and true positive rates θ
(j)
k , k = 1, 2 are very different,

say, 1 versus 0 as an extreme example, we can show that ωj` = logit(ψ
(`)
1 )−logit(ψ(`)

2 ), which

means the pairwise log odds ratio between pathogen j and ` among cases is determined by

the variation of control subclass FPRs for the `th pathogen.

Appendix B. Stick-Breaking Prior

This section briefly discusses the stick-breaking priors used in the Bayesian inference for the

nested partially-latent class models. A stick-breaking mixture model in theory has countably

infinite number of subclasses. However, because the νk and ηk decrease exponentially quickly in

k, a priori, we expect that only a small number of subclasses will be used to model the data.

The expected number of subclasses from a stick-breaking prior is logarithmic in the number of

observations (Hjort and others, 2010). This is different than a finite mixture model, which uses

a fixed number of clusters to model the data. In the stick-breaking mixture model, the actual

number of clusters used to model data is not fixed, and can be automatically inferred from data

using the usual Bayesian posterior inference framework (Neal, 2000).

Equations (2.12)-(2.14) in the text place exchangeable prior weight on the subclasses. Follow-

ing Ishwaran and James (2002), in our computations, we truncate the infinite sum to the first K∗

terms with K∗ sufficiently large to balance computing speed and approximating performance of

the model. In our simulations and data application K∗ = 10 is usually deemed adequate. Most

subclass measurement profiles are not assigned with meaningful weights either in the simula-
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4 Z. Wu and others

tions or in data application, so that a small number of effective subclasses are usually sufficient

for approximation. Also, by placing hyperpriors on stick-breaking parameters α0 and α1 as in

Equation (2.14) in the text, we can let the data inform us about the desired sparsity level for

approximating the probability contingency tables for the control and each disease class. A small

value of the estimate α̂0 (α̂1) suggests that only a small number of subclasses are necessary for

the controls (cases). We have chosen hyperparameters in the Gamma hyperpriors for α1 and α1

to be (0.25, 0.25) which gives good parameter estimation performance in simulations.

Appendix C. Gibbs Sampler Algorithm

We propose the following MCMC sampling steps, assuming the truncation level is K∗ = K:

1. Update the class indicator Ii′ for cases i′ = 1, ..., n1, from a multinomial distribution with

probabilities

P(Ii′ = j | · · · ) = p
(j)
i′ ∝ [Mi′ | Zi′ ,Θ,Ψ, Ii′ = j][Zi′ | η, Ii′ = j][Ii′ = j | π]

∝
{
θ
(j)
Zi′

}Mi′j {
1− θ(j)Zi′

}1−Mi′j ∏
l 6=j

{
ψ
(l)
Zi′

}Mi′l {
1− ψ(l)

Zi′

}1−Mi′l
· ηZi′ · πj ,

for j = 1, ..., J .

2. Update subclass indicators Zi′ for case i′ = 1, ..., n1, from a multinomial distribution with

probabilities

P(Zi′ = k | · · · ) = qi′k ∝ [Mi′ | Zi′ , Ii′ ,Θ,Ψ][Zi′ | Ii′ ,η]

∝ ηk ·
{
θ
(Ii′ )
k

}Mi′I
i′
{

1− θ(Ii′ )k

}1−Mi′I
i′
∏
l 6=Ii′

{
ψ
(l)
k

}Mi′l {
1− ψ(l)

k

}1−Mi′l
.

Update subclass indicators Zi for control i = n1 + 1, ..., n1 + n0, from a multinomial distri-

bution with probabilities

P(Zi = k | · · · ) = qik ∝ [Mi | Zi = k,Ψ][Zi = k | ν]
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∝ νk ·
J∏
j=1

{
ψ
(j)
k

}Mij
{

1− ψ(j)
k

}1−Mij

, k = 1, ...,K.

3. Update the case subclass weights η for j = 1, ..., J from

pr(η | · · · ) ∝
∏

i′:Ii′=j

[Zi′ | η, Ii′ ][η | α1]

which can be accomplished by first setting u∗K = 1 and sampling

u∗k ∼ Beta

(
1 + z′k, α1 +

K∑
l=k+1

z′l

)
, k = 1, ...,K − 1,

where z′k is the number of cases assigned to subclass k in class j. We write

z′k = # {i′ : Yi′ = 1, Zi′ = k, Ii′ = j} ,

for k = 1, ...,K−1, where “#A” counts the number of elements in set A. We then construct

η1 = u∗k, ηk = u∗k
∏k−1
l=1 {1− u∗l }, k = 2, ...,K.

4. Update the control subclass weights ν = (ν1, ..., νK)T from

pr(ν | · · · ) ∝
∏
i:Yi=0

[Zi | ν] · [ν | α0],

which can be accomplished by first setting v∗K = 1 and sampling

v∗k ∼ Beta

(
1 + zk, α0 +

K∑
l=k+1

zk

)
, k = 1, ...,K − 1,

where zk is the number of controls assigned to subclass k, and then constructing ν1 = v∗k,

νk = v∗k
∏k−1
l=1 (1− v∗l ), k = 2, ...,K.

5. Update concentration parameter α0 and α1 for stick-breaking prior from

pr(α0 | · · · ) ∝ [ν | α0][α0] ∝ αK−10 exp(−α0 · r) · pr(α0),

where r = −
{∑K−1

k=1 log(1− ν∗k)
}

. If conditionally conjugate prior for α0 is used, i.e.

α0 ∼ Gamma(aα0
, bα0

) with mean aα0
/bα0

and variance aα0
/b2α0

, then the full conditional

distribution reduces to Gamma (aα0
+K − 1, bα0

+ r) . Similarly for α1 with ν replaced by

η and (aα0
, bα0

) replaced by (aα1
, bα1

).
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6 Z. Wu and others

6. Update the vector of subclass TPR for j = 1, ..., J from

pr(θ(j) | · · · ) ∝
∏

{i′:Ii′=j}

[Mi′ | θ(j), Zi′ , Ii′ ][θ(j)]

∝
K∏
k=1

{
θ
(j)
k

}m(j)
k1
{

1− θ(j)k
}m(j)

k0 · [θ(j)],

where m
(j)
kc = #{i′ : Yi′ = 1, Zi′ = k, Ii′ = j,Mi′j = c}, c = 0, 1. If prior for TPRs are

independent Beta distributions, then this is a product of Beta distributions.

7. Update subclass-specific FPRs ψ
(j)
k for j = 1, ..., J , k = 1, ...,K from

pr(ψ
(j)
k | · · · ) ∝

∏
i′:Yi′=1,Ii′ 6=j,Zi′=k

[Mi′j | ψ(j), Zi′ , Ii′ ]
∏
i:Yi=0

[Mij | ψ(j), Zi] · [ψ(j)
k ]

∝
{
ψ
(j)
k

}s(−j)
k1

{
1− ψ(j)

k

}s(−j)
k0 · pr(ψ(j)

k ),

where s
(−j)
kc = #{i′ : Yi′ = 1, Zi′ = k, Ii′ 6= j,Mi′j = c} + #{i : Yi = 0, Zi = k,Mij = c},

for c = 0, 1. If the prior on FPRs are Beta(a1, b1), then the above conditional distribution

is Beta(a1 + s
(j)
k1 , b1 + s

(j)
k0 ).

8. Update π from Dirichlet
(
d1 + t(j), ..., dJ + t(j)

)
, where t(j) is the number of cases assigned

to class j, i.e. t(j) = #{i′ : Yi′ = 1, Ii′ = j}, j = 1, .., J .

Appendix D. Directed Acyclic Graph for Nested Partially-Latent Class Models

This section illustrates the model structure of nested partially-latent class models using a directed

acyclic graph (DAG) and provides some details on posterior inference.

Because the false positive rate (FPR) parameters Ψ are in both the control and case likelihood

(2.3) and (2.4) in the text, their posterior depend on both the control and case models. This is

referred to as “feedback” because the case model will indirectly inform Ψ. If we only want the

control data to inform the case model but not vice versa, we can “cut” this source of feedback

through approximate conditional updating in the Gibbs sampler (Lunn and others, 2009). That
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Appendix Figure 1. Directed acyclic graph (DAG) for the npLCM. Quantities in circles are unknown
parameters or auxiliary variables; quantities in solid squares are observables. The etiologic fraction π is
of primary scientific interest. The solid arrows represent probabilistic relationship between the connected

variables. The “cut” valve “A B” means that when updating node A in the Gibbs sampler, we drop
the likelihood terms that involve node B.

is, we update ψ
(j)
k by pr(ψ

(j)
k | Mij ; i : Yi = 0) instead of Step 7 of the Gibbs sampler (see

Appendix D). It will cut the information flow from the case model to the FPR parameters Ψ and

is indicated by the check-bit valves in Appendix Figure 1. It is desirable when certain parts of the

joint model are considered not reliable to inform a subset of parameters, and can be implemented

by the cut function in WinBUGS 1.4. Such “cut-the-feedback” approximate Bayesian computation

has both gains in computational speed and inferential robustness, and is also suggested in other

contexts (Liu and others, 2009; Warren and others, 2012; Zigler and Dominici, 2014).
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8 Z. Wu and others

Appendix E. Parameter Settings and Coverage Rates in Simulation Studies

We present the true parameter values and the empirical coverage rates in simulation studies

(Section 4).

Scenario I

π = (0.5, 0.2, 0.15, 0.1, 0.05)′

ΘT =

[
0.95 0.9 0.9 0.9 0.9
0.95 0.9 0.9 0.9 0.9

]
ΨT =

[
0.25 0.25 0.2 0.15 0.15
0.2 0.2 0.25 0.1 0.1

]
ν = (0.5, 0.5)′

η = (ηo, 1− ηo)′, 0 6 ηo 6 1

Scenario II

π = (0.5, 0.2, 0.15, 0.1, 0.05)′

ΘT =

[
0.95 0.95 0.55 0.95 0.95
0.95 0.55 0.95 0.55 0.55

]
ΨT =

[
0.4 0.4 0.05 0.2 0.2
0.05 0.05 0.4 0.05 0.05

]
ν = (0.5, 0.5)′

η = (ηo, 1− ηo)′, 0 6 ηo 6 1

Appendix Table 1. Comparison of the actual coverage rates of 95% credible intervals for each disease
class estimated by results fitted to 1, 000 replication data sets.

Truth: Cases’ First Subclass Weight (ηo)

Model 0 0.25 0.5 0.75 1

Class 100×Coverage (Standard Error)

I

A
np 98.5( 0.4) 99.3( 0.3) 98.5( 0.4) 98.1( 0.4) 97.8( 0.5)

p 97.8( 0.5) 97.6( 0.5) 98.3( 0.4) 97.7( 0.5) 96.5( 0.6)

B
np 98.8( 0.3) 97.9( 0.5) 97.8( 0.5) 97.3( 0.5) 98.4( 0.4)

p 98.5( 0.4) 98.2( 0.4) 97.4( 0.5) 97.7( 0.5) 96.8( 0.6)

C
np 96.6( 0.6) 98.5( 0.4) 97.7( 0.5) 97.7( 0.5) 94.3( 0.7)

p 93.0( 0.8) 96.6( 0.6) 98.6( 0.4) 97.5( 0.5) 95.1( 0.7)

D
np 99.0( 0.3) 99.1( 0.3) 98.1( 0.4) 98.1( 0.4) 97.6( 0.5)

p 98.3( 0.4) 98.6( 0.4) 98.3( 0.4) 96.9( 0.5) 95.8( 0.6)

E
np 98.1( 0.4) 98.5( 0.4) 98.2( 0.4) 98.0( 0.4) 97.4( 0.5)

p 98.6( 0.4) 97.1( 0.5) 96.6( 0.6) 96.3( 0.6) 95.2( 0.7)

II

A
np 95.4( 0.7) 88.4( 1.1) 88.2( 1.1) 94.0( 0.8) 98.8( 0.3)

p 99.6( 0.2) 100.0( 0.0) 96.7( 0.6) 85.6 ( 1.1) 72.3( 1.4)

B
np 80.4 ( 1.3) 84.8 ( 1.1) 86.2 ( 1.1) 98.3( 0.4) 98.1( 0.4)

p 9.9( 0.9) 62.5( 1.5) 92.1( 0.9) 98.9( 0.3) 82.9 ( 1.2)

C
np 89.2( 1.0) 89.8( 1.0) 97.2( 0.5) 98.0( 0.4) 84.4 ( 1.1)

p 0.0( 0.0) 6.1( 0.8) 91.0( 0.9) 75.3( 1.4) 0.0( 0.0)

D
np 93.5( 0.8) 90.7( 0.9) 95.4( 0.7) 98.0( 0.4) 95.1( 0.7)

p 53.3( 1.6) 88.7( 1.0) 97.2( 0.5) 98.0( 0.4) 93.9( 0.8)

E
np 95.4( 0.7) 94.7( 0.7) 96.1( 0.6) 98.5( 0.4) 96.5( 0.6)

p 56.1( 1.6) 92.1( 0.9) 97.8( 0.5) 98.2( 0.4) 92.0( 0.9)

http://biostats.bepress.com/jhubiostat/paper276
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Appendix F. For Section 5: Analysis of PERCH Data

Full Pathogen Names and Abbreviations:

(1).HINF- Haemophilus Influenzae; (2). ADENO -Adenovirus; (3). HMPV-A/B - Human Metapneu-

movirus Type A or B; (4). PARA-1 - Parainfluenza Type 1 Virus; (5). RHINO - Rhinovirus; (6).

RSV - Respiratory Syncytial Virus Type A or B.

logOR

s.e.

std.logOR

0.86
0.4

2.1

−2.47
1.01

−2.4

0.79
0.22

3.5

1.67
0.39

4.3

−1.3
0.61

−2.1

1.12
0.24

4.7

0.51
0.23

2.2

−1.72
0.4

−4.3

−3.37
1.01

−3.3

−3.59
1.01

−3.6

RSV:(6)

(6
):R

SV

RHINO:(5)

(5
):R

HIN
O

PARA_1:(4)

(4
):P

ARA_1

HMPV_A_B:(3)

(3
):H

M
PV_A

_B

ADENO:(2)

(2
):A

DENO

HINF:(1)

(1
):H

IN
F

cases

controls

Appendix Figure 2. Matrix of significant pairwise log odds ratios (LOR) for cases (upper) and controls
(lower). LOR is at the top of the cell. Below it, its standard error is in smaller type, using the same
color as the LOR. Then the estimate is divided by its standard error. We put the actual value when the
Z-statistics has an absolute value greater than 2; a plus (red) or minus (blue) if between 1 and 2; blank
otherwise.
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10 Z. Wu and others

Appendix Figure 3. Posterior predictive checking for pairwise odds ratios separately for cases (upper
triangle) and controls (lower triangle) with expert priors on true positive rates. Left : pLCM; Right :
npLCM. Each entry is a standardized log odds ratio difference (SLORD): the observed log odds ratio
for a pair of measurements minus the mean LOR for the posterior predictive distribution divided by the
standard deviation of the posterior predictive distribution. The first significant digit of absolute SLORs
are shown in red for positive and blue for negative values, and only those greater than 2 are shown.
On average, for a well fitting model, we expect 0.05 ×

(
6
2

)
× 2 ≈ 1.5(±2.4) non-blank cells in cases and

controls, respectively.

http://biostats.bepress.com/jhubiostat/paper276
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