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Summary

Adaptive enrichment designs involve preplanned rules for modifying enrollment criteria based

on accrued data in an ongoing trial. For example, enrollment of a subpopulation where there

is sufficient evidence of treatment efficacy, futility, or harm could be stopped, while enrollment

for the remaining subpopulations is continued. Most existing methods for constructing adaptive

enrichment designs are limited to situations where patient outcomes are observed soon after

enrollment. This is a major barrier to the use of such designs in practice, since for many diseases

the outcome of most clinical importance does not occur shortly after enrollment. We propose a

new class of adaptive enrichment designs for delayed endpoints. At each analysis, semiparametric,

locally efficient estimators leverage information in baseline variables and short-term outcomes to

improve precision. This can reduce the sample size required to achieve a desired power. We

propose new multiple testing procedures tailored to this problem, which we prove to strongly
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2 M. Rosenblum et al.

control the familywise Type I error rate, asymptotically. These methods are illustrated through

simulations of a trial for a new surgical intervention for stroke.

Key words: multiple testing procedure; treatment effect heterogeneity

1. Introduction

We address the problem of designing a confirmatory randomized trial of an experimental treat-

ment versus control when the primary outcome is measured with delay and there are multiple

subpopulations of interest. Our methods were developed to solve a problem in designing a trial

of a new surgical treatment for stroke, with outcomes measured a fixed time (180 days) from

enrollment. However, our general method can also be applied to time-to-event outcomes.

To illustrate our approach, consider an analysis that occurs just after 50% of a trial’s total

enrollment. Due to delayed outcomes, less than 50% of final (i.e., primary) outcomes are ob-

served. However, all enrolled participants have baseline variables observed, some have short-term

outcomes observed, and a further subset have the final outcome observed. If the short-term out-

comes and baseline variables are correlated with the final outcome, they can provide valuable

information that we harness through the semiparametric, locally efficient estimators of van der

Laan and Gruber (2012). In a randomized trial, these estimators converge to the true average

treatment effect, without having to make any parametric model assumptions. To the best of our

knowledge, we give the first application of such an estimator in adaptive enrichment designs with

delayed outcomes. In simulations that mimic key features of a completed stroke trial, this leads

to tangible improvements in precision and a 19-20% reduction in both expected sample size and

maximum sample size, compared to the standard, unadjusted estimator that ignores short-term

outcomes and baseline variables.

Our designs strongly control the familywise Type I error rate as required, e.g., by the U.S.
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Adaptive Enrichment Designs with Delayed Endpoints, using Locally Efficient Estimators 3

Food and Drug Administration in their draft guidance on adaptive designs for drugs and biologics

(FDA, 2010). This means that the probability of rejecting one or more true null hypotheses is

at most the desired level, regardless of the sign and magnitude of each subpopulation treatment

effect. Two general techniques for ensuring strong control of the familywise Type I error rate

in adaptive enrichment designs are the the p-value combination approach (Bretz and others,

2006; Schmidli and others, 2006; Jennison and Turnbull, 2007; Brannath and others, 2009), and

the approach based on modified, group sequential computations (Stallard, 2011; Magnusson and

Turnbull, 2013). These approaches require assumptions that are not guaranteed to hold when

using semiparametric, locally efficient estimators in our context, as described in Section 4. To

take advantage of precision gains from these estimators, we propose a class of multiple testing

procedures that do not require these assumptions; these procedures build on ideas from the modi-

fied, group sequential computation approach. An alternative to our approach is to use conditional

error functions as in the adaptive enrichment designs of (Friede and others, 2012); however, this

involves computational challenges described in Section 7.

We present our motivating application in Section 2. The general problem is defined in Sec-

tion 3. In Section 4, we describe the semiparametric, locally efficient estimators used in our

designs. The proposed class of adaptive enrichment designs for delayed outcomes is given in Sec-

tion 5. In Section 6, we apply our designs in simulations that mimic features of the data from a

completed stroke trial. Section 7 describes extensions, limitations, and areas for future research.

2. Motivating Application: MISTIE stroke trial

We consider the problem of planning a Phase III trial to evaluate a new surgical treatment for

stroke, called Minimally-Invasive Surgery Plus rt-PA for Intracerebral Hemorrhage Evacuation,

abbreviated as MISTIE (Morgan and others, 2008). The aim is to assess whether the MISTIE

surgical treatment is superior to the standard of care. The primary outcome is a participant’s
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4 M. Rosenblum et al.

degree of disability as measured by the modified Rankin Scale (mRS) at 180 days from enrollment.

A mRS score of 3 or less is considered a successful outcome. Define the average effect of the

MISTIE treatment to be the difference between the probability of a successful outcome under

assignment to MISTIE (treatment) versus standard of care (control).

Prior data indicated greater uncertainty of the treatment effect for the subpopulation of

participants with large (at least 10ml) intraventricular hemorrhage (IVH) at baseline, called

large IVH participants. All others are called small IVH participants. The clinical investigators

thought two scenarios were most likely to occur if the treatment was effective at all: either the new

treatment would benefit both subpopulations, or it would benefit only small IVH participants.

We explore adaptive designs for testing the corresponding null hypotheses of no mean treatment

benefit for the overall population and for the small IVH subpopulation.

3. Problem Definition

3.1 Subpopulations, Data Structure for Each Participant, and Analysis Timing

We assume the overall population is partitioned into m disjoint subpopulations, which are pre-

planned functions of variables measured before randomization. For each s ∈ {1, . . . ,m}, let ps

denote the proportion of the overall population in subpopulation s, which we assume is known.

Each participant i has full data vector Di = (Ei, Si,Wi, Ai, L
(1)
i , . . . , L

(T )
i , Yi) when followed

up completely, where Ei is the enrollment time, Si denotes subpopulation, Wi is a vector of

baseline (pre-randomization) variables, Ai is the treatment indicator (Ai = 1 indicates treatment

and Ai = 0 indicates control), L
(1)
i , . . . , L

(T )
i are variables observed after randomization, and Yi

is the final (i.e., primary) outcome. We assume that L
(1)
i , . . . , L

(T )
i , Yi are observed at preplanned

durations (in days) d = (d1, . . . , dT , dY ), respectively, from the time of enrollment, such that

0 < d1 < · · · < dT < dY . The subscript i is omitted when referring to a generic participant.

A special case of interest is where L(1), . . . , L(T ) represent the same quantity as in the primary

http://biostats.bepress.com/jhubiostat/paper275



Adaptive Enrichment Designs with Delayed Endpoints, using Locally Efficient Estimators 5

outcome, but measured at the earlier times d1, . . . , dT ; we refer to L(1), . . . , L(T ) as short-term

outcomes, though in general they can be any variables measured after randomization. For exam-

ple, in the MISTIE trial we have T = 1 and the following data are measured for each participant:

enrollment time E, subpopulation S ∈ {1, 2} (small or large IVH, respectively); baseline variables

W = (NIH Stroke Scale, clot volume, and Glasgow Coma Scale); treatment indicator A; indicator

L(1) of functional disability score (mRS) 6 3 at 30 days from enrollment; the primary outcome

Y , which is the indicator of mRS 6 3 at 180 days from enrollment.

Let K denote the maximum number of stages and Ns,max denote the maximum, cumulative

sample size for each subpopulation s, both of which are preplanned. The maximum total sample

size is N =
∑

s6mNs,max. Define qs = Ns,max/N . At the start of the trial, all subpopulations

are continuously enrolled. Let e denote the combined population enrollment rate in participants

per day, which we assume to be a constant. We assume enrollment rates are proportional to

subpopulation sizes, i.e., if enrollment has not stopped for subpopulations s and s′, the ratio of

the cumulative number enrolled from subpopulation s and s′ is ps/ps′ . The enrollment time for

the lth participant from subpopulation s is l/(eps), for each s 6 m, l 6 Ns,max. We order the

set of all participants by increasing enrollment time (with ties broken arbitrarily), and denote

the full data vector for the ith participant in this ordering by Di as defined above. Each stage’s

duration can be any preplanned function of calendar time and/or information accrued, as defined

in Section 5. The maximum trial duration D, which is when analysis K occurs, is the time to

enroll all participants plus dY , i.e., D = maxs6m{Ns,max/(eps)}+ dY .

3.2 Assumptions, Hypotheses, Censoring, and Accrual Modification Rules

For each participant i, we assume that conditioned on Ei and Si = s, his/her baseline data

Wi is a random draw from an unknown distribution Qs(W ), independent of the data from all

previously enrolled participants. By design, each participant is randomized with probability 1/2
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6 M. Rosenblum et al.

to either study arm independent of (E,S,W ), i.e., P (A = 1 | E,S,W ) = 1/2; we call this

the randomization assumption. We assume that for each participant i, conditioned on Ei, Si =

s,Wi, Ai, the vector (L
(1)
i , . . . , L

(T )
i , Yi) is a random draw from distribution Q′s(L

(1), . . . , L(T ), Y |

A = Ai,W = Wi) independent of the data from all previously enrolled participants. Denote the

unknown distributions by Q = {(Qs, Q
′
s) : s 6 m}. We make no parametric model assumptions,

nor do we assume any relationships between distributions for different subpopulations. We use a

nonparametric model Q where the only assumptions are the randomization assumption and that

Q satisfies regularity conditions given in Appendix A of the Supplementary Material.

Let δs = E(Y | A = 1, S = s) − E(Y | A = 0, S = s) denote the average treatment effect

for subpopulation s ∈ {1, . . . ,m}. For each j ∈ {0, . . . , J}, let S̃j ⊆ {1, . . . ,m} denote the jth

composite population of interest, consisting of the union of subpopulations in S̃j . The overall

population will generally be of interest, and we denote it by S̃0 = {1, . . . ,m}. The average

treatment effect in population S̃j is ∆j = E(Y | A = 1, S ∈ S̃j) − E(Y | A = 0, S ∈ S̃j) =∑
s∈S̃j psδs

/∑
s∈S̃j ps. For each j ∈ {0, . . . , J}, define the null hypothesis H0j : ∆j 6 0 and

alternative hypothesis ∆j > 0. Our general problem is to construct adaptive enrichment designs

to test the set of null hypotheses {H0j : j = 0, . . . , J}. For any distribution Q ∈ Q, let T (Q)

denote the set of true null hypotheses under Q. We require at least nmin > 1 participants from

each population S̃j to have Y observed before analysis 1 takes place.

We assume L(0) = (E,S,W,A) are observed at enrollment. Let L(T+1) = Y . For each partic-

ipant i, stage k, and t 6 T + 1, let C
(t)
i,k denote the indicator that L

(t)
i is observed by the end

of stage k. In the special case of the MISTIE trial, for any participant i and stage k, the vector

(C
(0)
i,k , C

(1)
i,k , C

(2)
i,k ) has one of the following forms:

(0, 0, 0): no data observed, i.e., not yet enrolled by end of stage k;

(1, 0, 0): enrollment time E, subpopulation S, baseline variables W and study arm A observed;

(1, 1, 0): E, S, W , A, and short-term outcome L(1) observed;

http://biostats.bepress.com/jhubiostat/paper275



Adaptive Enrichment Designs with Delayed Endpoints, using Locally Efficient Estimators 7

(1, 1, 1): complete data vector (E,S,W,A,L(1), Y ) observed.

In general, we assume a monotone missingness structure, i.e., that C
(t)
i,k > C

(t+1)
i,k for each t ∈

{0, . . . , T}, k 6 K, i 6 N , and that C
(t)
i,k 6 C

(t)
i,k+1 for each t ∈ {0, . . . , T + 1}, k 6 K − 1, i 6 N .

Define the pipeline participants at analysis k to be those enrolled with Y not yet observed.

We assume the only cause of missing data is administrative censoring due to some participants

not yet having experienced short-term and/or final outcomes at an interim analysis. In Section 7

we describe how to incorporate additional right censoring due to loss to follow-up. For clarity of

exposition, we assume throughout that variances and covariances are known; in practice, they

will be estimated as the trial progresses, e.g., using the nonparametric bootstrap as described in

Appendix D of the Supplementary Material.

An early stop of accrual (of information) for subpopulation s means that both enrollment

and continuation of follow-up are halted. Unless subpopulation s accrual is stopped early, it has

ongoing enrollment (until Ns,max is reached) and follow-up (until all Ns,max participants have Y

observed). Let rk denote the preplanned rule for accrual modification at analysis k < K. It can

be any measurable function from the data available at analysis k to the set of subpopulations for

which accrual will continue during stage k + 1, under the restrictions that accrual can only be

stopped at interim analysis times and that once a subpopulation’s accrual has been stopped it

cannot be restarted. An example is given in Section 6.3. Let r = (r1, . . . , rK−1).

3.3 Asymptotic Framework

Our asymptotic results, such as consistency and asymptotic normality of estimators, involve a

sequence of hypothetical trials with sample sizes in all stages converging to infinity. We fix the

proportions ps, the delay times d, the maximum duration D, the analysis times, and the dis-

tribution Q. We set Ns,max = qsN for fixed constants qs > 0 that sum to 1, and consider a

sequence of trials in which N goes to infinity. This implies that the enrollment rate e goes to
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8 M. Rosenblum et al.

infinity, the number enrolled in each stage goes to infinity, and if enrollment has not stopped

for subpopulation s by the end of stage k then the proportion of its participants in the pipeline

is a positive constant that depends on k; these results are proved in Appendix A.1 of the Sup-

plementary Material. This framework is similar to (Scharfstein and others, 1997, Section 2),

except ours is more restricted because the enrollment process and delay times are fixed. Though

our asymptotic results only require Ns,max/N to converge to qs, for clarity of exposition we

consider the case where Ns,max/N = qs. Consider any Q ∈ Q, rule r, and multiple testing

procedure M . We say M controls the familywise Type I error rate at level α∗, asymptotically,

if lim supN→∞ PQ,r,N{M rejects at least one null hypothesis in T (Q)} 6 α∗, where PQ,r,N de-

notes probability under distribution Q, rule r, and maximum sample size N . If this holds for any

Q ∈ Q, then M strongly controls the familywise Type I error rate, asymptotically. Familywise

Type I error control for fixed N is defined similarly, except dropping lim supN→∞.

3.4 Unadjusted Estimator

We define all estimators, statistics, and corresponding covariance matrices as if a rule r is used

such that no subpopulation’s accrual is ever stopped early. This poses no problem since our

testing procedures never use an estimator or statistic if any of its component subpopulations had

accrual stopped early at a prior analysis. For a given population, the unadjusted estimator of the

average treatment effect is the difference between sample means of Y comparing those assigned to

A = 1 versus A = 0. At any analysis time, only the data from participants who have Y observed

are used. For each subpopulation s ∈ {1, . . . ,m}, the unadjusted estimator of δs at analysis k is

δ̂unadjs,k =

∑
i YiC

(T+1)
i,k 1 [Ai = 1, Si = s]∑

i C
(T+1)
i,k 1 [Ai = 1, Si = s]

−
∑

i YiC
(T+1)
i,k 1 [Ai = 0, Si = s]∑

i C
(T+1)
i,k 1 [Ai = 0, Si = s]

,

where 1[X] is the indicator variable taking value 1 if X is true and 0 otherwise. The unadjusted

estimator of ∆j for composite population S̃j at stage k is ∆̂unadj
j,k =

∑
s∈S̃j psδ̂

unadj
s,k

/∑
s∈S̃j ps.
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Adaptive Enrichment Designs with Delayed Endpoints, using Locally Efficient Estimators 9

4. Semiparametric, Locally Efficient Estimators

To take advantage of prognostic information in baseline variables and short-term outcomes, we

use estimators that build on the general theory of semiparametric, locally efficiency of Robins and

Rotnitzky (1992). When baseline variables and short-term outcomes are strongly correlated with

the final outcome, as in the MISTIE trial, these estimators can have greater precision than the

unadjusted estimator. We use a targeted maximum likelihood estimator (TMLE) for longitudinal

data developed by van der Laan and Gruber (2012) and implemented in the R package ltmle

(Schwab and others, 2014). This estimator combines features of the general targeted maximum

likelihood template of van der Laan and Rubin (2006) with the sequential regression approach

of Robins (2000); Bang and Robins (2005). We call this the adjusted estimator. Let ∆̂adj
j,k denote

the adjusted estimator of ∆j based on all data from participants in population S̃j collected up

to and including stage k. The precise definition of this estimator is given in Appendix B of the

Supplementary Material. It is also possible to use the semiparametric, locally efficient estimators

of, e.g., Lu and Tsiatis (2011); Rotnitzky and others (2012); Gruber and van der Laan (2012);

Parast and others (2014); Zhang (2015), as we discuss in Section 7.

The adjusted estimator involves working models that are fit using data accrued at a given

analysis. The term “working model” means we do not assume that the true, unknown data

generating distribution Q satisfies any of the assumptions of these models. For example, our

TMLE implementation uses a logistic regression working model for P (Y = 1 | L(1), A,W, S ∈ S̃j)

for each j 6 J , but we do not assume the conditional distribution of Y given (L(1), A,W, S) has the

functional form of a logistic regression model. Under regularity conditions given in Appendix A

of the Supplementary Material, the adjusted estimator is consistent regardless of whether the

working models are correctly specified. If they are correctly specified, then the adjusted estimator

achieves the semiparameteric efficiency bound; this is the local efficiency property of the estimator.

When our discussion applies to a generic estimator, we suppress adj and unadj in the subscript.

Hosted by The Berkeley Electronic Press



10 M. Rosenblum et al.

For a given estimator ∆̂j,k of ∆j , define the corresponding Wald statistic Zj,k = ∆̂j,k/Var(∆̂j,k)1/2,

where Var denotes variance. When the adjusted estimator involves at least a few baseline vari-

ables or short-term outcomes that are continuous-valued (or discrete-valued with many levels and

treated as continuous in working models), e.g., as in the MISTIE example, then we expect these

models to be at least somewhat misspecified. We consider such a situation throughout the paper.

For a given S̃j , the statistics Zj,1, . . . , Zj,K for the adjusted estimator are not guaranteed to

have the canonical covariance that arises when estimators (rescaled by the information) have

the independent increments property described by Scharfstein and others (1997); Jennison and

Turnbull (1999). This was shown for estimators based on generalized estimating equations by

Shoben and Emerson (2014). We show this occurs for the TMLE and some other locally efficient

estimators when working models are misspecified, in Appendix A of the Supplementary Material.

We furthermore show this occurs even when baseline variables but no short-term outcomes are

used in working models. The upshot is that the general techniques for ensuring familywise Type

I error control listed in Section 1 cannot be directly applied, since they assume the canonical

covariance or more generally the so-called p-clud property, neither of which is guaranteed to hold

for the adjusted estimator. An exception involving only linear models is described in Appendix A.

5. Multiple Testing Procedure using Interleaved Error Spending Functions

Error-spending functions were introduced by Slud and Wei (1982); Lan and DeMets (1983) for

a single population, but have not been applied in the manner we describe below for multiple

populations in adaptive enrichment designs with delayed outcomes. Error-spending functions

set boundaries for early stopping based on the information accrued. We define a separate error

spending function for each composite population S̃j . Tests are interleaved in a way that takes

advantage of correlations among related statistics, including statistics for the same population

at different analysis times, and statistics for different but overlapping populations. We focus
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Adaptive Enrichment Designs with Delayed Endpoints, using Locally Efficient Estimators 11

on efficacy boundaries, whose corresponding error spending functions are called alpha spending

functions. A special case of our general class of designs was given by Rosenblum and others

(2015), who only considered immediately observed outcomes, unadjusted estimators, and more

restricted designs than the class below.

For each null hypothesis H0j , at each analysis k, let Ij,k = 1/Var(∆̂j,k) denote the accrued in-

formation corresponding to the estimator ∆̂j,k. Define the information fraction τj,k = Ij,k/Ij,max,

where Ij,max is a predefined maximum information level for population S̃j , and Ij,0 = 0 for all

j. Let α∗ denote the desired upper bound on the familywise Type I error rate, e.g., α∗ = 0.025

(since we use one-sided tests). Define error spending functions αj : [0,∞) → [0, α∗] for each

j ∈ {0, . . . , J} that are nondecreasing, take the value 0 at τ = 0, and satisfy
∑J

j=0 αj(τ) 6 α∗

for all τ > 0. Define πj,k = max{0, αj(τj,k)− αj(τj,k−1)} and let π = {πj,k}j6J,k6K .

Consider any accrual modification rule r, nonnegative increments π, and Q ∈ Q. We first give

results for an arbitrary vector of statistics Z̃ = {Z̃j,k}j6J,k6K with covariance matrix Σ̃ having 1’s

on the main diagonal, and then apply these results for Z̃ equal to the Wald statistics correspond-

ing to the unadjusted or adjusted estimator. For each k define the following set of null hypotheses:

Bk(r) = {H0j : for each s ∈ S̃j , subpopulation s accrual not stopped early prior to analysis k}.

Define the ordering (k′, j′) ≺ (k, j) to mean that k′ < k or (k′ = k and j′ < j). Denote the mul-

tivariate normal distribution with mean µ and covariance matrix Σ by N(µ,Σ). The following

procedure takes as input the statistics Z̃, their covariance Σ̃, the rule r, and increments π:

Multiple Testing Procedure M(Z̃, Σ̃, r,π): Define Z′ = {Z ′j,k}j6J,k6K to be a random vector

with distribution N(0, Σ̃). At each analysis k 6 K, for each population S̃j , j = 0, . . . , J in turn:

1. Define uj,k to be the solution to:

P
{
Z ′j′,k′ 6 uj′,k′ for all (k′, j′) ≺ (k, j); and Z ′j,k > uj,k

}
= πj,k. (5.1)

2. RejectH0j if all of the following hold: it hasn’t already been rejected, j ∈ Bk(r), and Z̃j,k > uj,k.
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12 M. Rosenblum et al.

The left side of (5.1) can be computed using the multivariate normal distribution function,

e.g., implemented in the mvtnorm R package of Genz and others (2014), which takes as input

Σ̃. Given the previously computed values {uj′,k′ : (k′, j′) ≺ (k, j)}, the solution uj,k to (5.1) can

be computed to high precision by the bisection (binary search) method. In the special case that

πj,k = 0, we set uj,k = ∞. The null hypotheses rejected at the end of the trial are those that

were rejected at any stage.

Let T = T (Q) as defined on page 6. For any vector Z̃ = {Z̃j,k}j6J,k6K , define the subvector

Z̃T = {Z̃j,k : k 6 K, j : H0j ∈ T } and let Σ̃T denote its covariance matrix. For any random

vectors U,U′ taking values in Rv, we say U′ is stochastically smaller than U if for any u ∈ Rv,

P (for some v′ 6 v, U ′v′ > uv′) 6 P (for some v′ 6 v, Uv′ > uv′). A sequence U(1),U(2), . . .

taking values in Rv is asymptotically, stochastically smaller than U if for any u ∈ Rv, we have

lim supl>0 P (for some v′ 6 v, U
(l)
v′ > uv′) 6 P (for some v′ 6 v, Uv′ > uv′).

Consider any Q ∈ Q, accrual modification rule r, and nonnegative increments π that sum to

at most α∗. In Appendix C of the Supplementary Material we prove:

Theorem 5.1 Consider any vector of statistics Z̃ = {Z̃j,k}j6J,k6K with covariance matrix Σ̃

having 1’s on the main diagonal. If Z̃T is stochastically smaller than N(0, Σ̃T ), then the procedure

M(Z̃, Σ̃, r,π) controls the familywise Type I error rate at level α∗.

Theorem 5.2 Consider any sequence Z̃(N) with corresponding covariance matrices Σ̃(N) such

that Σ̃
(N)
T converges to a limit Σ̃∗T with 1’s on the main diagonal, and Z̃

(N)
T is asymptotically,

stochastically smaller than N(0, Σ̃∗T ). Then M(Z̃(N), Σ̃(N), r,π) controls the familywise Type I

error rate, asymptotically, at level α∗.

Consider a sequence of trials with maximum sample size N going to infinity, as described in

Section 3.3. For each N , let ∆̂
(N)
j,k denote the unadjusted or adjusted estimator for population
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S̃j at stage k, with corresponding information I(N)
j,k and Wald statistic Z

(N)
j,k . Similar to Scharf-

stein and others (1997, Section 3), we assume that for each j 6 J, k 6 K, limN→∞ I(N)
j,k /N =

limN→∞{NVar(∆̂
(N)
j,k )}−1 = I∗j,k where I∗j,k is defined in Appendix A of the Supplementary Mate-

rial. This implies the covariance matrix Σ(N) of Z(N) converges to Σ∗ (defined in that Appendix)

with 1’s on the main diagonal. Under the regularity conditions in that Appendix, the centered

Wald statistics {(∆̂(N)
j,k − ∆j)/Var(∆̂

(N)
j,k )1/2}j6J,k6K converge in distribution to N(0,Σ∗). For

each true H0j , we have Z
(N)
j,k = ∆̂

(N)
j,k /Var(∆̂

(N)
j,k )1/2 6 (∆̂

(N)
j,k −∆j)/Var(∆̂

(N)
j,k )1/2, and so Z

(N)
T is

asymptotically, stochastically smaller than N(0,Σ∗T ). Theorem 5.2 implies M(Z(N),Σ(N), r,π)

controls the familywise Type I error rate, asymptotically, at level α∗. Since this holds for any

Q ∈ Q, the procedure strongly controls the familywise Type I error rate, asymptotically.

Magnusson and Turnbull (2013) present multiple testing procedures that use error spending

functions in adaptive enrichment designs. Their method is not applicable in our context since

it assumes the canonical covariance described above. It also assumes that the treatment effect

cannot be negative in any subpopulation. Negative treatment effects cannot be ruled out in the

MISTIE trial context, since it is possible that the new surgical procedure may cause damage.

6. Simulations

6.1 Overview and Design Goals

Consider the problem of planning the Phase III MISTIE trial, as introduced in Section 2. The

variables (S,W,A,L(1), Y ) defined in the third paragraph of Section 3 are measured for each

participant. We refer to those with small IVH as subpopulation 1, and those with large IVH as

subpopulation 2. The composite populations of interest are the combined population denoted by

S̃0 = {1, 2}, and subpopulation 1 denoted by S̃1 = {1}. We test the corresponding null hypotheses

H00 and H01 using Wald statistics Z0,k and Z1,k for each k 6 K in multiple testing procedure

M . We use statistics Z2,k, which involve only subpopulation 2, in the accrual modification rule
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r defined in Section 6.3. In the adaptive enrichment design literature, it is not uncommon to

consider the null hypotheses for a single subpopulation and the combined population, e.g., Wang

and others (2007); Brannath and others (2009); Jenkins and others (2011); Freidlin and others

(2013); Stallard and others (2014, Section 5). We assume p1 = 1/3 based on prior studies (Hanley,

2012). We assume the enrollment rate is 50 patients per year for subpopulation 1, and 100 per

year for subpopulation 2, based on the projected enrollment rates for the MISTIE Phase III trial.

The clinical investigators in the MISTIE trial were interested in the following three scenarios:

(a) δ1 = 12.2%, δ2 = 12.2%; (b) δ1 = 12.2%, δ2 = 0%; (c) δ1 = δ2 = 0. The values of δ1, δ2 in

scenario (a) are based on the point estimate of the average treatment effect from the MISTIE II

trial. We had the following goals: (i) 80% power to reject H00 in scenario (a); (ii) 80% power to

reject H01 in scenario (b); (iii) strong control of familywise Type I error rate at level α∗ = 0.025.

Similar goals were also considered by Rosenblum and others (2015) in the context of immediately

observed outcomes and no baseline variables W .

6.2 Data Generating Distributions used in Simulation Study

To make our simulations realistic, we mimic features in the data from the completed MISTIE

II trial introduced in Section 2. A simple approach would be to construct simulated trials by

resampling with replacement from the MISTIE II data, so that the data generating distribution

is the corresponding empirical distribution. Unfortunately, the resampling distribution does not

satisfy the randomization assumption from Section 3.2, since there are slight correlations between

baseline variables and treatment assignment in the actual MISTIE II data set (as would generally

be expected in any given dataset). Furthermore, since no two participants in this data have

identical values of the baseline variables W , the treatment A is a deterministic function of W .

We construct data generating distributions that mimic key features of the MISTIE II data,

while satisfying the randomization assumption. Specifically, we construct distributions with sim-
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ilar correlations among W,L(1), Y as the Phase II trial data. This is achieved by adding, for each

participant from the MISTIE II data, a “twin” participant with identical baseline variables but

opposite treatment assignment, and whose L(1) and Y are generated using regression models fit

to the original data, with perturbations to the outcomes Y depending on the desired treatment ef-

fect in each subpopulation. For each scenario (a)-(c), a distribution was constructed that satisfies

the assumptions from Section 3.2, as described in Appendix E of the Supplementary Material.

6.3 Specific Adaptive Enrichment Design Used

We define our adaptive enrichment design by first giving the multiple testing procedure and

accrual modification rule r, and then presenting the analysis timing and error spending functions.

We use the multiple testing procedure M from Section 5, which generates efficacy boundaries

uj,k at each analysis k. The accrual modification rule r involves futility boundaries lj,k defined

below. The following encodes our accrual modification rule (and indicates when null hypotheses

are rejected, based on multiple testing procedure M) at the analysis at the end of stage k 6 K:

1. if Z0,k > u0,k or Z1,k > u1,k, reject the corresponding null hypotheses and stop all accrual;

2. else, if Z1,k 6 l1,k or k = K, then stop all accrual and fail to reject both null hypotheses;

3. else, if accrual continued for both subpopulations in stage k and Z2,k 6 l2,k, stop subpop-

ulation 2 accrual (and fail to reject H00) but continue subpopulation 1 in stage k + 1;

4. else, if k < K accrual continues for the same subpopulations in stage k + 1 as in stage k.

Since the above design uses multiple testing procedure M , under the conditions in Theorem 5.2

it strongly controls the familywise Type I error rate at level α∗, asymptotically. In step 1, if

both Z0,k > u0,k and Z1,k > u1,k, then H00 and H01 are rejected; if only one of these conditions

holds, then only the corresponding null hypothesis is rejected. Step 2 is motivated by the clinical

investigator’s judgment that if the treatment benefits any subpopulation, it will very likely benefit
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subpopulation 1, so the entire trial should stop for futility if Z1,k 6 l1,k. The above design (steps

1-4) is just one possible choice; the general multiple testing procedure M can be applied for any

accrual modification rule r.

We set the maximum number of stages K = 5. Alpha spending functions are from the ρ-family

of Kim and DeMets (1987) at ρ = 2, i.e., αj(τ) = cj min{τ2, 1} for each population S̃j : j ∈ {0, 1},

for nonnegative coefficients c0, c1 that sum to α∗ = 0.025. Each analysis k 6 K occurs when the

accrued information for subpopulation 1 approximately reaches τ1,kI1,max; our approximation to

this information-based monitoring plan is described below.

First, consider the unadjusted estimator. The values of cj , Ij,max, τ1,k, lj,k for each j ∈

{0, 1}, k 6 K were chosen by searching over a set of candidate values to find those that minimize

the average of the expected sample size over scenarios (a)-(c), under the constraint that goals

(i)-(iii) are satisfied. We used the optimization procedure from Rosenblum and others (2015)

to conduct this search, which resulted in c0 = 0.003, c1 = 0.022, I0,max = 1115, I1,max = 795,

(τ1,1, τ1,2, τ1,3, τ1,4, τ1,5) = (0.16, 0.32, 0.47, 0.74, 1) and lj,k as given in Table 2. The futility bound-

aries lj,k equal 0 in most cases, with the notable exception l2,3 = ∞; this causes subpopulation

2 accrual to stop at or before analysis 3; intuitively, this is because at analysis 3, sufficient

information has accrued to achieve goal (i), so further enrollment of subpopulation 2 would be

counterproductive. The first three analysis times, when expressed in terms of information accrued

for the combined population, approximately equal (1/3, 2/3, 1)I0,max.

Next, consider the adjusted estimator. We slightly increased I0,max and decreased I1,max so

that goals (i)-(iii) are achieved using this estimator, which has a different covariance matrix than

the unadjusted estimator. Consider scenario (a). Table 1 shows the per-stage information levels

Ij,k for each estimator and Table 2 shows the corresponding sample sizes. Because information

accrues more quickly when using the adjusted estimator, its corresponding sample sizes at each

stage are smaller than those for the unadjusted estimator. The maximum sample sizes for sub-
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populations 1 and 2 when using the adjusted estimator are N1,max = 512, N2,max = 504, while

those for the unadjusted estimator are N1,max = 648, N2,max = 624.

For a given estimator, the per-stage sample sizes corresponding to the information levels in

Table 1 were almost identical across scenarios (a)-(c). For simplicity, in our simulation study we

set interim analyses to occur at the sample sizes in Table 2 (rather than at preset information

levels), for each scenario. This approximation to information-based monitoring led to negligible

differences in information accrued at each analysis, among the different scenarios. We emphasize

that the per-stage sample sizes differ by estimator, but not by scenario.

In order to assess whether the adjusted estimator performs worse than the unadjusted esti-

mator when covariates are pure noise, we consider a modified data generating distribution with

(W,L(1)) exogenous, i.e., independent of all other variables. Denote the TMLE under this type of

data generating distribution by TMLE prog∅, and denote the TMLE using the data generating

distributions in Section 6.2 (where W and L(1) are prognostic) by TMLE progW,L. We set the

analysis timing for TMLE prog∅ to be the same as for the unadjusted estimator, in calendar time.

The efficacy boundaries uj,k, which are determined by (5.1), depend on the covariance matrix

Σ of the statistics under consideration. To ease the computational burden in our simulations, we

precomputed an approximation to Σ using Monte Carlo simulation as described in Appendix D of

the Supplementary Material, and treated Σ as known. This was done separately for each estimator

and scenario (a)-(c). The resulting boundaries uj,k for scenario (a) and the unadjusted estimator

are given in Table 3. These boundaries were quite similar for each estimator and scenario (a)-(c);

the maximum absolute difference was 0.02.

Wang and others (2009) define adaptive enrichment to be a preplanned rule for restricting

enrollment based on accrued data. The above adaptive design has such a rule for early stopping of

only subpopulation 2 for futility if Z2,k 6 l2,k at analysis k = 1 or k = 2. We call this the adaptive

enrichment feature. Though the above design always stops subpopulation 2 enrollment at the end
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of stage 3, we do not consider this to be adaptive enrichment since this occurs regardless of the

accrued data. To show the value added by the adaptive enrichment feature, consider the same

design as described above except setting l2,1 = l2,2 = −∞, which disables this feature. We call

this the non-adaptive design, which we compare to the adaptive design.

6.4 Results: Power, Expected Sample Size, and Maximum Sample Size

Based on 50,000 simulated trials for each estimator and scenario (a)-(c), we computed the empiri-

cal Type I error, power, and expected sample size (ESS, defined as the expected number enrolled,

which includes those in the pipeline). These were computed under the accrual modification rule

r from Section 6.3. An exception is that when computing the familywise Type I error rate we

assumed no early stopping of accrual, in order to show that Type I error is controlled even in

this case; early stopping would only leave unchanged or decrease the Type I error.

The top half of Table 4 summarizes results for the adaptive enrichment design from Section 6.3.

In each scenario, the power of the different estimators is very similar due to the information-based

design using similar Ij,max values for each estimator. Essentially all the gains from adjusting for

prognostic variables get channeled into reducing the expected sample size. Using the adjusted

estimator (TMLE progW,L) instead of the unadjusted estimator leads to a reduction in expected

sample size of 20% in scenario (a), 19% in scenario (b), and 19% in scenario (c). Also, the

maximum sample size is 1016 for the design using the adjusted estimator (TMLE progW,L),

which is 20% less than the maximum sample size of 1272 for the unadjusted estimator. In scenario

(c), the familywise Type I error rate (assuming no early stopping of accrual) is 0.025 for each

estimator, as desired. Comparing the unadjusted estimator versus TMLE prog∅ shows that when

W and L provide no prognostic information, the adjusted estimator is almost identical to the

unadjusted estimator in power and expected sample size.

Figure 1 gives the power of each estimator at each stage. Plots (i) and (iv) of Figure 1
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display power to reject at least H00 under scenario (a), and power to reject at least H01 under

scenario (b), respectively. These plots demonstrate that goals (i) and (ii) from Section 6.1 are

approximately achieved by all estimators. Plots (ii) and (iii) show that for each estimator, there

is low power to reject at least H00 when only subpopulation 1 benefits, and to reject at least

H01 when both subpopulations benefit. This behavior may be regarded as advantageous since

it is ideal to reject only H00 in scenario (a) and only H01 in scenario (b), these corresponding

precisely to the populations who benefit in each scenario, respectively.

The performance of the non-adaptive design defined in the last paragraph of Section 6.3 is

shown in the bottom half of Table 4. The main difference between this design and the adaptive

design from Section 6.3 is that the former has substantially larger expected sample size in sce-

narios (b) and (c). This is not surprising, since it is in these scenarios when futility stopping of

subpopulation 2 is especially useful. The two designs have similar power and Type I error rate in

all three scenarios, and similar expected sample sizes in scenario (a).

In Appendix F of the Supplementary Material, we compare the bias, variance, and mean

squared error for the unadjusted versus adjusted estimators, and the adaptive versus non-adaptive

designs. In each scenario (a)-(c), differences in the bias, variance, and mean squared error were

negligible when comparing estimators or when comparing designs.

7. Discussion

Alternative methods exist for covariate adjustment in our longitudinal setting, e.g., the estimators

of Lu and Tsiatis (2011); Rotnitzky and others (2012); Gruber and van der Laan (2012). These

estimators have enhanced efficiency properties, but to the best of our knowledge there is not

currently an R package implementing any of these methods that incorporates both baseline

variables and short-term outcomes. The multiple testing procedure in Section 5 can also be

applied for survival times, e.g., by using Wald statistics based on a modified TMLE or the
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estimators of Lu and Tsiatis (2011); Parast and others (2014); Zhang (2015).

We assumed that the only cause of missing data was administrative censoring due to some

participants not yet having their final outcomes observed. In Appendix B of the Supplementary

Material, we describe how to incorporate additional right censoring due to loss to follow-up, under

the missing at random assumption (van der Laan and Gruber, 2012).

Since the unadjusted estimator does not use information from pipeline participants, it has

the independent increments covariance structure. In our simulation study, the covariance matri-

ces and resulting boundaries uj,k from procedure M were quite similar for the unadjusted and

adjusted estimators. We conjecture that the similarity was due to a relatively low proportion

of pipeline participants at each interim analysis, and that there can be greater deviations from

the independent increments covariance structure when there are larger proportions of pipeline

participants, stronger correlations between Y and (W,L(1), . . . , L(T )), and more severe model

misspecification. Before a trial starts, it may be difficult to predict how much the covariance

matrix will deviate from the independent increments structure; therefore, it may be useful to

have a general approach as here that strongly controls the familywise Type I error rate regardless

of how large this deviation is.

The specific design in Section 6.3 stops all accrual at the first rejected null hypothesis, since

this suffices to achieve the power goals (i)-(ii) from Section 6.1. However, it is possible that alter-

native designs, which involve rules for continuing accrual after a null hypothesis is rejected, may

improve performance; this is an area of future research. The general multiple testing procedure

M in Section 5 does not require stopping the trial at the first analysis where a null hypothesis

is rejected, and can be used with any accrual modification rule r. It may be possible to real-

locate πj,k from null hypotheses that are rejected to other null hypotheses using the graphical

approaches of Bretz and others (2011); this is an area of future work.

Our simulations involved two subpopulations. The general framework in Section 5 can be
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applied to any number of subpopulations and composite populations. However, as the number

of such populations increases, so will the required sample size to achieve high power for each

population while controlling the familywise Type I error rate. It is an open problem to determine

how many populations can be accommodated before sample size becomes prohibitively large.

The conditional error function approach has been applied to two-stage, adaptive enrichment

designs by Friede and others (2012). They note that the required computations become more

demanding for designs with more than two stages. In our context, one would need to compute

conditional probabilities for a multivariate normal random vector. This is possible but more

challenging than computing the (unconditional) multivariate normal distribution function, which

can be done using the sophisticated algorithms of Genz and others (2014). However, the condi-

tional error function approach has more flexibility in how the testing procedure can be modified,

compared to our approach.

8. Supplementary Material

The Supplementary material includes the following: asymptotic results for the adjusted estimator;

the TMLE implementation; the proofs of Theorems 5.1 and 5.2; details of the data generating

distributions from Section 6; a bootstrap procedure to estimate Σ; R code for our simulations.

It is available here:

http://people.csail.mit.edu/mrosenblum/papers/SuppMatAdaptWithDelay.pdf
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Table 1: Cumulative information at each analysis for subpopulation 1, subpop-
ulation 2, and the combined population, in scenario (a).

adjusted estimator unadjusted estimator

Analysis (k) 1 2 3 4 5 1 2 3 4 5

Subpop. 1 (I1,k) 124 250 370 558 749 126 251 376 590 795
Subpop. 2 (I2,k) 256 524 763 249 487 739
Comb. Pop. (I0,k) 389 785 1140 372 740 1115

Table 2: Cumulative sample size (Cum.S.S.) at each analysis, which has the
format: number of participants with Y observed (+ number in pipeline).

Analysis (k) 1 2 3 4 5

Unadjusted estimator
Cum.S.S. Subpop. 1 104 (+24) 208 (+24) 312 (+24) 480 (+24) 648 (+0)
Cum.S.S. Subpop. 2 208 (+49) 416 (+49) 624 (+0) 624 (+0) 624 (+0)
Cum.S.S. Comb. Pop. 312 (+73) 624 (+73) 936 (+24) 1104 (+24) 1272 (+0)

Adjusted estimator
Cum.S.S. Subpop. 1 84 (+24) 168 (+24) 252 (+24) 382 (+24) 512 (+0)
Cum.S.S. Subpop. 2 168 (+49) 336 (+49) 504 (+0) 504 (+0) 504 (+0)
Cum.S.S. Comb. Pop. 252 (+73) 504 (+73) 756 (+24) 886 (+24) 1016 (+0)

Futility Boundary (l1,k) 0 0 0 0 -
Futility Boundary (l2,k) 0 0 ∞ - -

Table 3: Efficacy boundaries for scenario (a) and unadjusted estimator. H00 is
no longer tested after analysis 3.

Analysis (k) 1 2 3 4 5

H00 Efficacy Boundary (u0,k) 3.41 3.06 2.84 - -
H01 Efficacy Boundary (u1,k) 3.27 2.89 2.66 2.33 2.14
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Table 4: Power and expected sample size (ESS) for adaptive and non-adaptive
designs. Power under scenario (a) is the probability of rejecting at least H00;
power under scenario (b) is the probability of rejecting at least H01.

Adaptive Design
Scenario (a) Scenario (b) Scenario (c)

power H00 ESS power H01 ESS Type I error ESS
Estimator:
unadjusted 0.79 712 0.82 795 0.025 640
TMLE progW,L 0.81 568 0.82 643 0.025 521
TMLE prog∅ 0.79 711 0.82 794 0.025 638

Non-Adaptive Design
Scenario (a) Scenario (b) Scenario (c)

power H00 ESS power H01 ESS Type I error ESS
Estimator:
unadjusted 0.80 718 0.82 958 0.025 729
TMLE progW,L 0.82 575 0.82 771 0.025 591
TMLE prog∅ 0.80 718 0.81 959 0.025 727
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(i) Power to Reject at Least H00 in Scenario (a)
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(ii) Power to Reject at Least H01 in Scenario (a)
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(iii) Power to Reject at Least H00 in Scenario (b)
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(iv) Power to Reject at Least H01 in Scenario (b)

Fig. 1: Stagewise and overall power comparing estimators. Top and bottom rows
correspond to scenarios (a) and (b), respectively. Left and right columns repre-
sent power to reject at least H00 and to reject at least H01, respectively. Black bar
represents TMLE progW,L; yellow bar represents TMLE prog∅ (denoted “prog
None” in legends); white bar represents unadjusted estimator.
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