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July 27, 2016

Abstract

Adaptive enrichment designs involve rules for restricting enrollment to a subset

of the population during the course of an ongoing trial. This can be used to target

those who benefit from the experimental treatment. To leverage prognostic informa-

tion in baseline variables and short-term outcomes, we use a semiparametric, locally

efficient estimator, and investigate its strengths and limitations compared to standard

estimators. Through simulation studies, we assess how sensitive the trial performance
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(Type I error, power, expected sample size, trial duration) is to different design char-

acteristics. Our simulation distributions mimic features of data from the Alzheimer’s

Disease Neuroimaging Initiative, and involve two subpopulations of interest based on

a generic marker. We investigate the impact of the following design characteristics:

the accrual rate, the delay time between enrollment and observation of the primary

outcome, and the prognostic value of baseline variables and short-term outcomes. We

apply information-based monitoring, and evaluate how accurately information can be

estimated in an ongoing trial.

Keywords: multiple testing procedure; treatment effect heterogeneity

1 Introduction

Adaptive enrichment designs involve pre-planned rules for restricting enrollment based on

accrued data in an ongoing trial (Wang et al., 2007). If, for example, a subpopulation

shows evidence of no benefit of treatment, its enrollment could be stopped while the com-

plementary subpopulation continues to be enrolled. Stallard et al. (2014) give an overview

of statistical methods for adaptive enrichment designs, including the p-value combination

approach (Bretz et al., 2006; Schmidli et al., 2006; Jennison and Turnbull, 2007; Brannath

et al., 2009); the conditional error function approach (Friede et al., 2012); and approaches

using group sequential computations (Stallard, 2011; Magnusson and Turnbull, 2013). We

use an adaptive enrichment design from the general class of Rosenblum et al. (2016), which

is based on the group sequential computation approach.

We consider trials where the primary outcome is observed a fixed amount of time from

enrollment (called the delay). To illustrate, we use data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) study. We set the primary outcome to be a measure of change

in severity of dementia symptoms from baseline to 1 year of follow-up described below; this

is similar to the primary outcome in an ongoing, phase 3 clinical trial of a drug to slow cogni-
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tive and functional decline from early Alzheimer’s Disease (Biogen, 2016). Also recorded are

baseline variables and the short-term outcome of change in severity of dementia symptoms

measured at 6 months of follow-up.

To leverage prognostic information in baseline variables and the short-term outcome,

we use a semiparametric, locally efficient estimator (called the adjusted estimator, for con-

ciseness) from van der Laan and Gruber (2012). The adjusted estimator in a randomized

trial is consistent under mild regularity conditions without requiring any parametric model

assumptions. It has potential to improve precision, power, expected sample size, and trial

duration when variables are sufficiently prognostic for the outcome. In trials with delayed

outcomes, the adjusted estimator uses information from pipeline participants, i.e., enrollees

whose primary outcome has not yet been observed.

An open question is how useful the above estimators are in adaptive enrichment designs

with delayed outcomes, under different configurations of delay, accrual rates and prognostic

value. We use simulation studies that mimic features of data from the ADNI study, and

examine the impact of delay, accrual rates, prognostic baseline variables, and prognostic

short-term outcomes.

The simulated trials involve multiple stages, and information-based monitoring is used to

determine the time of interim analyses. We evaluate the accuracy of information estimates

when using the adjusted estimator versus the unadjusted estimator, which is critical in order

that the familywise Type I error be controlled.

In Section 2 we describe the ADNI study. In Section 3 we present notation. The simula-

tion setup is given in Section 4. Section 5 presents simulation results, including the impact of

prognostic baseline variables and a short-term outcome (Section 5.1), the impact of varying

delay time (Section 5.2), and the impact of varying the accrual rates (Section 5.3) on the

performance of the adaptive design. In Section 6 we discuss information accrual rates and
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how accurately these can be estimated in an ongoing trial. Section 7 discusses limitations

and future research directions.

2 Data Example

Our simulations are based on distributions that mimic features of the data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), an observational longitudinal study of cognitive

impairment and progression to Alzheimer’s disease. The ADNI was initiated in 2003 as a

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The pri-

mary goal of the study has been to test whether serial magnetic resonance imaging, positron

emission tomography, other biological markers, and clinical and neuropsychological assess-

ment can be combined to measure the progression of mild cognitive impairment and early

Alzheimer’s disease.1 The Clinical Dementia Rating (CDR) scale is used to assess the sever-

ity of dementia symptoms and provides both a numeric global score ranging from 0 to 3,

and a sum of boxes (SOB) score ranging from 0 to 18.

Our data come from 286 patients who entered the ADNI study with mild cognitive

impairment (CDR 0.5 with a SOB score 2.5 or less) and who remained in the study for

the full 12 months of follow-up. For conciseness, we refer to the sum of the CDR global

score and the SOB score as the CDR score. We define the primary outcome Y as the

difference between the CDR score at baseline and at 12 months. We define the short-term

outcome L as the difference between the CDR score at baseline and at 6 months. Let W

denote the following five prognostic baseline variables: CDR score at baseline; age; Aβ42

(a type of amyloid plaque involved in Alzheimer’s disease progression); Alzheimer’s Disease

Association (ADA, 13 items) scale; and the Mini Mental State Examination (MMSE) score.

We consider two distinct subpopulations defined by apolipoprotein E (APOE) ε4 carrier

1For up-to-date information, see www.adni-info.org.
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status. Subpopulation 1 consists of those with no ε4 alleles, and subpopulation 2 consists of

those with at least one ε4 allele. (no alleles being subpopulation 1 vs. at least one allele being

subpopulation 2). Among the 286 patients, 47% carry no APOE ε4 alleles. We consider a

hypothetical treatment whose goal is to delay the progression of disease. Since we had more

measurements at 12 and 24 months in the dataset, but we wanted to use the timescale of 6

and 12 months in our simulated trial, we mapped each 12- and 24-month outcome to 6-and

12-month, respectively, throughout our paper.

3 Notation

When followed up completely, each participant i in the trial has full data vector Di =

(Si,Wi, Ai, Li, Yi). We use the vector D = (S,W,A, L, Y ) when referring to a generic par-

ticipant. The variable Si ∈ {1, 2} denotes the subpopulation that participant i belongs to;

Wi denotes a vector of baseline variables; Ai denotes the treatment assignment indicator;

Li denotes the short-term outcome; and Yi denotes the primary outcome. We assume that

(Si,Wi, Ai) are observed when participant i is enrolled, and that Li and Yi are observed at

duration dL and dY , respectively, from the time of enrollment, with dL ≤ dY . Each vector Di

is assumed to be an independent, identically distributed draw from an unknown distribution

Q, with the only restriction being that A is randomized by design with equal probability of

being 0 or 1, independent of S,W . The short-term outcome L can be any predefined mea-

surement made after randomization. No assumptions on its relationship to Y are needed

in order that our estimators (adjusted and unadjusted) are consistent and asymptotically

normal.

For a given population, the average treatment effect is defined to be the difference between

the population mean of the primary outcome under treatment (A = 1) versus control (A = 0).

Denote the average treatment effect in subpopulation 1, subpopulation 2, and the combined
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population by ∆1, ∆2, and ∆0, respectively, where ∆0 = E(Y |A = 1)−E(Y |A = 0) and for

each subpopulation s ∈ {1, 2}, ∆s = E(Y |A = 1, S = s)−E(Y |A = 0, S = s). Let ps denote

the proportion of subpopulation s in the combined population. Then ∆0 = p1∆1 + p2∆2.

Define the null hypotheses

H01 : ∆1 ≤ 0; H02 : ∆2 ≤ 0; H00 : ∆0 ≤ 0,

which represent no average treatment benefit in subpopulation 1, subpopulation 2, and the

combined population, respectively.

We quantify the prognostic value of W and L for explaining variance in the primary

outcome Y for the combined population. Define the R-squared of W and R-squared of L as

R2
W =

var{E(Y | W )}
var(Y )

, R2
L =

var{E(Y | L)}
var(Y )

. (1)

R2
W represents the fraction of variance in Y explained by W . Similarly, R2

L represents the

fraction of variance in Y explained by L.

Using the ADNI study data, we approximated (1) to roughly determine how much of the

variance of the outcome Y is explained by W or L. The empirical R2
W is computed as in

(1), with E(Y | W ) estimated by a linear model with intercept and main terms W3,W4, and

the variances are estimated by the empirical variance. (We use only W3,W4 in the working

model for constructing the adjusted estimator; see Section 4.2.) A similar computation was

done to obtain the empirical R2
L replacing W by L. The resulting values are 0.20 and 0.48

for R2
W and R2

L, respectively. Roughly speaking, this indicates both variables are moderately

to strongly prognostic for Y .

We estimated R2
W and R2

L within each subpopulation, and found the prognostic values

differ by subpopulation. The corresponding empirical R2
W is 0.30 for subpopulation 1 and
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0.14 for subpopulation 2; the empirical R2
L is 0.44 for subpopulation 1 and 0.50 for subpop-

ulation 2. This differential prognostic value by subpopulation impacts information accrual

and power for the adjusted estimator as described in Section 5. In what follows, R2
W and

R2
L refer to (1) for the combined population.

4 Simulation Setup

4.1 Overview

Our goal is to evaluate the performance of an adaptive enrichment design with a delayed

outcome when we vary the prognostic values in baseline variables and short-term outcome,

accrual rates, delay time, and estimator used. The performance is evaluated based on Type

I error, power, expected sample size and average duration of the trial, and is based on

two estimators: the unadjusted estimator (the difference between the sample means of the

primary outcome between the two study arms), and an adjusted estimator that leverages

baseline variables and the short-term outcome. The latter is a targeted maximum likelihood

estimator (TMLE) of van der Laan and Gruber (2012) implemented in the R package ltmle

(Schwab et al., 2015). The R code we used for the adjusted estimator is provided in the

Supplementary Materials. We also could have used adjusted estimators such as those of

Lu and Tsiatis (2011); Rotnitzky et al. (2012); Gruber and van der Laan (2012). Both the

unadjusted and adjusted estimators are consistent and asymptotically normal under mild

regularity conditions (van der Laan and Gruber, 2012).

We vary the following in our simulation studies: the prognostic value of baseline variables

W and short-term outcome L represented by the R-squared formulas in Section 3; the delay

time dL to observe the short-term outcome; the delay time dY to observe the final outcome;

and the accrual rate.
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4.2 Data Generating Distributions Based on ADNI Data

Hypothetical trials are populated with participants, each of whose data vector D is drawn

independently from a data generating distribution Q, which may differ by simulation study.

We constructe each Q to mimic certain observed relationships between W , L and Y within

each subpopulation s ∈ {1, 2} in the ADNI study. For simplicity, we center W within each

subpopulation S.

Since there is no treatment in the ADNI study, we assign the treatment variable A in-

dependent of S,W , and having a relationship with Y as described next. The minimum,

clinically meaningful, average treatment effect for our hypothetical trials is δmin = 0.42,

which corresponds to a 30% relative improvement in mean CDR score change, i.e., a 30%

reduction in disease progression. Within each of our five simulation studies (described be-

low), we generate data under four treatment effect settings (abbreviated as “effect setting”

hereafter): (a) treatment benefits neither subpopulation (∆1 = ∆2 = 0); (b) treatment ben-

efits subpopulation 1 only (∆1 = δmin,∆2 = 0); (c) treatment benefits subpopulation 2 only

(∆1 = 0,∆2 = δmin); and (d) treatment benefits both subpopulations (∆1 = ∆2 = δmin).

Effect settings (b) and (c) involve treatment effect heterogeneity.

The data generating distribution in each set of simulations is denoted by

Q = Q
(
∆1,∆2, R

2
W , dY , accrual rate, L measured, R2

L, dL
)
,

and is determined by the following: the pair of treatment effects for each subpopulation

(∆1,∆2); the prognostic value of the baseline covariates R2
W ; the delay between enrollment

and the primary outcome dY ; the accrual rate; whether the short-term outcome L is mea-

sured and if so, its prognostic value R2
L and delay time dL from enrollment. We set the

enrollment process to be random, where the enrollment time of the patients follows a ho-
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mogeneous Poisson process with intensity equal to the accrual rate. We assume that each

subpopulation’s accrual rate is proportional to its prevalence in the combined population.

In each simulation study, we vary one or several of the above at a time to assess the impact

on trial performance.

First, consider the case where the short-term outcome L is not measured. Within each

subpopulation S = s, Y is drawn from the linear model:

Y = βs
0 + βs

WW + βs
AA+ εY , εY ∼ N

(
0, (σs

Y )2
)

(2)

with εY independent of (W,A). The values βs
0, βs

W and σs
Y are based on the above model fit

to the ADNI study data separately within each stratum S = s and leaving out A. We set

βs
A = ∆s to be the desired treatment effect, which depends on the effect settings (a)-(d).

For the case where L is measured, within each subpopulation S = s, Y and L are

generated from the linear models:

L = αs
0 + αs

WW + αs
AA+ εL, εL ∼ N

(
0, (σs

L)2
)

(3)

Y = βs
0 + βs

WW + βs
AA+ βs

LL+ εY , εY ∼ N
(
0, (σs

Y )2
)

(4)

with εY and εL independent of (W,A) and of each other. The values of βs
0, βs

W , βs
L, σs

Y , αs
0,

αs
W and σs

L are based on the above models fit to the ADNI study data separately within each

stratum S = s and leaving out A. For simplicity we set αs
A = 0, and set βs

A = ∆s to be the

desired treatment effect. The β values in (4) are not the same as those in (2); however, we

do not distinguish between these in our notation, when there is no ambiguity as to whether

L is measured in the simulation scenario.

We construct simulation distributions with a range of R2
W and R2

L values by varying α

and β. We do so in such a way that the average treatment effect within each subpopulation
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is unchanged, and the variance of Y within each subpopulation and each treatment arm

is unchanged; our method is summarized below with details given in the Supplementary

Material. The result is that the (asymptotic) performance of the unadjusted estimator is

unchanged, providing a benchmark to compare against. In simulation scenarios where L is

not measured, to change the prognostic value of W we multiply the original fits of β1
W , β

2
W

from the ADNI study data by a tuning parameter pW in (2), and change σs
Y accordingly so

that the variance of Y given A, S and the average treatment effect given S are unchanged. In

simulation scenarios where L is measured, to change the prognostic value of L, we multiply

β1
L, β

2
L by pL in (4) and change σs

Y accordingly to ensure that the variance of Y given A, S

and the average treatment effect given S are unchanged. These modifications do not affect

the unadjusted estimator, although they do impact the adjusted estimator (as we will show

in Section 5).

Let the default simulation scenario be the one with design characteristics corresponding

to the empirical distribution of the ADNI study data: R2
W = 0.20, R2

L = 0.48; the default sce-

nario sets dL = 0.5 years, dY = 1 year, and the accrual rate for the combined population to be

334 patients/year. We conduct 5 sets of simulations with various design characteristics that

are summarized in Table 1. Each combination of (R2
W , dY , accrual rate, L measured, R2

L, dL)

is referred to as a simulation scenario. For example, in simulation study 1 (row 1 in Ta-

ble 1), R2
W is varied from 0 to 0.6, the short-term outcome is not measured, and all other

characteristics are set to the default value.

In all simulations, we use the full set of baseline covariates (W1,W2,W3,W4,W5) in the

data generating distributions (2)-(4) for L and Y , but we only include baseline variables

W3, W4 (Aβ42 and ADA) in the working models used by the adjusted estimator. We in-

tentionally induced such model misspecification, since in practice the working models used

by the adjusted estimator will generally be misspecified. In addition, the TMLE estimator
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Table 1: Summary of setups for 5 simulation studies. Default value of pa-
rameter: R2

W = 0.20, R2
L = 0.48, dL = 0.5 years, dY = 1 year, accrual rate

334 patients/year. Ranges of values x− y indicate the design characteristic(s)
varied in the corresponding simulation study.

Simulation
study

R2
W dY (yrs)

accrual rate
(patients/year)

L measured R2
L dL (yrs)

1 0− 0.6 default default No NA NA
2 0 default default Yes 0− 0.6 default
3 default 0− 2 default No NA NA
4 default 0.05, 0.5, 1, 1.5, 2 default Yes default 0− dY
5 default default 100− 1000 Yes default default

uses logistic regression working models (by first scaling the outcome to the interval [0, 1])

rather than linear models, which can lead to additional misspecification. Though the ad-

justed estimator is robust to the above model misspecification in that it is still consistent

and asymptotically normal, the misspecification may reduce its precision.

4.3 Adaptive Enrichment Design

We define a new adaptive enrichment design using the general framework developed by

Rosenblum et al. (2016). We consider two subpopulations: S = 1 if the patient has no

APOE ε4 allele, and S = 2 if the patient has one or more APOE ε4 allele. Define S = 0

to be the combined population. We consider an adaptive enrichment design with maximum

number of stages K = 5. At each analysis k ≤ K, let Zs,k denote the Wald statistic

(estimator divided by its standard error) for null hypothesis H0s, s ∈ {0, 1, 2}. For each

population s and stage k ≤ K, let us,k denote the efficacy boundary for the null hypothesis

H0s (s ∈ {0, 1, 2}), and let ls,k denote the futility stopping boundary (s ∈ {1, 2}). The

multiple testing procedure at each analysis k ≤ K consists of the following steps:

1. For each s ∈ {1, 2}, if subpopulation s has not had enrollment stopped at a previous

analysis, and if Zs,k > us,k, reject H0s.
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2. For each s ∈ {1, 2}, if H0s is rejected or Zs,k < ls,k, stop subpopulation s enrollment.

3. If both H01 and H02 are rejected, or (if both subpopulations have not had enrollment

stopped at a previous analysis and Z0,k > u0,k), reject H00.

The trial continues until both subpopulations terminate enrollment or the final analysis K

is reached.

Define the power of H01 to be the probability to reject at least H01 under effect setting

(b), power of H02 to be the probability to reject at least H02 under effect setting (c), and

power of H00 to be the probability to reject at least H00 under effect setting (d). The design’s

goals are to achieve at least 80% power to reject the corresponding null hypothesis under

each effect setting (b), (c), and (d), and to strongly control the familywise Type I error rate

at level 0.025, asymptotically. For example, the requirement under effect setting (b) is 80%

power for H01.

The Type I error spent at each stage, futility boundaries ls,k, s ∈ {1, 2}, 1 ≤ k ≤ K

and the information level (inverse of the estimator’s variance) used for analysis timing are

in Table 2. They were constructed by approximately solving the following optimization

problem: for the unadjusted estimator under the default simulation scenario, minimize the

expected sample size averaged over effect settings (a)-(d), subject to the Type I error and

power constraints in the previous paragraph. The optimization was solved using an approach

from Fisher and Rosenblum (2016), and does not necessarily equal the true optimum solution

(which is currently an open research question). The asymmetry in the solution is because the

proportion p1 = 0.47 and the variances differ by subpopulation. In determining the values

of efficacy boundaries us,k, s ∈ {0, 1, 2}, 1 ≤ k ≤ K, we use the error spending approach

as described in Rosenblum et al. (2016, Section 3.2), which extends the approach of Slud

and Wei (1982); Lan and DeMets (1983) to multiple populations; see the Supplementary

Material for details. These efficacy boundaries depend on the covariance matrix of the
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estimator being used. The design is guaranteed to strongly control the familywise Type I

error rate at level 0.025, asymptotically, for Wald statistics based on either the unadjusted

or adjusted estimators.

Table 2: Adaptive enrichment design, and efficacy boundaries under default
simulation scenario.

Analysis (k) 1 2 3 4 5

Type I error spent for Subpop. 1 0.0007 0.0007 0.0028 0.0015 0.0038
Type I error spent for Subpop. 2 0.0001 0.0023 0.0012 0.0026 0.0027
Type I error spent for Comb. Pop. 0.0028 0.0006 0.0009 0.0013 0.0012

Futility boundary (l1,k) -4.12 0.40 -1.48 0.94 -
Futility boundary (l2,k) -0.10 0.29 0.42 0.93 -

Information threshold for Subpop. 1 13.0 20.2 24.9 40.1 69.1
Information threshold for Subpop. 2 13.4 20.2 25.7 41.1 69.6
Information threshold for Comb. Pop. 27.1 40.8 50.1 80.3 138.5

Efficacy boundaries for the unadjusted estimator under default simulation scenario
Effcacy boundary (u1,k) 3.12 3.06 2.64 2.77 2.53
Effcacy boundary (u2,k) 3.52 2.76 2.78 2.63 2.62
Effcacy boundary (u0,k) 2.78 3.08 2.92 2.86 2.89

4.4 Analysis Timing and Information Accrual

We present our method to determine the time of each analysis based on information mon-

itoring. Consider either the adjusted or unadjusted estimator. There are 3 populations of

interest (the two subpopulations and the combined population) in our design. For each pop-

ulation there is a treatment effect estimator whose variance changes over time as patients

are continuously enrolled. We define the information accrued for each population as the

reciprocal of the corresponding estimator’s variance. The kth analysis occurs at the earliest

time when the information accrued for every population is above its corresponding, preset

threshold (which is a preset function of the Type I error allocated at that stage, i.e., part of
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Hosted by The Berkeley Electronic Press



the trial design). Information thresholds in the design, shown in Table 2, were set such that

for the unadjusted estimator in the default simulation scenario, the information accrual for

each population crosses its threshold at the same calendar time. Information can accrue at

different rates depending on whether the unadjusted or adjusted estimator is used, as shown

in our simulations. Faster information accrual can lead to earlier analyses in calendar time

and usually smaller sample size at each analysis.

Since in practice the variance of each estimator is unknown, one could use a variance

estimator that is updated whenever new data accrues. (See Section 6 where we investigate the

accuracy of information estimation at given time points.) However, it is not computationally

feasible to implement this in our simulations where each data generating distribution is used

to simulate 10,000 trials. Instead, we set analysis timing once for each simulation scenario

and estimator type, using an approximation described in the Supplementary Material.

Table 3 shows the calendar times of each analysis for the unadjusted and the adjusted

estimators under the default simulation scenario. The cumulative sample size at each analysis

time is random due to the random accrual process; Table 3 is an example realization. Time

of analysis and sample sizes are substantially smaller for the adjusted estimator compared

to the unadjusted due to the former having a faster information accrual rate.

5 Results

We simulated 10,000 trials for each simulation scenario and effect setting combination. Table

4 shows the empirical probability of rejecting each hypothesis under the four effect settings

in the default simulation scenario. The numbers with * indicate Type I error, i.e., rejecting

at least one true null hypothesis. Under effect setting (a), all null hypotheses are true; under

effect setting (b) (or (c)), only H01 (or H02) is true; under effect setting (d), none of the null

hypotheses are true.

14

http://biostats.bepress.com/jhubiostat/paper277



Table 3: Calendar time to conduct interim analysis for unadjusted and ad-
justed estimators under default simulation scenario. For one realization of the
trial we show the cumulative sample size (CSS) with the format: number of
participants with Y observed (+ number of pipeline participants). If no early
stop occurs, “stop enroll” column shows the time of last participant enrolled,
and we wait until all participants have Y observed then conduct the final
analysis (analysis 5).

Analysis (k) 1 2 3 4 stop enroll 5 (final)

Unadjusted estimator
Time (years) 2.2 2.8 3.2 4.5 6.1 7.1
CSS (Subpop. 1) 108 (+245) 202 (+252) 275 (+248) 479 (+237) 730 (+238) 968 (+0)
CSS (Subpop. 2) 104 (+290) 241 (+257) 309 (+256) 528 (+248) 788 (+275) 1063 (+0)
CSS (Comb. Pop.) 212 (+535) 443 (+509) 584 (+504) 1007 (+485) 1518 (+513) 2031 (+0)

Adjusted estimator
Time (years) 1.8 2.3 2.7 3.8 5.1 6.1
CSS (Subpop. 1) 54 (+251) 137 (+238) 192 (+245) 375 (+236) 585 (+222) 807 (+0)
CSS (Subpop. 2) 53 (+276) 133 (+283) 223 (+257) 415 (+258) 626 (+242) 868 (+0)
CSS (Comb. Pop.) 107 (+527) 270 (+521) 415 (+502) 790 (+494) 1211 (+464) 1675 (+0)

Across all the simulation scenarios we considered, the familywise Type I error rate was

always controlled at 0.025 for both adjusted and unadjusted estimators. All the power goals

in Section 4.3 are met. For the unadjusted estimator, the powers of H00, H01 and H02 (defined

in Section 4.3) are all between 80% − 83% under different simulation scenarios. This is as

expected due to our method of determining the analysis timing (as described in Section 4.4).

For the adjusted estimator, the power of H02 also stays near 80% under different simulation

scenarios, whereas the power of H01 and H02 can be much higher than 80% under certain

simulation scenarios, e.g. when the prognostic value in W is considerably high (R2
W > 0.3).

This is because R2
W is always higher in subpopulation 1 than in subpopulation 2 due to the

way we vary pW in Section 4.2. (See Section A.3 for a more detailed discussion.) If one

intended to have exactly 80% power for all three hypotheses for the adjusted estimator, we

could have optimized a separate adaptive design for the adjusted estimator to incorporate

the different R2
W in two subpopulations. However, this would make it harder to do a head-

to-head comparison of the unadjusted and the adjusted estimators.
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Table 4: Type I error / power for two estimators under default simulation
scenario. Type I errors (numbers with *) are computed assuming nonbinding
futility boundaries; powers are computed assuming binding futility boundaries.
In “Percent probability to reject”, to reject an individual hypothesis means to
reject at least that hypothesis; All/Any means to reject all/any of the three
hypotheses. The empirical values corresponding to the power requirements are
in bold for each scenario (b)-(d).

Effect setting Percent probability to reject
H00 H01 H02 All Any

(a) ∆1 = ∆2 = 0 0.7* 1.0* 1.1* 0.0* 2.5*
Adjusted (b) ∆1 = δmin,∆2 = 0 12 87 1.1* 1.0* 88
estimator (c) ∆1 = 0,∆2 = δmin 16 1.1* 80 0.9* 80

(d) ∆1 = ∆2 = δmin 83 88 80 70 98

(a) ∆1 = ∆2 = 0 0.6* 1.0* 1.1* 0.0* 2.5*
Unadjusted (b) ∆1 = δmin,∆2 = 0 12 82 1.0* 0.9* 82
estimator (c) ∆1 = 0,∆2 = δmin 15 1.1* 81 1.0* 81

(d) ∆1 = ∆2 = δmin 82 81 81 66 97

In what follows, we focus on comparing the expected sample size (ESS) and the expected

duration (ED) as summaries of trial performance under different simulation scenarios and

between the two estimators.

5.1 Simulation Studies 1-2: Effect of Prognostic Value of Baseline Variables

and Short-term Outcome

Figure 1 illustrates how ESS and ED are affected when one of R2
W or R2

L varies. The

performance of the unadjusted estimator remains the same when the prognostic value in W

and L changes, providing a benchmark to compare with. The adjusted estimator performs

similar to the unadjusted when there is no prognostic value in W or L, i.e. R2
W = R2

L = 0.

As R2
W or R2

L increases, the adjusted estimator leverages this to achieve faster information

accrual and fewer participants per stage, which leads to smaller ESS and ED. In simulation

study 1, R2
W is varied from 0 to 0.6; in simulation study 2, R2

L is varied from 0 to 0.6 (Table

1).
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Our results indicate that for the adjusted estimator, a prognostic baseline variable is

more valuable than an equally prognostic short-term outcome in terms of reducing ESS and

ED. For instance, under effect setting (d), increasing R2
W from 0 to 0.25 results in a 19%

drop in ESS, whereas increasing R2
L from 0 to 0.25 only renders a 2% drop. This is because

all enrolled patients’ baseline variables contribute to the precision of the adjusted estimator;

however, although the short-term outcome of every participant is used, the efficiency gain

from adjusting for L is proportional to the number of participants in the pipeline (i.e., those

who have L but not Y observed). Moreover, a participant’s baseline variables potentially

improve precision for estimation of both E(Y |A = 1) and E(Y |A = 0), while a participant’s

short-term outcome is only used toward improving precision for one of these, corresponding

to the treatment that participant received.

5.2 Simulation Studies 3-4: Effect of Delay Times dY and dL

We assess the impact of delay times dY and dL on the performance of the design. In simulation

study 3, we vary dY from 0 years (immediate Y ) to 2 years with L not measured. In

simulation study 4, with L measured we set dY to several levels, and in each case vary dL

from 0 (immediate L) to dY .

Figure 2 shows the comparison under simulation study 3. ESS and ED increase with

longer dY for both estimators. This is intuitive: the longer it takes to observe the primary

outcome, the more time is needed to accumulate the necessary information. The adjusted

estimator leads to smaller ESS and ED than the unadjusted estimator uniformly over all

values of dY because of gains from adjusting for baseline variables W . In addition, ESS and

ED for both estimators are approximately linear in dY .

Figure 3 shows the comparison under simulation study 4. When dY is fixed, the perfor-

mance of the unadjusted estimator remains the same regardless of the length of dL, because
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Figure 1: Left: impact of R2
W on ESS and duration in simulation study 1.

Right: impact of R2
L on ESS and duration in simulation study 2. Since the

results corresponding to unadjusted estimator do not change as R2
W and R2

L

are varied, they are marked only once next to the vertical axis using the circle,
square, diamond, and triangle symbols. δ refers to δmin.
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L is not used in the unadjusted estimator. For the adjusted estimator, a longer dL results in a

smaller proportion of pipeline participants who have L observed—hence, slower information

accrual and larger ESS and ED. Even when dL = dY , which implies no asymptotic precision

gain from adjusting for L, the adjusted estimator still gains from adjusting for prognostic

W .
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Figure 2: Impact of dY on ESS and ED in simulation study 3. Different line
types indicate the ESS and ED under four effect settings. For the adjusted
estimator, the lines for ED under effect settings (b)-(d) are clustered together.
For the unadjusted estimator, the lines for ED under effect settings (b) and
(c) are clustered together. δ refers to δmin.
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Figure 3: Effect of dY and dL on ESS and ED in simulation study 4. Since the
results corresponding to unadjusted estimator do not change when dL varies
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the circle, square, diamond, and triangle symbols. δ refers to δmin.
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5.3 Simulation Study 5: Effect of Accrual Rate

Figure 4 illustrates how the ESS and ED are affected by different accrual rates. Because the

information depends either entirely (for the unadjusted estimator) or largely (for the adjusted

estimator) on the number of participants who have the delayed outcome Y observed, with

faster accrual there will generally be more pipeline participants at interim analyses. These

additional pipeline participants make ESS larger. On the other hand, ED gets shorter with

faster accrual. The impact of accrual rate on ESS and ED is similar across the two estimators.
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Figure 4: Impact of accrual rate on ESS and ED. Different line types indicate
the ESS and ED under four effect settings. For each estimator, the curves for
ED under effect settings (b)-(d) are clustered together. δ refers to δmin.
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6 Information Accrual Rates and Estimating Information Levels

In Section 4.4 we presented our approach for determining the time for analyses based on

information monitoring. Here we explore information accrual more thoroughly and discuss

how accurately information can be estimated in an ongoing trial. At each time, we are

interested in two types of information level: the current information, i.e., the inverse of

variance of the estimator computed using available data at the time, and the wait-for-pipeline

information, i.e., the inverse of variance of the estimator using available data at the time

plus the not yet observed L and Y of the pipeline participants. The current information is

used for determining time for interim analyses, and the wait-for-pipeline information is used

for determining time for the final analysis when we wait until all pipeline participants finish

the trial and then test hypotheses.

Figure 5(a) shows how the two types of information accrue over time for the two estima-

tors under the default simulation scenario when enrollment is not stopped.

For the unadjusted estimator, the information at a given time is proportional to the

number of patients with Y observed; for the adjusted estimator, such proportionality is

only approximate because the pipeline participants also contribute information. There is an

approximately constant gap between the current information and the wait-for-pipeline infor-

mation for each estimator, because the extra information in the not yet observed outcomes

from the pipeline participants stays roughly constant over time. The adjusted estimator

results in a faster information accrual compared to the unadjusted estimator, which is con-

sistent with better trial performance (as shown in Section 5). The information accrual rates

do not depend on ∆1,∆2 since in our setup these do not impact the estimator’s variance.

In practice, one needs a reliable method for estimating the information level using data

from the ongoing trial in order to determine information-based timing for interim and final

analyses. The sample variance is used to estimate the true variance of the unadjusted
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estimator. For the adjusted estimator, its variance can be estimated using the nonparametric

bootstrap or by the influence curve. The ltmle package computes an influence-curve-based

variance estimate (ICVE) for the TMLE estimator. ICVE can be conservative in the sense

that it may overestimate the variance (van der Laan and Gruber, 2012); in our simulation,

however, it approximates the variance quite well.

Figure 5(b) summarizes the performance of the variance estimators under the default

simulation scenario. The solid red line connects the true information levels over time, and

the box-plots represent the distribution of ICVE at 5 analyses assuming no early stopping.

The mean and the spread of the distribution of ICVE increase with time (and hence with

sample size n), because the information level is approximately n times the reciprocal of the

variance of the estimator’s influence curve, and the latter is estimated with standard error

proportional to n−1/2 asymptotically. Therefore, the spread in the box plots representing

the approximate interquartile range grows at rate n1/2. A similar observation applies to the

sample variance estimate for the unadjusted estimator. Estimation accuracy for information

accrual is similar for the two estimators.

7 Discussion

In simulation studies 3 and 4 in Section 5.2, we set constant prognostic values R2
W and R2

L,

while varying dL and dY . It may also be of interest to consider a range of simulation scenarios

where the prognostic value changes with delay. For example, it is possible that with longer

dY , the baseline variables W become less correlated with the final outcome Y , e.g., if these

variables measure the same quantity at different time points. In addition, if dL is closer to

dY then the correlation between L and Y may be stronger. It is an area of future research to

explore such simulation scenarios, in which there is a trade-off such that shorter dL means

more participants will have L but not Y observed, but such L is less prognostic for Y .
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(a) Information accrual under the default simulation scenario. Yellow corresponds to unadjusted
estimator and black to adjusted estimator.
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(b) Box-plots of estimated information level for adjusted estimator (using influence-curve-based
method) and unadjusted estimator (using sample variance) at each of the five analyses assuming
no early stopping of enrollment (so that enrollment stops dY = 1 year before the final analysis;
see Table 3). The red solid line connects the true information levels, and each box-plot shows the
spread of the estimated information level.

Figure 5: Information accrual rates and box-plots of estimated variance for
the adjusted and unadjusted estimators under the default simulation scenario.
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We used the full set of baseline variables (W1, . . . ,W5) in generating data, and only used

(W3,W4) in the adjusted estimator. Since model misspecification is likely to occur in practice,

we think it is important to have incorporated this in our simulation study. We could also

include subpopulation information S as a baseline variable in estimating the treatment effect

for the combined population with the adjusted estimator. Another potential modification

would be to separately optimize the trial design for the adjusted estimator (rather than use

the same information-based design that was optimized for the unadjusted estimator). These

modifications could further increase the gains due to adjustment.

In (3) we set αA = 0, i.e., the treatment doesn’t affect the short-term outcome. Setting

this to be nonzero could impact efficiency gains from prognostic L.

Open research problems include investigating the impact of subpopulation proportion,

and generalizing the findings to other designs and data generating mechanisms. Another

problem is to evaluate the impact of dropout in the simulation. The adjusted estimator can

provide advantages over the unadjusted estimator for handling dropout under the missing

at random assumption, in which case the unadjusted estimator will typically be inconsistent

(van der Laan and Gruber, 2012).
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A Supplementary Material

A.1 Detail for varying prognostic values in the data generating mechanism

The fitted α, β and σ’s from the ADNI study data are shown in Table 5.

Table 5: Fitted α, β and σ’s from the ADNI study data

L is not measured
s = 1 s = 2

βs
0 -1.131 -1.664
βs
W1

0.007 0.172
βs
W2

-0.027 0.013
βs
W3

0.001 -0.007
βs
W4

-0.148 -0.111
βs
W5

0.027 0.150
σs
Y 1.552 1.773

L is measured
s = 1 s = 2 s = 1 s = 2

βs
0 -0.699 -0.808 αs

0 -0.485 -0.734
βs
W1

-0.134 0.140 αs
W1

0.158 0.028
βs
W2

-0.011 0.009 αs
W2

-0.018 0.003
βs
W3

-0.002 -0.006 αs
W3

0.004 -0.001
βs
W4

-0.098 -0.031 αs
W4

-0.057 -0.068
βs
W5

-0.017 0.099 αs
W5

0.049 0.043
βs
L 0.890 1.167
σs
Y 1.247 1.342 σs

L 1.044 0.996

In varying R2
W and R2

L as described in Section 4.2, it is desired that the average treat-

ment effect within each subpopulation remains unchanged, and the variance of Y given A, S

remains unchanged. This implies that E(Y | A = 1, S = s)−E(Y | A = 0, S = s), s ∈ {1, 2}

and var(Y | A = a, S = s) for a ∈ {1, 2} and s ∈ {1, 2} need to be unchanged. Throughout

rest of the subsection we omit the superscript s, because the following procedures will be

conducted separately within each of the subpopulations.

In simulation scenarios where L is not measured, we multiply βW by a tuning parameter

pW in (2). The mean and variance of Y given A = a become:

E(Y | A = a) = β0 + βAa, (5)

var(Y | A = a) = var(pWβWW ) + var(εY )

= p2Wβ
T
Wvar(W )βW + σ2

Y . (6)

E(Y | A = a) does not depend on pW , and neither does the average treatment effect. For a
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given pW , we solve for σ2
Y so that the value of (6) is constant under different specifications

of pW . R2
W with A = 0 defined in (1) becomes:

R2
W =

p2Wβ
T
Wvar(W )βW

var(Y | A = 0)
. (7)

In simulation scenarios where L is measured, we multiply βL by a tuning parameter pL

in (4). The mean and variance of Y given A = a become:

E(Y | A = a) = β0 + pLα0βL + βAa, (8)

var(Y | A = a) = var{(βW + pLαWβL)W}+ var(εY + pLβLεL)

= (βW + pLαWβL)Tvar(W )(βW + pLαWβL) + σ2
Y + p2Lβ

2
Lσ

2
L, (9)

The average treatment effect does not depend on pL. For a given pL, we solve for σ2
Y so that

the value of (9) is constant under different specifications of pL. R2
L with A = a defined in

(1) becomes:

R2
L =

p2Lβ
2
Lvar(L)

var(Y | A = a)
. (10)

A.2 Algorithm to Compute Efficacy Boundaries us,k

At stage k for the null hypothesis H0s, 1 ≤ k ≤ K, s ∈ {0, 1, 2}, denote αs,k as the Type

I error to be spent, and us,k the efficacy boundary for the Wald statistic Zs,k (estimator

divided by its standard deviation). Define the ordering (s′, k′) ≺ (s, k) if and only if k′ < k

or (k′ = k and s′ < s). Define us,k to be the solution to

P {Zs′,k′ ≤ us′,k′ for all (s′, k′) ≺ (s, k), and Zs,k > us,k | ∆1 = ∆2 = 0} = αs,k,
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where the joint distribution of Zs,k is approximated by a normal distribution, with variance-

covariance matrix estimated from 10,000 simulated trials.

A.3 Detail for Analysis Timing

For each fixed data generating distribution

Q = Q
(
∆1,∆2, R

2
W , dY , accrual rate, L measured, R2

L, dL
)

and each estimator, our method to determine time of analyses consists of four steps:

Step 1: Generate 10,000 pilot simulated trials where interim analyses are conducted at

25 pre-selected calendar time points t1, . . . , t25, such that approximately 50 patients from

subpopulation 1 are enrolled between tj and tj+1. For each tj, we record the estimated treat-

ment effect τj at that time and the “wait-for-pipeline” treatment effect τ̃j that is obtained by

assuming enrollment is stopped at tj and estimating the treatment effect after Y is measured

for all pipeline participants.

Step 2: Compute the variances of τj and τ̃j from the 10,000 pilot simulated trials, the

inverse of which are the current information and wait-for-pipeline information at tj, respec-

tively.

Step 3: For interim analyses 1 - 4, linearly interpolate to find calendar time Tk of which

the current information equals that listed in Table 2 for the corresponding k ∈ {1, 2, 3, 4}.

For the final analysis, linearly interpolate to find the calendar time T5 of which the wait-for-

pipeline information equals that listed in Table 2 for k = 5.

Step 4: In the simulated trials, interim analyses 1 - 4 are conducted at calendar times

T1, . . . , T4, enrollment stops at T5 (if no early stopping occurs), and final analysis is conducted

at calendar time T5 + dY .

In step 3, for each k we identify the calendar time such that the information accrued for
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subpopulation 1, subpopulation 2 and the combined population all exceed the corresponding

threshold in Table 2. The design is optimized for the unadjusted estimator, so that when

using the unadjusted estimator, the thresholds for the three populations are crossed at

almost the same time. However, for the adjusted estimator, since W is more prognostic in

subpopulation 1 than in subpopulation 2 in the ADNI study data, by the time the information

accrued for subpopulation 2 reaches the threshold, information accrued for subpopulation 1

and the combined population already exceed their corresponding thresholds. Thus, for the

adjusted estimator at each interim analysis the information for subpopulation 2 is exactly

as in Table 2, whereas the information for subpopulation 1 and the combined exceeds the

thresholds in Table 2. This makes the power for H01 and H00 higher than 80% for the

adjusted estimator (as presented in Section A.4.1, Figure 6).

A.4 Additional Simulation Results

A.4.1 Impact of Prognostic Value, Delay Time and Accrual Rate on power

Figure 6 shows that for the adjusted estimator power of H01 and H00 increases with larger

R2
W , whereas the power of H02 remains roughly constant. Change in R2

L, dY , dL or accrual

rate does not substantially affect power. For the unadjusted estimator power is always

constant.
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Figure 6: Change in power under simulation studies 1-5. The power of
H00/H01/H02 is the probability to reject at least H00/H01/H02 under effect
setting (d)/(b)/(c). Since the results corresponding to unadjusted estimator
do not change as the design characteristics are varied, they are marked only
once next to the vertical axis using the circle, square, diamond, and triangle
symbols.
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