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A General Implementation of TMLE for
Longitudinal Data Applied to Causal Inference

in Survival Analysis

Ori M. Stitelman, Victor De Gruttola, and Mark J. van der Laan

Abstract

In many randomized controlled trials the outcome of interest is a time to event,
and one measures on each subject baseline covariates and time-dependent covari-
ates until the subject either drops-out, the time to event is observed, or the end
of study is reached. The goal of such a study is to assess the causal effect of the
treatment on the survival curve. Standard methods (e.g., Kaplan-Meier estimator,
Cox-proportional hazards) ignore the available baseline and time-dependent co-
variates, and are therefore biased if the drop-out is affected by these covariates,
and are always inefficient. We present a targeted maximum likelihood estimator of
the causal effect of treatment on survival fully utilizing all the available covariate
information, resulting in a double robust locally efficient substitution estimator
that will be consistent and asymptotically linear if either the censoring mecha-
nism is consistently estimated, or if the maximum likelihood based estimator is
already consistent. In particular, under the independent censoring assumption as-
sumed by current methods, this TMLE is always consistent and asymptotically
linear so that it provides valid confidence intervals and tests. Furthermore, we
show that when both the censoring mechanism and the initial maximum likeli-
hood based estimator are mis-specified, and thus inconsistent, the TMLE exhibits
stability when inverse probability weighted estimators and double robust estimat-
ing equation based methods break down The TMLE is used to analyze the Tshepo
study, a study designed to evaluate the efficacy, tolerability, and development of
drug resistance of six different first-line antiretroviral therapies. Most importantly
this paper presents a general algorithm that may be used to create targeted max-
imum likelihood estimators of a large class of parameters of interest for general
longitudinal data structures.



1 Introduction
Many clinical trials are designed to assess the causal effect of different treatments on
the time it takes for a particular outcome to occur, such as death, viral progression,
or symptom relief. Such trials collect on each experimental unit a longitudinal data
structure involving baseline covariates, treatment assignment, and time-dependent
covariate processes up till the minimum of drop-out and time to event of inter-
est. The typical approach for assessing these causal effects in the literature and as
mandated by the FDA for pharmaceutical drug development is to employ a Cox-
proportional hazards model only including treatment, and testing for the coefficient
of treatment to be equal to zero. These methods ignore the available covariate in-
formation. It is well known that this test is biased if censoring depends on baseline
covariates or even time-dependent covariates that are also predictive of survival.

Time dependent confounding, in the form of informative censoring, is a
major obstacle that stands in the way for getting an unbiased estimator of causal
effects, even in randomized controlled trials. If there are time dependent covariates
that both predict censoring and the time to event, then the causal effect on the time
to event may not be unbiasedly estimated by only accounting for baseline covari-
ates. This is a common issue in many clinical trials where treatment is initially
randomized but subjects are differentially lost to follow up among the treatment
arms. Adjusting for time-dependent post-treatment covariates in a multiplicative
intensity model results in non-interpretable coefficients in front of treatment, even
if the multiplicative intensity model would be correctly specified. That is, standard
regression methods cannot be employed.

Moreover, even if the Cox-proportional hazards model is correctly specified,
the Cox-proportional hazard model does typically not represent the causal effect of
treatment of interest, such as the additive causal effect of treatment on survival,
or the causal relative risk. Ideally, the parameter being estimated should be easily
interpreted by both non-statisticians and statisticians alike. In other words, the pa-
rameter being estimated should be a quantity that a subject matter expert and not a
statistician could make informed treatment decisions on.

The causal inference literature allows one to define the actual causal quanti-
ties of interest, and establish identifiability results of these causal quantities so that
they can be identified as a target parameter of the data generating distribution of the
experimental unit under clearly stated causal (non-testable) assumptions. Specifi-
cally, under a causal model such as the Neyman-Rubin model or the nonparamet-
ric structural equation model (Pearl (2008)), the assumption that the treatment and
censoring nodes are sequentially randomized given the observed history, and a pos-
itivity assumption, one can identify the post intervention distribution, under setting
treatment and enforcing no censoring, from the so called G-computation formula
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(Robins (1987)). The statistical estimation problem is now defined as the estimation
(based on observing n i.i.d. copies of the experimental unit) of the target parame-
ter of the data generating distribution under a semiparametric statistical model that
represents realistic statistical assumptions.

Particular classes of estimators that may be used to estimate such target pa-
rameters of interest are a MLE of the G-computation formula parameter based on
parametric models, the Inverse Probability of Censoring Weighted (IPCW) Esti-
mator, the Augmented-IPCW (A-IPCW) estimator (Robins and Rotnitzky (1992),
van der Laan and Robins (2003)), and the Targeted Maximum Likelihood Estimator
(TMLE).

The MLE is a substitution estimator of the target parameter of the data gen-
erating distribution. The MLE relies on a correctly specified parametric model for
the relevant factor of the data generating distribution, which can be factored in
terms of an intensity of the time to event process, and the conditional distributions
of the time-dependent covariate processes. If one utilizes likelihood based adap-
tive estimation to estimate the data generating distribution, then there is no theory
that supports the construction of valid 95-percent confidence intervals based on this
approach: in fact, it is easily shown that such a data adaptive MLE of the target
parameter will be overly biased so that the bias will not converge to zero at a root-n
rate and thus cannot be ignored in statistical inference (see e.g., van der Laan and
Rubin (2006)).

The IPCW estimator re-weights the observed data by the inverse of the prod-
uct of the propensity score and censoring probability in order make the treatment
arms among the uncensored subjects comparable w.r.t. confounders, and then ap-
plies standard estimation as if treatment was randomized and censoring was non-
informative. The consistency of these estimators rely on consistent estimation of
the treatment and censoring mechanism. These estimators are highly unstable in
situations when the parameter of interest is weakly identifiable 1, such as when
there is a level of covariates that is predictive of treatment or censoring. The in-
stability of IPCW estimators becomes even more extreme as the dimensionality of
the observed data structure increases, as is the case when there are time dependent

1The parameter of interest is weakly identifiable when there are levels of covariates that are
almost completely predictive of treatment or censoring. In situations where there are levels of co-
variates that are completely predictive of censoring certain parameters of interest are not identifi-
able. Experimental designs are created in order to make causal parameters as identifiable as possible
through either randomization or the ability to assign covariates and treatment. However, in certain
situations it is impossible to randomize treatment. Even in randomized trials it is impossible to ran-
domize censoring. As a result there may be levels of covariates that are almost completely predictive
of censoring. This informative censoring often makes parameters in the time-to-event setting weakly
identifiable
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covariates that must be accounted for.
Even though locally efficient double robust A-IPCW estimators, based on

estimating equation theory, of the causal effect of treatment on survival incorpo-
rating time-dependent covariates have been proposed (e.g., Robins and Rotnitzky
(1992), Hubbard, van der Laan, and Robins (1999), van der Laan and Robins
(2003)), these estimators have not gained traction in the literature, due to their com-
plexity as well as the above mentioned instability w.r.t. the choice of estimator
of the censoring and treatment mechanism. The IPCW and A-IPCW estimators are
based on solving an estimating equation and have shown to be unstable in situations
where the parameter of interest is weakly identifiable due to not respecting global
constraints implied by the statistical model and the fact that the target parameter is
a particular function of the true data generating distribution.

For this reason Targeted Maximum Likelihood Estimation (TMLE), has
been proposed (van der Laan and Rubin (2006)), which provides estimators that
are double robust locally efficient and also respect the global constraints on the tar-
get parameter by being a substitution estimator. The advantages of applying TMLE
for estimating causal effects, in general, has been addressed in many articles (see
e.g. the seminal paper on the topic van der Laan and Rubin (2006), van der Laan
(2010a), van der Laan (2010b), and a forthcoming book van der Laan and Rose
(2011)). For articles that demonstrate the advantages of TMLE compared to IPCW,
A-IPCW and other estimators in simulation studies for estimation of the additive
causal effect of a point treatment on a completely observed outcome, estimation
of the mean of an outcome under missingness, and estimation of a causal effect in
case-control studies, we refer to van der Laan and Rubin (2006), Gruber and van der
Laan (2010a), Gruber and van der Laan (2010b), Porter, Gruber, van der Laan, and
Sekhon (forthcoming 2011), Rose and van der Laan (2010) among others. In a se-
ries of earlier papers we developed the TMLE for estimating causal effects of treat-
ment on time to event subject to right-censoring incorporating baseline covariates
(Moore and van der Laan (2009), Stitelman and van der Laan (2011), Stitelman
and van der Laan (2010)), and the advantages of this TMLE relative to the other
classes of estimators was demonstrated through simulations and data analysis. The
advantages of TMLE relative to MLE and estimating equation based estimators,
as observed for these relatively simple data structures, can be expected to be more
strongly expressed for more complex longitudinal data structures.

In this article we propose a TMLE for estimating the treatment specific sur-
vival curve, and other closely related parameters that are functions of treatment
specific survival, that accounts for informative censoring due to time-dependent co-
variates. In addition, the TMLE presented here may also be used to gain efficiency
when censoring is independent. In a two part article entitled Targeted Maximum
Likelihood Based Causal Inference Mark van der Laan proposes a general template
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for constructing targeted maximum likelihood estimators (TMLEs) of parameters
of the G-computation formula. In this article we use that template to construct a
TMLE for the treatment specific survival curve that adjusts for possible confound-
ing due to intermediate time-dependent variables. The TMLE is locally efficient,
double robust, and may be implemented using standard statistical software. More-
over, the resulting estimator, like all TMLEs, benefits from the advantages of being
a substitution estimator as opposed to being defined as a solution of an estimating
equation. In addition, we propose solutions that address the computational diffi-
culties of constructing a TMLE for this longitudinal data structure and illustrate
how those solutions result in an algorithm that performs extremely well in terms of
computation time. A simulation study is presented that compares the characteris-
tics of this TMLE, a double robust estimating equation estimator, IPCW estimator,
and versions of these three estimators that only account for baseline confounders.
The stability of the TMLE that incorporates time dependent covariates is displayed.
We even demonstrate the stability of this TMLE compared to other methods when
the initial censoring mechanism, and outcome and intermediate variable processes
are mis-specified. Finally, we present an analysis assessing the causal effect mod-
ification of cART therapies by gender using the Tshepo study, a study designed to
evaluate the efficacy, tolerability, and development of drug resistance of six differ-
ent first-line cART regimens. In analyzing the Tshepo study we contrast how the
TMLE presented here compares to the other common methods for estimating time
to event parameters.

The algorithm and approach that we develop here with minor adjustments
will be able to address even more complicated questions of interest for longitudinal
data structures such as the effect of time dependent treatments strategies or dynamic
treatment rules on time to event outcomes. The value of this algorithm is that it is
a general approach that may be used for estimating many different parameters of
interest for a wide range of longitudinal data structures. Current approaches for es-
timating parameters of interest in longitudinal data structures rely on either IPCW
based estimates or MLE based methods whose drawbacks we addressed above (see
e.g. Samore et al. (2005), Hernan et al. (2005, 2006, 2009), Lok (2009)). In fact,
simple parameters such as the effect of a point treatment on a single outcome with
no time component can be expressed as a specific instance of the proposed ap-
proach. Moreover, increasingly complex parameters of interest, such as estimating
the treatment specific survival curves accounting for baseline covariates (Moore and
van der Laan (2009)) can be evaluated using this approach. Finally, parameters of
interest, in longitudinal data structures, for which there have been no computation-
ally feasible and efficient approach may be estimated using the algorithm presented
here.
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1.1 Organization

In the next section we review the general targeted minimum loss based estimator.
In Section 3 we apply this template for TMLE to our setting, and present the details
required for a fast and effective implementation of this TMLE. Section 4 presents a
simulation study, and Section 5 a data analysis of the Tshepo study. We conclude
with a discussion. In the Appendix we provide a generalization of our fast imple-
mentation of TMLE to general longitudinal data structures, and parameters defined
by marginal structural working models for static or dynamic interventions.

2 Targeted Minimum Loss Based Estimation (TMLE)
Let O1, . . . ,On be n i.i.d. copies of a random variable O with probability distribu-
tion P0 that is known to be an element of a statistical model M . Suppose that our
target parameter of interest is Ψ : M → IR, so that ψ0 = Ψ(P0) represents the true
target parameter value we desire to estimate from the data. Assume that this target
parameter mapping is pathwise differentiable, and let D∗(P) be the efficient influ-
ence curve (also called the canonical gradient) of the pathwise derivative at P. Let
P→ Q(P) be a parameter such that Ψ(P) only depends on P through Q(P). For
notational convenience, we will use the notation Ψ(Q) and Ψ(P) interchangeably.
Let D∗(P) only depend on P through Q(P) and another nuisance parameter g(P).
Again, we will use the notation D∗(P) and D∗(Q(P),g(P)) interchangeably.

Let Lg(Q) be a loss function for Q0 = Q(P0), possibly indexed by nuisance
parameter g = g(P), so that

Q0 = arg min
Q∈Q

EP0Lg0(Q)(O),

where Q = {Q(P) : P ∈M } is the parameter space for Q. Note that Lg0(Q) is a
function of O. In addition, given Q,g, let {Qg(ε) : ε}⊂Q be a parametric submodel
through Q, with ε representing the finite dimensional parameter, so that the linear
span of the components of d

dε
Lg(Qg(ε))

∣∣
ε=0 includes the components of D∗(Q,g):

D∗(Q,g) ∈ 〈 d
dε

Lg(Qg(ε))

∣∣∣∣
ε=0
〉.

Here we used the notation 〈 f = ( f1, . . . , fk)〉 for the linear span of the k components
of f . We refer to this condition on the choice of loss function and submodel as the
generalized score condition.

A TMLE can now be defined by starting with an initial estimator Q0
n,gn, and

iteratively updating Qk
n = Qk−1

n (εk
n), where εk

n = argminε PnLgn(Q
k−1
n,gn

(ε)), till εk
n ≈
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0. The final update is the TMLE Q∗n and solves PnD∗(Q∗n,gn) = 0. This particular
way of iteratively updating is just one approach, but we will employ the backwards
single step updating approach instead explained below and proposed in van der
Laan (2010a).

In our implementation of the TMLE, we have Q = ∏
N
l=1 Ql represents the

relevant factors of the density of O, Lg(Q) =−∑l{logQl}wl(g) is a weighted log-
likelihood loss function, and Q(ε) = ∏l Ql(εl) with ε = (εl : l) is multivariate.
We use the notation Lg(Ql) = −{logQl}wl(g) so that Lg(Q) = ∑l Lg(Ql). This
choice happens to have some computational advantages relative to selecting the log-
likelihood loss L(Q) = −∑l{logQl} and submodel Qg(ε) = ∏l Ql,g(εl) in which
the fluctuation is indexed by g, even though both couples of loss function and sub-
model satisfies the required generalized score condition. Both types of TMLE will
be presented below, and the computational advantage of using the weighted-log-
likelihood loss will be explained.

We start out with an initial estimator Q0
n,gn of Q0,g0. Since Q is defined

by N orthogonal factors, the updating algorithm can be modified by updating one
factor at the time and using the most recent update of all factors in the calculation
of the next update. One could compare a single update of all the N-factors in this
manner with the first step of the TMLE above that updates all factors simultane-
ously. In addition, we employ a TMLE using a backwards updating algorithm that
first updates the last factor, and then proceeds backwards: Let

ε
N
n = argmin

εN
PnLgn(Q

0
n,N(ε

N)).

This yields an update Q1
n obtained by updating the (last) N-th factor Q0

n,N with
Q0

n,N(ε
N
n ). We now proceed with updating the N−1-th (next to last) factor:

ε
N−1
n = arg min

εN−1
PnLgn(Q

1
n,N−1(ε

N−1)).

This yields a second update Q2
n obtained by updating the N−1-th factor Q1

n,N−1 with
Q1

n,N−1(ε
N−1
n ). This updating process is iterated resulting in sequence Q1

n,Q
2
n, . . . ,Q

N
n

of N subsequent updates of the initial estimator Q0
n. Note that the first J−1 factors

in the update QJ
n are still equal to the corresponding J−1 factors in Q0

n, J = 1, . . . ,N.
The last N-th update involves the update of the first factor. This process can start
over by updating the final factor again till the fluctuation parameter is estimated as
zero. In our applications, due to the backwards updating approach, in a next round
all ε-fits will be equal to zero. As a consequence, the TMLE of Q0 is given by
Q∗n = QN

n . This general closed form TMLE was presented in van der Laan (2010a).
The TMLE of ψ0 =Ψ(Q0) is the corresponding substitution estimator ψ∗n =Ψ(Q∗n).
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Because this backwards iterative updating approach allows a closed form TMLE we
decided to implement this type of TMLE.

3 Following the road map for constructing a TMLE
for longitudinal data (van der Laan (2010b))

In this section we follow the road map for constructing the TMLE in van der Laan
(2010b). We use that template to construct a TMLE for the treatment specific sur-
vival curve adjusting for time-dependent confounders of the right-censoring pro-
cess. In particular, we focus on the Tshepo analysis in which the time-dependent
confounders are CD4+ and Viral Load over time. The notation used here is the
same as used in van der Laan (2010a) and van der Laan (2010b).

3.1 Code Data in terms of binary indicators

The 650 subjects in the Tshepo study are viewed as i.i.d. observations of a random
variable O that represents a longitudinal time-ordered data structure:

O = (L(0),A(0),L(1),A(1) . . . ,L(K),A(K),L(K +1)). (1)

It is assumed that L(t) occurs before A(t), and we are interested in the effects of in-
terventions on the A-nodes. L(0) corresponds with the variables collected at base-
line. In the Tshepo study this variable includes gender, body-mass-index, baseline
viral load, baseline cd4-count, among others. A(0) is the baseline treatment, a bi-
nary variable that corresponds with an individual’s baseline cART therapy, EFV or
NVP. A(t) is a binary variable that equals 1 when an individual is censored at time
t and 0 when the individual is not censored at time t. L(t) includes the failure time
event process, as well the CD4+ and viral load process as time-dependent covari-
ate processes. Let Ā(t) and L̄(t) denote the history of A() and L() up until time t.
Specifically, L(t) is decomposed as follows:

L(t) = (L(t, j) : j = 1, ...,n(t)), (2)

where at each time point, t, there are n(t) different components indexed by j. In
the Tshepo analysis L(t,1) corresponds with the event process, L(t,2) corresponds
with the CD4+ process, and L(t,3) corresponds with the viral load process. Thus,
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in the Tshepo application n(t) is equal to 3. L(t, j) are further decomposed into
binary variables L(t, j, l) in the following way:

L(t, j) = (L(t, j, l) : l = 1, ...,n(t, j)), (3)

where at each time point, t, and for each component, j, there are n(t, j) different
ordered categorical levels of the process L(t, j) indexed by l. So in the case of
a survival process, like L(t,1), n(t, j) is equal to 2 since there are two levels of
this process at each time point. L(t,2) and L(t,3) can have multiple levels. The
number of levels chosen and there cut points should be based on subject matter
knowledge of the observed process, or one could select many levels thereby ap-
proximating the continuous process. For example, let us consider L(t,2), the CD4+
process. We could assume 3 ordered categorical levels of L(t,2) so that n(t,2) = 3.
Those levels are CD4(t)< 200, 200 <CD4(t)< 400, 400 <CD4(t). These levels
correspond with the following L(t,2, l) which are indicator functions of CD4(t) at
each time point: L(t,2,1) = 1(CD4(t)≤ 200), L(t,2,2) = 1(200 <CD4(t)< 400),
and L(t,2,3) = 1(400 ≤ CD4(t)). However, as always when coding a categorical
variable, the categorical variable, L(t, j) can be represented by n(t, j)− 1 binary
variables. For example, the values of the indicators L(t,2,1) and L(t,2,2) define
the value of the third indicator L(t,2,3). The binary indicators L(t,3, l) for the vi-
ral load process are constructed in the same way. For the sake of factorizing the
likelihood, we also need to agree on an ordering of the components that code L(t).
Within each L(t), we order the processes as follows: event, then CD4+, and then
viral load.

The data structure has now been ordered in terms of baseline covariates
L(0), baseline treatment A(0), censoring indicators A(t), and binary covariates
L(t, j, l) indexed by (t, j, l). For each variable X in this ordered sequence, we define
the parents Pa(X) of that variable X as the variables that precede X in the ordered
sequence.
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3.2 Define factorization of likelihood in terms of binary condi-
tional distributions

The ordering of all variables as proposed in the previous section, which respects the
time ordering, implies the following factorization of the observed data likelihood:

P(O) =

QL(0)︷ ︸︸ ︷
P(L(0)) (4)

gA(0)︷ ︸︸ ︷
P(A(0) | L(0)) (5)

K+1

∏
t=1

n(t)

∏
j=1

n(t, j)−1

∏
l=1

QL(t, j,l)︷ ︸︸ ︷
P(L(t, j, l) | Pa(L(t, j, l))) (6)

K

∏
t=1

gA(t)︷ ︸︸ ︷
P(A(t) | Pa(A(t))) (7)

3.3 Define statistical model and target parameter

The post-intervention distribution of L, obtained by intervening on all of the A(t)
nodes by setting A(0) to a ∈ {0,1} and A(t) to 0, or no censoring, is defined by the
so called G-computation formula:

Pa,0(L) =

QL0︷ ︸︸ ︷
P(L(0))

tk

∏
t=1

n(t)

∏
j=1

n(t, j)−1

∏
l=1

QL(t, j,l),a,0︷ ︸︸ ︷
P(L(t, j, l) | Pa(L(t, j, l)),A = a, Ā(t−1) = 0)

For the purpose of causal inference, we can assume a nonparametric structural equa-
tion model (NPSEM) stating L(t)= fL(t)(Pa(L(t)),UL(t)), and A(t)= fA(t)(Pa(A(t)),UA(t))
for a collection of deterministic functions fL(t) indexed by t = 0, . . . ,K + 1, and
fA(t) indexed by t = 0, . . . ,K. Here U = (UL(t),UA(t) : t) represents unobserved er-
ror terms, Pa(L(t)) = (Ā(t − 1), L̄(t − 1)), and Pa(A(t)) = (Ā(t − 1), L̄(t)). This
NPSEM can now be used to define a post intervention distribution of a counter-
factual La,0 by setting A = a and A(t) = 0 in the NPSEM. Under the assumption
that the treatment and censoring nodes are sequentially randomized, and a pos-
itivity assumption so that all conditioning events in this G-computation formula

9
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have a non-zero probability, we have that the G-computation formula Pa,0 identifies
the probability distribution of the counterfactual La,0 defined by intervening on the
NPSEM.

Now the treatment specific survival curve at time K + 1 may be cast as a
mapping from Pa,0 to the real line as follows:

Ψ(Q0) =

EL(0)∑L(K+1,1,1)=0 ∏
K+1
t=1 ∏

n(t)
j=1 ∏

n(t, j)−1
l=1

QL(t, j,l),a,0︷ ︸︸ ︷
P(L(t, j, l) | Pa(L(t, j, l)),A = a,A(t−1) = 0),

where the sum over L(K +1,1,1) = 0 represents all possible paths of L() that end
in L(K+1,1,1) = 0, which are thus all possible combinations of L(t, j, l) that result
in a subject surviving past time K+1. This treatment specific survival curve at time
K +1 is represented as a conditional treatment specific survival curve, given L(0),
averaged w.r.t. the distribution of L(0). This probability of survival for a given L(0)
is evaluated by summing over all possible paths defined by CD4+, viral load, and
time to events larger than K of the post-intervention probabilities assigned to these
paths conditional on L(0).

Note that P = Qg, where Q = QL(0)∏t jl QL(t, j,l), and g = gA(0)∏t gA(t). Let
P0 =Q0g0 denote the true data generating distribution. Let M be a statistical model
that leaves Q0 unspecified, but might impose assumptions on gA(0),0 as well as the
censoring mechanism gA(t),0. For example, in the Tshepo study the treatment mech-
anism gA,0 is known, and a model might be assumed on the censoring mechanism
based on subject matter knowledge. The statistical model M , and the target param-
eter Ψ : M → IR is now defined.

3.4 Determine efficient influence curve

The third step in the template is to determine the efficient influence curve for the
target parameter mapping Ψ : M → IR. The efficient influence curve can be rep-
resented as a projection of an IPCW-estimating function DIPCW onto the tangent
space of the parameter Q:

D∗(Q,g) = Π(DIPCW |TQ);

where TQ is the tangent space of the Q-factor of the density P = Qg of O. The
DIPCW is given by

DIPCW (O) =
1(A = a)1(C > K)1(T > K)

gA(0)(a)∏
K
t=1 gA(t)(0 | Pa(A(t)))

,
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where C is the censoring time and T is the event time. Thus the efficient influence
curve can be decomposed as

D∗(Q,g) = ∏(DIPCW (Q,g) | TQ) = D0 +∑
t jl

Dt jl,

where, D0 and Dt jl are given by:

D0 = P[La,0(K +1,1,1) = 0 | A = a,L(0)]
Dt jl = Ct jl(Q,g)[L(t, j, l)−QL(t, j,l)(1 | Pa(L(t, j, l)))].

The function Ct jl(Q,g) is only a function of O through Pa(L(t, j, l)) and can be
factorized into a part that is a function of g and a part that is a function of Q:

Ct jl(Q,g) =Ct jl(Q)Ct jl(g),

where

Ct jl(Q) = {P[La,0(K +1,1,1) = 0 | L(t, j, l) = 1,Pa(L(t, j, l))]− (8)
P[La,0(K +1,1,1) = 0 | L(t, j, l) = 0,Pa(L(t, j, l))]},

and

Ct jl(g) =
I(A = a)I(C > t−)

gA(0)(1 | L(0))∏
t−1
s=1 gA(s)(0 | Pa(A(s))

. (9)

The benefit of this factorization will be described below and plays a major part
in making the TMLE algorithm for the observed data structure computationally
feasible for large t and many binary covariates.

3.5 The loss function and submodel for the TMLE

For notational convenience, we will now and then use the notation Qt jl instead of
QL(t, j,l). Formulas (9) and (9) are used to define the loss function and submodel used
in the definition of the TMLE of the treatment specific survival curve. If one uses
the standard log-likelihood loss function L(Q) = − logQ in the TMLE, then one
fluctuates the initial estimator of the conditional distribution QL(t, j,l),n by adding the
clever covariate extension εCt jl(Qn,gn) on the logit scale. If on the other hand, one
uses a weighted-log-likelihood loss Lg(Q) = − logQL(0) −∑t jl{logQt jl}Ct jl(g),
then one fluctuates the initial estimator of the conditional distribution QL(t, j,l),n by
adding the clever covariate extension εCt jl(Qn) on the logit scale.
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3.6 Initial estimator of Q0 and treatment mechanism

We need to construct an initial estimator of QL(0),0 and the conditional distributions
QL(t, j,l),0, and we also need an estimator of the conditional distribution gA(0),0 of
the treatment A(0), as well as the conditional distribution gA(t),0 of the censoring
indicators A(t). The marginal distribution of L(0) is estimated with the empirical
probability distribution.

Define clusters of Q-probabilities that need to be considered for
pooling

For the purpose of constructing the initial estimator Qn it is necessary to determine
what L(t, j, l) should be pooled into an appropriate repeated measures data set. Each
variable indexed by j is treated separately, since it makes no sense to smooth across
different variables such as CD4-count, Viral load and death. We pool L(t,1,1)
across time t which results in a repeated measures data set for (L(t,1,1),Pa(L(t,1,1)) :
t), in which L(t,1,1) represents the binary outcome and the parents of L(t,1, l) rep-
resents the covariates. The indicators L(t,2, l) for CD4-count are pooled over time
t and levels l resulting in a repeated measures data set for (L(t,2, l),Pa(L(t,2, l)) :
t, l), in which L(t,2, l) represents the binary outcome, and the parents of L(t,2, l)
represents the covariates. Finally, we also create such a repeated measures data
set for (L(t,3, l),Pa(L(t,3, l)) : t, l), for the viral load process. Each of these three
data sets are used to estimate the clusters Q1 = (Qt,1,1 : t), Q2 = (Qt,2,l : t, l), and
Q3 = (Qt,3,l : t, l) of Q-probabilities, respectively.

Apply loss-based super learner to repeated measures data set to
estimate each cluster of Q-probabilities

We can estimate these conditional binary probability distributions with logistic re-
gression applied to the pooled data sets. Instead we recommend using loss-based
super learning in which parametric logistic regression models might be included in
the library of the super learner (van der Laan, Polley, and Hubbard (2007)). We use
the following three log-likelihood loss functions for these intensities of the time to
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death, CD4, and viral load:

L1(Q1)(O) = ∑
t

R1(t) log Q̄L(t,1,1)
t,1,1 (1− Q̄t,1,1)

1−L(t,1,1)

L2(Q2)(O) = ∑
t,l

R2(t, l) log Q̄L(t,2,l)
t,2,l (1− Q̄t,2,l)

1−L(t,2,l)

L3(Q3)(O) = ∑
t,l

R3(t, l) log Q̄L(t,3,l)
t,3,l (1− Q̄t,3,l)

1−L(t,3,l),

where R1(t) = I(L(t− 1,1,1) = 0), R2(t, l) is the indicator of L(t,2, l) still being
at risk (i.e., it is not a deterministic function of Pa(L(t,2, l))), and similarly R3(t, l)
is the indicator of L(t,3, l) being at risk. Here Q̄t,1,1 is short-hand notation for
Qt,1,1(1 | Pa(L(t,1,1))), and we used the same short-hand notation for the other
binary conditional distributions.

Estimate treatment/censoring mechanism:

Similarly, we can estimate the conditional binary distribution of A(0), given W , with
logistic regression, and we can estimate the conditional binary probability distribu-
tions of A(t), given Pa(A(t)), based on logistic regression based on a pooled data
set for (A(t),Pa(A(t))) : t), pooling over time. Again, we recommend loss-based
super learning with the following two log-likelihood loss functions:

L(gA(0))(O) = − loggA(0)(A(0) |W )

L(g)(O) = −∑
t

Rg(t) loggA(t)(A(t) | Pa(A(t))),

where Rg(t) is the indicator of A(t) being at risk (i.e., A(t) is not yet a deterministic
function of Pa(A(t))).

The resulting estimates gA(0),n and gA(t),n are then used for the construction
of Ct jl(gn) below.

3.7 Targeted MLE algorithm based on log-likelihood loss func-
tion

Now that we have obtained the initial estimates, Q1,n, Q2,n, Q3,n, gA(0),n, and gA(t),n
we are able to implement the TMLE algorithm. For notational convenience, let Q̄t jl
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denote the conditional probability of L(t, j, l) = 1, given Pa(L(t, j, l)). Consider the
following parametric fluctuations of the initial estimator Qn:

logitQ̄(t,1,1),n(ε) = logitQ̄(t,1,1),n + ε1Ct11(Qn,gn)

logitQ̄(t,2,l),n(ε) = logitQ̄(t,2,l),n + ε2Ct2l(Qn,gn)

logitQ̄(t,3,l),n(ε) = logitQ̄(t,3,l),n + ε3Ct3l(Qn,gn).

In addition, we fluctuate QL(0),n with a parametric submodel QL(0),n(ε0) that has
score D∗L(0)(Qn) at ε0 = 0, but this submodel will play no role in the TMLE since the
MLE of ε0 will be equal to zero. This defines a submodel {Qn(ε) : ε =(ε0,ε1,ε2,ε3)}
through the estimator Qn. We can combine this submodel with the log-likelihood
loss L(Q) =−logQ, so that the score condition indeed holds: the linear span of the
components of the score at zero fluctuation includes the efficient influence curve at
(Qn,gn).

A variety of iteratively updating algorithms are proposed in van der Laan
(2010a). In a TMLE defined by this log-likelihood loss and logistic regression
parametric submodels, one can fit ε j with logistic regression by regressing the bi-
nary indicator L(t, j, l) onto the clever covariate C(t, j, l) with the logit of the initial
Q(t, j,l),n as an offset. This can be done with the repeated measure data set for the
corresponding j. This approach corresponds with the approach in van der Laan
(2010a) that uses the same pooling to fit ε as was used for the initial estimator.
Alternatively, we enforce ε1 = ε2 = ε3 = ε , and the single common ε is fitted with
single pooled repeated measures data set resulting in a common fluctuation εn for
all t, j, and k, as also presented in van der Laan (2010a). This updating process is it-
erated till convergence (i.e., εn = 0), and the resulting Q∗(t, j,l),n represent the TMLE
Q∗n of Q0, and thereby the TMLE Ψ(Q∗n) of ψ0.

Finally, one can also use the closed form single step TMLE in van der Laan
(2010a) that updates one factor at the time, starting at the last factor, and ending at
the update of the first binary conditional distribution in the ordering, always using
the most recent update of Qn in the calculation of the clever covariates. This algo-
rithm was shown to converge in a single round, and therefore represents a closed
form implementation of TMLE. In this case, each parametric submodel through
Q̄(t, j,l),n has its own fluctuation parameter ε(t, j, l). We will use this single step
TMLE algorithm approach, which is computationally the most attractive TMLE
among these different types of TMLE.
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3.8 Markov property for initial estimate to speed up algorithm

The implementation of the one-step TMLE above is still time consuming and non-
trivial to implement for general longitudinal data structures. An examination of
Ct jl(Qn) (Equation (9)) reveals the computational complexity. Each clever covariate
requires the evaluation of both P[La,0(K + 1,1,1) = 0 | L(t, j, l) = 1,Pa(L(t, j, l))]
and P[La,0(K+1,1,1)= 0 | L(t, j, l)= 0,Pa(L(t, j, l))] under the most recent update
of Qn. These evaluations may be calculated using either a Monte Carlo approach
or by integration over all paths in the G-computation formula for the conditional
probability that La,0(K + 1,1,1) = 0, given L(t, j, l),Pa(L(t, j, l)). In either case,
the fact that each Q(t, j,l),n is a function of the entire history through Pa(L(t, j, l))
makes these approaches computationally costly since the number of paths resulting
in no event up till time K + 1 is exponential in the number nodes (in particular, in
the number of time-points). This computational cost is further exaggerated by the
fact that each clever covariate has to be evaluated for each subject in the data set
for each L(t, j,k). One way to simplify the amount of necessary computations is to
enforce that the conditional distribution of L(t, j, l) (under Qn) is not a function of
the entire history, but rather, a function of the most recent history or some subset
of the subject’s history. By enforcing this Markov type property on the estimate
Qn, each conditional probability Q(t, j,l),n(1 | Pa(L(t, j, l)) has only few possible
realizations as a function of Pa(L(t, j, , l)), so that the number of values of Qn over
which to integrate in the expression for Ct jl(Qn) is linear in the number of binary
variables.

For the purpose of our analysis of the Tshepo study we enforce the following
Markov property on the initial estimate Qn. Firstly, it is assumed that Q̄(t,1,1),n is
only a function of Pa(L(t,1,1)) with Ā(t−1) = 0, L̄(t−1,1) = 0 (i.e., no censoring,
no event, yet) through L(0),A(0) and CD4 L(t− 1,2) and viral load L(t− 1,3) at
previous time-point t−1. Secondly, it is assumed that Q̄(t,2,l),n is only a function of
Pa(L(t,2, l)) with Ā(t−1) = 0, L̄(t−1,1) = 0, and L(t,2,1) = . . . ,= L(t,2, l−1) =
0 (i.e., no censoring, no event, yet, and CD4 has at least level l) through L(0),A(0)
and CD4 L(t−1,2) and viral load L(t−1,3) at previous time-point t−1. Finally, it
is assumed that Q̄(t,3,l),n is only a function of Pa(L(t,3, l)) with Ā(t−1) = 0, L̄(t−
1,1) = 0, and L(t,3,1) = . . . ,= L(t,3, l−1) = 0 (i.e., no censoring, no event, yet,
and viral load has at least level l) through L(0),A(0) and CD4 L(t,2) at time t, and
viral load L(t−1,3) at previous time-point t−1.

Thus, for the purpose of our analysis we assumed that each conditional dis-
tribution of L(t, j, l) was a function of the time dependent covariates through the
most recently observed levels. In other analyses these assumptions may be relaxed
to include multiple time points, summary metrics such as functions of the most
recent history of the time dependent covariates (e.g., a slope of past CD4-count
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process). In addition, cross-validation can be used to adaptively select the degree
of dimension reduction applied to the histories, such as the degree of the Markov
property, so that, if it is necessary to incorporate more time points of the past, then
the algorithm will select accordingly. In this way, the number of calculations are
controlled, but still adaptive to what is needed to fit Q0 well.

3.9 TMLE at weighted-log-likelihood loss function

Even if we enforce this Markov assumption on the initial estimate Qn, note that
Ct jl(gn) is still a function of the full history Pa(A(t)) through gA(t), so that the
updates of Qn during the single step TMLE algorithm would still map into k-step
updates Qk

n that will not satisfy the Markov property. This issue will be addressed
by moving Ct jl(gn) from being a factor of the clever covariate to being a weight in
the log-likelihood loss function. That is, we use a weighted logistic regression for
each update with weights equal to Ct jl(gn), and a new clever covariate Ct jl(Qn)
instead of Ct jl(Qn,gn). This corresponds with using a weighted-log-likelihood
loss Lg(Q) = − logQL(0)−∑t jl{logQt jl}Ct jl(g) and fluctuating the initial estima-
tor of the conditional distribution QL(t, j,l),n by adding the clever covariate extension
εCt jl(Qn) on the logit scale. Thus, we now use the following parametric fluctuations
of the initial estimator Qn:

logitQ̄(t,1,1),n(ε) = logitQ̄(t,1,1),n + εt,1,1Ct11(Qn)

logitQ̄(t,2,l),n(ε) = logitQ̄(t,2,l),n + εt,2,lCt2l(Qn)

logitQ̄(t,3,l),n(ε) = logitQ̄(t,3,l),n + εt,3,lCt3l(Qn).

We still fluctuate QL(0),n with a parametric submodel QL(0),n(ε0) that has score
D∗L(0)(Qn) at ε0 = 0, but this submodel will play no role in the TMLE since the
MLE of ε0 will be equal to zero. This defines now a submodel {Qn(ε) : ε}, and this
submodel is combined with the weighted-log-likelihood loss Lg(Q).

This weighted log-likelihood Lg(Q) loss and parametric submodel Q(ε)

map into the same desired score d
dε

Lg(Q(ε)) at zero fluctuation ε = 0 as the un-
weighted log-likelihood and the parametric submodel using the Ct jl(Qn,gn) as clever
covariates. Thus, also this weighted-log-likelihood and submodel satisfies that its
generalized score at zero fluctuation spans the components of the efficient influence
curve at (Q,g). The major advantage of moving Ct jl(gn) into the weight of the
loss-function is that it only requires that Ct jl(gn) be evaluated for each observed
history and not at all possible histories as required for evaluation of the clever co-
variates. Thus, with the Markov property on Qn, and changing the clever covariate
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to Ct jl(Qn), the dependence of the clever covariate in the logistic regression fluctu-
ations on the entire past has been removed. The TMLE algorithm now increases in
time linearly with each additional L(t, j, l) added to the graph as opposed to expo-
nentially. As a result, the algorithm is now computationally feasible without making
major restrictive assumptions. In fact, the resulting algorithm is faster than the it-
erative TMLE algorithm used in Stitelman and van der Laan (2011) and Stitelman
and van der Laan (2010) that only adjusted for baseline covariates.

3.10 Using the iterative conditional expectation formula to speed
up computations and minimize memory

Another important way to simplify the algorithm is to take advantage of iterative
conditional expectations so that when one works back through factors of the like-
lihood all necessary evaluations of Q∗(t, j,l),n that are needed for subsequent steps
are evaluated directly after the update. In this way each P[La,0(K + 1,1,1) = 0 |
L(t, j, l) = δ ,Pa(L(t, j, l))] may be written as a simple iterative conditional ex-
pectation of the already evaluated conditional expectations and the newly updated
Q∗(t, j,l),n for the binary variable L(t, j, l). To understand this, represent the longitu-
dinal data structure O as the ordered sequence O(l), l = 0, . . . ,L, where O(0) =W ,
O(1) = A, and several of subsequent O(l) correspond with A(t), and all other O(l)
are indicators coding the death-process, viral load process and CD4-count process.
Suppose that O(k) is an L-indicator and we already evaluated the clever covariate
for this L-indicator and also computed the TMLE update for the conditional dis-
tribution of this L-indicator. We now wish to determine the clever covariate and
TMLE-update for the next L-indicator in the sequence, going backwards. Now, we
note that

P(La,0(K +1,1,1) = 0 | O(k−1),Pa(O(k−1))) =
∑o(k)P(La,0(K +1,1,1) = 0 | O(k) = o(k),Pa(O(k)))P(O(k) = o(k) | Pa(O(k))).

If O(k− 1) is also an L-indicator, then the above relation allows us to map the
previous clever covariate and the last updated conditional probability of O(k) into
the clever covariate for the conditional distribution of O(k− 1). If O(k− 1) is a
censoring A(t)-node, then it follows that, at the only relevant value zero for this
censoring node (thus equal to the intervention used in the G-computation formula),
the left-hand side equals P(La,0(K + 1,1,1) = 0 | O(k− 2),Pa(O(k− 2))), so that
we have

P(La,0(K +1,1,1) = 0 | O(k−2),Pa(O(k−2))) =
∑o(k)P(La,0(K +1,1,1) = 0 | O(k) = o(k),Pa(O(k)))P(O(k) = o(k) | Pa(O(k))).
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So, again, this allows us to map the previous clever covariate and the last updated
conditional probability of O(k) into the clever covariate for the next Q-conditional
distribution of O(k−2).

3.11 Evaluation of target parameter of targeted MLE

Note also that at the final step of the iterative backwards one-step TMLE algorithm,
we have to evaluate the clever covariate expression P(La,0(K+1,1,1) = 0 |W,A =
a) for all n observed values of W . The empirical mean of the latter is now the TMLE
Ψ(Q∗n)! Thus the final evaluation of the target parameter of interest is a natural by-
product of completing the iterative backwards single step TMLE algorithm.

3.12 Statistical Inference

Influence curve based inference is obtained in exactly the same manner as pre-
sented in van der Laan (2010b). In particular, if one assumes that gn is a consis-
tent estimator of g0, then one can use the conservative influence curve D∗(Q,g0),
where Q represents the limit of the TMLE Q∗n. Thus, the asymptotic variance of√

n(Ψ(Q∗n)−Ψ(Q0)) can be conservatively estimated with

σ
2
n =

1
n

n

∑
i=1
{D∗(Q∗n,gn)(Oi)}2.

Note that during the backward solving TMLE algorithm one has to evaluate each of
the contributions D∗t jl(Q

∗
n,gn) and D∗0(Q

∗
n,gn) that make up the efficient influence

curve D∗(Q∗n,gn), as represented in equation (8). Thus, both the final evaluation of
the parameter of interest and the statistical inference for that parameter are provided
by implementing the backward solving algorithm proposed here.

4 Simulation Study
In this section we present the results of simulation studies that compare the bias and
efficiency of six different estimators of the treatment specific survival curve S1(t0):
Baseline TMLE, Baseline IPCW, Baseline A-IPCW, Time-Dependent TMLE, Time-
Dependent IPCW, Time-Dependent EE. Baseline refers to the data structure that
excludes the time-dependent covariates, and EE is an an abbreviation for an esti-
mating equation based estimator we developed for the complete longitudinal data
structure (it can be viewed as an A-IPCW of the type presented in van der Laan and
Robins (2003), but it is based on the representation of the efficient influence curve
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as used in the TMLE). The EE involves representing the efficient influence curve
for the longitudinal data structure as an estimating function in the target parame-
ter ψ0, and defining the estimator as the solution of the corresponding estimating
equation, estimating the nuisance parameters with the initial estimators as used in
the TMLE. No similar estimating equation based estimators have gained traction in
the literature due to the computational difficulties of constructing such an estimate
when there are many time points and intermediate variables. The representation of
the efficient influence curve (8) and the corresponding estimating equation based
estimator of ψ0 as we implemented here make this estimating equation based es-
timator computationally feasible. The EE is just like the TMLE a double robust
locally efficient estimator, but the TMLE is also a substitution estimator, while the
EE is not. The Time-Dependent IPCW is defined as the empirical mean of

DIPCW (O) =
I(T > t0,A = 1,C > t0)

Ḡn(t0− | X ,A = 1)gA(0),n(A(0) |W )
,

where gA(0),n is an estimator of the treatment mechanism g0, conditional on baseline
covariates, Ḡn(t− | X ,A = 1) = ∏s<t{1− gA(s),n(1 | Pa(A(s)))} is the estimator
of the survivor function of censoring, conditional on baseline treatment, baseline
covariates, and time-dependent covariates.

The goal of the first set of simulations presented here is to illustrate the
bias reduction that occurs when one adjusts for time-dependent covariates that af-
fect drop-out beyond the effect of the baseline covariates on time to drop-out. The
second set of simulations show that if censoring is non-informative, a TMLE and
EE incorporating the available time-dependent covariates improve efficiency rel-
ative to an estimator that ignores the time-dependent covariates, even though in
this independent censoring scenario the latter is still a valid asymptotically linear
estimator. Furthermore, our simulations also demonstrate that a locally efficient
double-robust substitution estimator (Time Dependent TMLE) performs better in
finite samples than both a locally efficient double-robust non-substitution estimator
(Time Dependent EE) and the current standard for accounting for time-dependent
covariates (Time Dependent IPCW). In fact, the simulations suggest that the benefit
of targeted learning increases quickly, and dramatically, when the complexity (e.g.,
dimension of data structure) of the estimation problems increases.

In our simulations we simulate a longitudinal data structure

O=(W (0),A(0),N(1),W4(1),W5(1),A(1)...,N(K),W4(K),W5(K),A(K),N(K+1)),

for t = 1, ...,K+1. Here W (0) = (W1(0),W2(0),W3(0),W4(0),W5(0)) are the base-
line covariates, A(0) is the binary baseline treatment randomized with probability
0.5, N(t) is the indicator of observing a failure time event at time t, A(t) is the
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indicator of observing a censoring event at time t, and W4(t) and W5(t) are the con-
tinuous time-dependent covariates. In each simulation, 500 simulated data sets with
sample size n = 500 were generated, the treatment specific survival curve S1(t0) at
time point t0 = 3 was estimated using each of the six different estimators, and esti-
mates of bias and MSE were reported. In each simulation the true treatment specific
survival S1(t0) equals .469. All estimators were supplied consistent estimators of
the conditional intensity of the censoring process, and failure-time process, while
the conditional distributions of the time-dependent covariates were estimated in-
consistently by discretizing the continuous covariates W4(t), W5(t), coding these
discretized covariates with binary indicators, and estimating the conditional distri-
bution of the binary indicators with logistic parametric regression.

4.1 Simulations with Informative Censoring

The precise data generating mechanism is described as follows.
1. The drawing of the baseline covariates W (0) involved first generating from a
mean zero multivariate normal and truncating any component from above by 2 and
from below by -2. The covariance matrix was defined as 1 on the diagonal and 0.2
off-diagonal. The truncation was enforced to ensure that the censoring mechanisms
was not suffering too much from practical violations of the positivity assumption,
as required for identifiability of S1(t0).
2. The two time-dependent covariates W4(t) and W5(t) are generated as follows:

W4(t) = .2A(0)+ .5W1(0)− .4W2(0)− .4W3(0)+2W4(t−1)+2W5(t−1)+U4
W5(t) = .1A(0)+ .1W1(0)+ .1W2(0)− .4W3(0)+2W4(t)+2W5(t−1)+U5,

where U4 and U5 are i.i.d. N(0,σ = 0.4).
3. The event indicators, N(t), were generated as Bernoulli-indicators with the prob-
ability defined by the following conditional intensity of time to failure T :

λT (t)= expit(−3+.3A(0)+.3W1(0)−.3W2(0)−.3W3(0)+2W4(t−1)+2W5(t−1)).

4. The censoring indicators, A(t), were generated as Bernoulli-indicators with the
probability defined by the following conditional intensity for censoring for the low
and high informative censoring case, respectively:

λC(t) = expit(−4+ .8A(0)+ .3W1(0)− .3W2(0)− .3W3(0)+ .1W4(t)+ .1W5(t−1))
λC(t) = expit(−4+ .8A(0)+ .3W1(0)− .3W2(0)− .3W3(0)+1W4(t)+1W5(t−1)).

The results are presented in Table 1. Each table below presents the mean of the
estimates, mean of the influence curve based standard errors, mean square error,
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and the coverage probabilities for 95 percent wald-type influence curve based con-
fidence intervals for each of the estimators investigated. The low-informative cen-
soring results show 1) that the TMLE and EE estimators that only use the baseline-
covariates are very similar to the estimators that incorporate the time-dependent co-
variates, and 2) the Time-Dependent IPCW is highly inefficient relative to the other
estimators. The simulation for the high-informative censoring shows some interest-
ing results. Firstly, the estimators that only incorporate the baseline-covariates are
highly biased: the MSE of the Baseline estimators are over 13 times larger than the
MSE of the Time-Dependent TMLE. Secondly, the Time-Dependent TMLE has an
MSE that is almost 75% smaller than the MSE of the Time-Dependent EE, demon-
strating the crucial benefit of being a substitution estimator beyond being a double
robust efficient estimator.

Interestingly, in this particular case, the Time-Dependent IPCW estimator
performs remarkably well. However, it can be explained as a lucky scenario where
a biased estimator happens to nail the right answer. This has to do with the fact that
the covariates that strongly effect the event are also very predictive of censoring
causing the IPCW estimator to do artificially well in this scenario. This is because
the High Censoring scenario is a simulation where the informative censoring is
so extreme that there are levels of covariates that are so predictive of censoring
that in finite samples it is extremely rare to find an uncensored individual at those
levels of the covariates. Moreover, those same levels of the covariates are extremely
predictive of the event, so much so that by the time point of interest the event will
have occurred with almost probability of 1 for those individuals. As a result the
contributions to the IPCW estimator for individuals that have a high probability of
being censored is always zero, which is exactly the right contribution, since the
probability of the event for those individuals happening before the time of interest
is also essentially 1. We show below that if the direction of the effect of the baseline
variables on the censoring is switched the IPCW does very poorly. Apparently, a
change in the censoring mechanism dramatically affects the MSE of the IPCW-
estimator, demonstrating that this initial finding represents a-typical behavior of the
IPCW-estimator. This is because those individuals that are at levels of W that are
almost completely predictive of an event before the time of interest are no longer at
levels of W that are almost completely predictive of censoring.

In our modified simulation, we generated the censoring events for the low
and high informative censoring case as follows:

λC(t) = expit(−4+ .8A(0)+ .3W1(0)− .3W2(0)− .3W3(0)− .01W4(t)− .01W5(t−1)),
λC(t) = expit(−4+ .8A(0)+ .3W1(0)− .3W2(0)− .3W3(0)− .1W4(t)− .1W5(t−1)).

Table 2 presents the results for this simulation. Again, the incorporation of the
time-dependent covariates results in an important bias reduction (and MSE) for the
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Low Informative Censoring Scenario
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.469 0.469 0.486 0.475 0.475 0.475
Mean SE 0.027 0.027 0.041 0.027 0.027 0.040
Mean Square Error 0.00070 0.00070 0.00113 0.00076 0.00076 0.00077
Coverage 0.942 0.942 0.986 0.940 0.938 0.996
High Informative Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.479 0.470 0.475 0.587 0.585 0.595
Mean SE 0.029 0.035 0.039 0.034 0.034 0.059
Mean Square Error 0.00112 0.00440 0.00073 0.01485 0.01453 0.01740
Coverage 0.898 0.898 0.996 0.066 0.074 0.352

Table 1: Simulation Results For Informative Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators

TMLE and EE estimators. In the low informative censoring simulation, the Time-
Dependent IPCW estimator has an MSE that is 1.6 times as large as the MSE of the
Time-Dependent TMLE and EE estimator. In the high informative censoring sce-
nario, the MSE of the Time-Dependent IPCW estimator is 128 (!) times as large as
the MSE of the Time-Dependent TMLE and EE estimator. The latter demonstrates
a complete break down of the IPCW-estimator, reflecting that it is simply a very
unreliable estimator, even though it represents current practice.

4.2 Simulations with Independent Censoring

The data generating distribution is as above, except that the censoring mechanism
was modified again. The hazard of censoring was now only a function of time, so
that censoring is independent of the evolving processes, but three different hazards
were considered representing different levels of independent censoring: no censor-
ing, medium censoring, and high censoring. In the first scenario every individual
was left uncensored. In the second and third scenario each subject was censored
with 20 percent probability (Medium Censoring Scenario) and 60 percent probabil-
ity (High Censoring Scenario), respectively.

The results are presented in Table 3. We know that under independent cen-
soring all 6 estimators are consistent. Indeed, the results demonstrate that all esti-
mators are unbiased across the three simulations, so that the estimators only differ in
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Low Informative Censoring Scenario
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.470 0.470 0.452 0.469 0.469 0.470
Mean SE 0.027 0.027 0.040 0.027 0.027 0.042
Mean Square Error 0.00065 0.00066 0.00105 0.00068 0.00067 0.00077
Coverage 0.960 0.960 0.974 0.956 0.958 1.000
High Informative Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.468 0.468 0.174 0.432 0.433 0.396
Mean SE 0.027 0.027 0.026 0.033 0.033 0.067
Mean Square Error 0.00068 0.00067 0.08732 0.00251 0.00241 0.00731
Coverage 0.960 0.960 0.000 0.798 0.810 0.836

Table 2: Simulation Results For Informative Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators

their efficiency (i.e., variance). In the no-censoring scenario, all estimators behave
similarly, with the exception of the IPCW-estimators that are somewhat inefficient.
Gains in efficiency due to utilizing the time-dependent covariates can only be ex-
pected if a significant proportion of the subjects are right-censored, since an efficient
estimator treats a censored subject that is very sick at the censoring time differently
than a censored subject that was relatively healthy at the censoring time. Indeed,
the table shows that as the amount of independent censoring increases, the IPCW-
estimators become more and more inefficient relative to the efficient TMLE and EE
estimators. It is also of interest to note that, for the high censoring scenario, the
Time Dependent TMLE is almost 1.8 times as efficient as the Baseline TMLE. This
demonstrates the substantial gain in efficiency one can obtain by utilizing time-
dependent covariates. Furthermore, we note that in the high censoring scenario
the locally efficient double-robust non-substitution estimator (Time Dependent EE)
has a mean square error of almost 2.25 (!) times the MSE of the locally efficient
double-robust substitution estimator (Time Dependent TMLE). This demonstrates,
once again, the enormous importance of being a substitution estimator. This gain is
most likely due to estimated censoring probabilities that are empirically imbalanced
across strata of the covariates, so that the estimators behave similarly as in a high-
informative censoring simulation. Finally, it is noteworthy that the Time Dependent
IPCW estimator has a mean square error over six times as large as the MSE of the
Time Dependent TMLE.
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No Censoring Scenario
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.468 0.468 0.468 0.468 0.468 0.468
Mean SE 0.027 0.027 0.038 0.027 0.027 0.038
Mean Square Error 0.00067 0.00068 0.00073 0.00069 0.00069 0.00073
Coverage 0.952 0.952 0.990 0.950 0.950 0.990
Medium Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.469 0.470 0.471 0.469 0.469 0.470
Mean SE 0.028 0.028 0.051 0.029 0.029 0.051
Mean Square Error 0.00070 0.00072 0.00120 0.00081 0.00081 0.00106
Coverage 0.960 0.960 0.996 0.952 0.952 1.000
High Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.474 0.481 0.474 0.467 0.467 0.466
Mean SE 0.044 0.047 0.114 0.043 0.042 0.112
Mean Square Error 0.00110 0.00248 0.00712 0.00196 0.00197 0.00496
Coverage 0.988 0.988 0.978 0.940 0.940 0.984

Table 3: Simulation Results For Independent Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators

4.3 Simulations - Confidence Interval Coverage and Width

In each of the tables above we show the 95 percent confidence interval coverage
probabilities. These confidence intervals were constructed by relying on the fact
that the TMLE solves the efficient influence curve estimating equation. In three
of the four informative censoring scenarios the TMLE produces valid 95 percent
confidence intervals. In the fourth, the high informative censoring scenario for the
first simulation (Table 1), the TMLE has a coverage probability of 89.8 percent,
which is less than ideal. In all cases the confidence intervals constructed for the
estimators using only baseline variables are far less than the desired 95 percent
coverage for the high informative censoring scenarios.

For each scenario we explored if the coverage was different if the true g0 was
used instead of the gn-fit obtained by using logistic regression with the known model
for treatment and censoring. This exercise was carried out because asymptotically
the coverage probabilities should be 95 percent when using the true g0 (van der
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Laan and Robins (2003)). The coverage probabilities remained unchanged when
using the true g0. Thus, in the high informative censoring scenario for the first
simulation the coverage probability was still significantly less than the desired 95
percent coverage at 88.8 percent (First line of Table 4). This suggests that the
departure from 95 percent in the coverage probabilities is due to the fact that the
sample size is too small to produce the asymptotically valid coverage, and not that
there is an issue in the way g0 was estimated. This is confirmed by Table 4 which
shows the results for simulations with different sample sizes at the true g0. As the
sample size increases the coverage probabilities begin to approach the desired 95
percent coverage. Even with a sample size of 5,000 the coverage is not 95 percent
and this has to do with the large violation in the positivity assumption for certain
levels of baseline covariates W in this simulation.

In Stitelman and van der Laan (2010) we show that quantile based boot-
strap estimates of the confidence intervals are the preferred method for inference,
especially in situations where positivity violations are an issue (as is the case in the
high informative censoring scenario for the first simulation above). In that article
it was shown that in finite samples the departure from normality was manifested in
a skewed distribution of the bootstrap estimates and thus quantile based bootstrap
estimates of the confidence intervals performed better than Wald type confidence
intervals. Moreover, such an approach takes into account the finite sample variance
associated with data adaptively estimating Q0. This suggests that quantile based
bootstrap estimates of the 95 percent confidence intervals are the preferred approach
for producing confidence intervals. Bootstrap based confidence intervals are com-
putationally feasible for a single data analysis; however, they are time consuming
in simulation and their benefit was already displayed in Stitelman and van der Laan
(2010), so they were not explored here.

Sample Size Mean of Estimates Mean SE Mean Square Error Coverage
500 0.480 0.028 0.0012 0.888

1,000 0.475 0.020 0.0005 0.906
5,000 0.471 0.010 0.0003 0.933

Table 4: Simulation Results For High Informative Censoring Using True g0: By
Sample Size
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4.4 Simulations - Mis-specifying both of the initial estimates, Qn
and gn

The simulations presented in the previous sections have been based on initial esti-
mates of Qn and gn that incorporated all potential confounders and used a correct
model for g0, and an approximately correct model for Q0. For the three estima-
tors that only used baseline information the known model was used excluding the
time-dependent components. The intention for the simulation study presented in
the current subsection is to illustrate the effect of mis-specifying both of the ini-
tial estimates, Qn and gn, on the behavior of the different estimators of the target
parameter.

The data used for this simulation study were simulated in the same way as
the data simulated for the modified high informative censoring scenario of section
4.1. For the study here we evaluate what happens to the simulation results when
the time dependent covariates, W4, W5, and then both W4 and W5 are removed from
the models for the initial estimates of Qn and gn. This allows us to observe how
the different estimators behave when the initial estimates for Qn and gn are both
initially mis-specified.

Table 5 displays the results of this simulation study. As for the original sim-
ulation all of the estimators that only incorporate baseline information continue to
perform poorly. These methods initially used mis-specified models for their initial
Qn and gn since they only incorporate baseline covariates, so it should be no sur-
prise that further mis-specifying the initial models causes the estimators to behave
even more poorly in terms of both bias and mean square error. The time dependent
IPCW estimator, which was very unstable even when gn was correctly specified,
behaves as poorly as before in terms of both bias, variance and coverage of its con-
fidence intervals with mis-specification. A direct comparison of the time dependent
TMLE and EE reveals the stability of the TMLE even when both the initial Qn and
initial gn are estimated based off of a mis-specified model. Both methods produce
slightly biased estimates and in one case the TMLE does slightly better and in the
other the EE does slightly better. However, these two methods of the six are the
only ones that produce estimates that are on average anywhere close to the truth,
.469. In the case where either W4 or W5 are removed from the model specifica-
tion the TMLE is 9 to 12 times more efficient than the EE. Furthermore the TMLE
and EE produce similar confidence interval coverage, using Wald type influence
curve based variance estimates, but the confidence interval lengths for the TMLE
are about half the size of those for the EE (Mean SE differences of 0.034 vs 0.063
and 0.034 vs. 0.066). When both W4 and W5 are removed from the specification of
the initial model the relative stability of the TMLE is displayed and the fact that the
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EE can produce estimates that don’t obey the proper model is made obvious. The
EE completely breaks down in this situation and the method is very biased, with a
mean estimate of 1.243 (outside the proper range!). However, the TMLE remains
stable and produces a mean estimate of 0.462. This is because the TMLE is able
to adjust the initial Qn by updating it at each node in the causal graph through the
backward passing algorithm. So even though the initial Qn is mis-specified in terms
of the relationship of W4 and W5 it is able to readjust in the updating steps, while
the EE does not posses this quality. However, the Mean SE which is based on the
misspecified estimate of the influence curve does blow up in this situation for both
the TMLE and the EE. Thus, the coverage probabilities are 1 but they are so large
that they are useless in practice. However, the stability of the TMLE estimates sug-
gests that quantile based confidence intervals constructed with the nonparametric
bootstrap would still produce reasonable confidence intervals. This demonstrates
an important advantage (i.e., robustness property) of the nonparametric bootstrap
relative to influence curve based inference that relies on consistent estimation of g0.
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Correctly Specifying Initial Models
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.468 0.468 0.174 0.432 0.433 0.396
Mean SE 0.027 0.027 0.026 0.033 0.033 0.067
Mean Square Error 0.00068 0.00067 0.08732 0.00251 0.00241 0.00731
Coverage 0.960 0.960 0.000 0.798 0.810 0.836
Removing W4(t) From Initial Model Specification

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.457 0.455 0.172 0.420 0.421 0.411
Mean SE 0.034 0.063 0.026 0.035 0.036 0.067
Mean Square Error 0.00133 0.01211 0.08893 0.00360 0.00359 0.00512
Coverage 0.900 0.900 0.000 0.740 0.740 0.910
Removing W5(t) From Initial Model Specification

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.459 0.461 0.173 0.411 0.411 0.396
Mean SE 0.034 0.066 0.026 0.038 0.038 0.065
Mean Square Error 0.00133 0.01649 0.08840 0.00467 0.00465 0.00725
Coverage 0.920 0.920 0.000 0.640 0.650 0.810
Removing W4(t) and W5(t) From Initial Model Specification

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.462 1.243 0.357 0.405 0.405 0.403
Mean SE 0.616 0.619 0.056 0.038 0.038 0.063
Mean Square Error 0.00472 1.02729 0.01415 0.00549 0.00549 0.00604
Coverage 1.000 1.000 0.440 0.590 0.600 0.870

Table 5: Simulation Results For Independent Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators
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5 Tshepo Analysis Revisited
In an earlier paper we used a targeted maximum likelihood estimator (TMLE) to
assess the causal effects of different cART treatments on the time until HIV viral
progression. That analysis was based on the Tshepo study, an open-label, random-
ized, 3x2x2 factorial design HIV study conducted at Princess Marina Hospital in
Gaborone, Botswana to evaluate the efficacy, tolerability, and development of drug
resistance of six different first-line cART regimens. In particular we focused on the
effect of two NNRTI-based cART therapies to which subjects were randomized.
The two therapies of interest were efavirenz (EFV) and nevirapine (NVP) and we
assessed the causal effect of treatment as well as whether gender modified the effect
of the therapy. The initial paper illustrated the advantages of using TMLE to esti-
mate causal effects on time to event outcomes as opposed to the Cox proportional
hazards model, the typical approach in this setting.

Our initial analysis of the Tshepo study was based on TMLEs of the causal
effect of the treatment on survival, and corresponding effect-modification parame-
ters, only adjusting for the baseline covariates (Stitelman and van der Laan (2011)).
We extend here this TMLE to account for potential bias due to informative censor-
ing by time-dependent covariates CD4 and viral load that have an effect on both
time to drop-out and the time to event of interest. We will directly compare results
using this TMLE that only incorporates the baseline covariates to the TMLE that
accounts for time dependent confounding in the form of informative censoring due
to the time-dependent covariates. Moreover, we will compare these results to re-
sults based on an IPCW estimator and a locally efficient double robust estimating
equation based estimator.

For the analysis performed here we evaluate the effect modification of gen-
der on the two cART treatments for two outcomes of interest:

1. Time to death censored by treatment modification or end of study (DEATH).
2. Time to minimum of virologic failure, death, or treatment modification cen-

sored by end of study (TLOVR).

For each of the two time to event outcomes we will estimate the mean (over
the 36 months) of the difference in additive risk by gender over the first 36 months
after randomization to cART therapy. For each of the two time to event outcomes
we will estimate this parameter using the six estimators examined in the simulation
analysis in the previous section. We will also report the difference in additive risk by
gender at 36 months. Prior to doing this analysis we expected that utilizing the time-
dependent covariates should have a small effect on the estimates for the TLOVR
outcome since censoring is independent for this time to event outcome. On the other
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hand, the time to death is subject to censoring by time to treatment modification
which is expected to be informed by CD4 and viral load, so that one might expect
a bias reduction for the new TMLE relative to the previously implemented TMLE
that only incorporated the baseline covariates.

Table 6 shows the results for the TMLE of treatment effect modification
by gender for the TLOVR outcome. As expected there is little difference in the
TMLE with only baseline covariates and the TMLE which also incorporates the
time-dependent covariates, in the sense that the point estimate, standard error (SE),
and p-value are similar. Furthermore, all six of the methods return similar estimates
for the mean risk difference over the 36 months. However, the two double robust
locally efficient estimators have much lower estimates of the standard error. The
method used to estimate the SE for the IPCW estimator is known to be conservative,
so a direct comparison in this situation is not appropriate. However, if one looks
at the risk difference at 36 months the point estimates do change slightly for the
two double robust locally efficient estimators that take into account time dependent
covariates(TD TMLE and TD EE) compared to their baseline counterparts( BASE
TMLE and BASE EE). Given our simulation results and the supporting theory, this
change in the point estimate may be attributed to an efficiency gain due to an ad-
justment for empirical confounding, chance imbalance between the confounders for
different levels of censoring. The fact that the IPCW estimator does not change is
just further evidence of this estimator’s inability to efficiently extract information
from the data. Overall, these changes do not make an appreciable difference in the
conclusions drawn from the results. However, in alternative analyses these differ-
ences could be larger especially in situations with more censoring as seen in the
simulations above. The results as a whole indicate that gender does in fact modify
the effect of drug treatment on the TLOVR outcome. The same conclusion that was
determined based on an analysis that just accounts for baseline confounding.

Mean Risk Difference
TD TMLE TD DR-EE TD IPCW BASE TMLE BASE DR-EE BASE IPCW

Est 0.132 0.133 0.129 0.126 0.126 0.130
SE 0.039 0.038 0.101 0.038 0.038 0.100

p 0.001 0.001 0.199 0.001 0.001 0.196
Risk Difference @ 36 Months

TD TMLE TD DR-EE TD IPCW BASE TMLE BASE DR-EE BASE IPCW
Est 0.200 0.201 0.183 0.189 0.189 0.183
SE 0.050 0.049 0.103 0.049 0.049 0.103

p 0.000 0.000 0.074 0.000 0.000 0.074

Table 6: Gender Effect Modification on TLOVR
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Mean Risk Difference
TD TMLE TD DR-EE TD IPCW BASE TMLE BASE DR-EE BASE IPCW

Est 0.039 0.039 0.043 0.033 0.032 0.037
SE 0.017 0.017 0.117 0.017 0.017 0.117

p 0.021 0.019 0.717 0.055 0.058 0.753
Risk Difference @ 36 Months
Est 0.063 0.065 0.052 0.051 0.051 0.052
SE 0.023 0.023 0.125 0.024 0.024 0.125

p 0.005 0.004 0.680 0.029 0.030 0.680

Table 7: Gender Effect Modification on Death

Table 7 shows the results for treatment effect modification by gender for
the death outcome. In this Table 7 we see an appreciable difference in TD TMLE
versus BASE TMLE. In fact, this difference changes the way in which the results
may be interpreted. In this case we know that there is a large amount of infor-
mative censoring since treatment modification is one of the censoring events and
individuals modify treatment for many reasons including that there are side effects
or the treatment is not working. The point estimate of the mean risk difference us-
ing TMLE moves from 3.3% to 3.9% and the significance level changes from .055
to .021, due to the incorporation of the time-dependent covariates. Thus, the signif-
icance changes from close to significant at the 95 percent level to significant at the
95 percent level. If one looks at the risk difference at the last time point, 36 months,
the difference between TD TMLE and BASE TMLE is even more striking and the
change in significance moves from significant at the 95 percent level to significant
at the 99.5 percent level. The TD TMLE results indicate that gender does in fact
modify the effect of the drug treatment EFV/NVP and the difference in the effect
between males and females is on average 3.9 percent and at time 36 months is 6.3
percent. Figure 1 shows the survival curves upon which these parameter estimates
are based. The IPCW estimator, due to its instability and inefficient use of the data,
is unable to produce any bias reduction by accounting for time dependent covariates
in this situation. Figure 2 more clearly depicts the instability of IPCW in situations
with sparse outcomes like this one. The figure compares the TD TMLE to the TD
IPCW treatment specific survival curve for men treated with EFV. It is clear from
these plots that the IPCW estimator is unable to stay stable and produce a mono-
tonic survival curve, while the TMLE remains stable and produces sensible results.
In other situations we have observed the IPCW estimator to produce estimates of
survival probabilities that exceed 1. These characteristics of the IPCW estimator in
estimating the treatment specific survival curve are very detrimental to it being used
in practice.
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Figure 1: Gender Specific Treatment Specific Survival Curves: Death Outcome

6 Discussion
This article represents the first implementation of TMLE of a causal effect of a
multiple time point intervention that is subject to time-dependent confounding by
intermediate variables. In this particular case, the multiple time point intervention
is represented by a point treatment at baseline, and a time-dependent process that
can only jumps once from zero to one, where the latter represents the censoring
process. The TMLE presented here generalizes to TMLE of causal effects of any
other multiple time point intervention that is subject to time-dependent confound-
ing. This generalization includes the TMLE of the causal effect of a time-dependent
treatment or exposure on a time to event outcome that might also be subject to right-
censoring, incorporating time-dependent covariate processes to improve efficiency
and remove bias.

The enormous challenge in semiparametric estimation of causal effects of
multiple time-point intervention has been that incorporating an estimate of the treat-
ment and censoring mechanism can easily do more harm than good. Even esti-
mating equation based estimators, known to be double robust and asymptotically
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Figure 2: Treatment Specific Survival Curves For Men Treated With EFV: TD
TMLE vs TD IPCW

locally efficient, suffer from this instability due to not respecting known global
constraints implied by the statistical model. On the other hand, by being a substitu-
tion estimator, TMLE fully respects all global constraints implied by the statistical
model and the target parameter mapping, while being double robust and locally ef-
ficient. For example, consider the TMLE implemented in this article. If at any point
in time t for a particular subject the censoring probability approaches 1, then that
subject will contribute at that time point t large weights for the TMLE-updates of
Qs jl,n for s≥ t. That means, such subjects can cause large values of the fluctuation
parameters εs jl . However, these potentially large values of the fluctuation param-
eters enter on the logistic scale, and can at most cause predicted probabilities for
some of the binary variables to approach 1 or 0.

Our simulations and data analyses results demonstrate the remarkable stabil-
ity of the TMLE that incorporates all measured covariates, reproducing results ob-
tained with robust methods that ignore time-dependent covariates when it is known
that censoring is exogenous, while it properly adjusts for time-dependent confound-
ing in the case that the outcome is subject to informative censoring. It is shown that
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this stands in sharp contrast to the currently popular IPCW-estimator that is typi-
cally not able to properly utilize the measured time-dependent covariates. More-
over, we have shown that even when both the initial estimates of Qn and gn are
mis-specified the TMLE remains very stable relative to other methods.

We suggest that this TMLE should replace the current analysis of random-
ized controlled trials with time to event outcomes based on Cox-proportional haz-
ards analysis ignoring both baseline as well as time-dependent covariates, thereby
known to be biased whenever there is informative censoring, and also known to be
very inefficient. TMLE improves on IPCW, augmented IPCW-estimation as well
as on maximum likelihood based methods such as multiple imputation methods,
but provides an important marriage between the camps that pursue double robust
semiparametric efficient estimators, and the camp that prefers the practically robust
maximum likelihood based substitution estimators based on parametric models.

In future work we plan to extend this TMLE to other causal inference prob-
lems, and incorporate the C-TMLE extension of TMLE that allows the selection
of covariates into the fits of the censoring and treatment mechanism based on the
log-likelihood of the resulting TMLE (van der Laan and Gruber (2010)).
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A Appendix A: The general single-step recursive TMLE
algorithm

In the paper above we presented an algorithm for producing a TMLE of the treat-
ment specific survival curve in a particular longitudinal data structure. A broad
number of questions of interest, in different longitudinal data structures, may be an-
swered using a generalization of the algorithm proposed above. We present here the
general single-step recursive algorithm for TMLE in van der Laan (2010a,b) with
the modifications introduced in the current article, so that it will be clear how this
TMLE can be generalized to a large class of estimation problems based on general
longitudinal data structures. In van der Laan (2010b) we demonstrated the TMLE
for fitting marginal structural working models for dynamic treatment regimens, us-
ing the when to start treatment for HIV-infected patients as the principle scientific
question of interest. Therefore, we also use here this general class of estimation
problems to demonstrate the general algorithm.
Data and Statistical Model: Let O=(L(0),A(0), . . . ,L(K),A(K),Y = L(K+1))∼
P0. Assume a nonparametric model or a model that only makes assumptions on
the conditional distributions of g0,A(t)(A(t) | Pa(A(t))) = P0(A(t) | Pa(A(t)), t =
0, . . . ,K. We denote this statistical model for P0 with M . Let g0(A |X)≡∏t g0,A(t)(A(t) |
Pa(A(t))). Assume Y ∈ [0,1], and Y can be either continuous, discrete, or binary.
The variable Y represents the outcome of interest one is able to calculate after hav-
ing observed the complete longitudinal data structure. For example, Y could be
defined as an outcome defined at a fixed time such as Y = I(T > t) for some time-
point t and survival time T coded by the L-process. In the latter case, Y may already
be measured before the complete longitudinal data structure O is collected. Alter-
natively, Y may also be defined as the time to event T itself, or an outcome collected
at the end of the study. We will also use the notation W = L(0), and let V be a sub-
set of W . The A-process represents the intervention nodes, and it can have multiple
components. For example, A(t) = (A1(t),A2(t)) has two components, one treat-
ment component and one indicator of drop-out.
Target parameter: Let L→ dθ (L) be a rule for assigning values to A = (A(t) : t =
0, . . . ,K). Let Lθ be the random variable whose probability distribution equals the
G-computation formula:

P(Lθ = l) =
K+1

∏
t=0

P(L(t) = l(t) | L̄(t−1) = l̄(t−1), Ā(t−1) = dθ (L̄(t−1))).
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Let Yθ be the Y -component of Lθ . Given a working model {mβ : β}, we define the
target parameter of interest as

Ψ(P) = argmin
β

EP ∑
θ

{
EP(Yθ |V )−mβ (θ ,V )

}2 h(θ ,V ),

or

Ψ(P)= argmin
β

−EP ∑
θ

{
Y (θ) logmβ (θ ,V )+(1−Y (θ)) log{1−mβ (θ ,V )}

}
h(θ ,V ).

We will consider the second target parameter, but the first is treated in the same
manner. Let ψ0 = Ψ(P0), and sometimes we will also denote this true value with
β0. We note that, if {mβ : β}would be a correctly specified model for E0(Y (θ) |V ),
then mβ0(θ ,V ) =E0(Y (θ) |V ). In general, mβ0 represents the above defined projec-
tion of E0(Y (θ) |V ) on the working model. Let mβ (θ ,V ) = 1/(1+exp(βφ(θ ,V )))
for a vector of real valued functions φ = (φ1, . . . ,φd).
Gradient for Target Parameter: Let M (g0) be the statistical model that assumes
g0 is known. The canonical gradient of Ψ at P0 is the same in model M (g0) as it
is in the actual model M . Thus, the canonical gradient of Ψ : M → IRd can be
defined as a projection of a gradient of Ψ : M (g0)→ IRd onto the tangent space of
model M (g0). A gradient of Ψ : M (g0)→ IRd is given by

D(P0)(O) = ∑
θ

I(A = dθ (L))
g0(A | X)

φ(θ ,V )h(θ ,V )(Y −mβ0(θ ,V )).

Factorization of likelihood: Analogue as in van der Laan (2010a,b) and in this
article, consider the factorization of the likelihood in terms of binary variables
{L(t, j, l) : (t, j, l)}, {A(t, j, l) : (t, j, l)}, according to a specified ordering, and we
do not discretize the final node Y :

P = QL(0)

{
∏

t≤K, j,l
QL(t, j,l)

}
QY ∏

t, j,l
gA(t, j,l).

Given the ordering of these variables, we define Pa(L(t, j, l)) and Pa(A(t, j, l)) ac-
cordingly as the predecessors in the ordered sequence. Let Q̄t, j,l(Pa(L(t, j, l))) ≡
QL(t, j,l)(1 | Pa(L(t, j, l))).
Initial estimator: We estimate QL(0) with the empirical distribution QL(0),n. Let
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gn be an estimator of g0. Consider an initial estimator Q0
n, where each conditional

distribution of a binary variable L(t, j, l) can be represented as a logistic fit:

Q̄0
n,(t, j,l) = Expit{LogitQ̄0

n,(t, j,l)}.

The conditional mean Q̄n,Y of Y , given Pa(Y ) is also represented as a logistic fit:

EQn,Y (Y | Pa(Y )) = Expit{LogitQ̄n,Y (Pa(Y ))}.

Canonical gradient (vanderLaan (2010a)): We will use some short-hand nota-
tion. The projection D∗L(0) of D(P) on the tangent space TL(0) of QL(0) is given
by

D∗L(0) = Π(D | TL(0)) = EQ

{
∑
θ

φ(θ ,V )h(θ ,V )(Yθ −mβ (θ ,V )) | L(0)

}
.

The projection D∗t jl of D(P) on the tangent space TL(t, j,l) of QL(t, j,l) is given by
Π(D | TL(t, j,l)) =Ct jl(P)(L(t, j, l)− Q̄L(t, j,l)), where

Ct jl(P)=EP(D(P) |L(t, j, l)= 1,Pa(L(t, j, l)))−EP(D(P) |L(t, j, l)= 0,Pa(L(t, j, l))).

Let Ct jl(P)(δ ), δ ∈{0,1}, represent the two terms corresponding with L(t, j, l)= δ .
As shown in (van der Laan (2010a)), it follows that

Ct jl(Q,g)(δ ) =

∑θ EQ

{
I(Ā(t−1)=dθ (L̄(t−1)))

g(Ā(t−1)|X)
h(θ ,V )φ(θ ,V )Yθ | L(t, j, l) = δ ,Pa(L(t, j, l))

}
.

We have Ct jl(Q,g)(δ ) = 1
g(Ā(t−1)|X)

Ct jl(Q)(δ ), where

Ct jl(Q)(δ )=∑
θ

I(Ā(t−1)= dθ (L̄(t−1)))EQ(h(θ ,V )φ(θ ,V )Yθ |Lθ (t, j, l)= δ , L̄θ (t, j, l)).

We have D∗Y = Π(D | TY ) is given by CY,gCY (Y −EQ(Y | Pa(Y ))), where CY,g =
1/g0(A | X), and

CY = ∑
θ

I(A = dθ (L))φ(θ ,V )h(θ ,V ).

The canonical gradient is given by D∗ = D∗L(0)+∑t, j,l D∗t, j,l +D∗Y .
Parametric working model: The TMLE requires a choice of working model
and loss function whose score generates the canonical gradient. Given an ini-
tial Q, we use the logistic working models LogitQ̄Y (εY ) = LogitQ̄Y + εYCY , and
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LogitQ̄t, j,l(ε)=LogitQ̄t, j,l+εt, j,lCt, j,l(Q). This defines a working submodel {Q(ε) :
ε} through Q at ε = 0.
Loss function: As loss functions we use the weighted log-likelihood loss functions
Lg0(Qt, j,l) =−{logQt, j,l}1/g0(Ā(t−1) |X), regular log-likelihood loss L(QL(0)) =
− logQL(0), and the weighted quasi-log-likelihood loss
Lg0(Q̄Y ) =−1/g0(Ā | X){Y log Q̄Y +(1−Y ) log(1− Q̄Y )}. The loss function for Q
is now the sum-loss function Lg0(Q) = L(QL(0))+∑t, j,l Lg0(Qt, j,l)+Lg0(Q̄Y ). We
note that this is a valid loss-function in the sense that Q0 = argminQ E0Lg0(Q). The
loss function and working model satisfy that the linear span of d

dε
Lg0(Q(ε)) at ε = 0

contains the components of the canonical gradient D∗(Q,g0).
Ordering of binary components that make up longitudinal data structure: We
ordered the binary variables {L(t, j, l)}, and Y and factorized the Q-factor of the
likelihood accordingly. Let B(m), m = 1, . . . ,M, denote this ordered sequence of
variables, where B(M) = Y . Thus, L = (L(0),B(m),m = 1, . . . ,M). This represen-
tation of L in terms of a sequence of ordered binaries B(m), m= 1, . . . ,M, will allow
us to clarify the algorithm.
Markov property is preserved by parametric working model: Suppose that the
conditional distribution Qm =QB(m) of B(m) is a function of Pa(B(m)) only through
(B(m−1), . . . ,B(m− k)) and the A-nodes in Pa(B(m)), for a fixed small integer k.
If Q = (Qm : m = 0, . . . ,M) satisfies this Markov property, then the fluctuated Q(ε)
also satisfies this Markov property. The purpose of the Markov property is that it
controls the amount of computations and storage in the algorithm, since it identifies
Qm by 2k possible history values for the L-process, instead of 2m. If m gets large,
this results in enormous savings.
Recursive relation for clever covariates: The clever covariate for node B(m) re-
quires us to calculate I(Ā(tm−1) = dθ (L̄(tm−1)))E(Yθ | B(m),Pa(B(m))), where
we defined tm as the time-point for node B(m). We will now prove the recursive
relation for this conditional expectation which allows us to obtain the m-th clever
covariate from the m+ 1-th clever covariate, by simply integrating over B(m+ 1),
given Pa(B(m+ 1)). We will ignore the indicator in front of conditional expecta-
tion in our proof, but we will use that (B(m),Pa(B(m)) is only evaluated at values
for which Ā(tm−1) = dθ (L̄(tm−1)). We also assume the strong SRA which states
that for each t = 0, . . . ,K, A(t) is independent of Lθ , given Pa(A(t)), although this
assumption is not a statistical assumption, and thereby will not affect the validity of
the whole estimation procedure w.r..t to the estimand.

Lemma 1 If Ā(tm−1) = dθ (L̄(tm−1), then

E(Yθ | B(m),Pa(B(m))) =

∑b E(Yθ | B(m+1) = b,Pa(B(m+1)))P(B(m+1) = b | Pa(B(m+1))).
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If there is a node A(tm) between B(m) and B(m+1), then the left-hand side equals
E(Yθ | A(tm),B(m),Pa(B(m))).

Proof: Let Bθ (m) denote the counterfactual counterpart of B(m), defined by Lθ ,
and let Pa(Bθ (m)) = (Bθ (1), . . . ,Bθ (m−1)). Let pa(Bθ (m)) be the values for the
B-nodes implied by pa(B(m)). We have

E(Yθ | B(m) = b(m),Pa(B(m)) = pa(B(m))) =
E(Yθ | Bθ (m) = b(m),Pa(Bθ (m)) = pa(Bθ (m)))
= ∑b E(Yθ | Bθ (m+1) = b,Pa(Bθ (m+1)) = pa(Bθ (m+1)))

P(Bθ (m+1) = b | Pa(Bθ (m+1) = pa(Bθ (m+1))).(∗)

The first equality used Ā(tm−1) = dθ (L̄(tm−1)) and SRA, and the second equality
uses the standard iterative conditional expectation rule. Suppose there is no A-
node between B(m) and B(m+1). Then, the latter expression (*) equals (by same
arguments as above for first equality)

∑b E(Yθ | B(m+1) = b,Pa(B(m+1)) = pa(B(m+1)))
P(B(m+1) = b | Pa(B(m+1)) = pa(B(m+1))).

Suppose now that there is an A-node A(tm) between B(m) and B(m+ 1). In this
case, by SRA, the expression (*) equals

∑b E(Yθ | A(tm),Bθ (m+1) = b,Pa(Bθ (m+1)) = pa(Bθ (m+1)))
P(Bθ (m+1) = b | A(tm),Pa(Bθ (m+1)) = pa(B(m+1)))

= ∑b E(Yθ | A(tm),B(m+1) = b,Pa(B(m+1) = pa(B(m+1)))
P(B(m+1) = b | A(tm),Pa(B(m+1)) = pa(B(m+1)))

= ∑b E(Yθ | B(m+1) = b,Pa(B(m+1)) = pa(B(m+1)))
P(B(m+1) = b | Pa(B(m+1)) = pa(B(m+1))),

since Pa(B(m+1)) includes A(tm). This completes the proof of the lemma. �
Evaluation of target parameter at final step of TMLE-algorithm: In the final
step of the recursive algorithm below, after having updated QB(1), and integrated out
over B(1), we will have evaluated EQ∗n(Yθ | L(0)) for each θ at the current updated
(Q∗B(1),n, . . . ,Q

∗
B(M),n). QL(0),n is not updated and thus remains equal to the empirical

distribution function of Li(0), i = 1, . . . ,n. We now evaluate Ψ(Q∗n) as the solution
of PnD∗L(0)(Q

∗
n,ψ) = 0 in ψ:

0 =
1
n

n

∑
i=1

EQ

(
∑
θ

φ(θ ,Vi)h(θ ,Vi)(Yθ −mβ (θ ,Vi)) | Li(0)

)
.
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This can be rewritten as

0 =
1
n

n

∑
i=1

∑
θ

φ(θ ,Vi)h(θ ,Vi)(EQ(Yθ | Li(0))−mβ (θ ,Vi)).

This solution corresponds with (see Rosenblum and van der Laan (2010)) the min-
imizer βn of

n

∑
i=1

∑
θ

EQ(Y (θ) |Li(0)) logmβ (θ ,Vi)+(1−EQ(Y (θ) |Li(0))) log{1−mβ (θ ,Vi)}h(θ ,Vi).

As a consequence, βn can be computed with standard logistic regression of the
outcome EQ(Y (θ) | Li(0)) ∈ (0,1) on the logistic regression model mβ in (θ ,Vi)
based on the pooled data set for the repeated measures data structure (EQ(Y (θ) |
Li(0)),θ ,Vi : θ), using weights h(θ ,Vi), i = 1, . . . ,n. This solution βn represents the
TMLE Ψ(Q∗n).
TMLE-single-step recursive algorithm: Firstly, we compute an initial fit Q0

n of
Q0. Recall that Q0

n is represented by the conditional distributions Qm,n of Bm, given
Pa(Bm), m = 1, . . . ,M, and the empirical distribution QL(0),n of Li(0), i = 1, . . . ,n.
For m = M to m = 1 (i.e., from final node to first node)

• Let k = M−m. This step will involve updating the estimator of m-th factor
Q0,m, and it corresponds with the k+1-th iterative update of Q0

n.
• If m=M (and thus k = 0), then compute clever covariate Cm =CY =∑θ I(A=

dθ (L))φ(θ ,V )h(θ ,V ) for updating Qk
n,m.

• Suppose m < M. Compute clever covariate Cm(Qk
n) for updating Qk

n,m us-
ing the recursive relation presented in Lemma 1: In previous k− 1-th step
(i.e., at m + 1-th factor) we calculated EQk

n
(Yθ | B(m + 1),Pa(B(m + 1))),

and we also obtained the update Qk
n,m+1 of m+ 1-th factor. The recursive

mapping of Lemma 1 allows us to map these two ingredients into EQk
n
(Yθ |

B(m),Pa(B(m))) , and thereby into Cm(Qk
n).

• Update m-th factor Qk
n,m with LogitQ̄k

n,m(εm,n) = LogitQ̄k
n,m + εm,nCm(Qk

n),
where

εm,n = argmin
ε

PnLg0
n
(Qk

n,m(ε)).

• Define the k + 1-th iterative update Qk+1
n as Qk

n but with the m-th factor
Qk

n,m replaced by Qk
n,m(εm). For the next step we store Qk+1

n , and EQk+1
n

(Yθ |
B(m),Pa(B(m))) for all θ .

The final fit QM−1
n at the final step m = 1 (with k = M− 1), defines the TMLE of

Q0: Q∗n = QM−1
n . Finally, we evaluate the target parameter in the manner presented

above, giving Ψ(Q∗n).
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This appendix illustrates how the general algorithm we propose and demon-
strated in the main article may be used to estimate a wide range of parameters of
interest for general longitudinal data structures.
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