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Abstract

Adjusting for prognostic baseline variables can lead to improved power in randomized trials. For bi-
nary outcomes, a logistic regression estimator is commonly used for such adjustment. This has resulted
in substantial efficiency gains in practice, e.g., gains equivalent to reducing the required sample size by
20–28% were observed in a recent survey of traumatic brain injury trials. Robinson and Jewell (1991)
proved that the logistic regression estimator is guaranteed to have equal or better asymptotic efficiency
compared to the unadjusted estimator (which ignores baseline variables). Unfortunately, the logistic
regression estimator has the following dangerous vulnerabilities: it is only interpretable when the treat-
ment effect is identical within every stratum of baseline covariates; also, it is inconsistent under model
misspecification, which is virtually guaranteed when the baseline covariates are continuous or categori-
cal with many levels. An open problem was whether there exists an equally powerful, covariate-adjusted
estimator with no such vulnerabilities, i.e., one that (i) is interpretable and consistent without requiring
any model assumptions, and (ii) matches the efficiency gains of the logistic regression estimator. Such
an estimator would provide the best of both worlds: interpretability and consistency under no model
assumptions (like the unadjusted estimator) and power gains from covariate adjustment (that match the
logistic regression estimator). We prove a new asymptotic result showing that, surprisingly, there are
simple estimators satisfying the above properties. We argue that these rarely used estimators have sub-
stantial advantages over the more commonly used logistic regression estimator for covariate adjustment
in randomized trials with binary outcomes. Though our focus is binary outcomes and logistic regression
models, our results extend to a large class of generalized linear models.

Keywords: Pitman Efficiency; Robustness; Hypothesis Test

1 Introduction

Austin et al. (2010) conducted a review of randomized clinical trial reports from medical journals, and

concluded that “There is a need for an informed debate about the relative interpretability and utility for
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clinical and policy decision making of unadjusted vs. adjusted measures of treatment effect for binary and

time-to-event outcomes.” We aim to contribute to this debate, focusing on binary outcomes. Our goal is

to recommend an estimator (with corresponding confidence interval and hypothesis test) for the primary

efficacy analysis of a confirmatory randomized trial.

Adjusting for prognostic baseline variables can lead to efficiency gains, as illustrated by Hernández et al.

(2006). They estimated the gains from adjusting for baseline covariates in seven phase 3 randomized trials

of treatments for traumatic brain injury. The primary outcome in each trial was the dichotomized Glasgow

Outcome Scale of functional disability measured at 6 months. Prognostic baseline variables included “age,

motor score, pupillary reactivity, computed tomography (CT) classification, traumatic subarachnoid hem-

orrhage, hypoxia, hypotension, glycemia, and hemoglobin” (Hernández et al., 2006). A logistic regression

estimator was compared to the unadjusted estimator. The former, referred to below as the logistic coefficient

estimator, is the estimated coefficient on the treatment term in a main effects logistic regresssion model for

the outcome given treatment and baseline variables. The unadjusted estimator is the difference between

the sample proportions of successful outcomes in the two study arms. Efficiency gains from using the lo-

gistic coefficient estimator compared to the unadjusted estimator were equivalent to sample size reductions

ranging from 20–28%.

We consider trials where each participant is randomized to the treatment or control arm, independent

of baseline variables; extensions to stratified randomization are discussed in Section 6. Our focus is the

intention-to-treat analysis, which compares the impact of assignment to the treatment versus control arm.

The goal of the analysis is to estimate the average treatment effect, construct a confidence interval for it,

and test the null hypothesis of no average treatment effect. We compare three estimators: the unadjusted,

the logistic coefficient, and the standardized estimator. The latter two are adjusted estimators that leverage

information in baseline variables, and are defined in Section 2.3. Each estimator can be used for hypothesis

testing by dividing by its standard error and comparing to the appropriate quantile of the standard normal

distribution.

Asymptotic relative efficiency (also called Pitman efficiency) is used to compare test statistics from

different estimators. It represents the ratio of sample sizes required to achieve a desired power and Type I

error, comparing two testing methods. We refer to asymptotic relative efficiency simply as “efficiency” for

conciseness.

Robinson and Jewell (1991, Section 8) compared the efficiency of the logistic coefficient estimator
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versus the unadjusted estimator. They proved that the former has equal or better efficiency compared to the

latter, assuming the logistic regression model is correctly specified.

It was an open problem to determine whether the logistic coefficient estimator or the standardized es-

timator is more efficient for testing the null hypothesis of no average treatment effect. This was unknown

both for the case where the logistic regression model is correctly specified, and also for the case where the

model is misspecified. The latter case may be most important, since in practice one would expect the model

to be at least somewhat misspecified.

Our main contribution is proving that the standardized estimator has equal efficiency compared to the

logistic coefficient estimator; this holds not only when the logistic regression model is correctly specified,

but also under arbitrary model misspecification. Therefore, there is no advantage in terms of power gains,

asymptotically, to using the logistic coefficient estimator compared to the standardized estimator. This is

important since the latter estimator has substantial advantages compared to the former.

The main advantage of the standardized estimator is its interpretability. The population parameter es-

timated by the standardized estimator is the same as that estimated by the unadjusted estimator, i.e., the

average treatment effect. This effect, also called a marginal or unconditional effect, has the direct interpreta-

tion as a contrast between the probability of a successful outcome if everyone in the target population were

assigned to treatment versus control. If the average effect is positive, then giving the treatment to everyone

in the target population would lead to better outcomes, on average, compared to control. The standard-

ized estimator is guaranteed to converge to the average treatment effect, regardless of whether the logistic

regression model is correctly specified or not.

The population parameter estimated by the logistic coefficient estimator is the conditional treatment ef-

fect within strata of the baseline variables. This estimator is only interpretable under the assumption that the

conditional effect is identical within every such stratum, i.e., under the assumption that the conditional effect

is a single number rather than a function that can vary depending on baseline variables (Freedman, 2008).

Even if this assumption were true, the logistic coefficient estimator is inconsistent under misspecification of

the logistic regression model.

In brief, our main result shows that the standardized estimator gets all the asymptotic efficiency gains

of the logistic coefficient estimator without the interpretability and inconsistency problems of the latter. We

focus on the standardized estimator of Moore and van der Laan (2009) due to its simplicity and ease of

implementation. Our result also has implications for a variety of standardized estimators, e.g., those based
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on (Robins et al., 2007; Moore and van der Laan, 2009; Tan, 2010; Rotnitzky et al., 2012; Gruber and van der

Laan, 2012; Colantuoni and Rosenblum, 2015) when applied to randomized trials, as discussed in Section 6.

2 Problem Definition

2.1 Data Structure and Assumptions

Let Y denote the binary outcome, A denote assignment to treatment (A = 1) or control (A = 0), and B

denote a column vector of baseline variables which can be any mix of categorical and continuous variables

measured before randomization. The baseline variables B must be prespecified in the study protocol. Each

participant i has data vector (Bi, Ai, Yi). A total of n participants are enrolled.

Each participant’s data vector (Bi, Ai, Yi) is assumed to be an independent, identically distributed draw

from the unknown joint distribution P0 on (B,A, Y ). No assumptions are made on P0 except that A is a

Bernoulli draw with probability 1/2 of being 0 or 1 independent of B (which holds by randomization), B is

bounded, and P0 satisfies regularity conditions given later in the paper.

2.2 Treatment Effect and Null Hypothesis Definitions

Define the unconditional probability of success under treatment and control to be

µ1 = P0(Y = 1|A = 1) and µ0 = P0(Y = 1|A = 0), respectively. These probabilities are nonparametri-

cally defined, i.e., they do not require any model assumptions (such as a logistic regression model) in order

to be well-defined and interpretable. We focus throughout on testing the null hypothesis of no average treat-

ment effect: H0 : µ1 = µ0. The average treatment effect on the risk difference scale is defined as µ1 − µ0.

The analogous average treatment effects on the relative risk and log-odds scales are defined as µ1/µ0 and

logit(µ1)− logit(µ0), respectively, for logit(x) = log{x/(1− x)}.

Define the following logistic regression model for the outcome given study arm assignment and baseline

variables:

logit{P (Y = 1|A,B)} = γ0 + γ1A+ γ′2B, (1)

where γ2 is a column vector of same length asB, and γ′2 denotes its transpose. We do not assume this model

is correctly specified. That is, the true joint distribution P0(B,A, Y ) need not satisfy any of the restrictions

encoded in this model (such as equal conditional treatment effect within every stratum of baseline variables,

and the relationship between the outcome and baseline variables having the simple, linear form above for

each study arm). Our only assumptions about P0 are those in Section 2.1.
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If the model (1) is correct, then H0 is equivalent to the conditional null hypothesis

H0C : P (Y = 1|A = 1, B = b) = P (Y = 1|A = 0, B = b) for every stratum b of baseline variables

with positive density under P ; this follows since if the model is correct, each null hypothesis is equivalent to

γ1 = 0. If the model is misspecified, then H0 does not necessarily imply the sharper null hypothesis H0C .

In general, neither null hypothesis implies the model (1) is correctly specified. (An exception is when B is

a single binary variable, in which case H0C implies the model is correctly specified.) We focus on testing

H0 rather than H0C , since the former is typically of primary interest in confirmatory randomized trials.

2.3 Estimators

The unadjusted estimator ψ̂unadj of the marginal risk difference µ1−µ0 is the difference between the sample

proportions with Y = 1 between the treatment and control arms.

Let γ̂ = (γ̂0, γ̂1, γ̂2) denote the estimated coefficients when (1) is fit using maximum likelihood esti-

mation. The logistic coefficient estimator is defined as γ̂1. Even when the model (1) is misspecified, γ̂

converges in probability to the maximizer γ̄ of the expected log-likelihood

EP0 log
{

expit
(
γ0 + γ1A+ γ′2B

)}Y {
1− expit

(
γ0 + γ1A+ γ′2B

)}1−Y
,

where expit = logit−1, EP0denotes expectation with respect to P0, and we assume throughout that the

expected log-likelihood has a unique maximizer. (Rosenblum and van der Laan (2009) showed that if the

components of B are linearly independent, then the expected log-likelihood is strictly concave and so any

local maximum is the unique, global maximum.) Under misspecification of (1), the probability limit γ̄1 of

the logistic coefficeint estimator γ̂1 is generally uninterpretable.

The standardized estimator of the marginal risk difference is defined as:

ψ̂std =
1

n

n∑
i=1

expit(γ̂0 + γ̂1 + γ̂′2Bi)−
1

n

n∑
i=1

expit(γ̂0 + γ̂′2Bi). (2)

This estimator is from Moore and van der Laan (2009), and is a special case of a class of estimators from

Scharfstein et al. (1999). We emphasize that each of the sums in (2) is over all participants i = 1, . . . , n

in the trial (not only those assigned to a specific arm, for example). The estimator can be thought of as

standardizing to the marginal distribution of the baseline variables from the entire (pooled) data set.

The Wald statistic corresponding to each estimator is the estimator divided by its standard error. Through-

out, we assume that a robust variance estimator (such as the nonparametric bootstrap) is used to compute
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each standard error, and that this robust variance estimator is consistent.

2.4 Validity of Hypothesis Tests Based on Each Estimator

It follows from Scharfstein et al. (1999) and Moore and van der Laan (2009) that under arbitrary misspecifi-

cation of the model (1), both ψ̂unadj and ψ̂std converge in probability to µ1−µ0 (the average treatment effect

on the risk difference scale) and are asymptotically normal. Therefore, under H0, these estimators converge

to 0 in probability and their corresponding Wald statistics lead to tests ofH0 that have asymptotically correct

Type I error; this holds regardless of whether the model (1) is correctly specified.

In contrast, the logistic coefficient estimator γ̂1 converges to the conditional effect

logit{P (Y = 1|A = 1, B)} − logit{P (Y = 1|A = 0, B)} (also called the conditional log-odds ratio)

when (1) is correctly specified, and converges to an uninterpretable limit γ̄ otherwise (Freedman, 2008).

Gail et al. (1984) showed that when (1) is correctly specified and H0 is false, the conditional effect has

greater magnitude than the marginal effect on the log-odds scale. The logistic coefficient estimator γ̂1 is

asymptotically normal, regardless of whether (1) holds.

Rosenblum and van der Laan (2009) proved that for testing H0C , the Wald test based on the logistic

coefficient estimator γ̂1 has asymptotically correct Type I error; this holds under arbitrary misspecification

of the model (1). We strengthen this result, showing that the Wald test based on γ̂1 is also valid for testing the

weaker null hypothesis H0. This result and several results above are encapsulated in the following theorem:

Theorem 2.1. For each estimator ψ̂unadj , γ̂1, ψ̂std, it converges to 0 in probability if and only if H0 is true.
Therefore, the Wald test of H0 based on any of these estimators has asymptotically correct Type I error.
These results hold under arbitrary misspecification of the model (1).

All of our results are proved in the Appendix. We next compare the power of Wald tests based on the

above estimators.

3 Main Result

Asymptotic relative efficiency, defined by Pitman (van der Vaart, 1998, p. 201), compares the large sample

performance of two testing procedures. It represents the ratio of required sample sizes for each testing

procedure to achieve a desired power and Type I error. The formal definition requires a set of alternatives

P (ν)(B,A, Y ) (i.e., joint distributions) indexed by {ν ∈ R : ν > 0} that converge to some P (0) ∈ H0 as

ν ↓ 0. The asymptotic relative efficiency for testing H0 is the limit of the ratio of the minimum sample sizes

6

http://biostats.bepress.com/jhubiostat/paper281



needed by each testing procedure to achieve a desired power 1− β with Type I error at most α, under P (ν)

as ν ↓ 0. Our results hold for many possible sets of alternatives {P (ν) : ν > 0}, and for any α, β satisfying

0 < α < 1− β < 1, under regularity conditions in the next paragraph.

We assume that P (ν) converges in total variation distance to some P (0) ∈ H0 as ν ↓ 0, and that each P (ν)

satisfies the assumptions in Section 2.1. Define µa(ν) = P (ν)(Y = 1|A = a) for each a ∈ {0, 1}, ν ≥ 0.

For any ν > 0, P (ν) is assumed to satisfy the alternative hypothesis µ1(ν) − µ0(ν) > 0. (We focus

on one-sided alternatives, but analogous results hold for the two-sided case.) Furthermore, we assume

µ1(ν) − µ0(ν) is right differentiable at ν = 0, with positive right-derivative. Intuitively, this condition

means that the parameter µ1(ν) − µ0(ν), which defines the null hypothesis H0 : µ1(ν) − µ0(ν) = 0, is

increasing in ν (to first order) in small neighborhoods of ν = 0. We assume the regularity conditions in

Lemma 7.6 and Theorem 14.19 of van der Vaart (1998, pp. 95, 201). The former conditions imply that

the parametrization {P (ν) : ν ≥ 0} is regular, i.e., differentiable in quadratic mean. The latter conditions

imply that asymptotic relative efficiency is determined by the slope of each Wald statistic, i.e., the ratio of

the derivative of its asymptotic mean to its asymptotic dispersion.

An example of a set of alternatives satisfying the above assumptions is to let P (ν) denote the distribution

satisfying (1) at γ1 = ν and with γ0, γ2, and the marginal distribution of B fixed (not changing with ν).

The following is our main result:

Theorem 3.1. Consider any set of alternatives {P (ν) : ν > 0} satisfying the above regularity conditions.
The asymptotic relative efficiency for testing H0, comparing Wald statistics based on the standardized esti-
mator versus the logistic coefficient estimator, is 1.

The theorem shows that the standardized estimator is asymptotically as efficient as the logistic coefficient

estimator. This holds regardless of whether the logistic regression model (1) is correctly specified; that is,

we do not require P (ν) or P (0) to satisfy (1).

Robinson and Jewell (1991) showed that the asymptotic relative efficiency of the logistic coefficient

estimator compared to the unadjusted estimator is greater or equal to 1, assuming the model (1) is correct.

In the Appendix, we slightly extend their result by showing it holds in the setting of our paper. Combining

this with Theorem 3.1, we have:

Corollary 3.2. Consider any P (0) ∈ H0 for which (1) is correctly specified, and any set of alternatives
{P (ν) : ν > 0} that satisfy the above regularity conditions and converge to P (0) in total variation dis-
tance as ν ↓ 0. The asymptotic relative efficiency for testing H0, comparing Wald statistics based on the
standardized estimator versus the unadjusted estimator, is at least 1.
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(Asymptotic relative efficiency greater than 1 means that the first procedure requires smaller sample size

compared to the second procedure, asymptotically.)

Theorems 2.1–3.1 and Corollary 1 involve the standardized estimator for the risk difference µ1 − µ0.

These results still hold if the risk difference in the standardized estimator is replaced by any smooth contrast

between µ1 and µ0, such as the relative risk reduction 1 − µ1/µ0 or log-odds ratio logit(µ1) − logit(µ0).

In general, we define a smooth contrast between the marginal means µ0, µ1 to be any real-valued function

r of (µ0, µ1) that is continuously differentiable, equals 0 under H0 (i.e., whenever µ0 = µ1), and has

gradient with non-zero magnitude. The corresponding standardized estimator involves substituting the first

and second terms on the right side of (2) for µ1 and µ0, respectively, in the contrast r.

Theorem 3.3. The standardized estimator using any smooth contrast r converges to 0 in probability if and
only if H0 is true. The asymptotic relative efficiency for testing H0, comparing Wald statistics based on the
standardized estimator using the risk difference versus the standardized estimator using any smooth contrast
r, is 1.

4 Simulation Study Based on the MISTIE II trial

The MISTIE II trial (Hanley et al., In Press) is a randomized phase II trial comparing a surgical procedure

that removes blood clots to the standard of care in patients who have intracerebral hemorrhage. The primary

outcome has value 1 if the participant’s modified Rankin scale score at 180 days is 3 or less, and is 0

otherwise. We use the following prognostic baseline variables: age, intracerebral hemorrhage volume, and

National Institutes of Health Stroke Scale. We use data from the 89 participants (out of 96 total) in the

trial who have all of these variables and the outcome measured. The unadjusted estimate of the average

treatment effect on the risk difference scale is 0.12; it is 0.54 on the log-odds scale. Our simulation study

setup is similar to (Colantuoni and Rosenblum, 2015); however, they did not consider the logistic coefficient

estimator, whose relative efficiency compared to the standardized estimator is the focus of our paper.

We compare the efficiency of the unadjusted, logistic coefficient, and standardized estimators by simu-

lating 10000 trials, each with sample size 89. The data generating mechanism is constructed to mimic the

correlation structure between the outcome and baseline variables in the MISTIE II data. Each simulated trial

data set involves first sampling 89 pairs (Y,B) with replacement from the MISTIE II data. Each simulated

participant’s treatment assignment A is set to be treatment or control with probability 0.5 independent of

(Y,B). In order to induce a positive average treatment effect equal to that observed in the MISTIE II trial,

we modify some of the simulated participants’ outcomes. Specifically, for each simulated participant with
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A = 1 and Y = 0, we change Y to 1 with probability 0.17 based on a random draw independent of B.

The resulting data generating distribution has average treatment effect 0.12 on the risk difference scale, and

average treatment effect 0.54 on the log-odds scale. Under this distribution, the logistic regression model

(1) is misspecified.

The relative efficiency comparing Wald statistics based on two estimators is approximated below by the

ratio of the first estimator’s signal to noise ratio (defined as the square of its mean divided by its variance)

compared to that of the second estimator. Each mean and variance is approximated by its empirical mean

and variance over the 10000 simulated trials.

Table 1 shows results from the 10000 simulated trials. The unadjusted and standardized estimators are

calculated both on the risk difference and log-odds scales. For each estimator, the table shows its empirical

mean and standard error. Relative efficiency compares the Wald test of H0 based on each estimator to the

Wald test of H0 based on the logistic coefficient estimator.

Risk Difference Scale Log Odds Scale
Unadjusted Standardized Unadjusted Standardized Logistic

Mean 0.12 0.12 0.54 0.54 0.70
Standard Error 0.10 0.09 0.46 0.41 0.54
Relative Efficiency 0.86 1.04 0.83 1.02 1.00

Table 1: Comparison of the unadjusted, standardized, and logistic coefficient estimators.

The results in Table 1 show that both the unadjusted and standardized estimator are approximately

unbiased for the average treatment effect. The relative efficiency results in Table 1 agree well with the results

from Theorem 3.1 and Corollary 1. The unadjusted estimator is less efficient than both the standardized and

the logistic coefficient estimators. The relative efficiency of the standardized versus the logistic coefficient

estimator is close to 1. We also conducted simulations as above except with sample size 500; the relative

efficiency of the standardized versus the logistic coefficient estimator becomes closer to one, with relative

efficiencies of 1.01 and 0.99 when the standardized estimator is on the risk difference and log-odds scale,

respectively. Consistent with Theorem 3.3, the relative efficiencies of the standardized estimator in Table 1

are similar for both the risk difference and log-odds scales.
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5 Generalized Linear Models with Canonical Link Functions

Our results hold not only for binary outcomes and logistic regression models, but also for generalized linear

models (GLM) with canonical link function (denoted g), under regularity conditions given below. This

includes the following special cases from McCullagh and Nelder (1989):

• Linear regression for continuous outcomes (g(x) = x).

• Logistic regression for binary outcomes (g(x) = logit(x)).

• Poisson regression for count outcomes (g(x) = log(x)).

• Gamma regression for positive, real-valued outcomes (g(x) = 1/x).

• Inverse-normal regression for positive, real-valued outcomes (g(x) = 1/x2).

We consider the same data structure and assumptions as in Section 2.1 with the exception that the

outcome Y is not restricted to be binary. We generalize the definitions of µ0, µ1 from Section 2.2 to be

µ0 = E(Y |A = 0), µ1 = E(Y |A = 1), respectively. We focus on testing the null hypothesisH0 : µ1 = µ0.

The terms in the linear part of the GLM are assumed to be the same as in (1). Under such a generalized

linear model with link function g, we have the following extension of (1):

g {E(Y |A,B)} = γ0 + γ1A+ γ′2B. (3)

If we further assume the link function is canonical, then it follows from Bickel and Doksum (2015, p.

413) that the corresponding maximum likelihood estimator (γ̂0, γ̂1, γ̂2) for (γ0, γ1, γ2) is the solution to the

following estimating equations:

n∑
i=1

{
Yi − g−1(γ0 + γ1Ai + γ′2Bi)

}
(1, Ai, B

′
i)
′ = 0. (4)

In this section, we define γ̂ = (γ̂0, γ̂1, γ̂2) to be the solution (γ0, γ1, γ2) to the above display. Define the

GLM coefficient estimator to be γ̂1.

We consider the same setup and assumptions as in Section 3. Our results apply to a large class of

smooth functions g, which include the five special cases given above. We make the following assumptions

on g: g is continuously differentiable; g is invertible with strictly monotone inverse; for all γ we have

E{ḣ(γ0 + γ1A+ γ′2B)} is finite, where h = g−1 and ḣ is the derivative of h. We also assume the regularity
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conditions of Theorems 5.9 and 5.21 of van der Vaart (1998, pp. 46, 52), which imply that γ̂ converges in

probability to the unique solution toE
{
Y − g−1(γ0 + γ1A+ γ′2B)

}
(1, A,B′)′ = 0, and is asymptotically

normal. We do not assume that the model (3) is correctly specified.

For a given function g, the corresponding standardized estimator ψ̂std is defined as (2) with expit re-

placed by g−1, i.e.,

ψ̂std =
1

n

n∑
i=1

g−1(γ̂0 + γ̂1 + γ̂′2Bi)−
1

n

n∑
i=1

g−1(γ̂0 + γ̂′2Bi). (5)

Rosenblum and van der Laan (2010) showed that the standardized estimator is a consistent estimator for the

average treatment effect E(Y |A = 1)−E(Y |A = 0) even if the model (3) is arbitrarily misspecified. They

showed this for each of the five special cases of generalized linear models with canonical link functions g

given above. We generalize their result by proving that it holds for the large class of functions g defined

above. This result and a generalization of Theorem 2.1 are encapsulated in the following theorem:

Theorem 5.1. Consider any function g satisfying the assumptions above. Then the standardized estimator
ψ̂std defined in (5) converges in probability to E(Y |A = 1)−E(Y |A = 0). For each estimator ψ̂unadj , γ̂1,
ψ̂std, it converges to 0 in probability if and only if H0 is true. Therefore, the Wald test of H0 based on any of
these estimators has asymptotically correct Type I error. These results hold under arbitrary misspecification
of the model (3).

We next compare the power of γ̂1 and ψ̂std, generalizing Theorem 3.1.

Theorem 5.2. Consider any function g satisfying the assumptions above. Let (γ̂0, γ̂1, γ̂2) denote the solution
to (4), and define the standardized estimator ψ̂std as (5). Consider any set of alternatives {P (ν) : ν > 0}
satisfying the assumptions in Section 3. The asymptotic relative efficiency for testing H0, comparing Wald
statistics based on ψ̂std versus γ̂1, is 1.

The theorem implies that the standardized estimator is asymptotically as efficient as γ̂1 for testing H0. This

holds under arbitrary misspecification of (3). Also, we prove a generalization of Corollary 1 to the setup of

this section in the Appendix.

Consider the special case where g(x) = x. Then (3) is the linear regression model E(Y |A,B) =

γ0 + γ1A + γ′2B. The GLM coefficient estimator γ̂1, defined as the solution to (4), is the ordinary least

squares estimator of γ1. Due to cancellation of terms in (5), the standardized estimator ψ̂std is identical

to γ̂1. This estimator is called the analysis of covariance (ANCOVA) estimator. Yang and Tsiatis (2001)

proved that this estimator is consistent for the average treatment effect E(Y |A = 1) − E(Y |A = 0) and

has equal or greater precision compared to the unadjusted estimator, asymptotically, under arbitrary model

misspecification. Theorem 5.2 holds trivially for the case of g(x) = x, since we have ψ̂std = γ̂1. This
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equality also holds for Poisson regression with canonical link function g(x) = log(x), if the standardized

estimator uses the log rate-ratio contrast function r(µ0, µ1) = log(µ1/µ0). To the best of our knowledge,

these are the only cases where γ̂1 and ψ̂std are identical.

6 Discussion

Asymptotically valid confidence intervals for the average treatment effect can be constructed by using the

nonparametric bootstrap applied to the standardized estimator. When baseline variables are moderately to

strongly prognostic for the outcome, these confidence intervals can have shorter average widths than those

constructed based on the unadjusted estimator, asymptotically.

The primary analysis in a confirmatory randomized trial needs to be prespecified in the study protocol.

When using an adjusted estimator, this requires specifying the list of baseline variables to be used and

the precise method (e.g., the standardized estimator using a logistic regression model with main terms for

treatment and baseline variables). A challenging practical problem is how to select baseline variables. The

number of variables should not be too large compared to the sample size of the trial, though it is an open

problem to determine what “too large” means. A conservative approach would be to pick a few key baseline

variables that are expected to be prognostic for the outcome based on clinical knowledge and prior data.

We focused on trials with simple randomization, but randomization stratified on key covariates can also

be used. In the latter case, the standardized estimator can adjust for the stratification variables and additional

baseline variables. Stratified randomization can typically only be applied to at most a few binary-valued

variables (since otherwise some stratum becomes too small to balance by design). This may leave other

prognostic variables that can be adjusted for to improve precision by using an adjusted estimator.

The standardized estimator can be modified to handle missing outcome data, as described, e.g., by Moore

and van der Laan (2009); Colantuoni and Rosenblum (2015). The estimator is consistent for the average

treatment effect under the following assumptions: the missing at random assumption, a correctly modeled

probability of censoring given baseline variables and study arm, and the assumption that this probability is

bounded away from 1.

The standardized estimator for binary outcomes has been applied in simulation studies by, e.g., Moore

and van der Laan (2009); Colantuoni and Rosenblum (2015); Steingrimsson et al. (2016), where substantial

efficiency gains were observed compared to the unadjusted estimator. Steingrimsson et al. (2016) provide
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R and Stata code that implement the standardized estimator and compute confidence intervals based on the

nonparametric bootstrap.

We focused on the standardized estimator (2) for its simplicity and ease of computation. Our results have

implications for the enhanced efficiency, standardized estimators of, e.g., Robins et al. (2007); Tan (2010);

Rotnitzky et al. (2012); Gruber and van der Laan (2012); Colantuoni and Rosenblum (2015), all of which

have equal or better efficiency compared to the standardized estimator (2) in our context of a randomized

trial (under suitable regularity conditions). Compared to (2), these estimators are more complex (and some

are more computationally challenging), but they have potential for greater efficiency gains when the logistic

regression model is misspecified. Colantuoni and Rosenblum (2015) describe these tradeoffs.
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Appendix

We start by proving Theorem 5.1, which is used to prove several of the other results.

Proof of Theorem 5.1. Assume the conditions in Section 5. Let γ̂ denote the solution to the estimating
equations (4). For each a ∈ {0, 1}, define

ψ̂
(a)
std =

1

n

n∑
i=1

g−1(γ̂0 + γ̂1a+ γ̂′2Bi). (6)

We will prove that ψ̂(a)
std converges in probability to E(Y |A = a), for each a ∈ {0, 1}. (Throughout this

proof, expectation E is with respect to P0.)
Since γ̂ is the solution to the estimating equations (4), it follows from the regularity conditions (which

we assumed in Section 5) of Theorems 5.9 and 5.21 of van der Vaart (1998, pp. 46, 52) that γ̂ converges in
probability to the solution γ̄ to E

{
Y − g−1(γ0 + γ1A+ γ′2B)

}
(1, A,B′)′ = 0. This implies

EY = Eg−1(γ̄0 + γ̄1A+ γ̄′2B) = (1/2)Eg−1(γ̄0 + γ̄′2B) + (1/2)Eg−1(γ̄0 + γ̄1 + γ̄′2B);

EAY = EAg−1(γ̄0 + γ̄1A+ γ̄′2B) = (1/2)Eg−1(γ̄0 + γ̄1 + γ̄′2B),

which follow from A and B being independent. Since EY = EY A+ EY (1− A), it follows that for each
a ∈ {0, 1}, we have E(Y |A = a) = Eg−1(γ̄0 + γ̄1a + γ̄′2B). Since for each a ∈ {0, 1} the estimator
ψ̂
(a)
std converges in probability to Eg−1(γ̄0 + γ̄1a + γ̄′2B), we have shown ψ̂(a)

std converges in probability
to E(Y |A = a). This shows the standardized estimator ψ̂std = ψ̂

(1)
std − ψ̂

(0)
std converges in probability to

E(Y |A = a) − E(Y |A = 0). This also holds for ψ̂unadj . Therefore, each of the estimators converges to 0
in probability if and only if H0 is true. It remains to show this for γ̂1.
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It follows from the above arguments that

E(Y |A = 1)− E(Y |A = 0) = E{g−1(γ̄0 + γ̄1 + γ̄′2B)} − E{g−1(γ̄0 + γ̄′2B)}. (7)

Since we assumed g−1(x) is strictly monotone, the right side of (7) equals 0 if and only if γ̄1 = 0. Therefore,
γ̂1 converges to 0 in probability if and only if H0 is true.

Proof of Theorem 5.2. The estimators below are as defined in Section 5. By Theorem 5.1, both the GLM
coefficient estimator and the standardized estimator converge to 0 in probability under any P (0) ∈ H0. We
use the following change of variables: A∗ = 2A− 1. Then (3) is equivalent to the following:

E(Y |A∗, B) = g−1(γ∗0 + γ∗1A
∗ + γ∗

′
2 B), (8)

where γ∗0 = γ0 + γ1/2, γ∗1 = γ1/2, γ∗2 = γ2. Denote the corresponding estimated coefficients by adding
the hat symbol. The asymptotic relative efficiency is unchanged if we substitute A∗ for A and γ̂∗1 for γ̂1,
respectively, which we do below.

We assumed the regularity conditions in Lemma 7.6 of van der Vaart (1998, pp. 95), which include
the following: the set of distributions {P (ν) : ν ≥ 0} is dominated by a common measure λ, with corre-
sponding probability densities p(ν); the map ν 7→ {p(ν)}1/2 is continuously differentiable for every point
in the sample space, and all components of

∫
{(dp(ν)/dν)/p(ν)}2p(ν)dλ are well defined and the integral

is continuous in ν. Lemma 7.6 implies that {P (ν) : ν ≥ 0} is differentiable in quadratic mean with score
function l̇(ν)(B,A∗, Y ) = 1p(ν)>0(dp

(ν)/dν)/p(ν), where 1p(ν)>0 is the indicator variable taking value 1 if
p(ν) > 0 and 0 otherwise. Differentiability in quadratic mean at ν = 0 is assumed to be from the right,

i.e.,
∫ [
{p(ν)}1/2 − {p(0)}1/2 − (1/2)νl̇(0){p(0)}1/2

]2
dλ = o(ν2) as ν ↓ 0. We let l̇(B,A∗, Y ) with no

superscript denote l̇(0)(B,A∗, Y ).
Define γ̄∗(ν) to be the probability limit (as n→∞) underP (ν) of the estimator γ̂∗. Let IFGLM (B,A∗, Y )

and IFstd(B,A∗, Y ) denote the influence functions for the estimators γ̂∗1 and ψ̂std, respectively, under P (0).
It follows from Theorem 5.21 of van der Vaart (1998, p. 52) that

IFGLM (B,A∗, Y ) =
1

E(0)ḣ
{
γ̄∗0(0) + γ̄∗

′
2 (0)B

} [Y − g−1 {γ̄∗0(0) + γ̄∗
′

2 (0)B
}]

A∗, (9)

IFstd(B,A
∗, Y ) = 2

[
Y − g−1

{
γ̄∗0(0) + γ̄∗

′
2 (0)B

}]
A∗, (10)

where we used that γ̄∗1(0) = 0 under P (0), which follows from Theorem 5.1. Define avarGLM (ν) and
avarstd (ν) to be the variance of IFGLM (B,A∗, Y ) and IFstd(B,A∗, Y ), respectively, under P (ν). Direct
calculation gives that at ν = 0,

avarGLM (0) =
{
E(0)ḣ

(
γ̄∗0 + γ̄∗

′
2 B
)}−2

E(0)

[{
Y − h(γ̄∗0 + γ̄∗

′
2 B)

}2
]
, (11)

avarstd(0) = 4E(0)

[{
Y − h(γ̄∗0 + γ̄∗

′
2 B)

}2
]
. (12)

By the above conditions and the assumption that P (ν) converges in total variation distance to P (0) as
ν ↓ 0, it follows that for any bounded, measurable function f(B,A∗, Y ), we have

E(0) l̇(B,A∗, Y )f(B,A∗, Y ) = − d

dν
E(ν)f(B,A∗, Y )

∣∣∣∣
ν=0+

, (13)
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where the + indicates the derivative is taken from the right. Also, since A∗ is independent of B for each
P (ν), the score l̇(B,A∗, Y ) is orthogonal (under E(0)) to any square-integrable function of A∗, B that has
mean zero given B. We then have

E(0) l̇(B,A∗, Y )IFstd(B,A
∗, Y ) = 2E(0) l̇(B,A∗, Y )

[
Y − g−1

{
γ̄∗0(0) + γ̄∗

′
2 (0)B

}]
A∗

= 2E(0) l̇(B,A∗, Y )Y (14)

= − d

dν

(
2E(ν)Y A∗

)∣∣∣∣
ν=0+

(15)

= − d

dν
{µ1(ν)− µ0(ν)}

∣∣∣∣
ν=0+

< 0, (16)

where (14) follows from E(0)(A∗|B) = E(0)A∗ = 0 and that l̇(B,A∗, Y ) is orthogonal (under E(0)) to
any square-integrable function of A∗, B that has mean zero given B; (15) follows from (13); (16) follows
from the assumption that µ1(ν)−µ0(ν) is right differentiable with positive right-derivative. It follows from
analogous arguments as above, but applied to IFGLM instead of IFstd and using (9), that

E(0) l̇(B,A∗, Y )IFGLM (B,A∗, Y ) = − 1

2E(0)ḣ
{
γ̄∗0(0) + γ̄∗

′
2 (0)B

} d

dν
{µ1(ν)− µ0(ν)}

∣∣∣∣
ν=0+

.(17)

We next apply Le Cam’s Third Lemma (van der Vaart, 1998, p. 90) to derive the asymptotic distributions
of the two estimators under local alternatives P (νn) for νn proportional to n−1/2, as n→∞. The conditions
of the lemma are met since our assumed regularity conditions imply local asymptotic normality (van der
Vaart, 1998, p. 94), and mutual contiguity of P (ν) and P (0) (as ν ↓ 0) holds by our assumption that P (ν)

converges to P (0) in total variation distance. Define

γ∗
1
(ν) = νE(0) l̇(B,A∗, Y )IFGLM (B,A∗, Y ), ψ(ν) = νE(0) l̇(B,A∗, Y )IFstd(B,A

∗, Y ). (18)

Le Cam’s Third Lemma implies for any h ≥ 0, for νn = hn−1/2,

n1/2

{
γ̂∗1 − γ∗1(νn)

avarGLM (νn)1/2

}
νn−→ N(0, 1), n1/2

{
ψ̂std − ψ (νn)

avarstd (νn)1/2

}
νn−→ N(0, 1), (19)

where for each n > 0, the estimators γ̂1 and ψ̂std in the expressions above are based on n independent,
identically distributed draws from P (νn).

Define γ̇∗1 = dγ∗
1
/dν
∣∣∣
ν=0+

and ψ̇ = dψ/dν
∣∣
ν=0+

. It follows from Theorem 14.19 of van der Vaart
(1998, p. 201) that the asymptotic relative efficiency comparing the standardized and GLM coefficient
estimators equals the following square of the ratio of slopes of the corresponding statistics:{

γ̇∗1
ψ̇

}2{avarGLM (0)

avarstd(0)

}−1
. (20)

It follows from (16), (17), and (18) that γ̇∗1/ψ̇ =
[
2E(0)ḣ

{
γ̄∗0(0) + γ̄∗

′
2 (0)B

}]−1
. It then follows from

(11), (12), and (20) that the asymptotic relative efficiency of the GLM estimator γ̂∗1 versus the standardized
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estimator is

[
1

2Eḣ
{
γ̄∗0(0) + γ̄∗

′
2 (0)B

}]2
 4E

[{
Y − h(γ̄∗0(0) + γ̄∗

′
2 (0)B)

}2
]

{
Eḣ
(
γ̄∗0(0) + γ̄∗

′
2 (0)B

)}−2
E
[{
Y − h(γ̄∗0(0) + γ̄∗

′
2 (0)B)

}2]
 = 1,

where all expectations are with respect to P (0). This completes the proof of Theorem 5.2.

Theorems 2.1 and 3.1 follow from analogous arguments as Theorems 5.1 and 5.2, respectively, using

g(x) = logit(x). In this special case, γ̂ converges to the maximizer of the expected log-likelihood given in

Section 2.3, and asymptotic normality of γ̂ follows from strict concavity of the expected log-likelihood and

Theorem 5.23 of van der Vaart (1998, p. 53).

Proof of Corollary 3.2. We prove the generalization of Corollary 1 to the setup in Section 5. Consider
any function g satisfying the assumptions in that section. The asymptotic relative efficiency of the GLM
coefficient estimator compared to the unadjusted estimator equals the analog of (20) with ψ̂std replaced
throughout by ψ̂unadj . The first term in curly braces is unchanged, since ψ̂unadj and ψ̂std are consistent
estimators of the same quantity. The second term in curly braces involves replacing avarstd by avarunadj . If
the model (3) is correctly specified, we have avarstd(0) ≤ avarunadj(0). Therefore, the asymptotic relative
efficiency of the GLM coefficient estimatorˆ̄γ∗1 compared to the unadjusted estimator ψ̂unadj is at least 1.
Combining this result with Theorem 5.2 implies the generalization of Corollary 1 to the setup in Section 5.

Proof of Theorem 3.3. Let ∇r(x, y) = [ṙ1(x, y), ṙ2(x, y)]′, where the first and second component denote
the partial derivative w.r.t. the first and second component of r(x, y), respectively. The condition that
r = 0 under H0 implies that r(x, x) = 0 for all x. Differentiating both sides with respect to x implies
ṙ1(x, x) + ṙ2(x, x) = 0, from which it follows that

∇r(x, x) = [ṙ1(x, x),−ṙ1(x, x)]′ = ṙ1(x, x)[1,−1]′. (21)

When using the contrast r, the parameter estimated by the standardized estimator under P (ν) is denoted
ψstd,r(ν) = r(µ0(ν), µ1(ν)). By our assumption that P (0) ∈ H0, we have µ0(0) = µ1(0). It follows from
equation (21) and the chain rule that

dψstd,r
dν

∣∣∣∣
ν=0+

= ∇r(µ0(0), µ1(0))′ ∗ [∂µ0/∂ν, ∂µ1/∂ν]′|ν=0+

= ṙ1(µ0(0), µ0(0))[∂µ0/∂ν − ∂µ1/∂ν]|ν=0+ . (22)

The delta method and (21) imply that the asymptotic variance of the standardized estimator using the contrast
function r at ν = 0 is avarstd,r(0) = avarstd(0)[ṙ1(µ0(0), µ0(0))]2, where avarstd(0) is defined in equation
(12). Combining this with (22) shows that(

dψstd,r
dν

∣∣∣∣
ν=0+

)2

/avarstd,r(0) =
[(∂µ0/∂ν − ∂µ1/∂ν)|ν=0+ ]2

avarstd(0)
,

which is independent of the choice of r. This combined with equation (20) proves Theorem 3.3.
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