






Let us compare this true asymptotic variance σ2/n of the unadjusted esti-
mator with the variance estimate used in current practice, which we will refer
to as the “naive” variance estimator. Current practice assumes that the n/2
pairs are i.i.d. and estimates the asymptotic variance of

√
n/2(ψ∗n − ψ0) with

the sample variance of the average of the difference across the pairs:

0.5σ2
n,naive = 1

n/2

∑n/2
j=1(Y1jA1j + Y2jA2j − Y1j(1− A1j)− Y2j(1− A2j)− ψ∗n)2.

This converges for n→∞ to

0.5σ2
naive = σ2

0 + σ2
1 − (ρ1 + ρ2),

where
ρ1 = E0(Q̄0(1,W1)− ψ0(1))(Q̄0(0,W2)− ψ0(0))
ρ2 = E0(Q̄0(0,W1)− ψ0(0))(Q̄0(1,W2)− ψ0(1)).

The true asymptotic variance and the naive asymptotic variance are given by
σ2/n and (0.5σ2

naive)/(n/2) = σ2
naive/n, respectively. As a consequence, the

relevant comparison is the comparison of σ2 with σ2
naive, where

σ2 = 2{σ2
1 + σ2

0} − C
σ2
naive = 2{σ2

1 + σ2
0} − 2(ρ1 + ρ2).

To show that naive variance estimator represents a conservative variance esti-
mator we would need to show that

2(ρ1 + ρ2) ≤ C.

Notice that C = ρ1 + ρ2 + C1, where

C1 = E0(Q̄0−Q̄∗)(1,W1)(Q̄0−Q̄∗)(1,W2)+E0(Q̄0−Q̄∗)(0,W1)(Q̄0−Q̄∗)(0,W2).

Thus, the naive variance estimator would be conservative if ρ1 + ρ2 ≤ C1.
Note that we can also represent this as:

C1 − ρ1 − ρ2 = Cov(Q̃0(1,W1), (Q̃0(1,W2)) + Cov(Q̃0(0,W1), Q̃0(0,W2))

−Cov(Q̃0(1,W1), Q̃0(0,W2))− Cov(Q̃0(0,W1), Q̃0(1,W2))

= Cov(Q̃0(W1), Q̃0(W2)),

where Cov(X, Y ) = E(XY ) denotes the standard covariance between two
mean zero random variablesX and Y , and we introduced the notation Q̃0(W ) =
(Q̃0(1,W ) − Q̃0)(0,W ) and Q̃0(a,W ) = (Q̄0 − Q̄∗)(a,W ). Thus, if the latter
covariance-term Cov(Q̃0(W1), Q̃0(W2)) is non-negative, then the naive vari-
ance estimator is conservative. This is a very reasonable condition certainly
expected to hold. Thus, we can conclude that in great generality the naive
variance estimator is a conservative estimator. We also note that if in truth
there is no treatment effect, conditional on covariates, then this covariance
term equals zero, so that the naive variance estimator is unbiased.
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6.5 A general conservative estimator of the asymptotic
variance of TMLE.

Above we presented the naive variance estimator of the unadjusted estima-
tor and showed that it is conservative in great generality. In this subsection
we propose a generalization of this estimator to obtain a conservative estima-
tor of the asymptotic variance of the general TMLE (using a general initial
estimator).

Recall that C = (ρ1+ρ2)+C1, and note that ρ̄ = ρ1+ρ2 can be consistently
estimated with ρ̄n = 2/J

∑J
j=1(Y1j−Q̄∗n(A1j,W1j))(Y2j−Q̄∗n(A2j,W2j)). Above

we showed that we can obtain a conservative bound for C by replacing C1 by ρ̄.
Thus, we can conservatively estimate C by 2ρ̄n. Thus, a general conservative
estimator of the asymptotic variance σ2 of

√
n(ψ∗n − ψ0) is given by

σ2
n = σ2

I,n − 2ρ̄n,

where
σ2
I,n = 1

n

∑n
i=1D

∗(Q̄∗n, g0, ψ
∗
n)(Oi)

2.

This estimator can be viewed as the generalization of the “naive” variance
estimator for the unadjusted estimator of ψ0, analyzed in the previous subsec-
tion.

6.6 A simulation confirming the variance formula for
the unadjusted estimator.

To confirm our conclusions regarding the asymptotic variance of the unad-
justed estimator, consider the following simple simulations. For n units, the
baseline covariates W1 and W2 were independently drawn from N(0, 0.22) and
U(−1, 1), respectively. Then the following adaptive matching algorithm was
employed. First units were classified into a matching category M , representing
the 16 quartile combinations of W1 and W2. Within each strata of M , units
were randomly paired. If there were an odd number of units in a given strata,
the remaining unit was set aside. The leftovers were then ordered according
to M and pairs created. Next the treatment was randomized within the n/2
matched pairs. Finally, the binary outcome Y was drawn independently for
each unit with probability

p = expit[β0 + β1A+ β2W1 + β3W1∗A+ β4W22] (9)

where expit is the inverse logistic function and the coefficients were set as
β0 = −1, β1 = −0.5, β2 = 3, β3 = −2 and β4 = 2. The target causal
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parameter is the average treatment effect and was ψ0 = −0.11 in this data
generating experiment (“Scenario 1”). The coefficients were also varied to
examine the asymptotic variance of the unadjusted estimator in different data
generating experiments. Scenario 2 explored when there is no treatment effect:
β1 = β3 = 0. Scenario 3 explored when the baseline covariates (used for
matching) have no effect on the outcome. Specifically, β2, β3 and β4 were set
to zero to yield an average treatment effect of -0.08.

For each scenario, the true finite sample variance V ar(ψ∗n) was the variance
of unadjusted estimator over R = 10, 000 trials, each of sample size n = 500
units. Table 6.6 compares the true finite sample variance with the asymptotic
variance σ2 = σ2

I −C according to Theorem 3, the naive variance treating the
pairs as independent σ2

naive, and the estimate of the naive variance σ2
n,naive. The

asymptotic variances were computed with Monte Carlo simulation of 50,000
units. All statistical computing was done in R version 2.15.1. In addition,
recall our claims that C−2ρ̄ ≥ 0, which makes an estimate of σ2

naive = σ2
I −2ρ̄

conservative.

Scenario 1 Scenario 2 Scenario 3
nV ar(ψ∗n) 0.8408 0.8708 0.6833
σ2 0.8523 0.8729 0.6915
σ2
naive 0.8591 0.8729 0.6915
σ2
n,naive 0.8656 0.8780 0.6934

C 0.0712 0.1060 0.0000
2ρ̄ 0.0643 0.1060 -0.0000

Table 1: Comparing the true finite sample variance of the unadjusted estimator
nV ar(ψ∗n), the asymptotic variance σ2 according to Theorem 3, the naive
variance treating the pairs as independent σ2

naive and the estimate of the naive
variance σ2

n,naive. Scenario 1 corresponds to the setting β0 = −1, β1 = −0.5,
β2 = 3, β3 = −2 and β4 = 2 in Eq. 9. Scenario 2 corresponds setting β = 1
and β3 to zero in order to examine the asymptotic variance if the intervention
has no effect on the outcome. Scenario 3 corresponds to setting β2, β3 and β4

to zero in order to examine the asymptotic variance if the baseline covariates
(used for matching) have no effect on the outcome. For each scenario, the
correction factor C and 2ρ̄ are also given.

In all scenarios, the true asymptotic variance of the TMLE and our claimed
true asymptotic variance are in agreement. The simulation for scenario 1
also confirms that σ2

naive = σ2
I − 2ρ̄ is indeed conservative, but close to the

true asymptotic variance. In Scenario 2 the correction factors C and 2ρ̄ are
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equal when there is no treatment effect: C = 2ρ̄, and in Scenario 3 we have
C = 2ρ̄ = 0. Indeed, in both of these scenarios we see perfect agreement
between σ2

naive and the true asymptotic variance σ2.

6.7 Efficiency gains due to adaptive pair matching.

In this section we compare two design choices regarding gn0 . In the first, we
simply assume that gn0 (An | Xn) =

∏n
i=1 g0(Ai | Wi) for a common g0. In

this case, (Wi, Ai, Yi), i = 1, . . . , n, are i.i.d. This design includes classic non-
matched randomized trials in which treatment is randomly assigned with some
known probability, possibly conditional on unit-specific covariates.

We compare this design to a design employing adaptive pair matching.
In other words, in the second design we assume gn0 ∈ Gn2 with gn0,i = g0,

so that gn0 (An | Xn) =
∏n/2

j=1 g0(Ai : i ∈ Cj(W
n) | W n) and the marginal

P (Ai = a | W n) = g0(a | Wi), i = 1, . . . , n.
We compare the asymptotic variance of the TMLEs under these two designs

when Q̄∗n converges to a possibly misspecified Q̄∗. This provides insight into
the efficiency gains made possible by adaptive pair matching. We assume that
g0 is known, so that ḡn = g0, as would be the case in both an non-matched
and adaptively matched randomized trial.

Theorem 4 Under the i.i.d. design, the TMLE is asymptotically linear with
influence curve D∗(Q̄∗, g0, ψ0), so that its asymptotic variance is given by
σ2
I (Q̄

∗) = P0{D∗(Q̄∗, g0, ψ0)}2. This variance can be represented as

σ2
I (Q̄

∗) = E0{Q̄0(W )− ψ0}2

+E0E0

(
H2
g0

(A,W )(Y − Q̄∗(A,W ))2 | W
)
− E0{Q̄0(W )− Q̄∗(W )}2.

For the adaptive paired matching design the asymptotic variance σ2(Q̄∗) of the
TMLE is given by the limit of

E0{Q̄0(W )− ψ0)}2

+E0
1
n

∑n/2
j=1 PQ0,gn

{∑
i∈Cj(Wn) Hg0(Ai,Wi)(Yi − Q̄∗(Ai,Wi))

}2

−E0
1
n

∑n/2
j=1

{∑
i∈Cj(Wn){Q̄0(Wi)− Q̄∗(Wi)}

}2

This can be represented as:

σ2(Q̄∗) = E0{Q̄0(W )− ψ0}2

+E0E0

(
H2
g0

(A,W )(Y − Q̄∗(A,W ))2 | W
)
− E0{Q̄0(W )− Q̄∗(W )}2

−C,
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where C = (ρ1 + ρ2) + C1 was defined above as sum of four terms, with

C1 = E0
1
J

∑J
j=1(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1
J

∑J
j=1(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(0,W2j).

The difference between the two asymptotic variances is thus given by:

σ2
I (Q̄

∗)− σ2(Q̄∗) = C.

If Q̄∗ = Q̄0, the two asymptotic variances are equal. If Q̄∗(A,W ) = E0(Y | A),
then the difference is the sum C of the four covariances.

This theorem teaches us that, while the information bound for the two
designs is the same, the TMLE under adaptive pair matching at misspecified
Q̄∗ will outperform the TMLE under i.i.d. sampling, as long as C > 0. This
theorem further suggests that pair matching will result in efficiency gains over
the i.i.d. design to the extent that there are baseline covariates W that are
predictive of Y which cannot be adjusted for in the outcome regression. Such
a scenario might occur in finite samples due to lack of support in the data. For
example, in a cluster randomized trial of an HIV prevention intervention, the
sample of communities might include only two communities in proximity to a
major trucking route, a community characteristic known to predict higher HIV
transmission levels. If by chance in the i.i.d. design both of these communities
were assigned to the treatment arm of the trial, lack of data support would
preclude adjustment for this community-level covariate and thus pair matching
on this covariate would result in efficiency gains.

7 Augmenting the data structure with miss-

ingness

Consider the following data generating experiment. Firstly, we sample n i.i.d.
(W1, Y1(0), Y1(1)), . . ., (Wn, Yn(0), Yn(1)), giving us the vector Xn and vector
of baseline covariates W n. Based on W n, we run a partitioning algorithm
generating pairs Cj(W

n), j = 1, . . . , J . However, suppose that the designer
does not want to accept pairs that are not similar enough with respect to
some metric. Therefore, one applies an algorithm that involves assigning
an indicator ∆i(W

n), i = 1, . . . , n and applying the partitioning algorithm
among the units {i : ∆i(W

n) = 1} resulting in Cj(W
n), j = 1, . . . , J . Thus

∪jCj(W n) = {i : ∆i(W
n) = 1}. We also note that ∆i(W

n) is a determinis-
tic function of W n. Let n1 be the number of observations with ∆i(W

n) = 1.
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Given W n, the ∆i(W
n) and the pairs Cj(W

n), we draw An1 from a conditional
distribution of

gn0 (An1 | Xn) = gn0 (An1 | W n) =
J∏
j=1

gn0 ((Ai : i ∈ Cj(W n)) | W n).

We now collect the data Oi = (Wi,∆i(W
n),∆i(W

n)Ai,∆i(W
n)Yi(Ai)), i =

1, . . . , n, giving the observed data On = (O1, . . . , On).
The target quantity of interest remains the average treatment effect ΨF (PX,0) =

E0Y (1)−E0Y (0). We have ψF0 = EW{Q̄0(1,W )−Q̄0(0,W )}, where Q̄0(a, w) =
E(Y (a) | W = w) = E0(Y | A = a,W = W ). We note that Yi, given W n, An1 ,
is independent across i = 1, . . . , n, and this conditional distribution equals the
conditional distribution of Yi, given Wi, Ai. Therefore,

E(Yi | Ai,Wi,∆i(W
n) = 1) = E(E(Yi | Ai,Wi,W

n) | Ai,Wi,∆i(W
n) = 1)

= E(E(Yi | Ai,Wi) | Ai,Wi,∆i(W
n) = 1)

= E(Yi | Ai,Wi).

This proves that Q̄0(a, w) = E(Yi | Ai = a,Wi = w,∆i(W
n) = 1) and is thus

identifiable from the distribution of On. This proves the desired identifiability
of ψF0 :

ΨF (PX,0) = EW,0{Q̄0(1,W )− Q̄0(0,W )} = Ψ(P n
0 ).

The average is with respect to the marginal distribution of W (not conditional
on ∆i(W

n) = 1), so that also the observations with ∆i(W
n) = 0 are used to

identify this target quantity.
This also demonstrates that E0

∑n
i=1 I(∆i(W

n) = 1)(Yi − Q̄(Ai,Wi))
2 is

minimized over Q̄ by Q̄0, and thus represents a valid loss function for loss-
based learning of Q̄0 based on On. Similarly, we can use a log-likelihood loss∑n

i=1 I(∆i(W
n) = 1)L(Q̄)(Wi, Ai, Yi), where−L(Q̄)(W,A, Y ) = Y log Q̄(A,W )+

(1− Y ) log(1− Q̄(A,W )).
In order to present a TMLE we first need to derive the canonical gradient,

which is presented in the following theorem.

Theorem 5 Consider the data generating experiment described above. Let
Oi = (Wi,∆i(W

n)Ai,∆i(W
n)Yi), the observed data is On = (O1, . . . , On) ∼

P n with

P n(On) =
n∏
i=1

QW (Wi){QY (Yi | Wi, Ai)}∆i(W
n)gn((Ai : ∆i(W

n) = 1) | W n),
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where QW is an unspecified marginal distribution, QY is an unspecified con-
ditional distribution of Y , given A,W , and gn is a conditional distribution of
An1 = (Ai : ∆i(W

n) = 1), given W n = (W1, . . . ,Wn), known to be an element
of a set Gn consisting of distributions satisfying (1). Let Mn be the resulting
statistical model for P n. Let Mn(gn) be the model if gn is known.

Let Ψ :Mn → IR be defined by Ψ(P n) = EQW
{Q̄(1,W )− Q̄(0,W )}, where

Q̄(A,W ) = EQY
(Y | A,W ).

The tangent space at P n in model Mn is given by:

T (P n) =

{
n∑
i=1

φ(Wi) : φ ∈ TW

}
+

{
n∑
i=1

∆i(W
n)φ(Yi | Ai,Wi) : φ ∈ TY

}
+

J∑
j=1

TCj
,

(10)
where TW = {h(W ) : Eh(W ) = 0},

TY = {h(Y | A,W ) : EQY
(h(Y | A,W ) | A,W ) = 0},

and
TCj

= {S((Ai : i ∈ Cj(W n)) | W n) : E(S | W n) = 0}.

The tangent space at P n in model Mn(gn) is given by

T (Q) =

{
n∑
i=1

φ(Wi) : φ ∈ TW

}
+

{
n∑
i=1

φ(Yi | Ai,Wi) : φ ∈ TY

}
.

Let

D∗(Q̄, g, ψ)(W,∆,∆A,∆Y ) = D∗W (Q̄, ψ)(W ) +
∆(2A− 1)

g(A, 1 | W )
(Y − Q̄(A,W )),

where g denotes a distribution of g(a, 1 | W ) = P (A = a,∆ = 1 | W ). The
statistical parameter Ψ is pathwise differentiable and its canonical gradient at
P n is given by

Dn,∗(P n) =
1

n

n∑
i=1

D∗(Q̄, ḡn,Ψ(Q))(Oi),

where gi(a, 1 | Wi) = Πi(1 | Wi)gi(a | Wi) is the conditional probability that
Ai = a, ∆i(W

n) = 1, given Wi, which can be factored into Πi(1 | Wi) =
P (∆i(W

n) = 1 | Wi) and gi(a | Wi) = P (Ai = a | Wi,∆i(W
n) = 1), and

ḡn(a, 1 | W ) =
1

n

n∑
i=1

gi(a, 1 | W ).
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We note that

gi(a, 1 | Wi) =
∑

(wj :j 6=i)

∆i((wj : j 6= i),Wi)gi(a | (wj : j 6= i),Wi)
∏
j 6=i

QW (wj)

(11)
is a function of gi(Ai | W n) and the common marginal distribution QW . We
have

E0D
n,∗(Q̄, ḡn, , ψ0) = 0 if Q̄ = Q̄0 or ḡn = ḡn,0, (12)

assuming that for all i, 0 < gi(1, 1 | Wi) < 1 a.e.

The TMLE of Q̄0 is analogue to the TMLE presented in Section 4, with the
modification that the clever covariate is now given by (2Ai − 1)I(∆i(W

n) =
1)/ḡn(Ai, 1 | Wi), only the complete observations are used for fitting Q̄0, but
the empirical distribution over all W1, . . . ,Wn is plugged in the target pa-
rameter mapping. The same asymptotics can be applied and the formulas
for the asymptotic variance are the same as presented earlier, with the only
modification that gi(a | Wi) is now replaced by gi(a, 1 | Wi).

8 Summary

This article has investigated efficient estimation and inference for the additive
causal effect E0{Y (1) − Y (0)} of treatment on the outcome under a class of
designs based on sampling n i.i.d. (Wi, Yi(0), Yi(1)) ∼ PX,0, sampling An, given
W n, and collecting (Wi, Ai, Yi), i = 1, . . . , n. We considered a general class
of dependent treatment assignment mechanisms gn satisfying the assumption
that (Ai : i ∈ Cj(W n)), j = 1, . . . , J , are independent across j, conditionally
on W n, where Cj(W

n), j = 1, . . . , J , is a partitioning of the sample {1, . . . , n}
into groups implied by W n. The number of partitions J was assumed to be
proportional to n.

We computed the efficient influence curve of the target parameter for the
statistical model implied by this design without making additional assump-
tions about the common full-data distribution PX,0. We defined a correspond-
ing TMLE that is consistent and asymptotically normally distributed under
correct specification of gn0 , and is also efficient if the outcome regression Q̄0

is consistently estimated. This TMLE can be implemented by ignoring the
dependency created by the treatment allocation process, with the exception
that if cross validation is used to estimate the average ḡn of g0,i(Ai | Wi) across
i = 1, . . . , n, the group rather than the unit should be used when partition-
ing the data into training and validation sets. Thus, construction of training
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and validation sets for data adaptive estimation of Q̄0 can be based on the
sampling unit. We further suggested an alternative plug-in approach to esti-
mating the unit specific treatment mechanism g0,i that makes use of design
based knowledge of gn0 , thus potentially improving estimator robustness and
efficiency.

Due to the dependency introduced by the treatment allocation process,
no asymptotically consistent bootstrap method appears to be available for
the general class of dependent gn-designs presented in this paper. Further,
when groups are size 2 or larger, the asymptotic variance of the TMLE under
the dependent sampling relies on a consistent estimator of Q̄0 even when gn0
is known. In contrast, the asymptotic variance of the TMLE under i.i.d.
sampling is fully robust to misspecification of Q̄∗n in randomized controlled
trials.

We further considered adaptively pair matched trials as an important spe-
cial case of the general dependent treatment allocation design. We formally
compared the asymptotic variance of the TMLE under this design with that of
the TMLE under i.i.d. sampling. While the information bound for the adap-
tively pair matched design with gni = gi = g0 equals the information bound
for i.i.d. sampling of (Wi, Ai, Yi) with P (A = a | W ) = g0(a | W ), we showed
that the TMLE under adaptive pair matching and misspecified Q̄∗ will out-
perform the TMLE under i.i.d. sampling as long as the (Q̄0 − Q̄∗)(1, ·) and
(Q̄0− Q̄∗)(0, ·) of the baseline covariates within the groups Cj(W

n) are indeed
positively correlated. We also showed that under the paired matching design
and the positive correlation condition, an estimate of the variance that treats
the n observations as i.i.d. is conservative if Q̄∗n is inconsistent for Q̄0 and is
asymptotically consistent if Q̄∗n is consistent. We also presented a less conser-
vative variance estimator that relies on an additional reasonable assumption
(similar to the above positive correlation assumption). We demonstrated that
the estimator of the variance for the unadjusted estimator as currently used
by practitioners is valid as well, and our above mentioned less conservative
variance estimator is just a generalization of this estimator.

Taken together, these finding teach us that the use of an adaptively pair
matched design will generally result in a more efficient estimator of the treat-
ment effect, while one can still obtain robust conservative variance estimators.
However, the complications resulting from the adaptive pair matching require
advanced empirical process theory, and even makes the analysis of the unad-
justed estimator a serious challenge, which was addressed by our more general
results for the TMLE in this article.
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A Appendix: Proof of Theorem 1

Firstly, we note that

E0D
∗(Q̄, ḡn, ψ0)(On) = E0

1
n

∑n
i=1{Q̄(Wi)− ψ0}+

E0
1
n

∑n
i=1

gi,0(1|Wi)

ḡn(1|Wi)
(Q̄0 − Q̄)(1,Wi)− gi,0(0|Wi)

ḡn(0|Wi)
(Q̄0 − Q̄)(0,Wi)

= Ψ(Q)− ψ0 + 1
n

∑
i

∫
w
QW,0(w)

gi,0(1|w)

ḡn(1|w)
(Q̄0 − Q̄)(1, w)

− 1
n

∑
i

∫
w
QW,0(w)

gi,0(0|w)

ḡn(0|w)
(Q̄0 − Q̄)(0, w)

= Ψ(Q)− ψ0 + E0
ḡ0,n(1|W )

ḡn(1|W )
(Q̄0 − Q̄)(1,W )

−E0
ḡn,0(0|W )

ḡn(0|W )
(Q̄0 − Q̄)(0,W ).

Thus, if ḡn,0 = ḡ0, then this equals Ψ(Q) − ψ0 + ψ0 − Ψ(Q) = 0. If Q0 = Q,
then we also obtain 0. This proves (4). We also note that Dn,∗(Q0, ḡ0) is an
element of the tangent space TQ. In addition, for each Q, Dn,∗(Q, ḡ0, ψ0) is a
gradient in the model M(gn0 ) with gn0 known, which shows that Dn,∗(Q0, ḡ0)
is the canonical gradient of Ψ : Mn(gn) → IR at P n

0 . By factorization of the
likelihood, it is also the canonical gradient for any model Mn that instead
assumes that gn0 ∈ Gn for a model Gn. 2
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B Appendix: Proof of Theorem 2

Recall the notation Pf = EPf . We have

P n
0 D

n,∗(Q̄∗n, ḡ0, ψ
∗
n) ≡ 1

n

n∑
i=1

PQ0,g0,i
D∗(Q̄∗n, ḡ0, ψ

∗
n) = ψ0 − ψ∗n.

Here we remind the reader that ḡ0 = 1/n
∑

i g0,i and g0,i(a | w) = P0(Ai = a |
Wi = w). We also have Dn,∗(Q̄∗n, ḡn, ψ

∗
n) = 0.

Thus,

ψ∗n − ψ0 = 1
n

∑
i{D∗(Q̄∗n, ḡn, ψ∗n)(Oi)− PQ0,g0,i

D∗(Q̄∗n, ḡn, ψ
∗
n)}

+ 1
n

∑
i PQ0,g0,i

{D∗(Q̄∗n, ḡn, ψ∗n)− PQ0,g0,i
D∗(Q̄∗n, ḡ0, ψ

∗
n)}

≡ 1
n

∑
i{D∗(Q̄∗n, ḡn, ψ∗n)(Oi)− P0,g0,i

D∗(Q̄∗n, ḡn, ψ
∗
n)}+ 1√

n
ZW,ḡn,n.

We note that, using some straightforward algebra,

ZW,ḡn,n =
√
n
∫
w
ḡ0−ḡn

ḡn
(1 | w)(Q̄0 − Q̄)(1, w)dQW,0(w)

−
√
n
∫
w
ḡ0−ḡn

ḡn
(0 | w)(Q̄0 − Q̄)(0, w)dQW,0(w)

=
√
n
∫
w
ḡ0−ḡn

ḡ0
(1 | w)(Q̄0 − Q̄)(1, w)dQW,0(w)

−
√
n
∫
w
ḡ0−ḡn

ḡ0
(0 | w)(Q̄0 − Q̄)(0, w)dQW,0(w) +R(ḡn, ḡ0)

where
R(ḡn, ḡ0) =

√
n
∫ (ḡ0−ḡn)2

ḡnḡ0
(1 | w)(Q̄0 − Q̄)(1, w)dQ0(w)

−
√
n
∫ (ḡ0−ḡn)2

ḡnḡ0
(1 | w)(Q̄0 − Q̄)(1, w)dQ0(w).

We assume that the latter is oP (1). Thus to establish the asymptotic linearity
of ZW,ḡn,n we need to study terms of form

√
n
∫
f(w)(ḡn− ḡ0)(1|w)dQ(w). We

now note that

(ḡn − ḡ(1 | w) = 1
n

∑n
i=1(gi,n − gi)(1 | w)

1
n

∑n
i=1

∫
gi(1 | (Wj : j 6= i),Wi = w)

(∏
j 6=iQW,n(wj)−

∏
j 6=iQW (wj)

)
= 1

n

∑n
i=1

∫
gi(1 | W−i,Wi = w)

∑n
l=1,l 6=i(QW,n(wl)−QW (wl))∏l−1

m=1,m6=iQW,n(wm)
∏n

m=l+1,m6=iQW (wm)

≈ 1
n

∑n
i=1

∑
l 6=i
∫
gi(1 | Wi = w,Wl = wl)(QW,n(wl)−QW (wl))

= 1
n

∑n
k=1

1
n

∑n
i=1

∑n
l 6=i{gi(1 | Wi = w,Wl = Wk)− gi(1 | Wi = w)},

where we suppressed the second order term a formal analysis would have to
take into account. Therefore, we can write
√
n
∫

(ḡn − ḡ0)(1 | w)f(w)dQ(w) = 1√
n

∑n
k=1

1
n

∑n
i=1

∑n
l 6=i∫

w
{gi(1 | Wi = w,Wl = Wk)− E0,Wk

gi(1 | Wi = w,Wl = Wk)} f(w)dQ(w)
≡ 1√

n

∑n
k=1{Φ(Wk)− E0Φ(Wk)},
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where we defined

Φ(Wk) =
1

n

n∑
i=1

n∑
l 6=i

∫
w

gi(1 | Wi = w,Wl = Wk)f(w)dQ(w).

Thus such integrals are standardized sums of independent random variables
Φl(Wk) − E0Φl(Wk) with mean zero. Such terms will converge to a normal
distribution if the variance of Φ(Wk) is bounded (uniformly in n, since Φ is
really indexed by n as well). This demonstrates that one will need that the∑

l 6=i should essentially only contribute a finite number of terms.
To conclude, under regularity conditions, we might have

ZW,ḡn,n ≈ 1√
n

∑n
k=1 IC(Wk)− E0IC(Wk),

where

IC(Wk) =
∫
w

(
1
n

∑n
i=1

∑n
l 6=i gi(1 | Wi = w,Wl = Wk)

)
Q̄0−Q̄
ḡ0

(1, w)dQ0(w)

−
∫
w

(
1
n

∑n
i=1

∑n
l 6=i gi(0 | Wi = w,Wl = Wk)

)
Q̄0−Q̄
ḡ0

(0, w)dQ0(w).

A crucial assumption we made in the theorem is that the variance of IC(Wk) is
finite. We will now show that under a reasonable typical assumption we will, in
fact, have that IC(Wk)−E0IC(Wk) = 0. For i ∈ Cj(W n), in a typical design
one will have that gi(a | Wi = wi,W−i) only depends on Wi = wi. Thus, in
that case, for i ∈ Cj(W n) we have gi(a | W n) = gi(a | Wi) for some conditional
density gi(a | w). This provides us with the following representation:

gi(a | W n) =
J∑
j=1

I(i ∈ Cj(W n))gi(a | Wi).

This yields the following derivation of gi(a | Wi,Wl):

gi(a | Wi,Wl) =
∫
gi(a | Wi,Wl,W (−i,−l))P (W (−i,−l))

=
∫ ∑J

j=1 I(i ∈ Cj(Wi,Wl,W (−i,−l))gi(a | Wi)P (W (−i,−l))
=
∑J

j=1 gi(a | Wi)
∫
I(i ∈ Cj(Wi,Wl,W (−i,−l)))P (W (−i,−l))

= gi(a | Wi)
∑J

j=1 P (i ∈ Cj(W n) | Wi,Wl)

= gi(a | Wi).

Thus, in this case, we have IC(Wk) is constant in Wk so that IC(Wk) −
E0IC(Wk) = 0.
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We now proceed as follows:

ψ∗n − ψ0 =
1

n

n∑
i=1

{D∗(Q∗n, ḡn, ψ∗n)(Oi)− PQ0,gi
D∗(Q∗n, ḡn, ψ

∗
n)}+

1√
n
ZW,ḡn,n

=
1

n

n∑
i=1

{D∗(Q̄∗n, ḡn, ψ∗n)(Oi)− PQ0,gn
i
D∗(Q̄∗n, ḡn, ψ

∗
n)}

+
1

n

n∑
i=1

{(PQ0,gn
i
− PQ0,gi

)D∗(Q̄∗n, ḡn, ψ
∗
n)}+

1√
n
ZW,ḡn,n

=
1

n

n∑
i=1

{D∗Y (Q̄∗n, ḡn)(Oi)− PQ0,gn
i
D∗Y (Q̄∗n, ḡn)}

+
1

n

n∑
i=1

{(PQ0,gn
i
− PQ0,gi

)D∗(Q̄∗n, ḡn, ψ
∗
n)}+

1√
n
ZW,ḡn,n

≡ 1√
n
Xn(Q̄∗n) +

1√
n
ZW,n,gn +

1√
n
ZW,ḡn,n.

Here we used at the third equality that PQ0,gn
0,i

is a conditional expectation,
given W n, so that the empirical process of D∗W cancels out in the first term. We
defined the process only as a function of Q̄∗n, not as a function of ḡn, because
ḡn is only a function of W n. Note, that

D∗Y (Q̄, ḡn)(Oi)− PQ0,gn
0,i
D∗Y (Q̄, ḡn) = 2Ai−1

ḡn(Ai|Wi)
(Yi − Q̄(Ai,Wi))

−
{
gn
0,i(1|Wn)

ḡn(1|Wi)
(Q̄0 − Q̄)(1,Wi)−

gn
0,i(0|Wn)

ḡn(0|Wi)
(Q̄0 − Q̄)(0,Wi)

}
≡ f 1

i,n(Q̄)(Oi).

Note that f 1
i,n(Q̄) is a random function of Oi through W n, while, given W n, it

is a fixed function of Oi. In the special case that gn0,i = g0,i is constant in i, we
have f 1

i,n(Q̄)(Oi) = D∗Y (Q̄, g0,i)(Oi)−{Q̄0− Q̄}(Wi). We can represent Xn(Q̄)
as Xn(Q̄) = 1/

√
n
∑n

i=1 f
1
i,n(Q̄)(Oi), where PQ0,gn

0,i
fi,n(Q̄) = 0.

Let’s now determine the form of ZW,n,gn . We have

1/n
∑

i PQ0,gn
0,i
D∗Y (Q̄∗n, ḡn)

= 1/n
∑

i
g0,i(1|Wn)

ḡn(1|Wi)
(Q̄0 − Q̄∗n)(1,Wi)−

gn
0,i(0|Wn)

ḡn(0|Wi)
(Q̄0 − Q̄∗n)(0,Wi)

= 1/n
∑

i

(
g0,i(1|Wn)

ḡn(1|Wi)
− 1
)

(Q̄0 − Q̄∗n)(1,Wi)−
(
gn
0,i(0|Wn)

ḡn(0|Wi)
− 1
)

(Q̄0 − Q̄∗n)(0,Wi)

+1/n
∑

i Q̄0(Wi)− Q̄∗n(Wi)
1/n

∑
i PQ0,g0,i

D∗Y (Q̄∗n, ḡn) =
∫
w

(Q̄0 − Q̄∗n)(w)QW,0(w)
1/n

∑
i PQ0,gn

i
− PQ0,gi

D∗W (Q̄∗n, ψ
∗
n) = 1/n

∑
i Q̄
∗
n(Wi)− P0Q̄

∗
n
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Thus,

1/n
∑

i(PQ0,gn
0,i
− PQ0,g0,i

)(D∗Y +D∗W )(Q̄∗n, ḡ
∗
n, ψ

∗
n)

= 1/n
∑

i

(
g0,i(1|Wn)

ḡn(1|Wi)
− 1
)

(Q̄0 − Q̄∗n)(1,Wi)−
(
gn
0,i(0|Wn)

ḡn(0|Wi)
− 1
)

(Q̄0 − Q̄∗n)(0,Wi)

+1/n
∑

i Q̄0(Wi)− Q̄∗n(Wi) +
∫
w

(Q̄0 − Q̄∗n)(w)QW,0(w)
+1/n

∑
i Q̄
∗
n(Wi)− P0Q̄

∗
n

= 1/n
∑

i

(
g0,i(1|Wn)

ḡn(1|Wi)
− 1
)

(Q̄0 − Q̄∗n)(1,Wi)−
(
gn
0,i(0|Wn)

ḡn(0|Wi)
− 1
)

(Q̄0 − Q̄∗n)(0,Wi)

+1/n
∑

i{Q̄0(Wi)− ψ0}.

Thus,

ZW,n,gn = 1√
n

∑n
i=1

{
Q̄0(Wi)− ψ0

}
+ 1√

n

∑n
i=1

{
gn
0,i(1|Wn)−ḡn(1|Wi)

ḡn(1|Wi)
(Q̄0 − Q̄∗n)(1,Wi)−

gn
0,i(0|Wn)−ḡn(0|Wi)

ḡn(0|Wi)
(Q̄0 − Q̄∗n)(0,Wi)

}
.

In the special case that gn0,i = g0,i and constant in i, we have that

ZW,n,gn = ZW,n ≡
1√
n

n∑
i=1

{Q̄0(Wi)− ψ0}.

In the general case, one can decompose

ZW,n,gn = Z1,gn + ZW,n,

where
Z1,gn = 1√

n

∑n
i=1

gn
0,i(1|Wn)−ḡn(1|Wi)

ḡn(1|Wi)
(Q̄0 − Q̄∗n)(1,Wi)

− 1√
n

∑n
i=1

gn
0,i(0|Wn)−ḡn(0|Wi)

ḡn(0|Wi)
(Q̄0 − Q̄∗n)(0,Wi).

Suppose now that gn0,i = g0,i. Then ḡn = ḡ0. Notice that for a function f , we
have

1√
n

∑n
i=1 E0

(
g0,i(1|Wi)

ḡ0(1|Wi)
− 1
)
f(Wi)

= 1√
n

∑n
i=1

∫
w

(
g0,i(1|w)

ḡ0(1|w)
− 1
)
f(w)dQW,0(w)

= 1√
n

∫ (
ḡ0
ḡ0

(1 | w)− 1
)
f(w)dQW,0(w)

= 0.

This proves that, Z1,gn(Q̄), defined as the process above with Q̄∗n replaced by
Q̄, is a standard empirical process Z1,gn(Q̄) = 1/

√
n
∑

i fi(Q̄)(Wi) of mean
zero and independent random variables

fi(Q̄)(Wi) =
g0,i(1|Wi)−ḡ0(1|Wi)

ḡ0(1|Wi)
(Q̄0 − Q̄)(1,Wi)

−g0,i(0|Wi)−ḡ0(0|Wi)

ḡ0(0|Wi)
(Q̄0 − Q̄)(0,Wi).
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Such a process can be analyzed with methods we use below, showing that
Z1,gn(Q̄∗n) = Z1,gn(Q̄∗) +oP (1), and Z1,gn(Q̄∗) = 1/

√
n
∑

i IC1,gn,i(Wi) +oP (1),
where IC1,gn,i = fi(Q̄

∗). We conclude that

√
n(ψ∗n − ψ0) = Xn(Q̄∗n) + ZW,n + Z1,gn + ZW,ḡn,n,

where our assumptions guarantee that ZW,n+Z1,gn+ZW,ḡn,n = 1/
√
n
∑

i ICW,i(Wi)+
oP (1). So we showed that

√
n(ψ∗n − ψ0) = XW,n + Xn(Q̄∗n), where XW,n =

1/
√
n
∑

i ICW,i(Wi) + op(1) for some influence curve ICW,i. Thus XW,n is un-
derstood and converges to a normal distribution with mean zero and variance
σ2
W = limn

1
n

∑n
i=1 P0IC

2
W,i, if the variance of ICW,i is bounded uniformly in i.

Below we establish that, conditional on W n, Xn(Q̄∗n) converges in distri-
bution to a Gaussian random variable. The separate weak convergence of
XW,n and Xn(Q̄∗n) implies the desired weak convergence of XW,n and Xn(Q̄∗n)
jointly as follows. For notational convenience, let Xn denote Xn(Q̄∗n) and
X denotes its limit in distribution. Let W∞ = (W n : n = 1, . . . , ). Note
that P (XW,n ∈ A,Xn ∈ B) = EW∞I(XW,n ∈ A)P (Xn ∈ B | W∞). Since
P (Xn ∈ B | W∞) converges to P (X ∈ B) for almost every W∞, we obtain

P (X ∈ B)EW∞I(XW,n ∈ A)→ P (X ∈ B)P (XW ∈ A)

plus a term EW∞I(XW,n ∈ A)(P (Xn ∈ B) | W∞) − P (X ∈ B)). The latter
term converges to zero by the dominated convergence theorem. The joint
convergence implies the weak convergence of the sum XW,n+Xn(Q̄∗n) to XW +
X.

So it remains to study Xn(Q̄∗n). By application of a CLT for sums of in-
dependent random variables, under the stated conditions, one can show that,
conditional on W n, (Xn(Q̄j) : j) for fixed Q̄j ∈ F converges to a multivariate
normal distribution with covariance matrix defined by (Q̄1, Q̄2)→ Σ0(Q̄1, Q̄2).
Weak convergence of Xn(Q̄) for a fixed Q̄ or finite collection of Q̄’s is not
enough for establishing the desired asymptotic linearity. In order to under-
stand terms such asXn(Q̄∗n)−Xn(Q̄) (and that our proposed variance estimator
is consistent) we need to understand the process (Xn(Q̄) : Q̄ ∈ F) with respect
to supremum norm over a set F that contains Q̄∗n with probability tending to
1. Again, we will study this process conditional on (W n : n ≥ 1).

Let d2
n(Q̄1, Q̄2) = 1/n

∑
j PQ0,gn{fj,n(Q̄1)−fj,n(Q̄2)}2. We note thatXn(Q̄1)−

Xn(Q̄2) = X ′n(Q̄1−Q̄2) for a slightly different process X ′n. Thus, d2
n(Q̄1, Q̄2) =

1/n
∑

j PQ0,gn{f ′j,n(Q̄1−Q̄2)}2 for a specified f ′j,n(Q̄1−Q̄2) =
∑

i∈Cj(Wn){fi,n(Q̄1)−
fi,n(Q̄2)}(Oi). Note that d2

n(Q̄1, Q̄2) is the conditional variance of Xn(Q̄1) −
Xn(Q̄2), conditional on W n, or equivalently, it is the conditional variance of
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X ′n(Q̄1−Q̄2). We will denote this conditional variance also with σ2
n(Q̄1−Q̄2) =

d2
n(Q̄1, Q̄2).

Recall that Fd = {f1 − f2 : f1, f2 ∈ F}. Given the entropy condition on
F , we will prove asymptotic equicontinuity of (Xn(Q̄) : Q̄ ∈ Fd) with respect
to this semi-metric dn: for each ε > 0 and sequence δn → 0,

P

(
sup

dn(f,g)≤δn
| Xn(f)−Xn(g) |> ε

)
→ 0 as n→∞.

This is equivalent with establishing the following asymptotic equicontinuity of
(X ′n(f) : f ∈ Fd) w.r.t semi-metric σn: for each ε > 0 and sequence δn → 0,

P

(
sup

σn(f)≤δn
| X ′n(f) |> ε

)
→ 0 as n→∞.

If dn(Q̄∗n, Q̄) → 0 in probability, and Q̄∗n − Q̄ ∈ Fd with probability tend-
ing to 1, then this asymptotic equicontinuity proves that Xn(Q̄∗n) − XnQ̄) =
X ′n(Q̄∗n − Q̄) converges to zero in probability, as n→∞.

To establish the asymptotic equicontinuity result, we use a number of fun-
damental building blocks. Note that X ′n(f)/σn(f) is a sum of J independent
mean zero bounded random variables and the variance of this sum equals 1.

Bernstein’s inequality states that P (|
∑

j Yj |> x) ≤ 2 exp
(
−1

2
x2

v+Mx/3

)
, where

v ≥ VAR
∑

j Yj. Thus, by Bernstein’s inequality, conditional on W n, we have

P

(
| X ′n(f) |
σn(f)

> x

)
≤ 2 exp

(
−1

2

x2

1 +Mx/3

)
≤ K exp(−Cx2),

for a universal K and C.
As stated in our review section, this implies ‖ X ′n(f)/σn(f) ‖ψ2≤ (1 +

K/C)0.5, where for a given convex function ψ with ψ(0) = 0, ‖ X ‖ψ≡ inf{C >
0 : Eψ(| X | /C) ≤ 1} is the so called Orlics norm, and ψ2(x) = exp(x2)− 1.
Thus ‖ X ′n(f) ‖ψ2≤ C1σn(f) for f ∈ Fd. This result allows us to apply
Theorem 2.2.4 in van der Vaart and Wellner (1996) (this theorem is copied
below in the appendix): for each δ > 0 and η > 0, we now have

‖ sup
σn(f)≤δ

| X ′n(f) |‖ψ2≤ K

{∫ η

0

ψ−1
2 (N(ε, σn,Fd)dε+ δψ−1

2 (N2(η, σn,Fd))
}
,

(13)
Convergence to zero with respect to ψ2-orlics norm implies convergence in

expectation to zero and thereby convergence to zero in probability. Let δn
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be a sequence converging to zero, and let ηn also converge to zero but slowly
enough so that the term δnψ

−1
2 (N2(ηn, σn,Fd)) converges to zero as n → ∞.

By assumption,
∫ δn

0
ψ−1

2 (N(ε, σn,Fd)dε converges to zero. Thus,

lim
δn→0

{∫ δn

0

ψ−1
2 (N(ε, σn,Fd)dε+ δnψ

−1
2 (N2(ηn, σn,Fd))

}
= 0.

This proves that

E

(
sup

σn(f)≤δn
| X ′n(f) |

)
→ 0,

and thereby the asymptotic equicontinuity of X ′n.
We now prove the convergence to the limit variance: If σn(Q̄∗n− Q̄)→ 0 in

probability, then

1

n

J∑
j=1

{fj,n(Q̄∗n)(Oi)}2 − 1

n

J∑
j=1

PQ0,gn{fj,n(Q̄)}2 → 0 in probability.

We can write this difference as a sum of the following two differences:

1
n

∑J
j=1{fj,n(Q̄∗n)(Ōj)}2 − 1

n

∑J
j=1 PQ0,gnfj,n(Q̄∗n)2

1
n

∑J
j=1 PQ0,gnfj,n(Q̄∗n)2 − 1

n

∑n
j=1 PQ0,gnfj,n(Q̄)2

= 1
n

∑J
j=1 PQ0,gn

{
fj,n(Q̄∗n)2 − fj,n(Q̄)2

}
= 1

n

∑J
j=1 PQ0,gn

{
f ′j,n(Q̄∗n − Q̄)

}{
fj,n(Q̄∗n) + fj,n(Q̄)

}
≤
(

1
n

∑J
j=1 PQ0,gn

{
f ′j,n(Q̄∗n − Q̄)

}2
)0.5 (

1
n

∑J
j=1 PQ0,gn

{
fj,n(Q̄∗n) + fj,n(Q̄)

}2
)0.5

,

where we used Cauchy-Schwarz inequality at the last inequality. The last
term can thus be bounded by Mdn(Q̄∗n, Q̄), so that it converges to zero in
probability, since dn(Q̄∗n), Q̄) converges to zero in probability.

We now consider the first term, which can be represented as

1

n

J∑
j=1

hj,n(Q̄∗n),

where
hj,n(Q̄) ≡ f 2

j,n(Q̄)(Oi)− PQ0,gnfj,n(Q̄)2.

Define the process Yn(Q̄) = 1/n
∑

j hj,n(Q̄). Note that hj,n(Q̄) has conditional

mean zero given W n. Thus, conditional on W n, Yn(Q̄) is a sum of independent
mean zero random variables. The process

√
nYn(Q̄) has exactly same structure

as process Xn(Q̄) we analyzed above. Therefore, under our conditions, we have
supQ̄∈F | Yn(Q̄) = OP (1/

√
n). This implies, in particular, that the first term

converges to zero in probability. This proves the convergence to the desired
limit.
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C Appendix: Proof of Theorem 4

We can decompose D∗(Q̄∗, g0, ψ0) orthogonally in a function of W and a func-
tion of Y , A,W , which has conditional mean zero, given W , as follows:

D∗(Q̄∗, g0, ψ0) = Q̄0(W )− ψ0

+Hg0(A,W )(Y − Q̄∗(A,W ))− {Q̄0(W )− Q̄∗(W )}.
Thus, the variance is given by:

P0{D∗(Q̄∗, g0, ψ0)}2 = E0{Q̄0(W )− ψ0}2

+E0E0

(
H2
g0

(A,W )(Y − Q̄∗(A,W ))2 | W
)
− E0{Q̄0(W )− Q̄∗(W )}2.

Note that

E0E0(H2
g0

(A,W )(Y − Q̄∗(A,W ))2 | W )

= E0E0

(
1

g20(A|W )
E0((Y − Q̄∗(A,W ))2 | A,W ) | W

)
= E0

∑
a

1
g0(a|W )

σ2
0(Q̄∗)(a,W ),

where σ2
0(Q̄∗)(a,W ) ≡ E0((Y − Q̄∗(A,W ))2 | A = a,W ). Thus, we have

obtained the following expression:

σ2
I (Q̄

∗) = E0{Q̄0(W )− ψ0}2

+E0

∑
a

1
g0(a|W )

σ2(Q̄∗)(a,W )− E0{Q̄0(W )− Q̄∗(W )}2.

For the paired matching design the asymptotic variance σ2 of the TMLE
is given by the limit of

E0{Q̄0(W )− ψ0)}2 + E0
1
n

∑n/2
j=1 PQ0,gn

{∑
i∈Cj(Wn) Hg0(Ai,Wi)(Yi − Q̄∗(Ai,Wi))

}2

−E0
1
n

∑n/2
j=1

{∑
i∈Cj(Wn){Q̄0(Wi)− Q̄∗(Wi)}

}2

Each
∑

i∈Cj(Wn) is a sum over two terms. We use that (a+ b)2 = a2 + b2 + 2ab.

The contribution a2 + b2 from the square terms yields:

E0
1
n

∑n
i=1

{
PQ0,gn

{
Hg0(Ai,Wi)(Yi − Q̄∗(Ai,Wi))

}2 − {Q̄0(Wi)− Q̄∗(Wi)}2
}

= E0

∑
a

1
g0(a|W )

σ2
0(Q̄∗)(a,W )− E0{Q̄0(W )− Q̄∗(W )}2.

This equals the corresponding expression we have for σ2
I (Q̄

∗). The contribution
2ab from the cross-terms yields:

2E0
1
n

∑n/2
j=1 PQ0,gnHg0,1j(Y1j − Q̄∗(A1j,W1j))Hg0,2j(Y2j − Q̄∗(A2j,W2j))

−2E0
1
n

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}

= −4E0
1
n

∑n/2
j=1

{
(Y1j(1)− Q̄∗(1,W1j))(Y2j(0)− Q̄∗(0,W2j))

}
−4E0

1
n

∑n/2
j=1

{
(Y1j(0)− Q̄∗(0,W1j))(Y2j(1)− Q̄∗(1,W2j))

}
−2E 1

n

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}.
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To conclude, the asymptotic variance under the paired matching design is
given by:

σ2(Q̄∗) = E0{Q̄0(W )− ψ0)}2 + E0

∑
a

1
g0(a|W )

σ2(Q̄∗)(a,W )

−E0{Q̄0(W )− Q̄∗(W )}2

−4E0
1
n

∑n/2
j=1

{
(Y1j(1)− Q̄∗(1,W1j))(Y2j(0)− Q̄∗(0,W2j))

}
−4E0

1
n

∑n/2
j=1

{
(Y1j(0)− Q̄∗(0,W1j))(Y2j(1)− Q̄∗(1,W2j))

}
−2E 1

n

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}

Thus, the difference between the two asymptotic variances is given by:

σ2
I − σ2 = 4E0

1
n

∑n/2
j=1

{
(Y1j(1)− Q̄∗(1,W1j))(Y2j(0)− Q̄∗(0,W2j))

}
+4E0

1
n

∑n/2
j=1

{
(Y1j(0)− Q̄∗(0,W1j))(Y2j(1)− Q̄∗(1,W2j))

}
+2E 1

n

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}

= 2E0
1
J

∑n/2
j=1

{
(Q̄0(1,W1j)− Q̄∗(1,W1j))(Q̄0(0,W2j)− Q̄∗(0,W2j))

}
+2E0

1
J

∑n/2
j=1

{
(Q̄0(0,W1j)− Q̄∗(0,W1j))(Q̄0(1,W2j)− Q̄∗(1,W2j))

}
+E 1

J

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}

= E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(0,W2j)

+E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(0,W2j)

≡ C,

and σ2 = σ2
I − C. 2

D Appendix: Proof of Theorem 5.

The proof is analogue to the proof of Theorem 1. Therefore, we suffice with
proving (12). Firstly, we note that

E0D
n,∗(Q̄, ḡ, Π̄, ψ0)(On) = E0

1
n

∑n
i=1{Q̄(Wi)− ψ0}+

E0
1
n

∑n
i=1

gi,0(1,1|Wi)

ḡn(1,1|Wi)
(Q̄0 − Q̄)(1,Wi)− gi,0(0,1|Wi)

ḡn(0,1|Wi)
(Q̄0 − Q̄)(0,Wi)

= Ψ(Q)− ψ0 + 1
n

∑
i

∫
w
QW,0(w)

gi,0(1,1|w)

ḡn(1,1|w)
(Q̄0 − Q̄)(1, w)

− 1
n

∑
i

∫
w
QW,0(w)

gi,0(0,1|w)

ḡn(0,1|w)
(Q̄0 − Q̄)(0, w)

= Ψ(Q)− ψ0 + E0
ḡ0,n(1,1|W )

ḡn(1,1|W )
(Q̄0 − Q̄)(1,W )

−E0
ḡn,0(0,1|W )

ḡn(0,1|W )
(Q̄0 − Q̄)(0,W ).

Thus, if ḡn,0 = ḡ0, then this equals Ψ(Q) − ψ0 + ψ0 − Ψ(Q) = 0. If Q0 = Q,
then we also obtain 0. This proves (4). 2
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E Appendix: Review of relevant empirical pro-

cess/weak convergence theory.

We refer to van der Vaart and Wellner (1996), Section 2.2. on maximal in-
equalities and covering numbers. For a real valued random variable X and
convex function ψ with ψ(0) = 0, the Orlics norm is defined as ‖ X ‖ψ≡
inf{C > 0 : Eψ(| X | /C) ≤ 1}. Setting ψ(x) = xp gives the Lp-norms
‖ X ‖p= E(| X |p)1/p, p ≥ 1. Another important choice for empirical pro-
cesses is ψp(x) = exp(xp)−1. Sums of independent bounded random variables
and Gaussian random variables have bounded ψ2-norm. There is an important
relation between the orlics norm and a bound on the tail probability of the
random variable. In particular, we have (page 96 in van der Vaart and Wellner
(1996))

P (| X |> x) ≤ 1

ψ(x/ ‖ X ‖ψ)
.

For ψp(x) this leads to tail estimates exp(−Cxp) for any random variable with
a finite ψp norm. Conversely, an exponential tail bound of this type shows that
‖ X ‖ψp is finite: Lemma 2.2.1 states that if P (| X |> x) ≤ K exp(−Cxp) for
every x, for constants K and C, and for p ≥ 1, then its orlics norm satisfies
‖ X ‖ψp≤ ((1 + K)/C)1/p. So if we have an exponential tail probability for
Xn(f), then we can translate this into a bound on the ψp-orlics norm.

Given a sequence of random variables Xi, we have (page 96)

‖ max
i≤m

Xi ‖ψ≤ Kψ−1(m) max
i
‖ Xi ‖ψ .

Thus, if we can bound the orlics norm of Xn(f) in terms of a norm on f , then
this result allows us to bound the orlics norm of a maximum over m functions.
This bound combined with chaining gives the typical entropy type bounds. As
we will see one of the main things we will need is a bound on ‖ Xn(f) ‖ψ in
terms of d(f, f) for a semi-metric d on F .

Bounding orlics norm: Let (T, d) be an arbitrary semi-metric space.
The covering number N(ε, d) is the minimal number of balls of radius ε needed
to cover T . Call a collection of points ε-separated if the distance between
each pair of points is strictly larger than ε. The packing number D(ε, d) is
the maximum number of ε-separated points in T . Entropy numbers are the
logarithms of the covering or packing number. Since N(ε, d) ≤ D(ε, d) ≤
N(0.5ε, d), bounds in packing number map into a bound in covering number
and vice versa.

For our purpose, we will need Theorem 2.2.4 in van der Vaart and Wellner
(1996), which is stated here for completeness.
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Theorem 6 (Theorem 2.2.4, van der Vaart and Wellner, 96) Let ψ be a con-
vex non-decreasing non zero function with ψ(0) = 0 and lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) <
∞ for some constant c. Let (Xt : t ∈ T ) be a separable stochastic process (that
is, supd(s,t)<δ | Xs −Xt | remains almost surely the same if the index set T is
replaced by a suitable countable subset) with

‖ Xs −Xt ‖ψ≤ Cd(s, t) for every s, t,

for some semimetric d on T and a constant C. Then, for any η, δ > 0,

‖ sup
d(s,t)≤δ

| Xs −Xt |‖ψ≤ K

{∫ η

0

ψ−1(D(ε, d))dε+ δψ−1(D2(η, d))

}
for a constant K depending on ψ and C only. In particular, the constant K
can be chosen so that

‖ sup
s,t
| Xs −Xt |‖ψ≤ K

∫ diamT

0

ψ−1(D(ε, d))dε,

where diam(T ) is the diameter of T . This result also gives

‖ sup
t
| Xt |‖ψ≤‖ Xt0 ‖ψ +

∫ diam(T )

0

ψ−1(D(ε, d))dε.

The bound shows that the sample paths of X are uniformly continuous in
ψ-norm, whenever the covering integral

∫ η
0
ψ−1(D(ε, d))dε is finite/exists for

some η > 0. In order to have that this integral is bounded for classes T with
covering numbers that behave as ε−p, one will need to use an Orlics norm with
ψ(x) = xp, and if one wants the integral to be bounded for any p, then one
needs ψ(x) = exp(xq)− 1 for some q.

If one can prove that ‖ Xn(s) − Xn(t) ‖ψ≤ Cd(s, t) for a constant C
independent of n, and each Xn is a separable stochastic process, then this
theorem teaches us that for any sequence δn, and ηn > 0, we have that there
exists a constant K depending on ψ, C only (not dependent on n!) so that

‖ sup
d(s,t)≤δn

| Xn(s)−Xn(t) |‖ψ≤ K

{∫ η

0

ψ−1(D(ε, d))dε+ δnψ
−1(D2(η, d))

}
.

We can now apply this inequality for a sequence δn → 0 for n → ∞. Since
η can be chosen arbitrary small, it follows that, if

∫ η
0
ψ−1(D(ε, d))dε < ∞ for

some η > 0, then

‖ sup
d(s,t)≤δn

| Xn(s)−Xn(t) |‖ψ→ 0 as n→∞.

So we can state the following useful corollary:
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Corollary 1 Suppose there exists a η > 0 so that
∫ η

0
ψ−1(D(ε, d))dε <∞. In

addition, assume
‖ Xn(s)−Xn(t) ‖ψ≤ Cd(s, t)

for a constant C independent of n, and each Xn is a separable stochastic process
with respect to d. Then for any sequence δn → 0, we have

‖ sup
d(s,t)≤δn

| Xn(s)−Xn(t) |‖ψ→ 0 as n→∞.

This corollary provides us with conditions under which Xn is asymptot-
ically uniformly d-equicontinuous in probability. Theorem 1.5.7. in van der
Vaart and Wellner (1996) now states that Xn is asymptotically tight in `∞(T )
if Xn(t) is asymptotically tight for every t, (T, d) is totally bounded, and Xn

is asymptotically d-equicontinuous in probability. In addition, Theorem 1.5.4
states that if Xn is asymptotically tight and its marginals converge weakly
to the marginals X(t1), . . . , X(tk) of a stochastic process X, then there is a
version of X with uniformly bounded sample paths and Xn converges weakly
to X. Thus, we can state the following result:

Lemma 1 Let ψ be one of the following functions: ψ(x) = xp for some p,
or ψ(x) = exp(x1) − 1, ψ(x) = exp(x2) − 1. Let d be a semi-metric on
T so that (`∞(T ), d) is totally bounded, and there exists a η > 0 so that∫ η

0
ψ−1(D(ε, d))dε <∞. In addition, assume

‖ Xn(s)−Xn(t) ‖ψ≤ Cd(s, t)

for a constant C independent of n, and each Xn is a separable stochastic process
with respect to d. Then for any sequence δn → 0, we have for each x > 0

Pr

(
sup

d(s,t)≤δn
| Xn(s)−Xn(t) |> x

)
→ 0 as n→∞, (14)

and Xn is asymptotically tight.
If Xn(t1), . . . , Xn(tk) converges weakly to (X(t1), . . . , X(tk), then there ex-

ists a version X with uniformly bounded sample paths and Xn ⇒d X.
If X is Gaussian process X in `∞(T ), and d(s, t) = ρp(s, t) ≡‖ (X(f) −

X(g)) ‖p, then there exists a version of X which is tight Borel measurable map
into `∞(T ).

Actually (page 41), if X is Gaussian, then Xn converges weakly to X in
`∞(T ) if and only if for some p (and then for all p) (i) the marginals of
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Xn converge to the corresponding marginals of X, (ii) Xn is asymptotically
equicontinuous in probability with respect to

d(s, t) = ρp(s, t) ≡‖ X(s)−X(t) ‖p,

as defined in (14), and (iii) T is totally bounded for d = ρp.

51

Hosted by The Berkeley Electronic Press


