






that averages together the predictions of many regression trees constructed by drawing B

bootstrap samples and for each sample, growing an unpruned regression tree where at each

node, the best split among a subset of q randomly selected covariates is chosen. In our

implementation, B was set to 1000, the minimum size of the terminal nodes was 5, and the

number of randomly sampled variables at each split was b√pc, where p was the number of

covariates.

The library contained a number of Support Vector Machines (SVM), each implementing

one of two types of regression (epsilon regression, ε = 0.1; or nu regression, ν = 0.2), and

one of five kernels: Bessel, Gaussian radial basis, linear, polynomial, and hyperbolic tangent.

The kernels are described in table 2. Predicted values were truncated to plus or minus one

the range of the observed data to ensure a bounded loss, and the cost of constraints violation

was fixed at 1.

Thin-plate splines (TPS) is another common approach to spatial prediction. The ob-

served data are presumed to be generated by a deterministic process Y (s) = g(s), where

g(·) is an m times differentiable deterministic function with m > d/2 and dim(s) = d. The

estimator of g(·) is the minimizer of a penalized sum of squares,

ĝ = argmin
g∈G

n∑
i=1

(Yi − g (si))
2 + λJm(g), (2)

with d-dimensional roughness penalty

Jm(g) =

∫
Rd

∑
{(v1,...,vd)}

(
m

v1, . . . , vd

)(
∂mg(s)

∂sv11 . . . ∂svdd

)2

ds,

where the sum in (5.1) is taken over all nonnegative integers (v1, . . . , vd) such that
∑d

i=1 vi =

m (Green and Silverman, 1994). The tuning parameter λ ∈ [0,∞) in (2) controls the permit-

ted degree of roughness for ĝ. As λ tends to zero, the predicted surface approaches one that

exactly interpolates the observed data. Larger values of λ allow the roughness penalty term to

dominate, and as λ approaches infinity, ĝ tends toward a multivariate least squares estimator.
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In our library, the smoothing parameter was either fixed to λ ∈ {0, 0.0001, 0.001, 0.01, 0.1}

or estimated data-adaptively using Generalized Cross-validation (GCV) (see Craven and

Wahba (1979) for a description of the GCV procedure). Predicted values were truncated to

plus or minus one of the range of the observed data to ensure a bounded loss.

The library also contained a main terms Generalized Linear Model (GLM) and a simple

empirical mean function.

5.2 Simulation Procedure

Our simulation study examined the effect of sample size (n ∈ {64, 100, 529}), signal-to-noise

ratio (SNR), and sampling scheme. SNR was defined as the ratio of the sample variance of the

spatial process and the variance of additive zero-mean normally distributed noise representing

measurement error. Processes were simulated with either no added noise or with noise added

to achieve a SNR of 4. We examined three sampling schemes: simple random sampling (SRS),

random regular sampling (RRS), and stratified sampling (SS). Random regular samples were

regularly spaced subsets of the 16, 384 point grid with the initial point selected at random.

Stratified random samples were taken by first dividing the domain [0, 1]2 into n equal-area

bins and then randomly selecting a single point from each bin.

The following procedure was repeated 100 times for each combination of spatial process,

sample size, SNR level, and sampling design, giving a total of 10,800 simulations:

1. Sample n locations and any associated covariates and process values from the grid of

16, 384 points in [0, 1]2 ⊂ R2 according to one of the three sampling designs described

above.

2. For those simulations with SNR = 4, draw n i.i.d. samples of the random variable

ε ∼ N(0, σ2
ε) and add them to the n sampled process values {Y1, . . . , Yn}, where σ2

ε has

been calculated to achieve an SNR of 4.

3. Pass the sampled values to Super Learner, along with a library of base learners on

which to train. The number of folds ν used in the cross-validation procedure depended
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on n: if n = 64, then ν = 64; if n = 100, then ν = 20; if n = 529, then ν = 10.

Super learner uses cross-validation and the L2 loss function to estimate the risk of each

candidate predictor and returns an estimate of the optimal convex combination of the

predictions made by all base learners according to their cross-validated risk.

4. For each base learner in the library and for the trained Super Learner, predict the

spatial process under consideration at all unsampled points. Calculate mean squared

errors (MSEs) and then divide these by the variance of the spatial process. We re-

fer to this measure of performance as the Fraction of Variance Unexplained (FVU).

This makes it reasonable to compare prediction performances across different spatial

processes.

5.3 Simulation Results

Table A.1 in Appendix A lists the average performance for each individual base learner in

the library, and table 3 summarizes prediction performance for each algorithm class in the

library and for Super Learner itself. Super learner was clearly the best predictor overall

when comparing across broad classes, with an average FVU of 0.24 (SD = 0.22). The next

best performing algorithmic class was thin-plate splines using GCV to choose the roughness

penalty, with an average FVU of 0.42 (SD = 0.36). Universal Kriging (FVU = 0.44), random

forest (FVU = 0.35), and Ordinary Kriging (FVU = 0.45) all performed similarly, which was

slightly less well than TPS (GCV). Super Learner was also the best performer across noise

conditions, sampling designs, and sample sizes, with performance improving markedly as

sample size increased.

Table 4 breaks algorithmic class performance down by simulated surface. f1 was a mean-

zero GRF, something we would expect both Kriging and thin-plate splines algorithms to

predict well. TPS (GCV) and Super Learner were the best performers, with nearly identical

average FVUs of 0.11 (sd = 0.06). The other TPS algorithms and Universal Kriging faired

slightly less well, with an average FVU of 0.15. Ordinary Kriging had an average FVU of

0.26, which was actually greater than the average FVUs for Random Forest (0.16), K-nearest
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Table 3: Average FVUs (standard deviations in parentheses) from the simulation study for each
algorithm class. SRS is Simple Random Sampling, RRS is Random Regular Sampling, and
SS is Stratified Sampling. FVUs were calculated from predictions made on all unsampled
points at each iteration. Algorithms are ordered according to overall performance.

Sample Size SNR Sampling Design

Algorithm Class Overall 64 100 529 None 4 SRS RRS SS

Super Learner 0.24 0.40 0.25 0.07 0.22 0.27 0.26 0.25 0.22
(0.22) (0.26) (0.15) (0.06) (0.22) (0.22) (0.23) (0.24) (0.18)

TPS (GCV) 0.42 0.58 0.44 0.24 0.40 0.45 0.46 0.41 0.40
(0.36) (0.39) (0.35) (0.25) (0.37) (0.35) (0.38) (0.37) (0.34)

Krige (UK) 0.44 0.59 0.51 0.21 0.42 0.46 0.42 0.53 0.36
(0.30) (0.28) (0.27) (0.20) (0.31) (0.29) (0.30) (0.31) (0.28)

Random Forest 0.45 0.56 0.49 0.29 0.44 0.46 0.48 0.42 0.45
(0.26) (0.24) (0.25) (0.21) (0.26) (0.26) (0.27) (0.24) (0.26)

Krige (OK) 0.45 0.62 0.53 0.21 0.43 0.47 0.41 0.59 0.36
(0.32) (0.29) (0.28) (0.20) (0.32) (0.31) (0.29) (0.33) (0.28)

KNNreg 0.50 0.67 0.56 0.27 0.47 0.53 0.53 0.48 0.49
(0.34) (0.34) (0.33) (0.21) (0.35) (0.33) (0.35) (0.33) (0.34)

TPS 0.53 0.64 0.56 0.37 0.49 0.56 0.58 0.49 0.52
(0.37) (0.40) (0.37) (0.30) (0.38) (0.37) (0.40) (0.35) (0.37)

GBM 0.54 0.69 0.57 0.36 0.53 0.55 0.55 0.54 0.54
(0.30) (0.26) (0.25) (0.29) (0.30) (0.30) (0.30) (0.30) (0.30)

DSA 0.61 0.68 0.62 0.54 0.60 0.63 0.64 0.60 0.60
(0.28) (0.31) (0.26) (0.23) (0.26) (0.29) (0.31) (0.26) (0.26)

GAM 0.65 0.70 0.65 0.60 0.64 0.66 0.68 0.63 0.64
(0.30) (0.31) (0.30) (0.29) (0.30) (0.31) (0.32) (0.29) (0.30)

GLMnet 0.69 0.71 0.69 0.67 0.69 0.69 0.70 0.69 0.69
(0.25) (0.24) (0.25) (0.24) (0.25) (0.25) (0.25) (0.24) (0.24)

GLM 0.69 0.71 0.69 0.67 0.69 0.69 0.70 0.68 0.69
(0.25) (0.25) (0.25) (0.24) (0.25) (0.25) (0.25) (0.24) (0.24)

Polymars 0.73 0.84 0.78 0.56 0.71 0.74 0.76 0.70 0.71
(0.36) (0.40) (0.33) (0.29) (0.34) (0.38) (0.40) (0.34) (0.34)

SVM 0.76 0.83 0.80 0.66 0.76 0.77 0.78 0.76 0.76
(0.30) (0.30) (0.31) (0.27) (0.30) (0.30) (0.31) (0.30) (0.30)

GP 0.77 0.89 0.80 0.61 0.74 0.80 0.80 0.76 0.76
(0.67) (0.68) (0.60) (0.69) (0.62) (0.71) (0.67) (0.68) (0.66)

Mean 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.00 1.00
(0.01) (0.02) (0.01) (0.00) (0.01) (0.01) (0.02) (0.01) (0.01)
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Table 4: Average FVU (standard deviation in parentheses) by spatial process.

Average FVU
Algorithm Class f1 f2 f3 f4 f5 f6
Super Learner 0.11 (0.06) 0.09 (0.11) 0.30 (0.11) 0.43 (0.36) 0.22 (0.14) 0.31 (0.19)

TPS (GCV) 0.11 (0.06) 0.07 (0.09) 0.30 (0.11) 0.42 (0.36) 0.91 (0.17) 0.72 (0.23)
Krige (UK) 0.15 (0.11) 0.25 (0.33) 0.37 (0.20) 0.46 (0.32) 0.68 (0.23) 0.47 (0.28)

Random Forest 0.16 (0.06) 0.31 (0.18) 0.41 (0.12) 0.89 (0.15) 0.47 (0.14) 0.46 (0.09)
Krige (OK) 0.26 (0.31) 0.24 (0.33) 0.39 (0.24) 0.45 (0.32) 0.70 (0.23) 0.47 (0.28)

KNNreg 0.19 (0.10) 0.29 (0.26) 0.44 (0.16) 0.92 (0.29) 0.47 (0.34) 0.70 (0.19)
TPS 0.15 (0.07) 0.23 (0.24) 0.38 (0.14) 0.60 (0.35) 1.01 (0.23) 0.78 (0.19)

GBM 0.22 (0.07) 0.65 (0.36) 0.49 (0.13) 0.97 (0.08) 0.47 (0.24) 0.46 (0.08)
DSA 0.25 (0.05) 0.72 (0.25) 0.53 (0.08) 1.03 (0.15) 0.68 (0.11) 0.48 (0.08)
GAM 0.24 (0.02) 1.05 (0.08) 0.49 (0.04) 1.02 (0.09) 0.62 (0.08) 0.49 (0.12)

GLMnet 0.37 (0.01) 1.01 (0.02) 0.67 (0.03) 0.99 (0.03) 0.67 (0.03) 0.44 (0.03)
GLM 0.37 (0.01) 1.02 (0.03) 0.67 (0.02) 0.98 (0.03) 0.67 (0.03) 0.44 (0.03)

Polymars 0.28 (0.10) 0.94 (0.30) 0.60 (0.19) 1.11 (0.25) 0.78 (0.20) 0.64 (0.34)
SVM 0.49 (0.28) 0.87 (0.27) 0.71 (0.20) 1.05 (0.15) 0.80 (0.19) 0.66 (0.33)
GP 0.28 (0.10) 0.64 (0.42) 0.57 (0.20) 1.31 (0.61) 1.01 (0.63) 0.81 (1.02)

Mean 1.00 (0.01) 1.01 (0.01) 1.01 (0.01) 1.00 (0.01) 1.01 (0.01) 1.01 (0.01)

neighbors regression (0.19), GBM (0.22), GAM (0.24), and DSA (0.25).

f2 was a simple sinusoidal surface, another functional form where we would expect thin-

plate splines to excel, provided the samples properly captured the periodicity of the process.

TPS (GCV) had the best overall performance, with an average FVU of 0.07 (sd = 0.09).

Super Learner performed only slightly less well, with an average FVU of 0.09 (sd = 0.11).

The other TPS algorithms (0.23), Ordinary Kriging (0.24) and Universal Kriging (0.25)

performed substantially less well on average.

f3 was a relatively complex function involving a ”cyclone” Gaussian random field and a

distance decay function of randomly selected points. Once again, the average performances

of TPS (GCV) and Super Learner were nearly identical (FVU = 0.30, sd- 0.11).

f4 was a smooth, heterogeneous process. TPS (GCV) (average FVU = 0.42), Super

Learner (0.43), Ordinary Kriging (0.45), and Universal Kriging (0.46) all performed similarly.

f5 was a clustered, rough surface we would expect to be well-suited to K nearest neighbors,

GBM, and Random Forest. In fact, all three of these algorithmic classes had nearly identical

performances, with an average FVU of 0.47. Super Learner, however, had an average FVU

of 0.22 (sd = 0.14), which was dramatically better than any of the other algorithmic classes.
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The Ordinary (average FVU = 0.70) and Universal (0.68) Kriging algorithms had similar

average performances to GAM (0.62), GLM (0.67), GLMnet (0.67), and DSA (0.68). Not

surprisingly, TPS (GCV) and TPS with fixed λ did poorly, with average FVUs of 0.91 and

1.01, respectively.

f6 was a somewhat rough surface constructed from a Gaussian random field and point-

source distance decay functions. As expected, Kriging with trend w1, . . . , w6 had the best

performance on average, with an FVU of 0.25 (sd = 0.14), closely followed by Kriging with

trend s, w1, . . . , w6 (average FVU = 0.26, sd=0.15). Super Learner had the next best average

performance, with an average FVU of 0.31 (sd = 0.19). GLM, GLMnet, GBM, Random

Forest, the Ordinary and Universal Kriging algorithms, and DSA all performed similarly

slightly less well, with average FVUs from 0.44 to 0.48. The TPS (GCV) and TPS with fixed

λ were at a disadvantage given the roughness of the surface, with average FVUs of 0.72 and

0.78, respectively.

These simulation results clearly illustrate some of the chief advantages of Super Learner

as a spatial predictor. For surfaces that were perfectly suited for one or more base learners

in the library, Super Learner either performed almost as well as the best base learner, or

it outperformed its library. For more complex, rougher surfaces, Super Learner performed

significantly better than any single base learner in the library. It had the best overall perfor-

mance even at the smallest sample size, and appeared to be relatively insensitive to sampling

strategy.

6. PRACTICAL DATA EXAMPLE: PREDICTING LAKE ACIDITY

We applied Super Learner to a lake acidity data set previously analyzed by Gu (2002) and

Huang and Chen (2007). Increases in water acidity are known to have a deleterious effect

on lake ecology. Having an accurate estimate of the spatial distribution of lake acidity is an

essential first step toward crafting effective regulatory interventions to control it. The data

were sampled by the U.S. Environmental Protection Agency during the Fall of 1984 in the

Blue Ridge region of the Southeastern United States (Ellers et al., 1988), and consist of
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longitudes and latitudes (in degrees), calcium ion concentrations (in milligrams per liter),

and pH values. The EPA used a systematic stratified sampling design which we treated as

fixed here. Because only one sample per lake was collected, we assume some measurement

error that is independent of lake pH, calcium ion concentration, and spatial location. The

data are freely available in the R package gss (Gu, 2012). We used the same nearly equal

area projection as Gu (2002) and Huang and Chen (2007),

x1 = cos((πxlat)/180) sin(π(xlon − xlon)/180)

x2 = sin(π(xlat − xlat)/180),

where xlat and xlon are the midpoints of the latitude and longitude ranges, respectively.

Let xi = (xi,1, xi,2) denote the ith sampling location; wi denote the calcium ion concen-

tration observed at the ith sampling location; and Y ∗i be the pH value observed at the ith

sampling location. We assume that E[Y ∗i |Si = s] = Y (s), where Si = (xi, wi). Our objective

is to learn the lake pH spatial process from the data.

The library used to predict lake acidity was similar in composition to the simulation

library described in subsection 5.1, with some important differences. We reduced the number

of parameterizations for some of the algorithm classes in the library. We used one DSA

learner, which used 10-fold cross-validation and considered polynomials of up to five terms

(m = 5), each term being at most a two-way interaction (k = 2) with a maximum sum of

powers p = 3. We used a reduced the number of parameterizations of GAM, GBM, TPS, GP,

and SVM learners, as well. We also included screening algorithms that allowed us to train

learners on specific subsets of covariates: x, w, logw, (x, w), and (x, logw). We considered

the L2 loss function, and the predictions from all base learners were truncated to the observed

pH range in order to ensure a uniformly bounded loss.

Table A.2 in Appendix A provides a detailed list of the library and shows performance

results for each base learner as well as Super Learner. Figure 2 provides graphical represen-

tations of Super Learner’s pH predictions. Many of the algorithms in the library performed
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slightly better when given logw as opposed to w, but for those algorithms like GBM and

Random Forest that were not attempting to fit some kind of polynomial trend, logging the

calcium ion concentration made little difference in performance. As expected, most algo-

rithms had cross-validated risk estimates that were worse than their empirical risk estimates

calculated from predictions made after training on the full data set. The Kriging algorithms,

for instance, were all exact interpolators when trained on the full data, and thus had esti-

mated empirical MSEs of 0, whereas their MSEs estimated via cross-validation ranged from

0.07 (FVU = 0.46) to 0.11 (FVU = 0.72). The Gaussian processes with RBF kernel had the

most pronounced differences between the two risk estimates. For example, GP (RBF) trained

on the covariates (x, w) had an empirical MSE of 0.01 (FVU = 0.08) and a cross-validated

MSE of 0.22 (FVU = 1.46).

The Super Learner algorithm gave non-zero weights to the predictions of eight base learn-

ers from five different algorithm classes: GBM, KNNreg, Kriging, Random Forest, and SVM

(polynomial kernel). While the largest weight went to an exactly interpolating algorithm

(Kriging with trend term logw, β = 0.58), Super Learner pH predictions are a slightly

smoothed version of the observed data, with attenuated predictions for the highest and

lowest observations.

7. CONCLUSION/DISCUSSION

In this article, we have demonstrated the use of an ensemble learner for spatial prediction

that uses cross-validation to optimally combine the predictions from multiple, heterogeneous

base learners. We have reviewed important theoretical results giving performance bounds

that imply Super Learner will perform asymptotically at least as well as the best candidate

in the library. We discussed the assumptions required for these optimality properties hold.

These assumptions are reasonable for many measurement error scenarios and commonly im-

plemented spatial sampling designs, including various forms of stratified and random regular

sampling. In this paper, we have not addressed dependent sampling designs, where sampling

at one point changes the probability of sampling at another point. This is an important
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Figure 2: (a) A map of Super Learner’s pH predictions, and (b) a plot of Super Learner’s predic-
tions as a function of the observed data. Super Learner mildly attenuated the pH values
at either end of the range, but otherwise provided a fairly close fit to the data.

area for future research. We also limited our scope to the case where measurement error is

at least conditionally mean-zero. Spatially structured measurement error that is not condi-

tionally mean zero is a common problem in many spatial prediction applications, and there

have been a number of attempts to alter the cross-validation procedure to accommodate it

(Francisco-Fernandez and Opsomer, 2005; Carmack et al., 2009). These proposed techniques

generally require one to estimate the error correlation structure from the data or to know it

a priori. How well these algorithms perform if the correlation extent is substantially under-

estimated is unknown. Ideally, it would be best to have a stronger theoretical understanding

of how the degree of dependence between training and validation sets affects cross-validated

risk estimates both asymptotically and in finite samples. This is an important future area

for research.
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APPENDIX A. TABLES

Table A.1: Simulation results for full library. For each algorithm, average Fraction of Variance
Unexplained, (Avg FVU, standard deviation in parentheses) is the FVU averaged
over all spatial processes, sample sizes, sampling designs, and noise condidtions. At
each iteration, MSEs were calculated using all unsamped locations. Note that of the
eight Kriging algorithms, only two were used to predict all spatial processes.

Algorithm Parameters Avg FVU
Super Learner 0.24 (0.22)

DSA (v, m, k, p) (5, 5, 3, 10) 0.62 (0.29)
(5, 5, 3, 5) 0.61 (0.26)
(5, 5, 4, 10) 0.62 (0.28)
(5, 5, 4, 5) 0.61 (0.26)

GAM (degree) 2 0.65 (0.28)
3 0.64 (0.29)
4 0.65 (0.30)
5 0.65 (0.31)
6 0.66 (0.32)

GBM (degree) 1 0.64 (0.28)
2 0.56 (0.28)
3 0.53 (0.30)
4 0.52 (0.30)
5 0.51 (0.31)
6 0.50 (0.31)

GLM 0.69 (0.25)

GLMnet (α) 0.25 0.69 (0.25)
0.5 0.69 (0.25)
0.75 0.69 (0.25)

GP (Bessel) (1, 0.5, 2) 1.12 (1.52)
(1, 1, 2) 0.81 (0.81)
(1, 2, 2) 0.74 (0.67)

(linear) 0.69 (0.25)

(poly) (1, 0.001, 1) 0.69 (0.25)
(1, 0.01, 1) 0.69 (0.25)
(1, 0.1, 1) 0.69 (0.25)
(1, 1, 1) 0.69 (0.25)
(3, 0.001, 1) 0.66 (0.27)
(3, 0.01, 1) 0.65 (0.29)
(3, 0.1, 1) 0.83 (0.65)
(3, 1, 1) 0.84 (0.68)

(RBF) 0.92 (0.90)

KNNreg (k) 1 0.53 (0.38)
5 0.40 (0.31)
10 0.48 (0.32)
20 0.60 (0.33)

Kriging (trend) s 0.46 (0.34)
f3, f4 only s, w1 0.41 (0.26)

f5 only s, w1, w2 0.51 (0.15)
f6 only s, w1, . . . , w6 0.26 (0.15)

none 0.49 (0.35)
f3, f4 only w1 0.42 (0.28)

f5 only w1, w2 0.52 (0.16)
f6 only w1, . . . , w6 0.25 (0.14)

Algorithm Parameters Avg FVU
Mean 1.01 (0.01)

Polymars 0.73 (0.36)

Random Forest 0.45 (0.26)

SVM (Bessel; eps) (1, 1, 1) 0.65 (0.27)
(1, 1, 2) 0.57 (0.28)
(1, 2, 1) 0.66 (0.27)
(1, 2, 2) 0.59 (0.27)

(Bessel; nu) (1, 1, 1) 0.67 (0.27)
(1, 1, 2) 0.62 (0.27)
(1, 2, 1) 0.68 (0.27)
(1, 2, 2) 0.63 (0.27)

(linear; eps) 0.71 (0.25)
(linear; nu) 0.72 (0.28)

(poly; eps) (1, 0.001, 1) 0.92 (0.12)
(1, 0.1, 1) 0.71 (0.25)
(1, 1, 1) 0.71 (0.25)
(3, 0.001, 1) 0.85 (0.17)
(3, 0.1, 1) 0.64 (0.28)
(3, 1, 1) 0.83 (0.61)

(poly; nu) (1, 0.001, 1) 0.97 (0.08)
(1, 0.1, 1) 0.71 (0.25)
(1, 1, 1) 0.72 (0.28)
(3, 0.001, 1) 0.91 (0.14)
(3, 0.1, 1) 0.66 (0.29)
(3, 1, 1) 0.92 (0.71)

(RBF; eps) 0.48 (0.34)
(RBF; nu) 0.50 (0.32)

(tanh; eps) (0.01, 0.25) 0.76 (0.21)
(0.01, 1) 0.82 (0.18)
(0.005, 0.25) 0.81 (0.19)
(0.005, 1) 0.87 (0.16)
(0.002, 0.25) 0.88 (0.15)
(0.002, 1) 0.93 (0.11)

(tanh; nu) (0.01, 0.25) 0.82 (0.19)
(0.01, 1) 0.88 (0.16)
(0.005, 0.25) 0.88 (0.16)
(0.005, 1) 0.93 (0.12)
(0.002, 0.25) 0.94 (0.11)
(0.002, 1) 0.98 (0.07)

TPS (λ) (GCV) 0.42 (0.36)
0 0.52 (0.45)
0.0001 0.44 (0.39)
0.001 0.44 (0.35)
0.01 0.54 (0.33)
0.1 0.69 (0.28)
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Table A.2: Lake acidity results for full library. S denotes the variable subset each algorithm was
given. Risks were estimated via cross-validation (CV) or on the full dataset (Full). β
are the convex weights assigned to each algorithm in the Super Learner predictor.

M̂SE
(
F̂VU

)
Algorithm S CV Full β

Super Learner 0.00 (0.03)

DSA
x, w 0.13 (0.85) 0.12 (0.80) 0
x, w` 0.09 (0.57) 0.07 (0.46) 0

GAM (degree)
2 x, w 0.09 (0.58) 0.07 (0.49) 0

x, w` 0.08 (0.51) 0.07 (0.45) 0
3 x, w 0.08 (0.54) 0.07 (0.43) 0

x, w` 0.08 (0.51) 0.06 (0.41) 0
4 x, w 0.08 (0.53) 0.06 (0.40) 0

x, w` 0.08 (0.50) 0.06 (0.39) 0

GBM (degree)
2 x, w 0.07 (0.49) 0.05 (0.32) 0

x, w` 0.07 (0.49) 0.05 (0.32) 0
4 x, w 0.08 (0.50) 0.04 (0.29) 0

x, w` 0.07 (0.49) 0.05 (0.32) 0
6 x, w 0.07 (0.49) 0.04 (0.28) 0.12

x, w` 0.07 (0.49) 0.04 (0.29) 0

GLM
x, w 0.11 (0.74) 0.10 (0.67) 0
x, w` 0.08 (0.54) 0.08 (0.50) 0

GLMnet (α)
0.25 x, w 0.12 (0.79) 0.10 (0.67) 0

x, w` 0.08 (0.55) 0.08 (0.50) 0
0.5 x, w 0.11 (0.73) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0
0.75 x, w 0.11 (0.75) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0

GP (Bessel)
(1, 0.5, 2) x, w 0.13 (0.83) 0.04 (0.25) 0

x, w` 0.16 (1.03) 0.03 (0.21) 0
(1, 1, 2) x, w 0.14 (0.90) 0.04 (0.27) 0

x, w` 0.15 (0.97) 0.03 (0.22) 0
(1, 2, 2) x, w 0.16 (1.08) 0.04 (0.29) 0

x, w` 0.17 (1.10) 0.04 (0.25) 0

GP (linear)
x, w 0.11 (0.74) 0.10 (0.67) 0
x, w` 0.08 (0.54) 0.08 (0.50) 0

GP (RBF)
x, w 0.22 (1.45) 0.02 (0.16) 0
x, w` 0.22 (1.46) 0.01 (0.08) 0

GP (poly.)
(1, 0.001, 1) x, w 0.11 (0.74) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0
(1, 0.01, 1) x, w 0.11 (0.74) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0
(1, 0.1, 1) x, w 0.11 (0.74) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0
(1, 1, 1) x, w 0.11 (0.74) 0.10 (0.67) 0

x, w` 0.08 (0.54) 0.08 (0.50) 0

M̂SE
(
F̂VU

)
Algorithm S CV Full β

KNNreg (k)
1 x 0.17 (1.12) 0.00 (0.00) 0.02

x, w 0.11 (0.73) 0.00 (0.00) 0.08
5 x 0.12 (0.76) 0.08 (0.52) 0

x, w 0.08 (0.55) 0.06 (0.38) 0.04
10 x 0.11 (0.73) 0.09 (0.61) 0

x, w 0.08 (0.53) 0.07 (0.43) 0
20 x 0.11 (0.72) 0.10 (0.66) 0.03

x, w 0.09 (0.56) 0.08 (0.50) 0
Kriging

(OK) 0.11 (0.71) 0.00 (0.00) 0
w 0.09 (0.56) 0.00 (0.00) 0
w` 0.07 (0.46) 0.00 (0.00) 0.58

(UK) x 0.11 (0.72) 0.00 (0.00) 0
x, w 0.09 (0.60) 0.00 (0.00) 0
x, w` 0.08 (0.51) 0.00 (0.00) 0

Mean 0.15 (1.00) 0.15 (1.00) 0

Polymars
x, w 0.10 (0.63) 0.04 (0.27) 0
x, w` 0.08 (0.56) 0.05 (0.36) 0

RF
x, w 0.08 (0.50) 0.02 (0.11) 0.06
x, w` 0.08 (0.50) 0.02 (0.12) 0

SVM (Bessel; eps)
(1, 1, 2) x, w 0.09 (0.57) 0.06 (0.43) 0

x, w` 0.08 (0.55) 0.06 (0.42) 0
(1, 2, 1) x, w 0.09 (0.56) 0.08 (0.51) 0

x, w` 0.08 (0.52) 0.07 (0.46) 0
(1, 2, 2) x, w 0.09 (0.56) 0.07 (0.45) 0

x, w` 0.08 (0.55) 0.07 (0.44) 0
SVM (Bessel; nu)

(1, 1, 2) x, w 0.09 (0.57) 0.07 (0.48) 0
x, w` 0.09 (0.61) 0.07 (0.46) 0

(1, 2, 1) x, w 0.1 (0.64) 0.08 (0.56) 0
x, w` 0.08 (0.56) 0.07 (0.48) 0

(1, 2, 2) x, w 0.09 (0.59) 0.07 (0.49) 0
x, w` 0.09 (0.58) 0.07 (0.47) 0

SVM (poly, eps)
(1, 0.001, 1) x, w 0.15 (0.97) 0.14 (0.96) 0

x, w` 0.14 (0.94) 0.14 (0.92) 0
(1, 0.1, 1) x, w 0.12 (0.78) 0.10 (0.69) 0

x, w` 0.08 (0.52) 0.08 (0.50) 0
(1, 1, 1) x, w 0.12 (0.78) 0.11 (0.69) 0

x, w` 0.08 (0.53) 0.08 (0.50) 0.08
(3, 0.001, 1) x, w 0.14 (0.92) 0.13 (0.89) 0

x, w` 0.12 (0.81) 0.12 (0.78) 0
SVM (poly, nu)
(1, 0.001, 1) x, w 0.15 (0.98) 0.15 (0.97) 0

x, w` 0.15 (0.97) 0.14 (0.95) 0
(1, 0.1, 1) x, w 0.11 (0.73) 0.11 (0.70) 0

x, w` 0.08 (0.55) 0.08 (0.53) 0
(1, 1, 1) x, w 0.11 (0.74) 0.11 (0.70) 0

x, w` 0.08 (0.54) 0.08 (0.52) 0
(3, 0.001, 1) x, w 0.14 (0.94) 0.14 (0.92) 0

x, w` 0.13 (0.89) 0.13 (0.87) 0

TPS (GCV) x 0.11 (0.71) 0.08 (0.53) 0
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APPENDIX B. ORACLE INEQUALITY FOR INDEPENDENT, NONIDENTICAL

EXPERIMENTS AND QUADRATIC LOSS

Let On = (O1, . . . , On) ∼ P n
0 be a vector of independent, nonidentical observations, where

each Oi = (Xi, Yi) consists of two components: a d-dimensional covariate vector Xi ∈ Rd, and

a univariate outcome Yi ∈ R. We associate with each Oi an index si ∈ S. The true unknown

data generating distribution for each Oi is denoted P0,Oi
(O) = P0,O|S(O|si) ∈ {P0,O|s : s ∈ S}.

Let Ps,O be the joint distribution of (S,O), defined by a degenerate marginal distribution of

S, I(S = s), and the conditional distribution of O given S = s, PO|s. We can formulate On as

n independent draws (Si, Oi) ∼ P0,(si,Oi), i = 1, . . . , n, with empirical probability distribution

Pn. LetM be a set of possible probability distributions of PO|S. Define a parameter Ψ :M→

Ψ, and let ψ0 = Ψ(P0,O|S) be the true value of that parameter. Let Bn ∈ {0, 1}n be a random

vector indicating splits into a training sample, {i : Bn(i) = 0}, and validation sample, {i :

Bn(i) = 1}. Let p =
∑n

i=1 Bn(i) be the proportion of observations in the validation sample,

and let P 0
n,Bn

and P 1
n,Bn

be the empirical distributions of the training and validation samples,

respectively. Define an average joint distribution: P
1

0,Bn
= (np)−1

∑
i:Bn(i)=1 P0,(si,Oi). Let

L(ψ)(S,O) be a loss function such that for all i, P0,(si,O)L(ψ0) = minψ∈Ψ P0,(si,Oi)L(ψ). Let

{Ψ̂k(Pn) : k = 1, . . . , Kn} be a set of Kn estimators of ψ0. Assume P(Ψ̂k(Pn) ∈ Ψ) = 1 for

all k = 1, . . . , Kn. We write the true cross-validated risk of ψ0 as Θ̃opt = EBn

[
P

1

0,Bn
L(ψ0)

]
.

We denote the true conditional cross-validated risk of any estimator Ψ̂k as

Θ̃n(1−p)(k) ≡ EBn

[
P

1

0,Bn
L
(

Ψ̂k

[
P 0
n,Bn

])]
= EBn

[
1

np

∑
i:Bn(i)=1

P0,(Oi|si)L
(

Ψ̂k

[
P 0
n,Bn

])
(si, Oi)

]
,

and a benchmark (oracle) selector as k̃n(1−p) = argminkΘ̃n(1−p)(k).

We denote the cross-validated risk of any estimator Ψ̂k as

Θ̂n(1−p)(k) ≡ EBn

[
P 1
n,Bn

L
(

Ψ̂
[
P 0
n,Bn

])]
= EBn

 1

np

∑
i:Bn(i)=1

L
(

Ψ̂
[
P 0
n,Bn

])
(si, Oi)

 ,
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and the cross-validation selector as kn = argmink Θ̂n(1−p)(k). Finally, we define a loss-based

dissimilarity dn(ψ, ψ0) ≡ EBn

[
P

1

0,Bn

(
L[ψ]− L[ψ0]

)]
.

Assumptions.

A1. There exists a real-valued M∗
1 <∞ such that

supψ∈Ψ

{
supi,si,Oi

∣∣L(ψ)(si, Oi)− L(ψ0)(si, Oi)
∣∣} ≤ M∗

1 , where the supremum over Oi

is taken over the support of the distribution P0,Oi|si of Oi.

A2. There exists a real-valued M2 <∞ such that

sup
i,ψ∈Ψ

{
VarP0,(si,Oi)

[
L(ψ)− L(ψ0)

]
(S,O)

EP0,(si,Oi)

[
L(ψ)− L(ψ0)

]
(S,O)

}
≤M2.

Definitions. We define the following constants:M1 = 2M∗
1 ; C(M1,M2, δ) ≡ 2(1+δ)2

(
M1

3
+ M2

δ

)
.

Finite sample result. For any δ > 0, we have

E
[
dn

(
Ψ̂kn

[
P 0
n,Bn

]
, ψ0

)]
≤ (1 + 2δ) E

[
dn

(
Ψ̂k̃n(1−p)

[
P 0
n,Bn

]
, ψ0

)]
+ 2 C(M1,M2, δ)

1 + logKn

np
.

(B.1)

Asymptotitic implications. (B.1) has the following asymptotic implications:

logKn

np E
[
Θ̃n(1−p)

(
k̃n(1−p)

)
− Θ̃opt

] n→∞−−−→ 0 =⇒
E
[
Θ̃n(1−p) (kn)− Θ̃opt

]
E
[
Θ̃n(1−p)

(
k̃n(1−p)

)
− Θ̃opt

] n→∞−−−→ 1.

logKn

np
(

Θ̃n(1−p)

(
k̃n(1−p)

)
− Θ̃opt

) p−→ 0 =⇒
Θ̃n(1−p) (kn)− Θ̃opt

Θ̃n(1−p)

(
k̃n(1−p)

)
− Θ̃opt

p−→ 1. (B.2)

(B.2) follows from the fact that, given a sequence of random variables X1, X2, . . ., and a

positive function g[n], E|Xn| = O(g[n]) implies Xn = OP (g[n]). This is a direct consequence

of Markov’s inequality.

25

Hosted by The Berkeley Electronic Press



Proof of theorem. We have

0 ≤ Θ̃n(1−p)(kn)− Θ̃opt (B.3a)

= EBn

[
P

1

0,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
− (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
+ (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
≤ EBn

[
P

1

0,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3b)

− (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
+ (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂k̃n(1−p)

[
P 0
n,Bn

])
− L(ψ0)

}]
= EBn

[
P

1

0,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3c)

− (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂kn

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3d)

+ (1 + δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂k̃n(1−p)

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3e)

− (1 + 2δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂k̃n(1−p)

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3f)

+ (1 + 2δ) EBn

[
P 1
n,Bn

{
L
(

Ψ̂k̃n(1−p)

[
P 0
n,Bn

])
− L(ψ0)

}]
(B.3g)

(B.3a) follows from the definition of Θ̃opt. (B.3b) follows from the definition of the cross-

validation selector kn, such that for all k, Θ̂n(1−p)(kn) ≤ Θ̂n(1−p)(k). Let Rn,kn represent the

first two terms in the last expression, (B.3c) and (B.3d). Let Tn,k̃n(1−p)
represent the second

two terms of the last expression, (B.3e) and (B.3f). The last term, (B.3g), is the benchmark

and can be written as (1 + 2δ)
[
Θ̃n(1−p)

(
k̃n(1−p) − Θ̃opt

)]
. Hence,

0 ≤ Θ̃n(1−p)(kn)− Θ̃opt ≤ (1 + 2δ)
[
Θ̃n(1−p)

(
k̃n(1−p) − Θ̃opt

)]
+Rn,kn + Tn,k̃n(1−p)

. (B.4)

We now show that ERn,kn + ETn,k̃n(1−p)
≤ 2 C(M1,M2, δ) (1 + logKn)/(np). We introduce
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the following notation:

Ĥk ≡ P 1
n,Bn

{
L
(

Ψ̂k

[
P 0
n,Bn

])
− L(ψ0)

}
H̃k ≡ P

1

0,Bn

{
L
(

Ψ̂k

[
P 0
n,Bn

])
− L(ψ0)

}
Rn,k(Bn) ≡ (1 + δ)

[
H̃k − Ĥk

]
− δH̃k

Tn,k(Bn) ≡ (1 + δ)
[
Ĥk − H̃k

]
− δH̃k

Note that Rn,k = EBn [Rn,k(Bn)]; Tn,k = EBn [Tn,k(Bn)]; and that by definition of ψ0, H̃k ≥ 0

for all k. Note also that given an arbitrary k ∈ {1, . . . Kn},

P
[
Rn,kn(Bn) > s | P 0

n,Bn
,Bn

]
= P

[
H̃kn −Hkn >

s+ δH̃kn

1 + δ

∣∣∣∣ P 0
n,Bn

,Bn

]

≤ Kn max
k

P

[
H̃k − Ĥk >

s+ δH̃k

1 + δ

∣∣∣∣ P 0
n,Bn

,Bn

]
.

Similarly for Tn,k̃n(1−p)
(Bn),

P
[
Tn,k̃n(1−p)

(Bn) > s | P 0
n,Bn

,Bn

]
= Kn max

k
P

[
Ĥk − H̃k >

s+ δH̃k

1 + δ

∣∣∣∣ P 0
n,Bn

,Bn

]
.

Conditional on P 0
n,Bn

and Bn, consider the np random variables for which Bn(i) = 1, Zk,i ≡{
L
(

Ψ̂k

[
P 0
n,Bn

])
− L(ψ0)

}
(si, Oi). We can rewrite Ĥk and H̃k in terms of Zk,i,

Ĥk =
1

np

np∑
i=1

Zk,i,

H̃k =
1

np

np∑
i=1

E
[
Zk,i|P 0

n,Bn
,Bn

]
.

Then H̃k − Ĥk is the sum of np mean zero centered random variables. By assumption A1

above, the random variables Zi,k are bounded, with |Zi,k| ≤ M1 a.s. By assumption A2, we
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also have σ2
k,i ≡ Var

[
Zk,i|P 0

n,Bn
,Bn

]
≤M2 E

[
Zk,i|P 0

n,Bn
,Bn

]
, which implies

σ2
k ≡

1

np

np∑
i=1

σ2
k,i ≤M2

1

np

np∑
i=1

E
[
Zk,i|P 0

n,Bn
,Bn

]
= M2H̃k.

We will apply Bernstein’s inequality to the centered empirical mean H̃k − Ĥk and obtain

a tail probability bounded by exp{−npq/c}, where c is a finite, real-valued constant. This

will show that the risk dissimilarities converge at a rate of (logKn)/np. We state Bernstein’s

inequality for ease of reference. A proof is given in Lemma A.2 on page 594 in Györfi et al.

(2002).

Lemma 1 Bernstein’s inequality.

Let Zi, i = 1, . . . , n be independent, real valued random variables such that Zi ∈ [a, b] with

probability one. Let 0 <
∑n

i=1 Var(Zi)/n ≤ σ2. Then, for all ε > 0,

P

(
1

n

n∑
i=1

(Zi − EZi) > ε

)
≤ exp

{
−nε2

2(σ2 + ε(b− a)/3)

}
.

This implies

P

( ∣∣∣ 1

n

n∑
i=1

(Zi − EZi) > ε
∣∣∣ ) ≤ 2 exp

{
−nε2

2(σ2 + ε(b− a)/3)

}
.

By Bernstein’s lemma, for q > 0,

P
[
Rn,k(Bn) > q|P 0

n,Bn
,Bn

]
= P

[
H̃k − Ĥk >

1

1 + δ

(
q + δH̃k

) ∣∣∣ P 0
n,Bn

,Bn

]

≤ P
[
H̃k − Ĥk >

1

1 + δ

(
q +

δσ2
k

M2

) ∣∣∣ P 0
n,Bn

,Bn

]

≤ exp

{
−
(

np

2[1 + δ]2

)(
[q + δσ2

k/M2]
2

σ2
k + M1

3(1+δ)
[q + δσ2

k/M2]

)}
.
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Note that

[q + δσ2
k/M2]

2

σ2
k + M1

3(1+δ)
[q + δσ2

k/M2]
=

[s+ δσ2
k/M2]

2

σ2
k

q+σ2
k/M2

+ M1

3(1+δ)

≥ [s+ δσ2
k/M2]

2

M2

δ
+ M1

3

≥ s
M2

δ
+ M1

3

.

This shows that for q > 0,

P
[
Rn,kn(Bn) > q

∣∣ P 0
n,Bn

,Bn

]
≤ Kn exp {(−npq)/C(M1,M2, δ)} .

In particular, this provides us with a bound for the marginal probability of Rn,kn(Bn),

P [Rn,kn(Bn) > q] ≤ Kn exp {(−npq)/C(M1,M2, δ)} .

As in the proof of theorem 1 in van der Laan et al. (2004) and Dudoit and van der Laan

(2005), for each u > 0, we have

E [Rn,kn ] ≤ u+

∫ ∞
u

Kn exp {(−npq)/C(M1,M2, δ)} dq.

The minimum is attained at un = C(M1,M2, δ) logKn/np and is given by C(M1,M2, δ)(logKn+

1)/np. Thus ERn,kn ≤ C(M1,M2, δ)(1 + logKn)(np). The same applies for ETn,k̃n(1−p)
.

Taking the expected values of the quantities in (B.4) yields the following finite sample

result:

0 ≤ E
[
Θ̃n(1−p)(kn)

]
− Θ̃opt

≤ (1 + 2δ)
(
E
[
Θ̃n(1−p)

]
− Θ̃opt

)
+ 2C(M1,M2, δ)

[
1 + logKn

np

]
.

This completes the proof. �
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