




Table 2: LREC program clinic characteristics (n=15).
Area No.(%)

Urban 6 (40.0)
Rural 9 (60.0)

Clinic Type No.(%)
Referral hospital 3 (20.0)
(Sub) district hospital 7 (46.7)
Rural health center 5 (33.3)

Patients No.(%)
≤ 500 4 (26.7)
501−1000 3 (20.0)
1001−1500 4 (26.7)
> 1500 4 (26.7)
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Figure 1: Histogram of time from eligibility to LREC program initiation.

Patients were followed from the baseline time point defined above until one
of four possible end points:

1. Death
2. Loss to follow-up (LTFU), defined here to be 6.5 months with no clinical

visits
3. Database closure, occurring on 5 March 2009
4. Transfer to a clinic with no LREC program
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For the present study, we were interested in the effect of LREC exposure and
enrollment on the probability of both death and remaining in clinical care. Patients
who do not return for continuing HIV care are subject to higher risk of complica-
tions and health decline (Kissinger, Cohen, Brandon, Rice, Morse, and Clark, 1995,
Samet, Freedberg, Savetsky, Sullivan, Padmanabhan, and Stein, 2003, Giordano,
Visnegarwala, White, Troisi, Frankowski, Hartman, and Grimes, 2005, Giordano,
Gifford, White, Almazor, Rabeneck, Hartman, Backus, Mole, and Morgan, 2007,
Horstmann, Brown, Islam, Buck, and Agins, 2010), placing them at unnecessarily
higher mortality rates. We therefore define our outcome of interest as a composite
of either the occurrence of death or LTFU. Patients were followed until this “fail-
ure” or until censoring due to either end of study or transfer. We aimed to evaluate
the impact of (a) implementation of the LREC program at the clinic, and (b) enroll-
ment into the LREC program after implementation on both retention “in-care” and
survival.

3.1 Observed data

For notational convenience, we defined variables after the occurrence of any of
these end points as equal to their last observed value. Following discretization of
the data, we have a longitudinal data set with time-varying covariates, where the
time points t correspond to 90-day intervals (e.g. 0, 90, 180, ... days). Let W be
the observed baseline time-independent covariates observed at the date the patient
was first eligible for LREC (age at eligibility, CD4 count at start of ART, gender,
indicator that ART regimen is PI-based at eligibility, treated for tuberculosis at start
of ART, indicator at urban clinic at eligibility, and WHO immunologic stage at both
the start of ART and maximum stage prior to start). Let the time-varying variables
from the observed data for each time point t be:

O(t) = (L1(t),Y (t),A1(t),A2(t),C1(t),C2(t)) : t = 0,1, . . . ,K, (1)

where

• L1(t) consists of the most recent measures of time-varying covariate values at
the start of interval t, inclusive of covariates measured at the clinic level (i.e.
calendar date, most recent, nadir, and zenith CD4 count, days since enrolling
into the AMPATH program, an indicator of remaining on ART, pregnancy
status, indicator in WHO stage III or IV, indicator of being treated for tuber-
culosis, clinic type (rural or urban), and an indicator of having at least one
clinic visit in the previous interval).
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• Y (t) is an indicator that the patient is either (a) no longer in care (not seen in
the clinic for 6.5-months) or (b) has died by the end of interval t. It jumps to
and remains at 1 if either event occurs.
• A1(t) is an indicator of the LREC program availability by the end of interval

t. It jumps to and remains at 1 once the program has started.
• A2(t) is an indicator of enrollment into the LREC program by the end of the

interval. It jumps to and remains at 1 at time of enrollment and remains at 0
if A1(t) = 0.
• C1(t) is an indicator that the patient transfers by the end of interval t to a

clinic other than one of the 15 clinics that initiate the LREC program. It also
jumps to and remains at 1 once the patient transfers.
• C2(t) is an indicator of data base closure by the end of interval t. It jumps

to and remains at 1 at the end of the study. Note that although database
closure occurs at a fixed calender date, censoring time due to database closure
remains a random variable due to variability in time of eligibility for LREC.

To simplify notation, we refer to the covariate and outcome nodes collec-
tively as L(t) = (L1(t),Y (t)). Furthermore, we refer to the treatment and censoring
processes together as A(t) = (A1(t),A2(t),C1(t),C2(t)). By additionally defining
L(0) to include our baseline variables W such that L(0) = (W,L1(0),Y (0)), our
observable data for each subject i can be expressed as

Oi = (Li(0),Ai(0),Li(1),Ai(1), . . . ,Li(K +1)) (2)

where K + 1 is our final time point of interest, here equal to 4 (or equiv-
alently 450 days after LREC eligibility). We assume the observed data over all
subjects consists of n copies of Oi

iid∼ P0 ∈M , where P0 is the true underlying dis-
tribution (residing in a statistical model M ) from which the data are drawn.

4 Causal model
A causal model allows us to represent additional knowledge and assumptions as-
sociated with our scientific question that cannot be represented statistically. We
present our causal model M F by making use of structural equation models to
formally present how we assume each variable to be generated. We use a causal
model that treats the 15 clinics as fixed, rather than sampled, and which describes
an experiment in which individual subjects become eligible for LREC at random
times. Specifically, we define the following non-parametric structural equation
model (NPSEM) (Pearl, 2009) to represent our knowledge about the causal pro-
cess that generated the observed data.
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L1(t) = fL1(t)(L̄(t
−), Ā(t−),UL1(t))

Y (t) = fY (t)(L̄(t
−), Ā(t−),UY (t))

for t = 0,1, . . . ,K,K +1

A1(t) = fA1(t)(L̄(t), Ā(t
−),UA1(t))

A2(t) = fA2(t)(L̄(t), Ā(t
−), Ā1(t),UA2(t))

C1(t) = fC1(t)(L̄(t),Y (t
−), Ā(t−),A1(t),A2(t),UC1(t))

C2(t) = fC2(t)(L(0),Y (t
−),C̄(t−),C1(t),UC2(t))

for t = 0,1, . . . ,K

(3)

where U ≡ (UL1(t),UY (t),UA1(t),UA2(t),UC1(t),UC2(t)) are unmeasured ex-
ogenous variables from some underlying probability distribution PU and L(−1) =
A(−1) =∅. For notational convenience, we define t− = t−1.

This causal model specifies how we believe each of the variables in our data
are deterministically generated, with randomness coming only from the unmea-
sured exogenous variables U . It tells us, for example, that individual enrollment
immediately following LREC eligibility A2(0) is generated as a deterministic func-
tion fA2(0) of L(0), program availability A1(0), and an error term UA2(0) drawn from
some underlying population. Additionally, while not explicitly stated in Equation
(3), we note that the deterministic function for enrollment fA2(t) sets A2(t) = 0 with
probability 1 if Ā1(t) = 1, i.e. if the program is not yet available.

Note that censoring due to end of study C2(t) is not a function of time
updated covariates L̄(t) beyond baseline covariates L(0). This is because, while
the values of L(0) may vary due to the calender date at which a subject’s baseline
eligibility occurs, once this date is set for a given subject, the censoring process due
to database closure is deterministic.

Our outcome Y (t) is assumed to be a function of treatment and censoring
A(t) only up to the previous time point, t − 1. This restriction is imposed in or-
der to avoid the possibility of reverse causality, i.e. that death/LTFU (Y (t)) that
occurs in an interval t affects availability/enrollment (A(t)) in the same interval.
Consequently, the effects of availability and enrollment within an interval on the
composite outcome are only captured beginning in the following interval.

5 Target parameter
The outcome at t = 0 is independent of any potential treatment assignments A(t).
As the purpose of this study is to analyze the impact of different levels of treatment
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on the outcome, we conditioned on survival past t = 0. Thus, we had that Y (0) = 0
for all subjects included in the study. That is, all subjects in the study survived past
the first 90 days.

Conceptualizing an ideal hypothetical experiment can help in defining the
target counterfactual parameter of interest. In order to evaluate the effect of expo-
sure to and enrollment in the LREC program, we can conceive of an experiment in
which we compare survival over time under alternative interventions to set time to
program availability, time to enrollment following availability, and under an addi-
tional intervention to prevent censoring. As represented above in the causal model,
these counterfactual outcome distributions are defined in terms of an intervention
on the data-generating mechanism for A(t) : t = 0,1, . . . ,K. In other words, we
intervene to set values of program availability, enrollment, and censoring to some
fixed values of interest at all time points.

Recall that our interest is evaluating both the total effect of exposure to the
LREC program, and the direct effect of this exposure not mediated by individual
level enrollment. Let Ȳā(t∗) denote the counterfactual outcome process over time
t∗ under an intervention to set both time of program availability (ā1) and time of
individual enrollment (ā2). Our target parameter for a given intervention of interest
is EYā(t∗) : t∗ = 1, . . . ,4, where EYā(t∗) is the cumulative counterfactual probability
of failure by time t∗ under intervention ā. As we have conditioned on surviving past
t = 0 (the first 90-days of follow-up), our range represents the cumulative probabil-
ity of failure from 180 to 450 days post-eligibility.

When contrasting counterfactual failure probabilities under distinct inter-
ventions, we focused on estimating the absolute risk difference (or average treat-
ment effect). Specifically, we contrasted these counterfactual survival probabili-
ties under the three following interventions: Our first intervention assigns all pa-
tients to have no program availability at all time points (set A1(t) = A2(t) = 0 : t =
1,2, . . . ,K), and forces patients to remain uncensored (set C1(t) = C2(t) = 0 : t =
1,2, . . . ,K). The corresponding 4 counterfactual survival probabilities EYā=00(t∗) :
t∗ = 1, . . . ,4 give us an understanding of survival patterns without the LREC pro-
gram.

The second intervention of interest is to assign all patients to have imme-
diate program availability (set A1(t) = 1 : t = 1,2, . . . ,K), but not allow any sub-
jects to enroll into the program (set A2(t) = 0 : t = 1,2, . . . ,K). Patients would
again be forced to remain uncensored and the counterfactual survival probability
at each time point EYā=1,0(t∗) : t∗ = 1, . . . ,4 would be calculated. By evaluating
Ψ1,0(P0) = EYā=1,0(t∗)−EYā=0,0(t∗) : t∗ = 1, ...,4, we target the controlled direct
effect of exposure to the program if enrollment were prevented.

The third intervention is to assign all patients to have both immediate avail-
ability and enrollment (set A1(t) = A2(t) = 1 : t = 1,2, . . . ,K). Again, censoring
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would be prevented and the counterfactual survival probability at each time point
EYā=1,1(t∗) : t∗= 1, . . . ,4 would be calculated. Evaluating Ψ1,1(P0)=EYā=1,1(t∗)−
EYā=1,0(t∗) : t∗ = 1, . . . ,4 allows us to target the total effect of enrollment in a sce-
nario where all subjects experienced immediate availability.

5.1 Identifiability

5.1.1 Sequential randomization

To establish identifiability of our causal parameter, we first make the assumption of
sequential randomization. That is, we assume that

Ȳā(t∗)⊥⊥ A(t)|L̄(t−1), Ā(t−1) : t = 0, ..,3. (4)

This is equivalent to assuming that the measured covariates are sufficient to control
for confounding of our treatment effect. In this context, the major concern for
violation of this assumption is that among patients classified as clinically stable,
some patients are healthier or at lower risk of loss than others in ways not captured
by the measured covariates, and these patients are differentially enrolled into the
program.

5.1.2 Positivity

In addition, we assume that a subject had a positive probability of following each
regime of interest (no availability, immediate availability and no enrollment, and
immediate availability and enrollment) at each time point, regardless of their ob-
served past:

P(A(t)= a(t)|L̄(t−1)Ā(t−1)= ā(t−1))> 0 a.e. for t = 0, ..., t∗−1, ā∈{00,10,11}.
(5)

Patients losing their eligibility for the LREC program posed a particular threat to
this assumption. Our study population is comprised of patients initially deemed eli-
gible for the LREC program due to their low risk. However, a noticeable proportion
of the study population (32%) lost their eligibility at some point during follow-up.
Once these patients were ineligible, they had a 0 probability of subsequent program
enrollment. To circumvent this potential positivity violation, we considered only
treatment interventions which avoided enrollment at these time points. For exam-
ple, consideration of patients who enroll immediately into the program would not
encounter this issue, as all patients are eligible at the start of follow-up. Consid-
eration of patients never enrolling into the program is also valid, as patients who
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are not eligible do not enroll. We further note that patients who lost their eligibility
after enrollment into the LREC program were still considered to be enrolled. Sim-
ilarly, patients who transferred to a new clinic without availability after receiving
care at a clinic where LREC was available were considered exposed to the LREC
program (in other words, we conducted an intent to treat type analysis of the effect
of both availability and enrollment).

Under the assumptions of positivity and sequential randomization, the g-
formula (Robins, 1986, 1987) identifies the distribution that the observed data would
have had under a counterfactual treatment, even when time-dependent confounders
are present and are affected by prior components of the specified treatment. For our
parameter, the standard g-computation representation for our target parameter is

EYā(t∗) = ∑
l̄(t∗)

E(Y (t∗)|L̄(t∗−1) = l̄(t∗−1), Ā(t∗−1) = ā(t∗−1))·

t∗−1

∏
j=0

P(L( j) = l( j)|L̄( j−1) = l̄( j−1), Ā( j−1) = ā( j−1)

(6)

where the right hand side is a parameter of the observed data distribution P0.
The g-computation recursive algorithm for estimating the cumulative probability of
failure, introduced by Robins (2000b) and expanded in Bang and Robins (2005),
calls upon the tower rule of conditional expectations for this identity, suggesting
an iterative conditional expectation (ICE) approach to estimating our parameters.
Using their results, our parameter can therefore instead be expressed as

E[E[· · ·E[E[Y ā(t∗)|L̄ā(t∗−1)]|L̄ā(t∗−2)] · · · |L̄ā(0)]] (7)

where Lā(t) is the variable L(t) from the post intervention distribution resulting
from setting Ā(t−) = ā(t−) and the expectations are taken with respect to this dis-
tribution. Thus, given L̄ā(t) is equivalent to conditioning on L̄(t), Ā(t) = ā(t).

6 Estimation
The ICE approach has a number of advantages to the more simple standard g-
computation procedure. The most noticeable among them is that we are only re-
quired to estimate the iteratively defined conditional expectations as opposed to the
entire conditional densities of the covariate process L(t). We therefore use the ICE
approach here. A small disadvantage is that these set of regressions must be run
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separately for each desired treatment rule, ā, whereas in using the original formu-
lation one only has to estimate the conditional densities once. We note however
that this is a very small price to pay when compared against the substantial gain
achieved by not having to estimate the entire joint density, especially when dealing
with high dimensional data.

While the ICE approach already provides a considerable advantage towards
our estimation goals, using targeted minimum loss-based estimation (van der Laan
and Gruber, 2011) provides a further gain. This approach, which builds upon the
double robust ICE estimator of Bang and Robins (2005), solves the derived effi-
cient influence function D(P) for our estimand within a substitution based setting.
This removes the bias associated with the untargeted minimization of a global loss
function for the density of the data. It is also known to be double robust, in that
consistent estimation of the target parameter is obtained if either of the treatment
or outcome distributions are estimated consistently. This approach is guaranteed
to respect the parameter constraints implied by our statistical model. An R pack-
age titled ltmle has been developed which implements this estimator (Schwab,
Lendle, Petersen, and van der Laan, 2014, Petersen, Schwab, Gruber, and Blaser,
2013). This package takes longitudinal data supplied in wide format and estimates
our target parameter for each specified treatment rule ā.

A number of options are available to users of the ltmle R package. For
example, the probabilities of treatment and censoring A(t) at each time point (for
the specified treatment rule ā) can be separately estimated and subsequently fed into
the estimation procedure, rather then being fit within. This allows the analyst the
option of pooling the observations over all time points and estimating probabilities
within this pooled sample, as opposed to fitting separate models for each time point.
Doing so provides a lower variance in estimates of the treatment mechanisms at the
cost of potentially higher bias.

An additional advantage of pooling over all observations in estimating our
treatment and censoring mechanisms is that we can use additional data that is not
included in modeling the ICEs. That is, data observed beyond the final time point
t∗ can be used to aid in estimating the probabilities of treatment for A(t) : t =
0,1, . . . , t∗−1. This can be advantageous and promotes stability in the estimates by
borrowing information across all time points. Specifically, it helped in the present
study in estimating our censoring from transfer mechanism, due to the extremely
small number of transfers observed. For this study, we choose to pool across obser-
vations to fit the treatment mechanisms though note that the decision between the
two did not significantly affect the parameter estimates.

An additional package option is the ability to pool over all subjects when
estimating the ICEs irregardless of observed treatment, as opposed to stratifying
the data and using only subjects following the treatment rule specified. This choice
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implies an analogous bias-variance trade off. Pooling over subjects regardless of
treatment history potentially allows for more stable estimates of the ICEs due to the
smaller variance. This option is helpful when the number of time points is large and
the number of persons following a particular treatment regime over all time points
is small.

Use of the ltmle R package requires that the data be provided in a wide
format and with a time-ordering of the covariates. In doing so, two options are
available for the L(t) node at each time point t, i.e. L1(t),Y (t) or Y (t),L1(t). In
our causal model in Section 4, the L(t) node is not affected by the specified order.
Therefore, use of either ordering will suffice in our study. We additionally note,
however, that even if the time-ordering did matter and our outcome of interest Y (t∗)
were, say, dependent upon the covariates L1(t∗), there is still no need to condition
on L1(K + 1) for the sake of estimating our target parameter as the efficient influ-
ence function D(P) for our parameter based on the full data O is the same as the
efficient influence function based on reduced data Or = O/L1(K +1). We provide
a short proof for this in the Appendix.

6.1 Super Learning the nuisance parameters

Consistent, asymptotically linear, and efficient estimation of our target parameter
requires that the treatment and censoring A(t) mechanisms as well as ICEs be es-
timated in a consistent manner and at a fast enough rate, i.e. op(1/

√
n). Using

parametric models to do this requires correct specification of the functional form
for the conditional densities. Given that we do not know a priori the form of the
true probability distribution P0 and the extreme unlikeliness that a simple paramet-
ric specification will result in a correctly specified model, use of these models will
most likely result in overly biased estimates which will approach statistical signifi-
cance with probability 1 as sample size increases regardless of whether a treatment
effect exists. In other words, the use of misspecified parametric models elevates the
risk of obtaining significant findings even if no true treatment effect is present.

An alternative approach is to use data-adaptive non-parametric methods
which reside in a much larger statistical model or set of distributions. Examples
include gradient boosting machines (Friedman, 2001, 2002), neural networks (Mc-
Culloch and Pitts, 1943), and k-nearest neighbors (Altman, 1992). In deciding
which method to use, we recommend using the ensemble machine learning ap-
proach Super Learner, which is based on V-fold cross validation and implemented
in the R package titled SuperLearner (Polley and van der Laan, 2014). This algo-
rithm takes a user-supplied loss function (chosen to measure performance) and a li-
brary of algorithms, which can include parametric models as well as non-parametric

Hosted by The Berkeley Electronic Press



or machine learning algorithms such as those listed above. It uses V-fold cross val-
idation to chose the convex combination of these algorithms that performs best on
independent data (derived from internal data splits). If, as is likely, none of the
algorithms in the library achieves the rate of convergence one would have with a
correctly specified parametric model, the Super Learner will still perform asymp-
totically at least as well as the best algorithm in the library. Otherwise, it achieves an
(almost) parametric rate of convergence. Furthermore, the derived oracle inequal-
ity showing the asymptotic performance also shows that the number of candidate
algorithms considered in the cross-validation procedure can be polynomial in size
proportional to the number of observations (van der Laan and Dudoit, 2003, van der
Vaart, Dudoit, and van der Laan, 2006, van der Laan et al., 2007). Therefore, a large
number of algorithms can be considered, which can grow with the number of ob-
servations, without fear of hampering the Super Learner’s performance.

To use Super Learning, a loss function must be chosen and a user-specified
library provided. We chose the non-negative log loss function for its desired steeper
risk surface, as this function penalizes incorrect probabilities more severely than
the more commonly used squared error loss. A number of default candidates are in-
cluded in the SuperLearner package that were used here. These include the overall
mean, main terms logistic model, step-wise regression with AIC (Hoerl and Ken-
nard, 1970), generalized additive model (Hastie and Tibshirani, 1990), Bayesian
generalized linear model (Gelman, Jakulin, Pittau, and Su, 2008), k-nearest neigh-
bors (Altman, 1992), LASSO (Tibshirani, 1996), ridge regression (Hoerl and Ken-
nard, 1970), neural net (McCulloch and Pitts, 1943), multivariate adaptive poly-
nomial spline (Friedman, 1991), generalized boosted regression model (Friedman,
2001, 2002), and support vector machine (Boser, Guyon, and Vapnik, 1992, Cortes
and Vapnik, 1995). Additionally, most of the algorithms have tuning parameters
which can result in better candidate performance. To ensure that we were achieving
satisfactory performance, we used different tuning parameters as additional can-
didates in the ensemble for the generalized additive models, k-nearest neighbors,
neural nets, and generalized boosted regression models. We additionally used 4
user-specific parametric models as candidates in the library. The Super Learner fits
were constructed using all potential confounders, listed above in Section 3.1 as W
and L1(t) for each time point t.

Of particular concern to the analyst when deciding on which candidates to
include in the Super Learner library is the explicit condition that the candidates
not be too data adaptive. This is because the empirical process conditions for the
asymptotic linearity of our estimator require that we work within a Donsker class of
estimators (van der Laan, Rose, and Gruber, 2009). Indeed, we have seen that algo-
rithms that tend to overfit the empirical data, such as the machine learning algorithm
random forest, will negatively impact our estimators. We therefore excluded these
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algorithms from our library, though note that such algorithms could still be used
in a cross-validated parameter estimation approach such as cross-validated targeted
minimum loss-based estimation (Zheng and van der Laan, 2010).

Regarding the pooling of observations across time for the treatment mech-
anism, one further possible option is to use a Super Learner library that is doubled
by including estimates from both the time stratified and pooled approach. Ensem-
ble weights could then be calculated based on the best performing candidate in
this larger library and subsequently fed into the ltmle package. Consequently, we
continue benefiting from the borrowed information at different time points and si-
multaneously protect ourselves from the asymptotic bias of the previous approach.
We opted not to additionally use the stratified approach, due to the computational
intensity required of the approach.

6.1.1 Initial ICE fits

In using non-parametric estimators for the estimation of the ICEs, we may poten-
tially disregard the global constraints implied by our statistical model. While all the
estimators considered here are expected to work well at time t = t∗ where the out-
come being modelled is binary, their use at t < t∗ where the outcome being modelled
is known to fall within the interval [0,1] can present issues. For example, continu-
ing to treat the outcome being modelled as binary may result in programmatic errors
since many of the algorithms, such as Support Vector Machines or k-nearest neigh-
bors, require that the outcome be supplied in classes or as factors. Alternatively,
modelling the outcome continuously may result in extrapolations with estimates
greater than 1 or less than 0. As our expectation is known to fall within [0,1], this
would result in violations of the constraints of the outcome being modelled.

For each of the algorithms facing this potential issue, we implemented three
approaches aimed at ensuring that estimates remained within the constraints. All
three were used in the Super Learner library, allowing us to objectively compare
the performance of each approach. We define each of the conditional expectations
from Equation (7) to be Q̄0,L(t) such that, for example, Q̄0,L(t∗) ≡ E[Y ā(t∗)|L̄ā(t∗−
1)] and Q̄0,L(t∗−1) ≡ E[Q̄0,L(t∗)|L̄ā(t∗− 2)]. Let each estimator of the conditional
expectation within the Super Learner library at time t be denoted as Q̄ j

n,L(t) for
j ∈ 1,2, . . . ,J where J is the total number of candidates in the Super Learner library.
We considered

1. Simply truncating Q̄ j
n,L(t) at both 0 and 1.

2. Taking the logit transformation of the outcome being modelled and truncat-
ing at a fixed threshold τ (set here to be 0.0001). We then modelled the
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transformed outcome on a continuous scale and took the inverse logit trans-
formation on the fitted values.

3. Stratifying the observations by whether they were within the (0,1) open in-
terval or within {0,1}, i.e. whether they were continuous within the (0,1)
interval or dichotomous with only values of 0 or 1. The former were fit on
a continuous scale after taking the logit transformation, while the latter were
modelled as a binary outcome.

We emphasize that use of Super Learner for estimation of the treatment
mechanisms and ICEs provides two important primary benefits. Firstly, its use
helps ensure the conditions for the asymptotic linearity of our estimator and the
corresponding statistical inference are met by ensuring the consistent estimation
of both the intervention mechanism and the iteratively defined conditional expec-
tations. This allows us to establish robust confidence intervals for our estimator.
Secondly, we gain efficiency in that we get an asymptotically efficient estimator if
both the treatment mechanisms and ICEs are estimated consistently at fast enough
rate. Thus, as long as at least one of the library candidates for each of the nuisance
parameters achieve this optimal rate, our approach will have the lowest variance
among all regular asymptotically linear estimators. Further, even if we fall short
of this goal, the improved estimation of both nuisance parameters offered by Super
Learner will generally improve finite sample efficiency.

7 Results
Among the 15 clinics implementing the LREC program, a total of 16,513 subjects
(31 % male) were found to be eligible for the program, of which 16,479 survived
past t = 0. As we only modelled survival up to 450 days, we report figures with
follow-up truncated at that point. After discretizing the data, these patients con-
tributed a total of 17,668 person-years of follow-up to the analyses. From these
subjects 1,206 failure events were observed, of which 1,102 were losses to follow-
up and 104 were deaths. All failure events observed at t = 1 were deaths, since our
definition of loss to follow-up required at least 6.5 months to pass before a subject
could be lost to follow-up. A small number of subjects (n=128) were censored due
to transfers to non-LREC clinics, while 3,889 subjects reached the end of study
prior to t = 4 and prior to experiencing a failure event and were administratively
censored. Table 3 shows the characteristics of the patients conditioning on survival
past t = 0.
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Table 3: Characteristics of 16,479 patients at LREC eligibility (conditioning on
survival past t = 0).

Count (%)
Age (years)
<30 2,793 (17%)
30-39 7,017 (43%)
≥40 6,669 (40%)

Sex
Female 11,441 (69%)
Male 5,038 (31%)

CD4 cell count (cells/µL) at ART start
<200 9,754 (59%)
200-349 2,313 (14%)
350-499 543 (3%)
≥500 387 (2%)
Unknown 3,482 (21%)

CD4 cell count (cells/µL) at baseline
<200 0 (0%)
200-349 10,125 (61%)
350-499 4,016 (24%)
≥500 2,334 (14%)
Unknown 4 (0%)

PI-based ARV regimen
No 15,600 (95%)
Yes 879 (5%)

Max WHO stage prior to ARV start
I/II 7,696 (47%)
III/IV 8,373 (51%)
Unknown 410 (2%)

A small proportion of subjects died (42), were lost to follow-up (286), or
were censored (60) before the LREC program became available. Of the 16,050 sub-
jects who were at some point exposed to the program, most (15,294) experienced it
by 1-year from baseline. Almost half of the study population began follow-up after
the LREC program had already initiated, as indicated by the large spike in the cu-
mulative incidence at time 0 (Figure 2). A noticeable spike was also seen at 1-year
after baseline, representing the patients who had their first eligibility truncated at
1-year as stated in Section 3.
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Patients who were not exposed to the LREC program could not enroll. Fur-
thermore, once the LREC program was available, decisions on whether to enroll
subjects rested upon the treating clinicians or clinical officers. Consequently, only
3,832 subjects were enrolled. As expected, subjects who were healthier were more
likely to enroll into the LREC program. For example, univariate analyses showed
that subjects who had higher CD4 counts, were receiving ARV, had a WHO stage I
or II, were seen in clinics less often, and were not being treated for tuberculosis had
higher probabilities of enrolling. Additionally, subjects from (sub) district hospitals
and rural health centers (compared to referral hospitals), with fewer missed clini-
cal visits, not on protease-inhibitor based regimen, and who were not pregnant also
had higher probabilities of enrolling. We note that despite listing non-pregnancy
as a criteria for being at low risk, a small number of subjects (18) enrolled while
pregnant. Figure 2 shows the cumulative incidence of LREC availability and en-
rollment. Cumulative incidence of enrollment by 90 and 360 days after baseline
was 7% (95% CI: 6.3%, 7.1%) and 19% (95% CI: 18.8%, 20.1%), respectively.
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Figure 2: Cumulative incidence of LREC availability and enrollment and 95% con-
fidence interval.

As stated in Section 3, all patients in our study started follow-up eligible for
the LREC program, leading to low or no variance in many of the confounders at
early time points with a skewness towards the healthier values. During follow-up,
however, many subjects who did not enroll subsequently became less healthy re-
sulting in decreased probabilities of subsequent enrollment. These covariates mea-
suring their health and enrollment probabilities therefore represent classical time-
dependent confounding and should be adjusted for appropriately (Robins et al.,
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2000a). Indeed, 3,920 subjects were found to have lost their eligibility prior to en-
rollment and prior to 1-year, precluding interventions to evaluate a range of different
enrollment times, as discussed in Section 5.1.2.

Unadjusted analyses using the Kaplan-meier estimator showed overall high
probabilities of in-care survival among all subjects (Figure 3). Those with immedi-
ate LREC availability who never enrolled had noticeably lower in-care survival than
subjects never experiencing LREC availability. For example, at t = 4 the propor-
tion of subjects still alive and in care was 0.77 for those not enrolling into LREC,
compared to 0.93 for the group of subjects never experiencing LREC availability
and 0.94 for subjects enrolling into LREC immediately. Conversely, those with
immediate enrollment into the program had the highest survival probabilities. Dif-
ferences in survival probabilities between treatment groups increased with time,
with the largest differences seen between subjects with immediate enrollment and
those with LREC availability never enrolling.
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Figure 3: Unadjusted Kaplan-Meier survival curves.

The cross-validated risks (using the non-negative log likelihood loss) for the
treatment and censoring mechanisms are shown in Figure 4 under various models
and algorithms. While observations at all time points were used in the mecha-
nism fits, our interest is only in treatment interventions at t ≤ 3. We therefore
only calculated the risks using those time points. As expected, the Super Learner
fit outperformed all of the candidate estimators in the supplied library, as well as
the cross-validation selector (i.e. discrete Super Learner, which is equivalent to
choosing the single algorithm in the library with the lowest cross validated risk).
Compared to the mean model, which assumes no confounding and does not control
for any confounders, the Super Learner fits for the LREC availability and end of
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study mechanisms showed an immense decrease in cross-validated risk. This gain
was also noticeable when compared to the candidate model that only controls for
time. The Super Learner fit for the enrollment mechanism also outperformed the
mean model, though to a smaller degree. No noticeable gain was seen in the trans-
fer mechanism, presumably due to the extremely low number of transfers observed
(218). We did not present the cross-validated risks for the ICE fits as they are too
numerous to describe in detail, though note that they were similar to fits for the
treatment and censoring mechanisms.

Adjustment for potential confounders using the Super Learner fits resulted
in relatively small updates of the survival curves (Figure 5). Subjects enrolling
immediately into the LREC program at eligibility continued to have the highest
survival probabilities, while those with immediate availability not enrolling had the
lowest. Tables 4 and 5 show the calculated average treatment effects between the
different interventions. Confidence intervals and p-values were calculated based
on influence functions. As implied by the survival curves, immediate enrollment
into the LREC program at eligibility had a beneficial effect relative to never having
LREC available, while having LREC immediately available and never enrolling
was adverse. For example, at t = 4 the probability of survival for subjects with
immediate enrollment was 0.93 (95% CI: 0.91, 0.95) and 0.87 (95% CI: 0.86, 0.87)
for subjects with immediate availability never enrolling. For subjects without LREC
availability, it was 0.91 (95% CI: 0.90, 0.92). Similar to the unadjusted estimates,
the treatment effects increased with time. All estimates after t = 1 showed statistical
significance.

Table 4: Unadjusted time-specific average treatment effects. (a) compares the in-
tervention immediate LREC availability without enrollment to never having LREC
available; (b) compares the intervention immediate LREC availability and enroll-
ment to immediate LREC availability without enrollment.

(a) EYā=10(t∗)−EYā=00(t∗) (b) EYā=11(t∗)−EYā=10(t∗)

Time (t∗) Estimate (95% CI) p-value Estimate (95% CI) p-value

1 0.00 (0.00,0.00) 0.93 0.00 (0.00,0.00) 0.56
2 0.03 (0.02,0.03) 0.00 -0.04 (-0.05,-0.03) 0.00
3 0.04 (0.03,0.05) 0.00 -0.05 (-0.07,-0.04) 0.00
4 0.06 (0.05,0.08) 0.00 -0.07 (-0.09,-0.05) 0.00

It is possible that near positivity violations can have large effects on esti-
mates of our parameter. To test for this potential issue, we considered different
truncation bounds for our treatment probabilities. Specifically, we considered using
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Figure 4: Cross-valided risk estimates (using non-negative log-likelihood loss) and
95% confidence interval for the treatment and censoring mechanisms. A number
of candidates had cross-validated risks too high to plot in the specified window and
consequently are not shown. Mean: marginal probability, Time: logistic regres-
sion with time variable only, GLM: logistic regression with all confounders, AIC
step: stepwise regression using the Akaike information criterion, GAM: generalized
additive model, KNN: k-nearest neighbors, LASSO: least absolute shrinkage and
selection operator, MARS: multivariate adaptive regression splines, GBM: general-
ized boosted regression models, SVM: support vector machines, Parametric: user
specified logistic models using a subset of the confounders.

a bound of 0.001 and using untruncated probabilities. No differences were seen in
the resulting mean outcome estimates.
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Figure 5: Survival curves adjusting for potential confounders.

Table 5: Time-specific average treatment effects adjusted for measured potential
confounders. (a) compares the intervention immediate LREC availability without
enrollment to never having LREC available; (b) compares the intervention imme-
diate LREC availability and enrollment to immediate LREC availability without
enrollment.

(a) EYā=10(t∗)−EYā=00(t∗) (b) EYā=11(t∗)−EYā=10(t∗)

Time (t∗) Estimate (95% CI) p-value Estimate (95% CI) p-value

1 0.00 (0.00,0.00) 0.81 0.00 (0.00,0.01) 0.58
2 0.02 (0.02,0.03) 0.00 -0.03 (-0.05,-0.02) 0.00
3 0.04 (0.03,0.05) 0.00 -0.05 (-0.07,-0.03) 0.00
4 0.04 (0.03,0.06) 0.00 -0.07 (-0.08,-0.05) 0.00

8 Discussion
We have presented a comprehensive approach to applying longitudinal targeted
minimum loss-based estimation to evaluate the impact of the LREC program. Cor-
responding code for the analyses have been uploaded to an online public reposi-
tory as an R-package at www.github.com/tranlm/lrecImpact. The results support a
somewhat negligible impact of implementation and enrollment, with the lowest sur-
vival among patients with immediate LREC availability never enrolling and similar
survival among the other two interventions (Figure 5). Subjects enrolling immedi-
ately into the LREC program have almost identical survival to subjects never being
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exposed to the program. While the magnitude of difference in survival increased
with time, this difference is modest.

It is important to note that our target population is comprised only of sub-
jects at low risk of mortality. Consequently, the majority of our results are driven
primarily by subjects not remaining in care, as the number of deaths expected to be
observed will be low. In our study, only 104 of the total 1,206 failure events were
from deaths. A sensitivity analysis using only loss to follow-up as the outcome
resulted in similar estimates.

We chose 90-day intervals for our time points in the current study, due to the
understanding that patients would have visits approximately every 3-months. While
smaller intervals could have been chosen, doing so can reduce the probability of fol-
lowing a given regime of interest given observed covariates (i.e. increase the extent
of practical positivity violations), both by decreasing the probability of availability
and enrollment occurring in the first interval, and because the probability of never
enrolling given observed covariates involves taking a cumulative probability of not
enrolling given the observed past over many more time points. Furthermore, the
use of smaller intervals results in more time points, leading to higher computational
costs. On the other hand, the use of larger intervals leads to discarding information
in order to preserve time ordering, which can result in a less complete control for
confounding as well as failure to capture the full causal effect of the intervention.
In order to preserve time ordering, only covariate and outcome values measured at
the end of the prior interval are considered possible causes of enrollment and avail-
ability in an interval. Longer intervals result in more problems with the assumption.
We tested whether there was an effect in our study by re-running the analyses using
30-day intervals. The resulting survival estimates were similar to the ones reported
here.

As with all studies, there are limitations that need to be considered. Firstly,
it is possible that we did not sufficiently adjust for all the potential confounders.
For example, the majority of subjects who had immediate availability and never
enrolled had initial eligibility occur after the LREC program had already started.
These subjects experiencing incidental eligibility (as opposed to prevalent eligibil-
ity from those eligible prior to the LREC program initiation) may have had factors
placing them at higher risk. In addition, in defining our composite outcome ”dead
or lost to follow up” we implicitly assumed that not being seen in clinic for 6.5
months is an undesirable outcome reflecting out of care status. In practice, some of
these patients might represent unreported transfers to care in an alternative clinic. If
true, however, this would have to occur disproportionately among treatment groups
in order to affect the average treatment effect estimates presented here. Lastly, our
analysis considered subjects from the same clinics to be causally independent of
each other. In specifying our causal model we made a key decision to use an in-
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dividual level NPSEM despite our interest in both an individual and a clinic level
exposure variable. Such a formulation assumes that individuals within a given clinic
are causally independent, and in particular, that the exposure received by one patient
does not impact the outcome of another (the assumption of no causal interference)
(Kline, 2011, Tchetgen and VanderWeele, 2012). A different formulation is possi-
ble that uses a hierarchical or clinic level NPSEM and corresponding hierarchical
identification and analysis. We can think of the corresponding experiment as ran-
domizing entire clinics to start the LREC program and within clinics with LREC
available, randomizing patients to enroll. However, the sample size then becomes
driven by the number of clinics and identification would require adequate variabil-
ity in the introduction of LREC across clinics (Tchetgen and VanderWeele, 2012).
We therefore pursued an individual level formulation, while noting the limitations
of this approach. Future research into improved approaches to interference effects
in this setting should be undertaken.

We end by stating that, while not conducted here, this framework can be
easily generalized to include dynamic interventions that are dependent upon other
covariates. For example, there could be interest in intervening to enforce enrollment
only on patients who retain eligibility during follow-up while exempting patients
who do not. Another option to consider is the use of marginal structural models to
smooth treatment effects across time points, as well as availability and enrollment
times (Robins et al., 1999, 2000a, Robins, 2000a, Petersen et al., 2013) though care
should be taken when implementing as the number of regimes with available data
would be limited. These models allow us to project the true underlying dose re-
sponse curve onto a working parametric model, allowing us to conduct inference
on a smaller set of parameters. The ltmle package includes a TMLE for causal pa-
rameters defined as the projection of the survival or failure curve onto user-specified
parametric models.

In summary we applied the targeted learning roadmap to longitudinal data
with a multilevel longitudinal treatment of interest to analyze a nurse-based triage
system among HIV patients in East Africa. This included both definition and iden-
tification of our causal parameter. Issues with positivity were handled with careful
selection of our target causal parameter. Nuisance parameters were estimated us-
ing Super Learner, a cross-validation ensemble algorithm using both parametric
and machine learning algorithms. Observations for the estimation of the treatment
mechanisms were pooled across time points, which aided us in estimating the cen-
soring mechanism due to clinical transfers. Various approaches were implemented
aimed at ensuring the machine learning estimates of the ICEs would respect the
underlying statistical model. Estimates of survival at each time point were then
contrasted by their differences and inference derived using the empirical influence
functions. The results show a somewhat negligible impact of both availability and
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enrollment in the LREC program on in-care survival.
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Appendix
Proof that O and Or have equivalent influence functions.

We provide a proof here showing that the influence function for the full data O
is equivalent to the influence function we solve for in our analysis based on the
reduced data Or = O/L1(K +1).

Firstly, we know the efficient influence function D(P) for the reduced data
Or. Our goal is to compute the efficient influence function for the full data O for
this same parameter (but now as a function on a model on O instead of Or).

Recall that one can compute an efficient influence function D∗(P) by first
deriving an influence function of any estimator, and then projecting this influence
function on the tangent space T (P) of the model. D(P) is one such influence func-
tion since it is the influence function of the TMLE ignoring L1(K + 1). Thus, the
desired efficient influence function is D∗(P) = π(D(P)|T (P)) where π is the pro-
jection operator acting onto T (P).

Now, we note that the likelihood of O can be factorized as P(L1(K+1)|Y (K+
1))P(Or). Thus, the tangent space is the orthogonal sum of the tangent space T1(P)
of the first factor P(L1(K + 1)|Y (K + 1)) and the tangent space Tr(P) of P(Or).
Consequently, π(D(P)|T (P)) = π(D(P)|T1(P)) + π(D(P)|Tr(P)). However, the
target parameter is only a function of P(Or), such that P(L1(K + 1)|Y (K + 1))
is actually a nuisance parameter. Because the efficient influence function is al-
ways orthogonal to a nuisance tangent space (i.e. the space of scores one gets
by varying the nuisance parameters), it is also orthogonal to the tangent space of
P(L1(K+1)|Y (K+1)). It follows that D∗(P) = π(D(P)|Tr(P)) (i.e. the component
in T1(P) is zero).

However, D(P) is the efficient influence function of the target parameter
based on Or and is therefore an element of the tangent space of P(Or), so that D(P)
is in Tr(P). This results in π(D(P)|Tr(P)) = D(P), which completes the proof that
D∗(P) = D(P). That is, the efficient influence function of our parameter based on
Or is the same as the efficient influence function of our parameter based on O.
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