
1 Introduction

Bivariate right censored data arises when there are two time to event vari-

ables of interest (T1, T2) in which for some observations, a process (inde-

pendent of the event of interest) prevents us from observing the full time

to event of one or both time variables. This process is represented by the

censoring variables (C1, C2). Thus in a bivariate right censored data set

we are seeing n i.i.d copies of Zi = (Y1i, Y2i, ∆1i, ∆2i) (i = 1, 2, . . . , n)

, where Y1i ≡ T1i ∧ C1i , Y2i ≡ T2i ∧ C2i and ∆1i ≡ I(T1i ≤ C1i) and

∆2i ≡ I(T2i ≤ C2i. Here (T1i, T2i) ∼ F (with corresponding bivariate sur-

vival function S) and (C1i, C2i) ∼ G, where F and G are unspecified and

(T1, T2) is independent of (C1, C2). Note that Zi ∼ PF,G for a distribution

indexed by F and G. Let µ = µ(F ) be the parameter of interest. A typical

parameter of interest is the survival function µ = S(t1, t2) at a given point

(t1, t2).

There are several existing non-parametric estimators of the bivariate

survival function. Some prominent estimators include those of Dabrowska

(1988), Prentice and Cai (1992a), Pruitt (1991b), and van der Laan (1996b),

among others. It is known that the NPMLE for continuous data is not con-

sistent (Tsai, Leurgans and Crowley, 1986). Thus many of the existing

bivariate estimators including Dabrowska and Prentice-Cai are explicit esti-
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mators based on respresentations of the bivariate survival function in terms

of distribution functions of the data.

Pruitt (1991b) proposed an estimator which is the solution of an ad hoc

modification of the self-consistency equation. Pruitt’s estimator tackles the

non-uniqueness of the original self-consistency equation of the NPMLE by

estimating conditional densities over the half-lines implied by the singly-

censored observations. van der Laan (1996b) proves uniform consistency,

√
n-weak convergence, and validity of the bootstrap of Pruitt’s estimator.

However this estimator is not asymptotically efficient and its practical per-

formance is not as strong as that of Dabrowska, Prentice-Cai and van der

Laan (van der Laan, 1997).

The Dabrowska and Prentice and Cai estimators have been shown

to have good practical performance (Bakker, 1990, Prentice and Cai,

1992b, Pruitt, 1993, van der Laan, 1997), but are not, in general, non-

parametrically efficient. Dabrowksa’s estimator is based on a clever rep-

resentation of a multivariate survival function in terms of its conditional

multivariate hazard measure. The Prentice-Cai estimator is related to

Dabrowska’s except that it also uses the Volterra structure suggested by

Bickel (see Dabrowska 1988). Also, as these estimators are based on smooth

functionals of the data, results such as consistency, asymptotic normality,
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correctness of the bootstrap, consistent estimation of the variance of the in-

fluence curve all hold by application of the functional delta method: see Gill

(1992) and Gill, van der Laan and Wellner (1995). In fact, both Prentice-

Cai and Dabrowska are “locally” efficient in the sense that both are efficient

at complete independence between T1, T2, C1 and C2 as proved in Gill, van

der Laan and Wellner (1995).

The “Sequence of Reductions NPMLE,” or SOR-NPMLE of van der

Laan (1996b) makes use of the observation of Pruitt (1991a) that the incon-

sistency of the NPMLE is due to the fact that singly-censored observations

imply half-lines for T which do not contain any uncensored observations.

To deal with this problem, van der Laan proposes to interval censor the

singly censored observations in the sense that he replaces the uncensored

component, say T1i of the singly censored observations by the observation

that T1i lies in a small predetermined interval around T1i. Van der Laan

(1996) also proposes a further reduction based on the discretization of the

Ci’s to facilitate factorization of the joint likelihood into an F part and a

G part to avoid having to estimate G. This estimator was shown to have

good practical performance (van der Laan, 1997) in comparison with the

Dabrowksa, Prentice Cai and Pruitt estimators for small intervals around

the uncensored components of singly censored observations. In van der Laan
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(1996b) it is shown that if the reduction of the data converges to zero slowly

enough, then the SOR-NPMLE is asymptotically efficient.

As noted above, the Dabrowska, Prentice-Cai and Pruitt estimators are

not, in general, efficient estimators. As the SOR-NPMLE of van der Laan is

“globally” efficient, a larger sample size may be necessary before its asymp-

totic properties take effect (this need for a larger sample size becomes more

obvious when generalizing the estimator to higher dimensions). In addition,

the SOR-NPMLE requires a choice of bandwidth. We propose a new class

of estimators that is guaranteed to be consistent and asymptotically normal,

is efficient if user supplied estimators for F are consistent, and can overcome

the “curse of dimensionality” by guessing a lower dimensional model for F

and thus can realize good small sample performance.

We will assume

G(T1, T2) > δ > 0 F -a.e., (1)

which establishes the desired invertibility of the information operator. How-

ever, we note that our locally efficient doubly robust estimator, which uses

user supplied estimators Fn and Gn of F and G, respectively, will still be

CAN if Fn is consistent for the true F , even when assumption (1) is violated.

Artificial censoring: The condition (1) will be true if the distribution of

(T1, T2) has compact support contained in a rectangle [0, τ1] × [0, τ2] ⊂ IR2
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and Ḡ(τ1, τ2) > δ > 0. Consequently, as proposed in van der Laan (1996a,b),

one can artificially censor the data so that this assumption holds in the fol-

lowing manner: given a (τ1, τ2) satisfying Ḡ(τ1, τ2) > 0, if T̃j > τj , then set

T̃j = τj and ∆j = 1, j = 1, 2. The artificially censored data now follows a

distribution PFτ ,G, where Fτ equals F on [0, τ1) × [0, τ2) and F (τ1, τ2) = 1

and Ḡ(τ) > 0, as required. This means that we can still estimate the bi-

variate distribution F on [0, τ1) × [0, τ2) with the artificially censored data

structure. In practice, this means that we obtain more robust estimators of

F on this rectangle.

The locally efficient (LE) estimator takes estimators Fn and Gn of the

bivariate distributions F and G, respectively, and maps them to an esti-

mator ŜLE of the bivariate survivor function S. We propose an estimator

which uses a consistent, non-parametric estimator (such as Dabrowska’s) for

G, and a lower dimensional (semi-parametric or parametric) model for F ,

which has two beneficial properties: one, using a consistent estimator for G

guarantees that the resulting estimator ŜLE will be consistent and asymp-

totically normal, and two, our simulation studies indicate that using a lower

dimensional model for F (with Dabrowska for G) produces excellent practi-

cal performance (see simulations in our technical report and our simulation

section). The resulting LE estimator will be a consistent, asymptotically
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normally distributed estimator of S, and will be efficient if the user supplied

estimator for F is consistent. In addition, our simulation studies indicate

that if the model for F is misspecified (namely Fn → F1 6= F ), the estimator

is still stable and consistent, and produces surprisingly good small sample

performance; the practical finding that it is better to parametrize F than it

is to parametrize G might be partly explained by the fact that the estima-

tor at inconsistent Fn is more efficient at a nonparametric model for G than

it is at a parametric or semiparametric submodel for G (see Theorem A).

Finally, in many applications one always observes (C1, C2) so that G can be

well estimated with the empirical distribution of (C1i, C2i), i = 1, . . . , n.

In this paper we will first describe the LE estimator for bivariate right

censored data. We will show how to obtain an estimate of the influence curve

(IC) of ŜLE which allows us to estimate the variance of ŜLE and construct

confidence intervals for our resulting estimate. In subsection 2.3 we present

an asymptotic theorem establishing a formal local efficiency result for our

proposed estimator. In section 4 we will present the some of our results of

a simulation study examining the performance of the LE estimator relative

to Dabrowska’s estimator, evaluating the amount of “protection” against

misspecification of F or G we get by using LE estimation, and assessing

the performance of estimated (1 − α) confidence intervals. For a complete
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presentation of our simulation study we refer to our technical report. Finally,

in section 5 we will implement the LE estimator on a dataset from a twin

study examining time to onset of appendicitis (Duffy, 1990).

2 Locally Efficient Estimator for Bivariate Right

Censored Data

In this paper we are primarily concerned with the estimation of the bivari-

ate survivor function S of (T1, T2). We will represent this parameter more

generally as µ defined at a point (t1, t2): µ(t1, t2) ≡ S(t1, t2). The one-step

locally efficient estimator is defined as:

µ̂LE(t1, t2) = µ̂0(t1, t2) +
1
n

n∑
i=1

IC(Zi | Fn, Gn, µ̂0(t1, t2)) (2)

where µ̂0(·, ·) is a consistent initial estimator of µ(·, ·) and Fn and Gn are

estimators of F and G, respectively. IC(Zi | Fn, Gn, µ̂0(t1, t2)) is an esti-

mate of the efficient influence curve IC(Zi | F, G, µ(t1, t2)) of the parameter

µ(t1, t2). The IC has a well known representation as defined in Bickel et.

al. (1993) as:

IC(Z | F, G, µ) = AF I−F,G(κ(µ)) (3)

Here AF (·) : L2
0(F ) → L2

0(PF,G) is the score operator for F defined as

E(· | Z), IF,G : L2
0(F ) → L2

0(F ) the information operator IF,G defined
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as AT
G(AF ), where AT

G(·) : L2
0(PF,G) → L2

0(F ) is the transpose of the score

operator for G and is defined as E(· | T1, T2) and κ(µ) is the efficient influence

curve for µ under the full data model. Thus the IC can be seen as a mapping

from a full data estimating function κ of (T1, T2) to a function of the observed

data. For the case where µ(t1, t2) = S(t1, t2) the estimating function κ is

defined to be I(T1 > t1, T2 > t2)−S(t1, t2). In order for IF,G to be invertible,

we need to impose the condition (1) that G(T1, T2) > δ > 0, F a.e.

To understand what type of estimator Fn is needed, in the next para-

graphs we will inspect the smoothness of IC(Y | F, G, D) in F, G in more

detail. We will conclude that one should use a discretized version of a smooth

estimate F̃n of F with consistent densities, and one can use any discrete es-

timator Gn that consistently estimates G. This motivates us to consider

parametric models for F and nonparametric models for G.

For a cdf F we let F (dt) = F (t) − F (t−) if F is discrete and

∂
∂tF (t) if F is absolutely continuous with respect to Lebesgue measure.

Let F (dt1, dt2) = F (t1, t2) − F (t1−, t2) − F (t1, t2−) − F (t1−, t2−) if F

is discrete and ∂
∂t1∂t2

F (t1, t2) if F is absolutely continuous with respect

to Lebesgue measure. Let F (dt1, t2) = F (t1, t2) − F (t1−, t2) if F is

discrete and ∂
∂t1

F (t1, t2) if F is absolutely continuous with respect to

Lebesgue measure (define F (t1, dt2) in an analagous fashion). Also let
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F 1(t1, t2) = F (t1, t2) − F (t1−, t2) if t1 → F (t1, t2) is discrete, otherwise

let F 1(t1, t2) = ∂
∂t1

F (t1, t2) if t1 → F (t1, t2) is absolutely continuous with

respect to Lebesgue measure (define F 2(t1, t2) similarly).

Let T = (T1, T2), s = (s1, s2), c = (c1, c2), dc = (dc1, dc2), ds =

(ds1, ds2). A straightforward application of Fubini’s theorem gives us:

IF,G(T ) = G(T )h(T )

+
∫ ∞
0 {∫∞

0 I(c2 ≤ T2, s2 > c2)h(T1, s2)G(T1, dc2)}F 1(T1, ds2)∫ ∞
c2

F 1(T1, ds2)

+
∫ ∞
0 {∫∞

0 I(c1 ≤ T1, s1 > c1)h(s1, T2)G(dc1, T2)}F 2(ds1, T2)∫ ∞
c1

F 2(ds1, T2)

+
∫ ∞
0 {∫∞

0 I(c1 ≤ T1, s1 > c1)I(c2 ≤ T2, s2 > c2)h(s)G(dc)}F (ds)∫ ∞
c F (ds)

(4)

In our estimate of IC(Z | F, G, µ) we substitute for F and G discretized

estimates (possibly on a fine grid) of F and G so that we only need to define

the information operator and its inverse at discrete F and G. For example,

the frailty estimator (Clayton and Cusick 1985) Fn of F puts mass on the

grid of uncensored values of Y1 and Y2. If there are m1 unique uncensored

values of Y1 and m2 unique uncensored values of Y2, then the support is

defined on an m1 by m2 grid. Thus the support of Fn can be represented

by the m1m2 dimensional vector t̃ = {(t11, t21), . . . , (t1m1m2 , t2m1m2)}, and

thus our estimate of IF,G will be an m1m2 by m1m2 matrix. An estimate of
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F (dt1, dt2) can be obtained as follows

Fn(dt1, dt2) = Fn(t1 + δ1, t2 + δ1) − Fn(t1, t2 + δ1)− Fn(t1, t2 + δ1) + Fn(t1, t2)

Estimation of G(dc1, dc2) is accomplished in a similar fashion.

For a discrete underlying distribution F , this discretization should pro-

vide a good estimate of the true F (dt1, dt2), and thus the estimates of the

information operator should approach the true IF,G. If F is continuous

and the grid defined by t̃ gets finer and finer with sample size and Fn is a

discretized version of an estimate F̃ of F for which d/dxF̃ consistently esti-

mates d/dxF , then the estimated IFn,G will converge to the true IF,G. We

refer the reader to van der Laan (1996) in which a similar result is proved.

Of course as m1m2 gets larger, it becomes more computationally expensive

to calculate and invert the information operator (see section 2.1). In practi-

cal use if the value m1m2 becomes too large, it is also possible to discretize

the data (e.g. round to fewer significant digits) so that the gridsize m1m2

is manageable. Both the simulation result in our technical report for con-

tinuos data table and the data analysis verify that the estimator performs

well for continuous data. In our technical report we describe the implemen-

tation of the locally efficient estimator. The software was written using the

R language (which works also on S-Plus),
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2.1 Inversion of the Information Operator

In order to calculate the Influence Curve of the estimator ŜLE , it is neces-

sary find a solution to the system of equations γ = I−F,G(κ). The dimension

of IF,G is determined by the dimension m of the vector of points on which

Fn puts mass, and can be quite large. In order to make this calculation

computationally feasible, we used a result of van der Laan (1998), in which

he developed an iterative algorithm for calculating γ. This algorithm re-

quires km2 steps for a constant k, and our implementation indicates that

the constant k is quite small for reasonably large m.

van der Laan (1998) showed the following results for the information

operator IF,G : L2
0(F ) → L2

0(F ):

• If for all γ ∈ L2
0(F ) with ‖ γ ‖F > 0 we have ‖ AF (h) ‖F > 0, then IF,G

is 1-1.

• If there exists a δ > 0 so that for all γ ∈ L2
0(F ) we have ‖ AF (h) ‖PF,G

≥

δ ‖ γ ‖F for some δ > 0, then IF,G is onto and has bounded inverse

with operator norm smaller than or equal to 1/δ2 and its inverse is

given by:

I−1
F,G =

∞∑
i=0

(I − IF,G)i
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This suggests that the following iterative algorithm may be used in order to

calculate γ = I−F,G(κ):

γk+1 = κ − (I − IF,G)(γk)

where γ0 = κ and iteration continued until ‖ γk+1 − γk ‖F < ε for some

ε > 0.

In order to evaluate the practical performance of this algorithm in the

context of the LE estimator for bivariate right censored data, we recorded

values of ‖ γk+1−γk ‖Fn for each value of k over 100 simulated datasets (the

datasets were generated with “low” dependency as described in section 4).

Recall that for µ(t1, t2) = S(t1, t2), we have that κ(t1, t2) = I(T1 > t1, T2 >

t2) − S(t1, t2). The value of ε was chosen conservatively to be 1 × 10−7 to

ensure accuracy in the calculation of γ, and for these simulated datasets,

m = 225. The results may be seen in figure 5 and indicate that the algorithm

performs well. The values of ‖ γk+1 − γk ‖Fn appear to fall quickly after

the first iteration and the algorithm converges within 15 iterations for the

timepoints chosen.

2.2 Double robustness.

We now present a lemma which provides the basis of the protection of the

asymptotic consistency of µ̂LE(t1, t2) against misspecification of the model
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for either F or G (but not both).

Lemma 2.1 For any pair of measures P, P1, we write P ≡ P1 if dP/dP1

and dP1/dP are well-defined and have finite supremum norm. Let F

be the set of bivariate failure time distributions with support included in

[0, τ ] ⊂ IR2
≥0. Let G be the set of bivariate censoring distributions G sat-

isfying Ḡ(t1, t2) > δ for some δ > 0 for all (t1, t2) ∈ [0, τ ] ⊂ IR2
≥0. For

any F1 ∈ F and G1 ∈ G, let IC(Z | F1, G1, D) be defined as in (3). Then,

given a G1 ∈ G, EPF,G
(IC(Z | F1, G1, D)) = EF D(X) if either F1 = F

and G � G1 or G1 = G and F1 ≡ F . (Here X = (T1, T2) denotes the full

data) We also have that, given G1 ∈ G, EPF,G
IC(Z | F1, G1, D) = EF D(X)

if either F1 = F and G � G1 or G1 = G and F1 is discrete. Finally,

EG(IC(Z | F1, G, D) | X) = D(X) FX -a.e. at any F1 ∈ F and G ∈ G.

Proof. Let (D[0, τ ], ‖ · ‖∞) be the Banach space consisting of real-valued

functions defined on [0, τ ] endowed with the supremum norm. Given a gen-

eral F1, we only know that, given a G1 with Ḡ1(T1, T2) > δ > 0, F -a.e.,

IF1,G1 : L2(F1) → L2(F1) is boundedly invertible as a Hilbert space opera-

tor, while if F1 is discrete, then Gill, van der Laan, and Robins (2000) prove

that IF1,G1 : (D[0, τ ], ‖ · ‖∞) → (D[0, τ ], ‖ · ‖∞) has a bounded inverse. Let

us first consider the case where G1 = G. By first taking the conditional
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expectation, given X = (T1, T2), it follows that

EPF,G
AF1(A

>
GAF1)

−1(D)(Z) = EF D′(X),

where for general F1, D′(X) ≡ A>
GAF1(A

>
GAF1)

−1(D) equals D(X) only in

L2(F1) , and if F1 is discrete, then D′(X) = D(X) in (D[0, τ ], ‖ · ‖∞). Thus,

if F1 ≡ F or F1 is discrete, then EPF,G
AF1(A

>
GAF1)

−1(D)(Z) = EFD(X).

This proves the unbiasedness for the case where G1 = G.

Let us now consider the case where F1 = F . Firstly note that IF,G1 :

L2
0(F ) → L2

0(F ) is 1-1 and onto under the condition G1 ∈ G. Thus

EPF,G
AF I−1

F,G1
(D)(Z)) = EF I−1

F,G1
(D)(X)) = 0,

which proves the lemma.

Also it should be noted that if you use the true distributions F and G and

the true parameter µ(t1, t2) to calculate the influence curve in (3) then the

variance of the resulting influence curve equals the efficiency bound. This

result allows us to calculate relative efficiencies for any bivariate estimator:

we report such tables in our technical report.
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3 Asymptotic performance and confidence Inter-

vals for ŜLE

Consider the situation in which Gn is a consistent and efficient estimator of G

according to the model we have assumed on G. For example, Gn might be an

efficient estimator of G under the assumption of a Frailty model, Gn might

be the SOR-NPMLE of van der Laan (1996b) under the nonparametric

independence model (i.e. (C1, C2) is independent of (T1, T2)) or if (C1, C2)

are always observed one can estimate G with the empirical distribution

of (C1i, C2i), i = 1, . . . , n, in the nonparametric independence model. In

addition, assume that Fn converges to some F1 (in a strong sense so that

fn converges to f1) not necessarily equal to the true F , which one expects

to be the case if Fn is an estimate of F according to some guessed (semi-

)parametric model.

Our general asymptotic theorem A in the appendix proves that, under

regularity conditions, ŜLE is asympotically linear with an influence curve

IC(Z) = IC(Z | F1, G, µ)− Π(IC(Z | F1, G, µ) | TG), (5)

where TG ⊂ L2
0(PF,G) is the tangent space of G generated by all scores of the

G-part of the likelihood of Z, given by L(G) = P (Z | (T1, T2)), under the

proposed model for G. If F1 = F , then IC(Z | F1, G, µ) equals the efficient
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influence curve which is orthogonal to TG so that IC(Z) = IC(Z | F, G, µ).

This shows that we can use IC(Z | F1, G, µ) as a conservative influence

curve of our locally efficient estimator ŜLE(t1, t2), which is actually correct

if our guessed model for F is correct (or if G is known so that TG is empty).

Thus a conservative bound for the asymptotic variance of
√

n(ŜLE)(t1, t2)−

S(t1, t2)) is given by, var(IC(Z | F1, G, S). Therefore we may use our

estimate of the influence curve to obtain a ≥ 95% asymptotic confidence

interval for ŜLE in the following way:

• Calculate σ̂2
ŜLE(t1,t2)

= 1
n2

∑n
i=1(ÎC(Zi) − IC)2

• CI = (ŜLE(t1, t2) − 1.96σ̂ŜLE(t1,t2)
, ŜLE(t1, t2) + 1.96σ̂ŜLE(t1,t2)

)

where ̂IC(Zi) = ÎC(Zi | Fn, Gn, Ŝ0) and

IC =
1
n

n∑
i=1

ÎC(Zi | Fn, Gn, Ŝ0)

If Gn is not an efficient estimator according to a model for G, but is

a good estimator such as Dabrowska’s estimator, then we believe that this

estimate of the limit variance and the corresponding confidence interval will

still be a good practical choice. Our simulation study shows indeed the

good practical performance of these confidence intervals for the case that G

is estimated with Dabrowska’s estimator.
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The practical performance of any estimator and, in particular, ŜLE , is

a trade off between first and second order asymptotics. Though the first

order asymptotics suggest to estimate F, G nonparametrically (or just G

with a smoothed NPMLE) the fact is that such globally efficient estima-

tors can suffer from large second order terms. In addition, the influence

curve depends on partial densities of F , therefore using a non-smooth non-

parametric estimator for F such as Dabrowska’s may not be appropriate.

On the other hand, we do want to be nonparametrically consistent in the

model only assuming that (C1, C2) is independent of (T1, T2). To control

the second order terms of the estimator ŜLE , i.e. to control the curse of

dimensionality, and to still be nonparametrically consistent under the sole

assumption that (C1, C2) is independent of (T1, T2), we believe that estimat-

ing G with Dabrowska’s estimator or the empirical distribution if (C1, C2)

is always observed, and guessing a (very) low-dimensional model for F is a

good strategy.

Below we state a formal theorem for local efficiency of our estimator

for the special case that (C1, C2) is always observed with directly verifiable

conditions, which is proved in the appendix of our technical report. The

condition that (C1, C2) is always observed allows us to use a simple efficient

estimator of G in the independent censoring model and thereby simplifies
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the proof, but it is certainly not a necessary condition. For some more

comments regarding the proof we refer to the appendix.

Theorem 3.1 Consider the case that Z =

(C1, C2, min(T1, C1), min(T2, C2)) includes observing the censoring times.

Assume that F has support contained in [0, τ ] ⊂ IR2
≥0 and that Ḡ(τ) > 0.

Let Fn be discrete with support contained in a fixed set of (say) M points

in [0, τ ] and assume ‖Fn − F1‖∞ → 0 in probability for some discrete F1

with dF1 > 0 on each of the M -support points. Let Gn be the empirical

distribution based on (C1i, C2i), i = 1, . . . , n. Then, µ1
n is a regular

asymptotically linear estimator with influence curve

IC ≡ Π(IC(· | F1, G, µ) | T⊥
G (PF,G)),

where TG(PF,G) = {h(C1, C2)− EG(h(C1, C2)) : h} ⊂ L2
0(PF,G). In particu-

lar, if F1 = F , then µ1
n is asymptotically efficient.

The projection operator is given by:

Π(IC(· | F1, G, µ) | TG) = E(IC(Z | F1, G, µ) | C1, C2).

4 Simulation Methods and Results

In these simulations we have Ḡ(τ) = 0.15. For computational feasibility and

so that we could use the full grid of support points for F , for all but two sim-
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ulations the generated Y1 and Y2 were discretized so the support of F was on

{1, 2, . . . 15}×{1, 2, . . . , 15}, and the support of G was {1, 2, ...}X{1, 2, ...}.

Two simulations were run in which the support of F was on the integers

{1, 2, . . . 40} × {1, 2, . . . , 40} in order to verify that the locally efficient es-

timator works well in cases where the underlying F was less discrete. The

amount of correlation between T1 and T2 was controlled by adjusting the

αt parameter, and the amount of censoring was controlled by the λ param-

eters. Further details for the data generation method may be found in our

technical report.

In the simulation studies we studied the small sample performance of the

locally efficient estimator using a variety of models for F and G. Due to the

data generation scheme, using a bivariate frailty model would correspond to

choosing semiparametric efficient estimators for F and G. Using the true dis-

tributions for F and G should give performance close to the efficiency bound

and provide us with the best performance. Using Dabrowska’s estimator for

both F and G corresponds to the “globally” efficient estimator, as both F

and G will be estimated consistently. However, as mentioned in section 3,

as Dabrowska’s estimator is non-smooth and highly non-parametric, it may

not be the optimal choice for the estimator for F . Using a misspecification

model (“guessing” a Uniform distribution for F or G) should give us an
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indication of whether or not the locally efficient estimator is still consistent

even if we “guess” wrong. The simulations were run with simulated datasets

of size n = 300 over 625 iterations (except for the two continuous data sim-

ulations, in which the sample size was 100, so that the “gridsize” defined

by m1m2 in section 2 remained computationally feasible). Each simulation,

aside from the first (described below), was run at two dependency levels,

low (αt = 0.5, corresponding to a correlation between T1 and T2 ofapprox-

imately 0.31), and high (αt = 2, corresponding to a correlation between T1

and T2 of approximately 0.72), and moderate censoring (P (T1 > C1) = 0.30

and P (T2 > C2) = 0.30). For the complete set of simulations we refer to

our technical report.

In the first simulation, we generated data with heavy censoring on T1

(P (T1 > C1) = 0.65) and high correlation between T1 and T2 (0.72) and

mild censoring on T2 P (T2 > C2) = 0.30). The fraily estimator was used for

F and Dabrowska’s estimator was used for G. The results may be seen in

table 1. Here we see that the locally efficient estimator greatly outperforms

Dabrowska’s estimator, at points by almost a factor of 3. We see that the re-

gion where the LE estimator performs best is for the marginal distribution of

T1 (t2 = 0). The marginal distribution of Dabrowska’s estimator equals the

Kaplan-Meier estimator based on (min(T1, C1), ∆1) and suffers thus heavily
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from the high amount of censoring. However, an efficient estimator tries

to borrow information from T2 when estimating the marginal distribution

of T1, which is in this simulation very beneficial since T2 is almost always

observed and T1 and T2 are strongly correlated.

Table 2 illustrates the “protection” property we have when G is mis-

specified. Although we propose to always use a consistent estimator for G

in practice, these simulations indicate that indeed we are protected against

misspecification of G. Table 3 shows the estimated coverage probabilities of

95% confidence intervals constructed as described in section 3. Here we see

that the confidence intervals provide estimates close to the ideal 0.95. For

the complete set of simulations results we refer to our technical report.

5 Data Analysis

To demonstrate the use of the LE estimator, we looked at a dataset originally

analyzed by Duffy et al (1990) of 1218 monozygotic female twins in which

the outcome of interest was age (in years) at appendectomy. The data

was obtained from a questionnaire sent in 1980 to twins over the age of

17 registered with the Australian National Health and Medical Research

Council Twin Registry. Thus if T1 is the time to appendectomy of the first

twin (where assignment of a twin to T1 or T2 was determined by birth order,
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where that information was available) and T2 is the time to appendectomy

of the second twin, then these time variables were censored by a common

censoring variable C (i.e. C1 = C2). Specifically, the twin data can be

represented by Zi = (Y1i, Y2i, ∆1i, ∆2i) where Y1i = T1i ∧ Ci, Y2i = T2i ∧ Ci,

∆1i = I(T1i ≤ Ci) and ∆2i = I(T2i ≤ Ci), for i = 1, . . . , 1218. To take

advantage of this structure in the data, we estimated the distribution G

of (C1, C2) using the well known Kaplan Meier estimator. Specifically, we

created the variable Z ′, where Z ′
i = (Y ′

i , ∆′
i) where Y ′

i = min(T1i, T2i, Ci),

and ∆′
i = I(C ≤ T1i ∧ T2i), for i = 1, . . . , 1218. Since C1 = C2, P (C1 >

c1, C2 > c2) = P (C > max(c1, c2)), and thus we can easily determine the

estimate of the bivariate distribution of (C1, C2) from the univariate estimate

of the distribution of C. To estimate the distribution of (T1, T2) we used

the bivariate frailty estimator. There were 42 unique uncensored values of

Y1 and 41 unique uncensored values of Y2, thus the set of support points

t̃ (defined in section 2) had dimension 1722. The resulting estimate of the

bivariate surface may be found in our technical report.

We assessed the amount of dependence between T1 and T2 by utilizing

two tests of independence developed by Quale and van der Laan (2000).

The first tests the null hypotheses that the events T1 > t1i and T2 > t2i

are independent, for a given set of points t = {(t1i, t2i), . . . , (t1k, t2k)}. This
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test involves looking at the difference between the locally efficient estimate

of the bivariate survival function (no assumption of independence) and the

bivariate product of the estimated marginals (which is correct under the

assumption of independence) at the points t. The distribution of this test

statistic can be determined if one has an estimate of the influence curve. The

second test tests the null hypothesis that all the events mentioned above are

independent, thus giving us an idea of the overall dependence of T1 and

T2. We refer the reader to Quale and van der Laan (2000) for details. The

results for the first test are given in table 4 and indicate that the time to

appendectomy appear to be more dependent the older the twins become.

The second test resulted in a P-Value less than 0.001 (= P (χ49 > 275.6), for

χ49 a Chi Square random variable with 49 degrees of freedom), indicating

that the time to appendectomy was related among the two twins (a result

which Duffy et al (1990) found among the monozygotic female twins).

Also of interest is the question of whether or not the frailty was the cor-

rect model for S. To determine this, we looked at the difference between the

locally efficient estimator and the estimator of S using the frailty estima-

tor (ŜLE(t1, t2) − Ŝfrail(t1, t2)). The results may be seen in table 5, which

tabulates the differences. The frailty estimator appears to be very close to

the locally efficient estimator at all of the selected points (t1, t2), and indeed
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the frailty estimator lies within the 95% confidence interval for all of the

selected points (t1, t2).

A Asymptotics

Recall the one-step estimator µ1
n = µ0

n + 1/n
∑

i IC(Zi | Fn, Gn, µ0
n). Below

we provide a theorem which provides conditions under which our one-step

estimator is consistent and asymptotically linear in the model where the

bivariate distributions F and G of (T1, T2) and (C1, C2), respectively, are

unspecified. The conditions of this theorem require that the estimator Gn of

G is consistent, but Fn can be an inconsistent estimator. Since we advertised

the one-step estimator µ1
n for which Gn is globally consistent and Fn is

locally consistent as an important contribution to the rich literature on

nonparametric bivariate right-censored data, we decided not to state the

theorem which only assumes that either Fn or Gn is consistent. The latter

theorem can be found in van der Laan, Robins (2002). For empirical process

theory we refer to van der Vaart, Wellner (1996) and for efficiency theory

we refer to Bickel, Klaassen, Ritov, Wellner (1993).

Theorem A.1 Let the full-data model MF for the distribution of X =

(T1, T2) be unspecified and assume that the conditional distribution of

(C1, C2), given X , satisfies CAR. Suppose we observe n i.i.d. obser-

24



vations Z1, . . . , Zn of Z = (min(T1, C1), ∆1, min(T2, C2), ∆2) or Z =

(C1, C2, min(T1, C1), min(T2, C2)) (i.e. now the censoring times are observed

as well). Recall the one-step estimator µ1
n of S(t1, t2):

µ1
n = µ0

n +
1
n

n∑
i=1

IC(Zi | Fn, Gn, µ0
n).

Assume

(i) IC(· | Fn, Gn, µ0
n) falls in a PFX ,G-Donsker class with probability

tending to 1.

(ii) ‖IC(· | Fn, Gn, µ0
n) − IC(· | F1, G, µ)‖PFX ,G

→ 0 in probability.

(iii) PF,Gn−G {IC(· | Fn, Gn, µ)− IC(· | F1, Gn, µ)} = oP (1/
√

n).

If IC(· | F1, G, µ) = IC(· | F, G, µ), then µ1
n is asymptotically efficient.

In general, define for a G1

Φ(G1) = PFX ,G(· | F1, G1, µ).

If also

(iv) Φ(Gn) is an asymptotically efficient estimator of Φ(G) for a CAR-
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model containing the true G with tangent space TG(PFX ,G) ⊂ TCAR(PFX ,G),

then µ1
n is a regular asymptotically linear estimator with influence curve

given by

IC ≡ Π(IC(· | F1, G, µ) | T⊥
G (PFX ,G)).

Conditions (i) and (ii) requires detailed understanding of the entropy

of a class of functions containing I−Fn,Gn
(D) with probability tending to

one. Since the inverse of the information operator IF,G is, in general, only

understood in a L2(F )-sense this is a hard task. However, in the proof of

Theorem 3.1, as provided in our technical report, we show that this inverse

is well understood in supremum norm and variation norm sense at a discrete

F . This allows us to prove that our one-step estimator µ1
n using a discrete

estimate Fn with support contained in a fixed set of (say) M points is

consistent, asymptotically linear and if Fn happens to be consistent, then

it is also efficient. Our simulations suggest that µ1
n is also locally efficient

if Fn is a discrete estimate of F according to a arbitrarily fine discrete

approximation (depending on n) of a parametric or semiparametric smooth

model. In other words, we are not claiming that our condition on Fn is

needed.
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Table 1: Heavy censoring on T1 and high correlation; Frailty F , Dabrowska

G. MSE ratio for estimates of S between Locally Efficient Estimator and

Dabrowska ( MSEloc
MSEdab

) for a correlation between T1 and T2 of approximately

0.72. Simulations are for 300 subjects over 625 iterations, with λt1,2 = 0.1,

λc1 = 0.3 and λc2 = 0.08, corresponding to P (T1 > C1) = 0.65 and P (T2 >

C2) = 0.30.

t2 = 0 t2 = 1 t2 = 2 t2 = 4 t2 = 6 t2 = 8 t2 = 10

t1 = 0 1.01 1.03 1.02 1.00 0.98 0.96 0.95

t1 = 1 1.13 0.99 0.95 0.93 0.93 0.92 0.93

t1 = 2 1.10 0.94 0.92 0.90 0.91 0.89 0.91

t1 = 4 0.93 0.88 0.88 0.89 0.89 0.88 0.89

t1 = 6 0.76 0.77 0.80 0.87 0.87 0.87 0.86

t1 = 8 0.58 0.60 0.65 0.74 0.75 0.75 0.73

t1 = 10 0.34 0.36 0.38 0.44 0.49 0.50 0.52

31



Table 2: Moderate censoring; low, high, dependence; Frailty F , Misspecifi-

cation (Uniform) G. MSE ratio for estimates of S between Locally Efficient

Estimator and Dabrowska ( MSEloc
MSEdab

) for correlations between T1 and T2 of

approximately 0.31 and 0.72. Simulations are for 300 subjects over 625 itera-

tions, with λt1,2 = 0.1 and λc1,2 = 0.08, corresponding to P (T1 > C1) = 0.30

and P (T2 > C2) = 0.30.

t2 = 1 t2 = 2 t2 = 4 t2 = 6 t2 = 8 t2 = 10

t1 = 1 1.08,1.08 1.07,1.06 1.06,1.02 1.00,0.97 0.95,0.91 0.92,0.87

t1 = 2 1.07,1.05 1.06,1.05 1.06,1.01 1.01,0.97 0.96,0.92 0.92,0.86

t1 = 4 1.04,1.00 1.04,1.00 1.05,1.03 1.01,0.98 0.97,0.96 0.93,0.90

t1 = 6 0.97,0.94 0.98,0.94 1.00,0.99 0.99,0.98 0.99,0.96 0.97,0.92

t1 = 8 0.94,0.91 0.94,0.90 0.93,0.93 0.95,0.94 0.97,0.93 0.97,0.91

t1 = 10 0.93,0.87 0.93,0.86 0.91,0.88 0.91,0.90 0.93,0.90 0.95,0.92
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Table 3: Empirical Coverage Probabilities for estimated 95% Confidence

Intervals for Locally Efficient Estimator; Moderate censoring; low, high,

dependence; Frailty F , Dabrowska G. Results for correlations between T1

and T2 of approximately 0.31 and 0.72. Simulations are for 300 subjects

over 625 iterations, with λt1,2 = 0.1 and λc1,2 = 0.08, corresponding to

P (T1 > C1) = 0.30 and P (T2 > C2) = 0.30.

t2 = 1 t2 = 2 t2 = 4 t2 = 6 t2 = 8 t2 = 10

t1 = 1 0.92,0.91 0.92,0.92 0.92,0.94 0.92,0.92 0.90,0.91 0.92,0.92

t1 = 2 0.90,0.90 0.90,0.92 0.90,0.91 0.90,0.90 0.90,0.91 0.90,0.90

t1 = 4 0.91,0.91 0.91,0.92 0.91,0.91 0.92,0.93 0.91,0.91 0.92,0.90

t1 = 6 0.89,0.91 0.91,0.90 0.89,0.92 0.90,0.90 0.90,0.92 0.89,0.92

t1 = 8 0.91,0.93 0.91,0.94 0.91,0.93 0.91,0.95 0.92,0.94 0.92,0.93

t1 = 10 0.91,0.94 0.92,0.93 0.90,0.94 0.91,0.92 0.91,0.92 0.91,0.94
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Table 4: Pointwise tests of independence, twin data

t1 = 6 t1 = 12 t1 = 20 t1 = 28 t1 = 36 t1 = 44 t1 = 52

t2 = 6 0.298 0.083 0.022 0.032 0.072 0.11 0.11

t2 = 12 0.179 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

t2 = 20 0.345 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

t2 = 28 0.604 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

t2 = 36 0.402 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

t2 = 44 0.319 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

t2 = 52 0.307 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 5: Difference between locally efficient estimate of the bivariate distri-

bution and the bivariate frailty estimate, twin data (ŜLE − Ŝfrailty)

t1 = 4 t1 = 12 t1 = 20 t1 = 28 t1 = 36 t1 = 44 t1 = 52

t2 = 4 -0.0003 -0.006 -0.015 -0.015 -0.026 -0.025 -0.021

t2 = 12 0.004 0.002 -0.008 -0.007 -0.021 -0.020 -0.017

t2 = 20 0.004 0.004 0.003 -0.004 -0.011 -0.011 -0.008

t2 = 28 0.001 -0.002 -0.002 -0.006 -0.013 -0.015 -0.012

t2 = 36 0.006 0.001 -0.008 -0.012 -0.017 -0.019 -0.017

t2 = 44 0.001 -0.002 -0.009 -0.015 -0.020 -0.023 -0.021

t2 = 52 -0.004 -0.007 -0.014 -0.021 -0.027 -0.030 -0.027
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Figure 1: Inverse algorithm performance: Plots of ‖ γk+1 − γk ‖F (“Vector

Difference”) versus iteration number (k) for IF,G calculated at 100 simu-

lated datasets, for κ(t1, t2) = I(T1 > t1, T2 > t2) − S(t1, t2), at points

t = {(2, 2), (2, 8), (8, 2), (8, 8)}, where dim(IF,G) = 225. Dotted line indi-

cates ε, which was set at 1 × 10−7.
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