
1. Introduction

Our research is motivated by a study on assessing the relative accuracy of conventional body coil

magnetic resonance imaging (MRI) and transrectal ultrasound in detecting advanced stage prostate

cancer (Rifkin et al., 1990). The data were obtained as part of a multi-center study conducted by the

Radiology Diagnostic Oncology Group (RDOG). Whether a patient has advanced stage prostate cancer

can have a direct effect on physician’s treatment choice for this patient. If a patient has advanced stage

prostate cancer, the patient is best managed with a combination of radiation therapy and hormonal

therapy. If a patient only has localized prostate cancer, the patient has a high likelihood of surgical

cure. Thus, the critical issue is whether a patient has advanced stage prostate cancer. Patients in four

institutions were enrolled in the study if they had biopsy proven prostate carcinoma, and all were thought

to have surgically resectable tumors. The gold standard for prostate cancer stage was established by

pathology analyses on patient’s specimens obtained from surgery. Each patient was imaged by both

MRI and ultrasound. Images from each of the MRI and ultrasound on each patient were separated

and prospectively read by a radiologist at the patient’s institution. The radiologist gave an overall

staging assessment on each image (advanced versus localized stage). In the current analysis we use the

data from one institution, and Tables 1 and 2 summarize the data in this institution on diseased and

non-diseased patients, respectively.

TABLES 1 AND 2 GO HERE

Note that our two data sets have small sample sizes; it is typical to see small sample sizes in radiology

studies conducted in one institution.

When the response of a diagnostic test is binary, its accuracy is often represented by its sensitivity
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and specificity. The sensitivity of a diagnostic test is defined as the probability of giving a correct

diagnosis in the population of patients with advanced stage prostate cancer, and the specificity of a

diagnostic test is defined as the probability of giving a correct diagnosis in the population of patients

with localized stage prostate cancer. One goal of our analysis is to give confidence intervals for the

differences between sensitivities of MRI and ultrasound and between specificities of MRI and ultrasound.

Thus, our statistical problem is how to construct an appropriate confidence interval for the difference

between paired binomial proportions when sample sizes are small.

The most commonly used interval for the difference between paired binomial proportions is the

Wald confidence interval (hereafter WA) (Fleiss, 1981). Because it is based on the asymptotic theory,

it has been shown that it is anti-conservative and has poor coverage probabilities. Several authors have

developed “exact” confidence intervals for the difference (Armitage and Berry, 1987; Liddell, 1983).

However, because of the discrete nature for a binomial distribution, Newcombe (1998) showed that

these “exact” intervals tend to perform poorly.

Many authors have proposed alternative approximate intervals for the difference between paired

binomial proportions. Newcombe (1998) reviewed the statistical literature on confidence intervals for

the difference between paired binomial proportions. After a comprehensive simulation study on the

relative advantages of existing methods, including the Wald interval, the Wald interval with continuity

correction, an ’exact’ Clopper-Pearson interval, a ’mid-p’ interval, the three different types of profile

likelihood based intervals, and the three different types of score intervals, Newcombe (1998) recom-

mended a score interval with continuity correction (the method 10 in his paper, hereafter it is called the

Newcombe’s hybrid (NH) score method), which is based on the Wilson (1927) score interval for a single
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proportion. However, Newcombe’s procedure can still be conservative when sample sizes are small. In

addition, theoretical properties (e.g. consistency) of Newcombe’s hybrid score interval are unknown.

Another competing interval (called the MJ interval hereafter) was studied by May and Johnson (1997)

and subsequently discussed by many other authors including Lui (1998), Newcombe (1998), and Tango

(1998). Basically, this interval is based on the normal approximation of the distribution of the difference

between the paired sample proportions, its interval length will be zero when the number of discordant

pairs is zero.

In this paper we first derive an Edgeworth expansion for the studentized difference between the two

correlated sample proportions. One application of the Edgeworth expansion is to help us understand why

the Wald interval for the difference between two correlated proportions has so poor coverage performance

(see Section 3). This idea has been also used by Brown et al (2002) to explain poor performance of the

Wald interval in the one sample binomial case. Another application of the Edgeworth expansion is to

guide us to derive a new confidence interval for the difference between paired binomial proportions. The

new interval corrects the skewness in the Edgeworth expansion through a monotone transformation. A

third application of the Edgeworth expansion is to help us derive the asymptotic coverage accuracy of

the new interval. We show that the coverage probability of the new interval converges to the nominal

confidence level at the rate of O(n−1/2). We also compare the finite-sample performance of the new

interval with the existing intervals. We find that the new interval has the best average coverage accuracy

among the three intervals considered here and that its average coverage probability is still close to the

nominal level even for the sample size as small as 10. Finally we illustrate the application of the newly

proposed method in two real studies, including the motivating example described in this section.
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This paper is organized as follows. In Section 2 we review the commonly used Wald interval and the

Newcombe’s hybrid score interval as well as the May and Johnson’s (MJ) interval. In Section 3 we give

the Edgeworth expansion for the studentized difference between two correlated sample proportions.

In Section 4 we derive a new confidence interval based on the Edgeworth expansion. In Section 5

we evaluate the finite-sample performance of the proposed interval and compare it to the usual Wald

interval, the MJ interval, and the Newcombe’s hybrid score interval in terms of the coverage probability

and the interval length. In Section 6 we apply our method to our motivating example, and in Section 7

we further illustrate the application of our method in a study on the relative accuracy of two diagnostic

tests in detecting hyperparathyroidism. Finally, in the Appendix we present theoretical derivations of

the Edgeworth expansion and the asymptotic order of the coverage error of the new interval.

2. The Wald, Newcombe’s hybrid score, and May and Johnson intervals

Let (X0k, X1k), k = 1, 2, · · · , n, be an independent and identically distributed (i.i.d.) sample from

the joint distribution of paired random variables (X0, X1), where X0 and X1 are correlated Bernoulli

random variables with proportions p0 and p1 respectively; let p = p1 − p0. The most commonly used

Wald interval for p is based on the normal approximation to the distribution of the studentized difference

between the two correlated sample proportions, defined by

T =
√

n(p̂− p)√
p̂0(1− p̂0) + p̂1(1− p̂1) + 2(p̂1p̂0 − p̂11)

, (1)

and the Wald interval is

[
p̂− z1−α/2n

−1/2
√

p̂0(1− p̂0) + p̂1(1− p̂1) + 2(p̂1p̂0 − p̂11),

p̂ + z1−α/2n
−1/2

√
p̂0(1− p̂0) + p̂1(1− p̂1) + 2(p̂1p̂0 − p̂11)

]
, (2)
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where Yi =
∑n

k=1 Xik, Y11 =
∑n

k=1 X0kX1k, p̂i = Yi/n, p̂ = p̂1 − p̂0, p̂11 = Y11/n, and zα is the α-th

quantile of the standard normal distribution.

However, the normal approximation to the distribution of T may be a rather crude approximation,

especially when sample sizes are not large; it does not take into consideration the skewness of the

underlying multinomial distribution which is often the main source of error of the normal approximation.

Therefore, the Wald interval can give poor coverage accuracy.

One of the best alternative intervals was proposed by Newcombe (1998) and is called the Newcombe’s

hybrid (NH) interval. To describe this interval we need additional notation. Let us define Y00 =

∑
k(1 − X0k)(1 − X1k), Y10 =

∑
k X0k(1 − X1k), and Y01 =

∑
k(1 − X0k)X1k. Let us denote D =

(Y00 + Y10)(Y01 + Y11)(Y00 + Y01)(Y10 + Y11). Let l1 and u1 be the roots to the following quadratic

equation in x:

(x− Y00 + Y01

n
)2 = (z1−α/2)

2 x(1− x)
n

,

and let l2 and u2 be the roots to the following quadratic equation in x:

(x− Y00 + Y10

n
)2 = (z1−α/2)

2 x(1− x)
n

.

Then, the Newcombe’s hybrid score interval is defined by

[
p̂−

(
δ2
1 − 2φ̂δ1ε2 + ε22

)1/2
, p̂ +

(
ε21 − 2φ̂ε1δ2 + δ2

2

)1/2
]
, (3)

where

δ1 = (Y00 + Y01)/n− l1, ε1 = u1 − (Y00 + Y01)/n,

δ2 = (Y00 + Y10)/n− l2, ε2 = u2 − (Y00 + Y10)/n,
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φ̂ =





(Y00Y11 − Y10Y01) /D, Y00Y11 − Y10Y01 ≤ 0 and D > 0,

max(Y00Y11 − Y10Y01 − n/2, 0)/D, Y00Y11 − Y10Y01 > 0 and D > 0,

0, D = 0.

Let A = (1 + z2
α/2/n), B = −2(Y01 − Y10)/n, C = (Y01/n− Y10/n)2 − z2

α/2(Y01 + Y10)/n2. May and

Johnson (1997) proposed an alternative interval for p, and the resulting 100(1 − α)% interval for p is

given as follows:

[
max{0, (−B − (B2 − 4AC)1/2)/(2A)}, min{1, (−B + (B2 − 4AC)1/2)/(2A)}

]

3. Edgeworth expansion for the studentized difference

The validity of the Wald interval relies on the standard normality assumption of the studentized

difference between two correlated sample proportions, T . Since the true distribution of T is skewed,

the normal approximation may not be appropriate in a finite sample size. To see the impact of the

skewness on the normal approximation, we develop the Edgeworth expansion for T . To state this

Edgeworth expansion, we need the following notation:

d = p1(1− p1)(1− 2p1)− p0(1− p0)(1− 2p0) + 6(p1 − p0)(p11 − p0p1),

σ = (p1(1− p1) + p0(1− p0) + 2(p0p1 − p11))
1/2 , a = d/(6σ2), and b = (1− 2p)/2− d/(6σ2),

where p11 = P (X0 = 1, X1 = 1). Let Q(t) = a + bt2. Now we can state the Edgeworth expansion for T

as follows.
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Theorem 1 If p0 and p1 are rational numbers, then

P (T ≤ t) = Φ(t) +
(
nσ2

)−1/2
(Q(t) + gn(p0, p1, t))φ(t) + O

(
n−1loglogn

)
(4)

where gn(p0, p1, t) is a discontinuous function and has a range between −0.5 and 0.5, Φ(·) and φ(·) are

the cumulative distribution and density functions of the standard normal random variable, respectively.

For a proof of this theorem, see Appendix.

From Theorem 1 we see that the accuracy of the normal approximation to the distribution of

T at an argument t depends on both the main error term Q(t), which is due to the skewness of a

multinomial distribution, and the rounding error term gn(p0, p1, t), which is due to the discrete nature

of a multinomial distribution. If d is close to 0 (which may happen when p is near 0, or both p0 and

p1 are near boundary points 0 and 1), the main part of Q(t) will be close to (1 − 2p)t2/2, which is

larger than the rounding error |gn(p0, p1, t)| when p > (1+ t−2)/2 or p < (1− t−2)/2. Consequently, the

distribution of T could be far from the standard normal distribution in small sample size, which result

in the poor performance of the Wald interval. Therefore it is important to correct for skewness when

constructing a confidence interval for the difference p.

4. A new confidence interval

In this section, we propose a new confidence interval for p by eliminating the error due to the skewness

in the Edgeworth expansion given in Theorem 1. The new method uses a monotone transformation based

on the Edgeworth expansion of T , given in (4), by ignoring the rounding error term gn(p0, p1, t). This

transformation was originally introduced by Hall (1992) for removing the skewness of an asymmetric
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statistic in a one-sample case. The monotone transformation is defined by (see Hall,1992)

g(T ) = n−1/2âσ̂ + T + n−1/2
(
b̂σ̂

)
T 2 + n−1 · 1

3

(
b̂σ̂

)2
T 3,

where â, b̂, σ̂, and d̂ are estimates of a, b, σ, and d, respectively, and a, b, σ, and d are defined in Section

3. The estimates â, b̂, σ̂, and d̂ are computed by replacing the pi’s and p11 in the formulas for a, b,

σ, and d with the p̂i’s and p̂11. Using this transformation, we can construct the following two-sided

100(1− α)% confidence interval for p:

Iα =
[
max

(
−1, p̂− σ̂√

n
· g−1(z1−α/2)

)
, min

(
1, p̂− σ̂√

n
· g−1(zα/2)

)]
,

where

g−1(y) = n1/2
(
b̂σ̂

)−1
[(

1 + 3
(
b̂σ̂

) (
n−1/2y − n−1âσ̂

))1/3 − 1
]

if b̂σ̂ 6= 0,

and g−1(y) = y − n−1/2âσ̂ if b̂σ̂ = 0. The following theorem gives the asymptotic coverage probability

of the proposed interval.

Theorem 2 If p0 and p1 are rational numbers, then

P (p ∈ Iα) = 1− α + O(n−1/2).

For a proof of this theorem, see Appendix.

5. A numerical study

We conducted a numerical study to assess the finite-sample performances of the newly proposed

transformation based interval (denoted by TT), the Newcombe’s hybrid score interval (NH), the May

and Johnson interval (MJ), and the Wald interval (WA). The criteria for comparison are the coverage
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probability and length of intervals. To compare the relative performance of TT, NH, MJ, and WA

intervals for p = p1 − p0, we compute their coverage probabilities and the expected lengths. For

fixed values of n and (p0, p1, p11), we denote C(n; p0, p1, p11) and W (n; p0, p1, p11) to be the coverage

probability and the expected length of a two-sided 100(1−α)% level confidence interval L(Y01, Y10, Y11)

for p = p1 − p0, respectively. Then,

C(n; p0, p1, p11) = E{I[p∈L(Y01,Y10,Y11)] | n; p0, p1, p11}

=
n∑

y01=0

n−y01∑

y10=0

n−y01−y10∑

y11=0

Multi(n; y01, y10, y11, p0, p1, p11)I[p∈L(y01,y10,y11)]

where I[p∈L(y01,y10,y11)] is 1 if p ∈ L(y01, y10, y11) and zero otherwise, and Multi(n; y01, y10, y11, p0, p1, p11)

is the multinomial probability when Y01 = y01, Y10 = y10, and Y11 = y11, defined by

Multi(n; y01, y10, y11, p0, p1, p11) =
n!

y01!y10!y11!(n− y01 − y10 − y11)!

×py01
01 py10

10 py11
11 (1− p01 − p10 − p11)(n−y01−y10−y11).

Denote the lower and upper endpoints of L(y01, y10, y11) to be lower(y01, y10, y11) and upper(y01, y10, y11),

respectively. Then, the expected interval length for L(Y01, Y10, Y11) is calculated using the formula,

W (n; p0, p1, p11) =
n∑

y01=0

n−y01∑

y10=0

n−y01−y10∑

y11=0

Multi(n; y01, y10, y11, p0, p1, p11)

×[upper(y01, y10, y11)− lower(y01, y10, y11)]

We compared the performance of the four intervals in terms of the average of C(n; p0, p1, p11)’s and

W (n; p0, p1, p11)’s over the systematically chosen values of (p0, p1, p11), where (p0, p1) = (0.05i, 0.05j)

for i, j = 1, 2, ..., 19, and p11 is from the interval [e1, e2] with e1 = max(0, p0 + p1 − 1), and e2 =

min(p0, p1). Specifically, for a given (p0, p1) ∈ {(0.05i, 0.05j) : i, j = 1, 2, ..., 19.}, we generated a p11
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from Uniform[e1, e2]. With p01 = p1 − p11, p10 = p0 − p11, and p00 = 1 − p10 − p01 − p11, we can

compute the multinomial probability Multi(n; p00, p01, p10, p11) and thus the coverage probability and

expected length of various confidence intervals. In the calculation of coverage probability and length of

the TT interval, we replaced Yij by Yij + 0.25 for i, j = 0, 1 and n by n + 1. This is motivated by a

similar technique used by Agresti and Coull (1998). Tables 3 and 4 display the summary performances

of the four intervals.

TABLES 3-4 GO HERE

From the results on the summary measures in Tables 3-4, we conclude that the new interval has the

best average coverage accuracy among the four intervals considered here and that the new interval has

the average coverage probability that is very close to the nominal level for the sample size as small as

10. For all the sample sizes considered here, the Newcombe’s hybrid interval have the average coverage

probability that is higher than the nominal level. From Tables 3-4 we also confirm that the Wald interval

has poor coverage accuracy even for the sample size as large as 50. The MJ interval improved the Wald

interval, but the improvement over the Wald interval is moderate particularly for small sample sizes;

this is not a surprising observation because the MJ interval is essentially an interval derived from the

normal approximation of the distribution of the difference between paired sample proportions.

To obtain information about the variation and spread of the coverage probabilities and lengths of

the intervals, we also produce box plots of the coverage probabilities and expected lengths of the TT,

NH, MJ and WA intervals. Figures 1-4 display the box plots for the four intervals with 90% and 95%

confidence levels and four sample sizes (n = 10, 15, 30, 50).

FIGURES 1-4 GO HERE
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From the results in Figure 1-4 we see that the MJ and Wald intervals have larger spread in coverage

probabilities than the new interval and the Newcombe’s hybrid interval. However, the newly proposed

interval has little wider spread in length than the MJ interval and the Wald interval for small sample

size but the difference tends to be small as the sample size increases to moderate size (n=30,50).

6. Comparisons of diagnostic accuracy of MRI and ultrasound

As discussed in Section 1, we are interested in comparing sensitivities and specificities of MRI and

ultrasound in detecting advanced stage prostate cancer. Let π0 and π1 be sensitivities of the MRI and

ultrasound, respectively, and let ν0 and ν1 be specificities of the MRI and ultrasound, respectively.

Using the newly proposed method, we derived the 90% confidence intervals for both π1 − π0 and

ν1−ν0. The resulting intervals are (−0.32, 0.31) for π1−π0 and (−0.54, 0.61) for ν1−ν0. These intervals

suggest that there are no statistically significant differences between sensitivities and specificities of

MRI and ultrasound. Therefore, MRI and ultrasound have the similar diagnostic accuracy in detecting

advance stage prostate cancer. However, it is worth noting that conventional MRI costs $700 to $1200

per examination and that transrectal ultrasound imaging only costs $150 to $400 per examination.

Therefore, choosing ultrasound over MRI could save $300 to $1050 without compromising quality of

care.

7. An additional example

In this section, we further illustrate the application of the proposed method in a study on the

accuracy of Positron-emission tomography (PET) and the double-phase99m Tc-sestamibi-SPECT in

detecting hyperparathyroidism (Neumann et al. 1996). In the study, each of the 21 subjects was
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evaluated with both PET and the double-phase99m Tc-sestamibi-SPECT before undergoing surgery,

the gold standard. We want o compare the specificity of PET with that of the double-phase99m Tc-

sestamibi-SPECT to determine if they are different. Table 5 displays results of PET and double-

phase99m Tc-sestamibi-SPECT for patients without evidence of hyperparathyroidism.

TABLE 5 GOES HERE

Let ν1 and ν0 be the specificities of the PET and double-phase99m Tc-sestamibi-SPECT, respectively.

Using the newly proposed method, we derived the 90% confidence intervals for ν1−ν0 as (−0.107, 0.429).

Hence, we conclude that the specificities of the PET and double-phase99m Tc-sestamibi-SPECT are not

statistically different in ruling out hyperparathyroidism.

8. Discussion

Motivated by an accuracy study of diagnostic tests, we have developed a new confidence interval

for the difference between paired binomial proportions. Comparing with the best existing intervals,

the new interval is easier to compute, has a sound theoretical justification, and has a better average

performance in finite sample sizes. For the sample size as small as 10, the average coverage probability of

our new interval is still very close to the nominal level. Even though the proposed method was originally

developed for comparing sensitivities and specificities of two diagnostic tests, it can be equally applied

to a general situation of comparing two binomial proportions from paired designs.

APPENDIX

Proof of Theorem 1.
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We first derive the Edgeworth expansion for the standardized sample difference. For each i = 0, 1,

note that Yi =
∑n

k=1 Xik where Xik’s are i.i.d. Bernoulli random variables with the parameter pi. Then

the standardized sample difference is defined as follows.

Tn ≡
√

n(p̂− p)√
p0q0 + p1q1 + 2(p1p0 − p11)

=
n∑

k=1

Dk√
nσ

where

Dk = (X1k −X0k)− (p1 − p0), k = 1, 2, · · · , n,

After deriving the Edgeworth expansion for Tn, we will then derive the Edgeworth expansion for T , the

studentized difference.

Our derivation of the Edgeworth expansion for Tn is aided by a result in Kolassa (1995) on the

Edgeworth expansion for the sum of independent random variables supported on the same lattice. To

apply Kolassa’s result to our setting, we need to show that the Dk’s are independent random variables

supported on the same lattice. Since p0 and p1 are rational, we can take a positive integer l large enough

such that lp0 and lp1 are integers. Let ∆ = 1/l and let A be a constant such that A/∆ is an integer.

Also let k1 = −(1+ p1− p0)/∆−A/∆, k2 = −(p1− p0)/∆−A/∆, and k3 = (1− p1 + p0)/∆−A/∆,

then {−(1 + p1 − p0),−(p1 − p0), 1 − p1 + p0} = {A + k1∆, A + k2∆, A + k3∆} fall in the lattice

{A + ∆Z} = {..., A− 2∆, A−∆, A,A + ∆, A + 2∆, ...}. Thus the Dk’s are all constrained to the same

lattice {A + ∆Z}; furthermore, they are independent with mean zero and finite variances. Also, it is

not difficult to show that Tn has mean zero and variance 1, and its third and fourth cumulants are

κ3 =
1√
nσ3

[p1q1(1− 2p1)− p0q0(1− 2p0) + 6(p1 − p0)(p11 − p0p1)] ≡ d√
nσ3
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and

κ4 =
1

nσ4

[
E(D4

1)− 3
(
E(D2

1)
)2

]
= O

(
n−1

)

respectively. By the theorem in Kolassa (1995), we obtain that Tn has the following Edgeworth expan-

sion:

P (Tn ≤ t) = Φ(t) +
(
nσ2

)−1/2 · d

6σ2

(
1− t2

)
φ(t)

+
(
nσ2

)−1/2
gn(p0, p1, t)φ(t) + O

(
n−1

)
(5)

where gn(p0, p1, t) = −∆·G ((t− tn)/∆n), G(t) = t−1/2, and ∆n = ∆/(
√

nσ) is the lattice spacing for tn

that is the largest lattice point less than t. It is easily seen that gn(p0, p1, t) is a discontinuous function

taking values in [−0.5, 0.5]. Next we use the Edgeworth expansion for Tn to obtain an Edgeworth

expansion for T . Note that

P (T ≤ t) = P

( √
n(p̂− p)√

[(p̂− p) + (p̂0 + p)] [(1 + p̂0 − p)− (p̂− p)] + (p̂0q̂0 − 2p̂11)
≤ t

)
.

By carefully solving the inequality for p̂ − p in the right side of the above equation, we obtain that

P (T ≤ t) = P
(
Tn ≤ t̂0

)
, where

t̂0 =
√

n

σ

(
(1− 2p)t2

2 (n + t2)
+

t
[
4 (pq + 2p̂10) /n + t2 (1 + 8p̂10) /n2

]1/2

2 (1 + t2/n)

)
,

p̂10 = n−1
∑

i

X0i(1−X1i), q = 1− p.

Let us define t0 to be t̂0 except that p̂10 is replaced by p10 = P (X0 = 1, X1 = 0); that is,

t0 =
√

n

σ

(
(1− 2p)t2

2 (n + t2)
+

t
[
4σ2/n + t2 (1 + 8p10) /n2

]1/2

2 (1 + t2/n)

)

Then,

P
(
Tn ≤ t̂0

)
= P (Tn ≤ t0) +

(
P

(
Tn ≤ t̂0

)
− P (Tn ≤ t0)

)
≡ I1 + I2. (6)
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The Edgeworth expansion (5) may be used to obtain an expansion for I1. We have, after some algebra,

that

I1 = Φ(t0) +
(
nσ2

)−1/2 · d

6σ2

(
1− t20

)
φ(t0)

+
(
nσ2

)−1/2
gn(p0, p1, t0)φ(t0) + O

(
n−1

)

= Φ(t) +
(
nσ2

)−1/2 (
a + bt2

)
φ(t) +

(
nσ2

)−1/2
gn(p0, p1, t)φ(t) + O

(
n−1

)
. (7)

Now we show that I2 = O
(
n−1loglogn

)
. By p̂10 − p10 = O

(
n−1/2loglogn

)
a.s., we can find a positive

constant C such that |t̂0−t0| ≤ C
(
n−1loglogn

)
a.s.. That is, the interval between t̂0 and t0 is contained

by [t0 − C
(
n−1loglogn

)
, t0 + C

(
n−1loglogn

)
] a.s.. It follows from (5) that

|I2| ≤ P
(
Tn ≤ t0 + C

(
n−1loglogn

))
− P

(
Tn ≤ t0 − C

(
n−1loglogn

))

= O
(
n−1loglogn

)
. (8)

Theorem 1 then follows from (6)–(8).

Proof of Theorem 2. Let Q1(t) = σ
(
a + bt2

)
, Q̂1(t) = σ̂

(
â + b̂t2

)
, and

I1α =
[
p̂− σ̂√

n

(
z1−α/2 − n−1/2Q̂1(z1−α/2)

)
, p̂− σ̂√

n

(
zα/2 − n−1/2Q̂1(zα/2)

)]
.

First we show that

P (p ∈ I1α) = 1− α + O
(
n−1/2

)
.

For any 0 < α < 1, we have

P
(
T ≤ zα − n−1/2Q̂1 (zα)

)
= P

(
T ≤ zα − n−1/2Q1 (zα)

)

17



+
[
P

(
T ≤ zα − n−1/2Q̂1 (zα)

)
− P

(
T ≤ zα − n−1/2Q1 (zα)

)]
≡ J1 + J2.

Noting that Φ(x), φ(x) and Q1(x) are smooth functions of x, by Theorem 1 and Taylor expansion, we

obtain that

J1 = Φ
(
zα − n−1/2Q1(zα)

)
+ (nσ2)−1/2Q

(
zα − n−1/2Q1(zα)

)
φ

(
zα − n−1/2Q1(zα)

)

+
(
nσ2

)−1/2
gn

(
p0, p1, zα − n−1/2Q1(zα)

)
φ

(
zα − n−1/2Q1(zα)

)
+ O

(
n−1loglogn

)

= Φ (zα) + O
(
n−1/2

)
= α + O

(
n−1/2

)
.

For the term J2, by p̂i − pi = O
(
n−1/2loglogn

)
a.s. and p̂11 − p11 = O

(
n−1/2loglogn

)
a.s., we can get

Q̂1(zα)−Q1(zα) = o (1) a.s..

Hence by Theorem 1,

J2 = P
{
zα − n−1/2Q1(zα) < T ≤ zα − n−1/2Q1(zα)− n−1/2

(
Q̂1(zα)−Q1(zα)

)}

≤ P
{
zα − n−1/2Q1(zα) < T ≤ zα − n−1/2Q1(zα) + Cn−1/2

}

= Cn−1/2φ
(
zα − n−1/2Q1(zα)

)
+ O

(
n−1/2

)
= O

(
n−1/2

)
.

Therefore,

P (p ∈ I1α) = P
(
T ≤ z1−α/2 − n−1/2Q̂1

(
z1−α/2

))
− P

(
T ≤ zα/2 − n−1/2Q̂1

(
zα/2

))

= 1− α + O
(
n−1/2

)
. (9)

Now we show that

P (p ∈ Iα) = 1− α + O
(
n−1/2

)
.

18



Using a Taylor expansion on the function (1 + y)1/3, we get

[
1 + 3

(
b̂σ̂

) (
n−1/2x− n−1âσ̂

)]1/3 − 1

= n−1/2
(
b̂σ̂

)
x− n−1

(
b̂σ̂

) [
(âσ̂) +

(
b̂σ̂

)
x2

]
+ Op

(
n−3/2

)
,

and hence we have

g−1(x) = x− n−1/2Q̂1(x) + O
(
n−1

)
.

An argument similar to the proof of (9) leads to P (p ∈ Iα) = 1 − α + O
(
n−1/2

)
. We then completed

the proof of Theorem 2.
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Table 1. The diagnostic results of MRI and ultrasound on 16 patients with true localized prostate

cancer

Ultrasound

MRI Localized Advanced Total

stage cancer stage cancer

Localized stage cancer 4 6 10

Advanced stage cancer 3 3 6

Total 7 9 16

Table 2. The diagnostic results of MRI and ultrasound on 15 patients with true advanced stage

prostate cancer

Ultrasound

MRI Localized Advanced Total

stage cancer stage cancer

Localized stage cancer 1 2 3

Advanced stage cancer 1 11 12

Total 2 13 15
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Table 3. The result of summary measures of nominal 90% confidence interval for p1 − p0,

averaging with respect to (p0, p1, p11)′s, where (p0, p1) varies over the points given

by (0.05i, 0.05j) for i, j = 1, 2, ..., 19, and p11 ∼ U [max(0, p0 + p1 − 1),min(p0, p1)].

Characteristic n TT NH MJ NA

Ave. Cov. 10 0.9112(0.0351) 0.9186(0.0301) 0.8708(0.0673) 0.8346(0.0721)

15 0.9046(0.0289) 0.9153(0.0288) 0.8862(0.0457) 0.8624(0.0483)

30 0.8980(0.0199) 0.9107(0.0213) 0.8925(0.0189) 0.8762(0.0226)

50 0.8997(0.0103) 0.9058(0.0132) 0.8983(0.0081) 0.8874(0.0097)

100 0.9003(0.0085) 0.9023(0.0090) 0.8977(0.0059) 0.8935(0.0077)

Length 10 0.6166(0.1525) 0.5781(0.0755) 0.4158(0.1423) 0.5363(0.1576)

15 0.4896(0.1165) 0.4763(0.0789) 0.3665(0.1196) 0.4537(0.1284)

30 0.3406(0.0841) 0.3402(0.0676) 0.2845(0.0876) 0.3312(0.0828)

50 0.2684(0.0619) 0.2682(0.0544) 0.2335(0.0709) 0.2644(0.0681)

100 0.1913(0.0470) 0.1914(0.0441) 0.1708(0.0501) 0.1880(0.0483)

Note:

C(n; p0, p1, p11) = coverage probability for p = p1− p0.

Ave. Cov.= mean of coverage probabilities C(n; p0, p1, p11)’s.

Length = mean of expected confidence interval lengths.

Values in the parentheses are the corresponding standard deviations.
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Table 4. The result of summary measures of nominal 95% confidence interval for p1 − p0,

averaging with respect to (p0, p1, p11)′s, where (p0, p1) varies over the points given

by (0.05i, 0.05j) for i, j = 1, 2, ..., 19, and p11 ∼ U [max(0, p0 + p1 − 1),min(p0, p1)].

Characteristic n TT NH MJ NA

Ave. Cov. 10 0.9501(0.0295) 0.9578(0.0195) 0.9014(0.0804) 0.8712(0.0794)

15 0.9460(0.0266) 0.9565(0.0175) 0.9262(0.0470) 0.9052(0.0483)

30 0.9469(0.0144) 0.9558(0.0121) 0.9391(0.0203) 0.9294(0.0219)

50 0.9487(0.0083) 0.9529(0.0097) 0.9447(0.0114) 0.9378(0.0108)

100 0.9492(0.0085) 0.9523(0.0080) 0.9470(0.0067) 0.9441(0.0063)

Length 10 0.8189(0.2738) 0.6844(0.0853) 0.4625(0.1690) 0.6199(0.2010)

15 0.6144(0.1600) 0.5719(0.0861) 0.4217(0.1391) 0.5418(0.1485)

30 0.4161(0.1006) 0.4092(0.0744) 0.3347(0.0999) 0.4023(0.1026)

50 0.3276(0.0789) 0.3243(0.0659) 0.2721(0.0823) 0.3125(0.0781)

100 0.2240(0.0561) 0.2236(0.0510) 0.2002(0.0587) 0.2210(0.0555)
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Table 5. Comparison of Paired Test Results for PET and 99mTc-sestamibi-SPECT

99mTc-sestamibi-SPECT

Positive Negative Total

PET Positive 4 4 8

Negative 1 12 13

Total 5 16 21
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Figure 1: Box plots of coverage probabilities of the various two-sided 90% intervals
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Figure 2: Box plots of coverage probabilities of the various two-sided 95% intervals
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Figure 3: Box plots of expected interval lengths of the various two-sided 90% intervals
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Figure 4: Box plots of expected interval lengths of the various two-sided 95% intervals
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