
1. Introduction

Gene expression microarrays are a tool of modern genomics that have con-

tributed to the current excitement in molecular biology and genetics (Schena

et al. (1995)). The impact of microarrays has been similarly profound for

the field of statistics. Microarray data have stimulated research in diverse

areas such as transposable data (Lazzeroni and Owen (2002)), multiple test-

ing and false discovery rates (Storey (2002)), and classification tools (Dudoit

et al. (2002)). However, not every aspect of microarrays requires revolu-

tionary statistical approaches. To the contrary, many aspects of microarray

studies call for careful attention to fundamental statistical principles (Kerr

and Churchill (2001b)).

Microarrays have been used in some fascinating research and the technol-

ogy is tantalizing in the possibilities it presents. In light of this excitement,

some perspective is warranted. Basically, microarrays are a measurement

tool, albeit a high-tech and high-throughput one. There are many unknown

quantities in a microarray hybridization, such as the sizes and densities of

the probe spots, and the hybridization and labeling efficiencies of different

sequences. However, regardless of these variations, the basic principle is the

following: For a given sequence spotted on the array, if one sample contains

more of the corresponding transcript, then the signal intensity for the dye

used to label that sample should be higher than for the other dye. There is

a further assumption of proportionality. That is, if the red-labeled sample

has twice as much of a transcript as the green-labeled sample, then the red

signal should be twice as high as the green signal. (Readers are referred to

the literature for an introduction to microarray technology – Nguyen et al.
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(2002) provide an excellent summary for quantitative scientists.)

A microarray assay is more complicated in reality, largely because the

behavior of the two fluorescent dyes is more complex. Endeavors in data

normalization (Cui et al. (2003), Tseng et al. (2001), Yang et al. (2002))

are essentially efforts to return to the basic idea of how a microarray assay

is supposed to work. With this simplified perspective, a microarray is really

just a comparison between two RNAs and a microarray design is a block

design with block size two. Although there is a mature literature in statistical

block design, some aspects of microarray design present new and interesting

questions in this area.

This paper discusses design in the context of two-color spotted microar-

rays. However, most of the principles in Sections 2, 3, and 4 also apply to

single-channel platforms such as Affymetrix (Lipshutz et al. (1999)). This

paper has two primary goals. The first goal is to give practical guidelines for

microarray experimental design that have been developed through experience

designing these studies in collaboration with biologists. The second goal is

to identify areas where microarrays present new design problems and where

additional research is needed. Randomization, replication, and blocking are

generally considered to be the three fundamental principles of statistical de-

sign. These are discussed with respect to microarrays in Sections 2, 3, and

5. Section 4 discusses the considerations in pooling RNA samples.

2. Randomization

One of the fundamental principles of good design is randomization, yet it

is seldom mentioned with microarrays. In fact, microarray experiments are

often multi-stage experiments (McIntyre (1955)), and thus require multi-
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ple levels of randomization. If there is a “treatment phase,” then individuals

should be randomly assigned to treatment groups as in any other experiment.

The microarray assays comprise the “measurement phase” of the experiment.

Experience shows microarray data are extremely prone to influence by tech-

nical artifacts, so it is important to randomize as much as practical to protect

against unanticipated biases. For example, arrays should be chosen randomly

for each planned hybridization from the batch of arrays to be used in case

there is systematic variation in the order in which the arrays were printed.

3. Replication

Replication is another fundamental principle of design and may be the most

widely appreciated. Every scientist who conducts a sample-size calculation is

recognizing the importance of replication. Microarray users now acknowledge

that “replication” means different things in the microarray context (Kerr and

Churchill (2001b), Nguyen et al. (2002), Yang and Speed (2002)). “Replica-

tion” might refer to:

(A) Spotting genes multiple times per array;

(B) Hybridizing multiple arrays to the same RNA samples;

(C) Using multiple individuals of a certain variety or type.

Replication types (A) and (B) are sometimes referred to as technical replica-

tion. These are fundamentally different from type (C). Only (C) represents

replication in the classical statistical sense — random sampling of individuals

from a population in order to make inferences about that population. For

example, when a treatment is applied to a mouse model of a disease, the
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scientific question is how the treatment affects diseased mice in general, not

how it affects the particular mice in the study. We study individual mice in

order to make inference about the population.

Technical replication does not address biological variability. Instead, it

addresses the measurement error of the assay. Technical replicates reduce

the uncertainty about gene expression in the particular RNAs in a study.

This is extremely useful in situations where RNAs are of interest individu-

ally. For example, if microarrays are ever used in medical diagnosis, technical

replicates could be useful to improve the precision of measurements in a par-

ticular patient and thereby improve diagnostic accuracy. However, technical

replicates can never substitute for biological replicates to assess biological

variability, which is essential, for example, to infer that the mean expression

of a gene differs in two populations. As another example, developing classi-

fication tools based on gene expression data (Dudoit et al. (2002)) requires

knowledge of biological variability. Experimental variability is important to

understand and control, but is unrelated to the biology under investigation.

Confusing technical replication with true replication is not new to microar-

rays. “Too often researchers use duplicate or split samples to generate two

observations and call them replicates, when, in reality, they are actually sub-

samples or repeated measures” (Milliken and Johnson (1994, p. 49)).

An elementary calculation in a simplistic setting is instructive. Suppose

that we want to compare the means of two populations. Let Xi have mean

µx and variance τ 2 and let Yi have mean µy and variance τ 2. We sample n

individuals from each population. Instead of observing Xi or Yi we observe

Xij = Xi + εij and Yij = Yi + ε′
ij due to measurement error, i = 1, . . . , n, j =
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1, . . . , r;. The random variables εij, ε
′
ij are i.i.d. with mean 0 and variance σ2;

they are also independent of the Xi and Yi. To control measurement error,

we may take r > 1 measurements on each sampled individual and compute

the estimates Xi· and Yi· for the ith individual from each sample. Then

the difference in population means µx − µy is estimated by X·· − Y··. Now,

suppose measurements are expensive, and we are limited to a fixed total of

N = 2nr measurements. How do the relative sizes of population variance

τ 2 and error variance σ2 determine the optimal allocation of N to sampling

individuals versus repeating measurements on individuals? One might guess

that if measurement error is very large (σ2 >> τ 2), then it is advantageous

to re-measure sampled individuals to control measurement error rather than

sampling additional individuals. This turns out not to be the case. The

variance of our estimate X·· − Y·· is

2

n
τ 2 +

2

rn
σ2 =

2

n
τ 2 +

4

N
σ2, (1)

which shows that when the total number of measurements N is fixed, it is

always preferable to sample new individuals (increase n) to reduce (1) rather

than expend resources on repeated measurements of the same individuals.

That is, if the cost of sampling individuals is negligible compared to the

cost of taking a measurement, which may be the case with microarrays, it is

always advantageous to forego repeated measurements and sample as many

individuals as possible. Intuitively, repeated measurements provide new in-

formation about only the error variance σ2 whereas additional individuals

provide independent information about the total variance σ2 + τ 2.

Of course, even with expensive microarrays the cost of sampling addi-

tional individuals may be much greater than the cost of the assays. In other
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words, N is not fixed but there is a limit of the total cost C based on the

cost of sampling individuals Cs and the cost of taking measurements Cm,

C = 2nCs + 2rnCm. If the error variance σ2 is substantial then it is efficient

to take repeated measurements by increasing r when additional measure-

ments are much cheaper than sampling individuals (Cm << Cs). These

simple calculations do not apply directly to two-color microarrays because of

the blocking structure in the design, as discussed in Section 5. However, the

general lesson is instructive: true replication beats technical replication for

gains in precision when estimating population parameters.

In some pilot studies investigators may wish to assume that a single in-

dividual is representative of the population. If a population is relatively

homogeneous (e.g. genetically identical mice) and an investigator wishes to

use microarrays to identify genes with the largest effects for further study,

this may be reasonable. However, the investigator should be aware that he or

she is making a critical assumption and, moreover, the assumption cannot be

evaluated with the data. In general, microarray studies should assess or ac-

count for biological variability with replicates in order to produce meaningful

scientific results about the populations of interest. The difference between

“assessing” and “accounting for” this variation is discussed in Section 4.

4. Pooling

Investigators sometimes propose to pool RNA samples from individuals (e.g.,

Jin et al. (2001)). Pooling may be wholly or partly motivated by the fact

that an insufficient quantity of RNA can be obtained from a single individual

to hybridize to an array. If this is the case, then either pooling RNAs or using

an RNA amplification procedure are the only courses of action if a microarray
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study is to be performed.

Sometimes pooling is proposed because biological variation is recognized

and pooling is meant to “control” this variation. Often this intention is mis-

guided, because biological variability is crucial to understand, not eliminate.

Physically averaging together replicate RNAs reduces biological variability,

but one also loses the ability to measure or assess that variability. Consider

the following kinds of microarray studies.

1. A study to identify genes where the mean expression level is different

in two populations.

2. A study to find a classification scheme for known disease classes based

on gene expression measurements.

3. A study to discover unknown sub-classes of a disease.

For a study of type 1, a necessary component of making inference about

population means is the population variances. But the data will lack the

information to estimate the population variance if all RNAs from each pop-

ulation is pooled. A statistical analysis can use measurement error to make

inference about X − Y , the difference in sample means, but this is not the

quantity of interest.

Kendziorski, Lan and Attie (2002) propose an “in between” strategy,

whereby multiple, independent pools would be used for each population.

Such a strategy may allow a study to increase the number of individuals

without increasing cost. Using multiple pools for each population retains

some ability to estimate population variability. This kind of strategy is also

known as “composite sampling” (Boswell et al. (1996)). For a population
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with variability τ 2, the variability of a pool of m individuals is τ 2/m (as-

suming linearity). This approach sacrifices potential benefits that might

come from learning more about two populations than just their difference in

means, such as non-symmetries and multi-modalities. Moreover, there are

other ways to define “differentially expressed” besides a difference in means

(Pepe et al. (2002)). Still, the intermediate scheme of Kendziorski et al.

(2002) may be a practical strategy for many investigations.

For studies like 2 and 3 above, pooling is generally inappropriate. Classi-

fication tools make predictions about individuals, and therefore require data

at the individual level. If one hopes to discover new disease sub-classes,

then clearly one cannot collapse data from individuals who are potentially

from different sub-classes. Without distributional assumptions, pooling lim-

its analysis to those such as 1 above.

5. Experimental layout

For any given gene a microarray makes a quantitative comparison between

two RNAs. This makes a microarray design a block design with block size 2

(Kerr and Churchill (2001a)). Consequently, the experimental layout (how

samples are paired onto arrays) is a crucial determinant of design efficiency.

The layout also determines the confounding structure of the design. In this

paper microarray designs appear as directed graphs (Kerr and Churchill

(2001a), Yang and Speed (2002)), which quickly communicate the structure

of a design and emphasize the comparative nature of a microarray assay. The

nodes of the graph are the RNAs and the directed edges are the microarrays.

Let the tail of an edge represent one dye and the head of an edge represent

the other dye. Thus an edge from node A to node B means an array is to be
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hybridized with RNA A labeled with dye 1 and RNA B labeled with dye 2.

5.1 Efficiency

As discussed, microarrays are a comparative measurement tool. When

two differently-labeled RNAs are hybridized to the same array, the sam-

ple that contains more of a given transcript should produce proportionately

higher signal (properly normalized) in the corresponding spots. There are

various equivalent ways to formulate this as ANOVA or other linear models

(Kerr (2003)). The outstanding issue in applying any of these models is the

sources of random variation they include.

Kerr and Churchill (2001a) evaluated the efficiency of various microarray

designs, including the popular “reference” design. In the reference design,

a (usually) extraneous “reference sample” is used along with the RNAs of

interest. Every sample of interest is compared in a hybridization to this

sample. The design is intuitive: every RNA of interest can be compared

indirectly because each is compared directly to the reference. For example,

if the expression level of a gene is twice as high in RNA 1 compared to the

reference, and six times as high in RNA 2 compared to the reference, then

the expression is three times higher in RNA 2 compared to RNA 1. The

same, simple logic can be applied to more sophisticated designs.

Alternative designs can have substantial advantages over the reference

design (Churchill and Oliver (2001), Jin et al. (2001), Kerr and Churchill

(2001a), Yang and Speed (2002)). Kerr and Churchill (2001a) considered

microarray designs in a similar framework as in classical block design. Specif-

ically, the viewpoint was that the individual RNAs were of interest in them-

selves, not as a sample from a population of interest. As discussed in Section
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3 and 4, this is appropriate for some settings. However, if the RNAs are

sampled from populations to identify genes that are differentially expressed

between the populations, then the individual RNAs are no longer the pri-

mary objects of interest. Instead, these RNAs are studied for the purpose

of making inferences about the populations from which they were sampled.

Classical block design does not usually consider this situation.

{ Figure 1 about here. }

Suppose we want to compare two treatments (such as a treatment and

a control) on a population. We obtain 2n individuals and randomly divide

them equally among the treatment groups. Let us consider the merits of

3 design strategies. One option is to use a reference design (Figure 1a),

comparing the RNA of each individual against some reference RNA. A second

option is to use a loop design, alternating individuals from each group within

the loop (Figure 1b). A final option is to pair the samples, comparing a

sample of each type in separate dye-swap assays (Figure 1c).

In models with a single source of error (e.g. Kerr and Churchill (2001a)),

the relative efficiency for comparing the means of the two groups is always

1
4

favoring the loop and multi-dye-swap designs over the reference design.

That is, the variance of the difference in means between the two groups is

four times larger with the reference design. However, such models are not

appropriate here because the assayed RNAs are samples. Instead, to consider

design efficiencies our model has two sources of random effects:

yikl = µ + Ai + Vk + νkl + εikl, (2)

where yikl is the normalized log fluorescence of the lth replicate from variety

k measured on the ith array. In (2), µ is the overall signal from the gene,
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Ai is the array effect of the ith array (effectively, the “spot” effect), and

Vk is the mean signal from “variety” k = 1, 2, i.e. the unknown population

means. These are all fixed effects. The random effects are the νkl, which

represent the variation within varieties k = 1, 2, and the measurement error

εikl. We have such a model for every gene. For design considerations, the

only consequential difference between this model and the global ANOVA

models of Kerr and Churchill (2001a) is the addition of the νkl (Kerr (2003)).

While (2) does not contain dye effects, such effects are not estimable for

the reference design (Figure 1a) due to confounding and do not affect the

efficiency of the other two designs (Figures 1b and 1c) because their layouts

are balanced with respect to dyes.

Say var(εikl)=σ2 is the error variance and var(νkl)=τ 2 is the population

variability. The vkl term represents the random variation of the lth individual

from the mean of population k. These random effects induce correlations

among repeated measurements on individuals. The parameters of interest

are the population means Vk.

An outstanding issue in microarray analysis is whether to consider the

array effects, Ai, as fixed or random. Unlike the question of whether to use

a global or gene-specific model, this decision can have a substantial effect

on the results (Kerr (2003)). There is a compelling argument for treating

these effects as random, as in Jin et al. (2001) and Wolfinger et al. (2001).

However, incorporating this assumption into an analysis involves question-

able distributional assumptions. Here, these effects are initially considered

fixed, but this issue will be re-visited at the end of this subsection.

Consider first the reference strategy (Figure 1a). The least-squares esti-
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mate of V1 − V2 is the usual estimate: for each array take the log ratio of

treated vs. reference sample, and subtract the averaged log ratios for variety

2 from the averaged log ratios for variety 1. For a sample of size n from each

population, the variance of V̂1 − V̂2 is

1

n
(4σ2 + 2τ 2). (3)

Consider next the loop strategy in Figure 1b. This is a balanced design, in

that every array contains both variety 1 and variety 2. Each individual RNA

is measured twice, although these repeated measurements are correlated.

The variance of the least-squares estimate V̂1 − V̂2 is

1

n
(σ2 + 2τ 2). (4)

Note (4) is always smaller than (3). However, the gain in precision for using

the loop design over the reference design depends on the relative sizes of σ2

and τ 2. Across the genes on the array, there will be a range of variances τ 2.

For genes with large biological variation such that τ 2 >> σ2, the efficiency

advantage for using the loop design is diminished. Kerr and Churchill (2001a)

showed that loops become inefficient for large numbers of RNAs when the

different RNAs are treated as different varieties. Loops retain their efficiency

in the current context because the number of varieties is fixed at 2, regardless

of the total number of RNAs.

We improve our precision with the alternating loop strategy, but at the

cost of adopting a more complicated design and analysis. Is this added com-

plication necessary? Consider the multiple dye-swapping strategy (Figure

1c). For a single dye-swap, the variance of the estimate of V1−V2 is σ2 +2τ 2.
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With n individuals for each variety there are n dye-swaps, and the variance

of the combined estimate is then

1

n
(σ2 + 2τ 2), (5)

the same as for the loop design. Although it yields the same precision as

the alternating-loop strategy, the multi-dye-swap is much more robust (see

Section 5.2), less complicated to execute and model, and likely offers greater

opportunity for non-parametric analyses.

We return to the question of random spot effects. The variances at (4)

and (5) do not change when spot effects are treated as random because of

the balance in the design – each array has one sample from each variety. The

same does not hold for the reference design. Letting var(Ai) = α2 in the

model (2) with random Ai, the variance at (3) becomes

2

n

[
σ4 + 2σ2α2 + τ 2(σ2 + α2)

α2 + σ2

]
(6)

As α2 → ∞, (6) converges to (3) since V̂1 − V̂2 estimated with random

spot effects converge to the estimate with fixed spot effects. As α2 → 0,

(6) converges to 1
n
(2σ2 + 2τ 2), which remains larger than (4) and (5). This

makes sense, because when there is no spot-to-spot variation, it is clearly a

waste to expend resources on a reference sample that is not of interest.

The general lesson here is that experimental layout is effective at reducing

error due to technical variability. However, if population variability is large

there is a smaller advantage in using an alternative design than the reference

design. On the other hand, using a well-designed experiment along with the

pooling strategy of Kendziorski et al. (2002) (described in Section 4) may

be an effective strategy.
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5.2 Robustness

Robustness is an additional design consideration. This paper takes ro-

bustness in microarray design to mean the relative efficiency of the effective

design if there are missing data due to failed arrays or bad spots in the in-

tended design. The loop design (Figure 1b) is not robust. If a loop design

is planned, but data are not obtained from some array, the resulting design

has greatly reduced efficiency. In contrast, the reference design (Figure 1a)

is robust. A reference design remains a reference design if an array is lost,

and the loss only affects comparisons with the sample on that array.

{ Figure 2 about here. }

Loop designs should be avoided in experimental situations where array

hybridizations sometimes fail and cannot be replaced. However, variations on

loops are very robust designs. Compare the “double reference” and “double

loop” designs in Figure 2. These two designs each use 2n arrays to study n

samples. For 5 samples, if we consider a pairwise comparison between any

pair of samples and only model measurement error (i.e., remove the ν term

from (2)) the relative efficiency of these designs is 40% in favor of the double

loop. In addition to its advantages in estimation precision, the double loop

design is more robust. This is because there are many more connections

between every pair of samples. In contrast, the loss of a single array in the

double reference design means half the data on a particular RNA are lost.

For five RNAs the double loop is superior in both efficiency and robustness.

5.3 Dye-bias

Some researchers have observed gene-specific dye-biases in their microar-

ray data. Biologists sometimes report the phenomenon as genes for which
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“the ratios don’t flip.” This bias is easily seen in simple “dye-swap” exper-

iments, in which two samples are hybridized onto two arrays, and the dye-

labels are switched in the two hybridizations. After normalizing for other

sources of variation, including overall differences in the dyes, one expects the

Green/Red ratio from Array 1 to be about the same as the Red/Green ratio

from Array 2 for any particular gene. For a subset of genes, instead one finds

that Green/Red from Array 1 is about the same as Green/Red from Array 2.

It has been argued that this phenomenon is unimportant because it is a neg-

ligible part of the total variation in the data (Tseng et al. (2001)). However,

ultimately inferences will be made for individual genes, and for individual

genes this can be a substantial source of bias (Kerr et al. (2002)). However,

dye-bias can be handled by extending the model at (2):

yijkl = µ + Ai + Dj + Vk + νkl + εikl. (7)

The additional terms Dj are the ”dye effect” for dye j = 1, 2.

The source of this dye-bias is currently under investigation. Fortunately,

it is straightforward to protect against being misled by dye bias. A simple

solution is to dye-swap every assay. An example of such a design is the

“double reference” design in Figure 2(a). While this strategy is effective, it

can be expensive. In fact, any design that is “even” handles the potential

problem (Kerr and Churchill (2001a)). An even design is one where every

sample is labeled with both dyes, and each differently-labeled sub-sample

is used equally often in the experimental layout. This balance makes dye

effects and gene expression effects orthogonal. The designs in Figures 1b, 1c,

2a, 2b, 3a, and 3b are all even. In contrast, in a confounded design such as

the reference design (Figure 1a), dye biases cannot be corrected or detected.
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This may not be a problem when the reference sample is not of interest, since

the dye-bias will be the same in all RNAs of interest. On the other hand, if

the reference sample is of scientific interest then, in a simple reference design,

one cannot know whether results are biased.

5.4 Practical considerations

In addition to efficiency and robustness, there may be other practical

considerations in choosing an experimental layout. These include

• (a) Simplicity

• (b) Extendability

• (c) Useful sub-designs

Simplicity (a) may be important for a large study in which many technicians

will perform the assays. If a study is somewhat open-ended, a design that

is easily extendable (b) may be preferred, so that additional samples can be

added to the design in a sensible way. “Double reference”(Figure 2a) and

“symmetric reference” (Figure 3) designs are natural to extend. Finally, it

may be desirable for a design to contain useful sub-designs (c). If a question

of interest applies to a subset of samples, a good sub-design will allow the

question to be studied by analyzing only a subset of the data.

{ Figure 3 about here. }

6. Summary

The two key design issues in a microarray study are usually (1) which RNA

samples will be assayed, and (2) which experimental layout will be used. The

scientific question of interest should drive the choices in each case.
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Selecting the RNA samples involves ensuring a study involves appropriate

replication. If a study does not use biological replicates (type (C) in Section

3) or if all biological replicates are pooled, biological variability cannot be as-

sessed and often the desired inferences cannot be made. Certain overarching

goals of the study, such as finding a classification scheme, may not be possible

without replication. Technical replication ((A) and (B) in Section 3), can be

useful for increasing the precision of estimates. But technical replication is

always less effective and can never substitute for true replication.

A spotted microarray is effectively a comparison between two samples.

Because of this, the way samples are paired onto arrays can have a large im-

pact on how effectively one can make the comparisons of interest at the end

of the study (Kerr and Churchill (2001a)). In the author’s experience, the

number of microarrays budgeted for an experiment is at most twice the num-

ber of RNAs. For studies that include biological replicates for the purpose of

inferring differences in the mean expression between groups, the advantage of

using alternative designs to the reference design will be minor when biologi-

cal variation is large. A simple design strategy such as the double reference

(Figure 2a) is then very practical. In other kinds of studies, the individual

RNAs will be of interest, such as pilot studies with no biological replicates.

Generally, there is less advantage in efficiency in using a complicated design

as the number of RNAs increases. Conversely, for smaller studies the ad-

vantage of a good layout is greater; Kerr and Churchill (2001a) give some

guidance here. The general rule of thumb is that samples to be compared

should be “close” in the design.

The information content of a dataset is determined by the design of the
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experiment that produced it, regardless of the particular data values. Once

a dataset is collected, its information content cannot be increased by any

amount of ingenuity expended by a data analyst (Fisher (1971)). Good

design is crucial to all scientific experimentation, and microarrays are no

exception.
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Figure Captions

Figure 1 Designs for n individuals sampled from two populations using

2n arrays. Here n = 4. See Section 5, Kerr and Churchill (2001a), or Yang

and Speed (2002) for information about this representation of designs. The

nodes of the graphs represent different individuals and the circles and trian-

gles distinguish the two populations. The edges of the graphs represent the

microarrays. (a) “Reference” design; the rectangle represents the reference

RNA; (b) “Alternating loop” design; (c) Multiple dye-swap design.

Figure 2 Designs for n individuals sampled from two populations using

4n arrays. The circles and triangles distinguish the two populations. (a)

“Double reference” design; (b) “Double loop” design.

Figure 3 “Symmetric reference” designs are more robust than loop designs

and more efficient than reference designs. The design extend naturally to

include additional RNAs. These designs use n + 2 microarrays for n RNA

samples. The design is shown for (a) 10 samples and (b) 13 samples.
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